Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic matter structure and function
Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a br...
Saved in:
Published in | Science of the total environment Vol. 404; no. 2; pp. 297 - 307 |
---|---|
Main Authors | , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Kidlington
Elsevier B.V
15.10.2008
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a broader ecological and management context is difficult, however, and remains one of the fundamental challenges of soil organic matter research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter-disciplinary research into the ecological implications of molecular C turnover and its management- and process-level controls. Our model describes three properties of soil C dynamics: 1) soil size fractions have unique molecular patterns that reflect varying degrees of biological and physical control over decomposition; 2) there is a common decomposition sequence independent of plant inputs or other ecosystem properties; and 3) molecular decomposition sequences, although consistent, are not uniform and can be altered by processes that accelerate or slow the microbial transformation of specific molecules. The consequences of this model include several key points. First, lignin presents a constraint to decomposition of plant litter and particulate C (>
53 μm) but exerts little influence on more stable mineral-associated soil fractions <
53 μm. Second, carbon stabilized onto mineral fractions has a distinct composition related more to microbially processed organic matter than to plant-related compounds. Third, disturbances, such as N fertilization and tillage, which alter decomposition rates, can have “downstream effects”; that is, a disturbance that directly alters the molecular dynamics of particulate C may have a series of indirect effects on C stabilization in silt and clay fractions. |
---|---|
AbstractList | Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a broader ecological and management context is difficult, however, and remains one of the fundamental challenges of soil organic matter research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter-disciplinary research into the ecological implications of molecular C turnover and its management- and process-level controls. Our model describes three properties of soil C dynamics: 1) soil size fractions have unique molecular patterns that reflect varying degrees of biological and physical control over decomposition; 2) there is a common decomposition sequence independent of plant inputs or other ecosystem properties; and 3) molecular decomposition sequences, although consistent, are not uniform and can be altered by processes that accelerate or slow the microbial transformation of specific molecules. The consequences of this model include several key points. First, lignin presents a constraint to decomposition of plant litter and particulate C (>53 mu m) but exerts little influence on more stable mineral-associated soil fractions <53 mu m. Second, carbon stabilized onto mineral fractions has a distinct composition related more to microbially processed organic matter than to plant-related compounds. Third, disturbances, such as N fertilization and tillage, which alter decomposition rates, can have ''downstream effects''; that is, a disturbance that directly alters the molecular dynamics of particulate C may have a series of indirect effects on C stabilization in silt and clay fractions. Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a broader ecological and management context is difficult, however, and remains one of the fundamental challenges of soil organic matter research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter-disciplinary research into the ecological implications of molecular C turnover and its management- and process-level controls. Our model describes three properties of soil C dynamics: 1) soil size fractions have unique molecular patterns that reflect varying degrees of biological and physical control over decomposition; 2) there is a common decomposition sequence independent of plant inputs or other ecosystem properties; and 3) molecular decomposition sequences, although consistent, are not uniform and can be altered by processes that accelerate or slow the microbial transformation of specific molecules. The consequences of this model include several key points. First, lignin presents a constraint to decomposition of plant litter and particulate C (> 53 μm) but exerts little influence on more stable mineral-associated soil fractions < 53 μm. Second, carbon stabilized onto mineral fractions has a distinct composition related more to microbially processed organic matter than to plant-related compounds. Third, disturbances, such as N fertilization and tillage, which alter decomposition rates, can have “downstream effects”; that is, a disturbance that directly alters the molecular dynamics of particulate C may have a series of indirect effects on C stabilization in silt and clay fractions. Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a broader ecological and management context is difficult, however, and remains one of the fundamental challenges of soil organic matter research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter-disciplinary research into the ecological implications of molecular C turnover and its management- and process-level controls. Our model describes three properties of soil C dynamics: 1) soil size fractions have unique molecular patterns that reflect varying degrees of biological and physical control over decomposition; 2) there is a common decomposition sequence independent of plant inputs or other ecosystem properties; and 3) molecular decomposition sequences, although consistent, are not uniform and can be altered by processes that accelerate or slow the microbial transformation of specific molecules. The consequences of this model include several key points. First, lignin presents a constraint to decomposition of plant litter and particulate C (>53 microm) but exerts little influence on more stable mineral-associated soil fractions <53 microm. Second, carbon stabilized onto mineral fractions has a distinct composition related more to microbially processed organic matter than to plant-related compounds. Third, disturbances, such as N fertilization and tillage, which alter decomposition rates, can have "downstream effects"; that is, a disturbance that directly alters the molecular dynamics of particulate C may have a series of indirect effects on C stabilization in silt and clay fractions. Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a broader ecological and management context is difficult, however, and remains one of the fundamental challenges of soil organic matter research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter-disciplinary research into the ecological implications of molecular C turnover and its management- and process-level controls. Our model describes three properties of soil C dynamics: 1) soil size fractions have unique molecular patterns that reflect varying degrees of biological and physical control over decomposition; 2) there is a common decomposition sequence independent of plant inputs or other ecosystem properties; and 3) molecular decomposition sequences, although consistent, are not uniform and can be altered by processes that accelerate or slow the microbial transformation of specific molecules. The consequences of this model include several key points. First, lignin presents a constraint to decomposition of plant litter and particulate C (>53 km) but exerts little influence on more stable mineral-associated soil fractions <53 km. Second, carbon stabilized onto mineral fractions has a distinct composition related more to microbially processed organic matter than to plant-related compounds. Third, disturbances, such as N fertilization and tillage, which alter decomposition rates, can have ''downstream effects''; that is, a disturbance that directly alters the molecular dynamics of particulate C may have a series of indirect effects on C stabilization in silt and clay fractions. Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a broader ecological and management context is difficult, however, and remains one of the fundamental challenges of soil organic matter research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter-disciplinary research into the ecological implications of molecular C turnover and its management- and process-level controls. Our model describes three properties of soil C dynamics: 1) soil size fractions have unique molecular patterns that reflect varying degrees of biological and physical control over decomposition; 2) there is a common decomposition sequence independent of plant inputs or other ecosystem properties; and 3) molecular decomposition sequences, although consistent, are not uniform and can be altered by processes that accelerate or slow the microbial transformation of specific molecules. The consequences of this model include several key points. First, lignin presents a constraint to decomposition of plant litter and particulate C (>53 microm) but exerts little influence on more stable mineral-associated soil fractions <53 microm. Second, carbon stabilized onto mineral fractions has a distinct composition related more to microbially processed organic matter than to plant-related compounds. Third, disturbances, such as N fertilization and tillage, which alter decomposition rates, can have "downstream effects"; that is, a disturbance that directly alters the molecular dynamics of particulate C may have a series of indirect effects on C stabilization in silt and clay fractions. |
Author | Grandy, A. Stuart Neff, Jason C. |
Author_xml | – sequence: 1 givenname: A. Stuart surname: Grandy fullname: Grandy, A. Stuart email: grandya1@msu.edu organization: Michigan State University, East Lansing, MI, 48824, United States – sequence: 2 givenname: Jason C. surname: Neff fullname: Neff, Jason C. organization: University of Colorado, Boulder, Department of Geological Sciences, Boulder, CO 80309-0399, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20815092$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18190951$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkT1vFDEQhi0URC6BvwBuoNvD4_2wTRed-JKCaEJtecde4tOufdjeoPT8cHZ1p1AeblzMM--M5rkiFyEGR8gbYFtg0L3fbzP6EosLD1vOmNgCbBnUz8gGpFAVMN5dkA1jjaxUp8Qlucp5z5YnJLwglyBBMdXChvz5FkeH82gS3VH7GMzkMVMbf4dckjPTB3p372jvI967pWRGah3G6RCzLz4Gmt2v2QV01ARLfcnUTweDha6l6Eca008TPNLJlOISXUJnLHM68sMccE15SZ4PZszu1em_Jj8-fbzbfaluv3_-uru5rbBtZamEQIaia1lTYwPOYt_bRjVMDnXHJO-b3lphlAVsGuCKDyAlSNYCCmmGntfX5N0x95DisnYuevIZ3Tia4OKcdac6waFtzoJ1W6tOKnYW5IzXoub_BzaqhgUURxBTzDm5QR-Sn0x61MD06l7v9ZN7vbrXAHpxv3S-Po2Y-8nZf30n2Qvw9gSYvJgckgno8xPHmYSWqfVMN0fOLS4evEvrwFWy9clh0Tb6s8v8BSV51PU |
CODEN | STENDL |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2019_135454 crossref_primary_10_1007_s00374_011_0635_4 crossref_primary_10_1007_s10533_013_9871_z crossref_primary_10_1016_j_geoderma_2019_06_017 crossref_primary_10_1016_j_still_2022_105395 crossref_primary_10_1016_j_geoderma_2017_11_040 crossref_primary_10_1016_j_scitotenv_2018_04_171 crossref_primary_10_1002_ldr_3299 crossref_primary_10_1016_j_geoderma_2021_115667 crossref_primary_10_1177_0309133315625864 crossref_primary_10_3390_f13071148 crossref_primary_10_1038_s41467_018_05891_1 crossref_primary_10_1016_j_apsoil_2024_105370 crossref_primary_10_1016_j_catena_2022_106565 crossref_primary_10_1038_s41558_018_0087_z crossref_primary_10_1016_j_soilbio_2017_03_002 crossref_primary_10_1007_s10533_012_9715_2 crossref_primary_10_1016_j_soilbio_2016_08_008 crossref_primary_10_1007_s11430_020_9705_9 crossref_primary_10_1016_j_agee_2023_108392 crossref_primary_10_1029_2023JG007964 crossref_primary_10_1016_j_foreco_2021_119604 crossref_primary_10_1007_s11104_015_2678_z crossref_primary_10_1016_j_geoderma_2021_115657 crossref_primary_10_1007_s11104_019_04265_w crossref_primary_10_1016_j_ecolind_2019_105644 crossref_primary_10_1016_j_soilbio_2016_08_014 crossref_primary_10_1016_j_foreco_2020_118251 crossref_primary_10_1007_s00248_017_0931_0 crossref_primary_10_1007_s11104_012_1145_3 crossref_primary_10_1186_s12866_020_01794_8 crossref_primary_10_1016_j_ecolind_2019_03_009 crossref_primary_10_1016_j_geoderma_2013_02_012 crossref_primary_10_3389_fmicb_2019_01682 crossref_primary_10_1080_21683565_2021_2019167 crossref_primary_10_1029_2023MS004156 crossref_primary_10_1016_j_orggeochem_2011_01_002 crossref_primary_10_3389_feart_2020_557961 crossref_primary_10_1111_gcb_12113 crossref_primary_10_1016_j_scienta_2021_110632 crossref_primary_10_1007_s11368_015_1118_2 crossref_primary_10_1038_s41396_023_01384_2 crossref_primary_10_7717_peerj_15686 crossref_primary_10_1016_j_soilbio_2022_108584 crossref_primary_10_5194_soil_2_325_2016 crossref_primary_10_1016_j_agee_2017_01_006 crossref_primary_10_1007_s11769_019_1062_y crossref_primary_10_1007_s10533_018_0475_5 crossref_primary_10_1038_srep09575 crossref_primary_10_1657_1938_4246_42_2_179 crossref_primary_10_1007_s42729_023_01447_5 crossref_primary_10_1111_gcb_13751 crossref_primary_10_1002_2015GB005188 crossref_primary_10_1094_PBIOMES_12_19_0069_FI crossref_primary_10_1002_clen_201600076 crossref_primary_10_1007_s10533_010_9439_0 crossref_primary_10_3390_soilsystems8020051 crossref_primary_10_1080_15324982_2016_1195458 crossref_primary_10_1016_j_apsoil_2016_08_004 crossref_primary_10_1016_j_soilbio_2017_04_010 crossref_primary_10_1590_1678_4499_2017296 crossref_primary_10_1016_j_catena_2021_106003 crossref_primary_10_1007_s10533_010_9525_3 crossref_primary_10_1016_j_soilbio_2014_04_028 crossref_primary_10_1016_j_soilbio_2010_12_002 crossref_primary_10_1016_j_scitotenv_2021_149328 crossref_primary_10_1016_j_soilbio_2018_06_014 crossref_primary_10_1016_j_soilbio_2020_107756 crossref_primary_10_1007_s10533_010_9482_x crossref_primary_10_1016_j_gca_2013_07_043 crossref_primary_10_3390_microorganisms9020357 crossref_primary_10_1007_s10533_019_00595_0 crossref_primary_10_1073_pnas_1215210110 crossref_primary_10_1007_s11284_012_1022_9 crossref_primary_10_7717_peerj_8384 crossref_primary_10_1016_j_soilbio_2020_107751 crossref_primary_10_1038_s43247_022_00439_0 crossref_primary_10_1007_s00267_023_01791_3 crossref_primary_10_1016_j_orggeochem_2023_104585 crossref_primary_10_1016_j_geoderma_2017_11_026 crossref_primary_10_1007_s10533_013_9872_y crossref_primary_10_1016_j_soilbio_2022_108799 crossref_primary_10_1002_eap_2290 crossref_primary_10_1016_j_eehl_2022_10_003 crossref_primary_10_1016_j_soilbio_2022_108790 crossref_primary_10_1038_nmicrobiol_2017_105 crossref_primary_10_1111_j_1365_2486_2012_02749_x crossref_primary_10_1007_s10533_014_0027_6 crossref_primary_10_5194_gmd_11_4779_2018 crossref_primary_10_1590_1678_992x_2018_0355 crossref_primary_10_1016_j_soilbio_2017_04_021 crossref_primary_10_1016_j_scitotenv_2020_138395 crossref_primary_10_4236_ojss_2016_612019 crossref_primary_10_1016_j_geoderma_2014_11_027 crossref_primary_10_1038_s41522_022_00277_0 crossref_primary_10_1111_ele_13390 crossref_primary_10_1016_j_earscirev_2020_103250 crossref_primary_10_1029_2019GL085543 crossref_primary_10_1016_j_geoderma_2017_01_032 crossref_primary_10_1016_j_gca_2014_12_024 crossref_primary_10_1016_j_apsoil_2023_105126 crossref_primary_10_1016_j_soilbio_2016_03_017 crossref_primary_10_1016_j_orggeochem_2011_06_008 crossref_primary_10_5194_essd_13_1843_2021 crossref_primary_10_3390_agronomy12071652 crossref_primary_10_1029_2018JG004566 crossref_primary_10_1111_j_1461_0248_2012_01837_x crossref_primary_10_1016_j_soilbio_2012_11_009 crossref_primary_10_1007_s11368_021_02975_2 crossref_primary_10_1111_gcb_16413 crossref_primary_10_1016_j_geoderma_2023_116347 crossref_primary_10_5194_gmd_8_1789_2015 crossref_primary_10_1111_gcb_15326 crossref_primary_10_1016_j_soilbio_2022_108648 crossref_primary_10_1016_j_geoderma_2015_08_019 crossref_primary_10_1016_j_agee_2020_107169 crossref_primary_10_1111_gcbb_12428 crossref_primary_10_1016_j_ejsobi_2020_103212 crossref_primary_10_1016_j_apsoil_2021_103982 crossref_primary_10_1016_j_jenvman_2021_112409 crossref_primary_10_1016_j_soilbio_2013_09_021 crossref_primary_10_1111_j_1461_0248_2012_01848_x crossref_primary_10_1016_j_scitotenv_2023_162284 crossref_primary_10_1016_j_soilbio_2018_07_010 crossref_primary_10_5194_soil_1_313_2015 crossref_primary_10_1016_j_geoderma_2012_02_010 crossref_primary_10_1016_j_agwat_2019_06_002 crossref_primary_10_1007_s10533_021_00799_3 crossref_primary_10_1038_s41561_020_0634_x crossref_primary_10_1016_j_soilbio_2013_09_011 crossref_primary_10_1038_srep27097 crossref_primary_10_1016_j_foreco_2018_05_059 crossref_primary_10_1002_2013GB004665 crossref_primary_10_1016_j_apsoil_2018_05_020 crossref_primary_10_1016_j_orggeochem_2023_104673 crossref_primary_10_1016_j_soilbio_2013_01_031 crossref_primary_10_1016_j_scitotenv_2021_145188 crossref_primary_10_3390_f10100914 crossref_primary_10_3389_fenvs_2020_514701 crossref_primary_10_1016_j_soilbio_2015_10_014 crossref_primary_10_1016_j_soilbio_2015_10_017 crossref_primary_10_1007_s10533_015_0107_2 crossref_primary_10_1134_S106422931304011X crossref_primary_10_1146_annurev_ecolsys_110617_062331 crossref_primary_10_1016_j_ejsobi_2018_01_009 crossref_primary_10_1016_j_geoderma_2020_114207 crossref_primary_10_1111_gcb_14132 crossref_primary_10_1111_sum_12832 crossref_primary_10_1016_j_soilbio_2017_05_023 crossref_primary_10_1007_s10533_015_0073_8 crossref_primary_10_1007_s10705_022_10213_5 crossref_primary_10_1029_2018JG004431 crossref_primary_10_1007_s11368_024_03766_1 crossref_primary_10_1111_gcb_12029 crossref_primary_10_1007_s44246_022_00008_2 crossref_primary_10_3390_applbiosci2030022 crossref_primary_10_1016_j_chemosphere_2021_129971 crossref_primary_10_1186_s42269_020_00426_5 crossref_primary_10_1016_j_agee_2017_12_021 crossref_primary_10_1071_SR20063 crossref_primary_10_1016_j_soilbio_2010_10_006 crossref_primary_10_1098_rspb_2008_0808 crossref_primary_10_1016_j_soilbio_2017_12_018 crossref_primary_10_3390_su11247088 crossref_primary_10_1016_j_soilbio_2016_04_010 crossref_primary_10_1007_s11356_023_30099_2 crossref_primary_10_1890_14_0285_1 crossref_primary_10_1890_10_2028_1 crossref_primary_10_1016_j_scitotenv_2022_158710 crossref_primary_10_1111_ejss_12316 crossref_primary_10_1002_jpln_201900308 crossref_primary_10_1111_gcb_16978 crossref_primary_10_1016_j_soilbio_2011_12_024 crossref_primary_10_1007_s11104_010_0626_5 crossref_primary_10_1111_ele_12590 crossref_primary_10_1016_j_still_2024_106058 crossref_primary_10_3390_f13081207 crossref_primary_10_1016_j_geoderma_2017_10_036 crossref_primary_10_3390_soils2010006 crossref_primary_10_3389_fpls_2016_00065 crossref_primary_10_1016_j_geoderma_2018_12_041 crossref_primary_10_1016_j_geoderma_2018_05_013 crossref_primary_10_1111_j_1365_2486_2010_02278_x crossref_primary_10_1002_ecs2_3439 crossref_primary_10_1007_s10533_010_9519_1 crossref_primary_10_1016_S2095_3119_20_63269_5 crossref_primary_10_1007_s11104_022_05713_w crossref_primary_10_1007_s13157_022_01553_7 crossref_primary_10_1007_s10533_020_00736_w crossref_primary_10_3390_su9040578 crossref_primary_10_1111_ele_13651 crossref_primary_10_1080_09064710_2015_1030442 crossref_primary_10_1016_j_soilbio_2017_12_001 crossref_primary_10_1163_15685411_00003027 crossref_primary_10_1007_s11274_022_03296_3 crossref_primary_10_1016_j_geoderma_2020_114876 crossref_primary_10_2134_agronj2018_01_0045 crossref_primary_10_1111_ejss_12896 crossref_primary_10_1111_ele_12453 crossref_primary_10_1111_mec_13620 crossref_primary_10_1016_j_soilbio_2022_108708 crossref_primary_10_1016_j_gca_2019_06_028 crossref_primary_10_1016_j_geoderma_2022_116060 crossref_primary_10_1016_j_scitotenv_2021_145386 crossref_primary_10_1016_j_soilbio_2013_08_005 crossref_primary_10_1016_j_scitotenv_2020_141953 crossref_primary_10_1007_s10533_020_00747_7 crossref_primary_10_1038_ngeo2520 crossref_primary_10_5194_soil_2_475_2016 crossref_primary_10_1002_ecy_3113 crossref_primary_10_1111_gcb_15420 crossref_primary_10_1002_2017JG003775 crossref_primary_10_1111_ejss_12404 crossref_primary_10_1016_j_geoderma_2012_12_003 crossref_primary_10_1016_j_geoderma_2013_06_014 crossref_primary_10_3832_ifor1196_008 crossref_primary_10_1007_s10533_018_0459_5 crossref_primary_10_1016_j_geoderma_2013_06_010 crossref_primary_10_1371_journal_pone_0161694 crossref_primary_10_1002_ldr_2768 crossref_primary_10_1111_gcb_12908 crossref_primary_10_1016_j_soilbio_2020_108011 crossref_primary_10_17221_231_2016_SWR crossref_primary_10_1007_s12155_018_9893_4 crossref_primary_10_1016_j_geoderma_2019_114160 crossref_primary_10_1016_j_agee_2016_11_012 crossref_primary_10_1071_SR12351 crossref_primary_10_1016_j_soilbio_2023_109061 crossref_primary_10_1002_2017JG003759 crossref_primary_10_1371_journal_pone_0214089 crossref_primary_10_1016_j_soilbio_2015_03_002 crossref_primary_10_3390_microorganisms9061145 crossref_primary_10_1111_nph_12440 crossref_primary_10_1007_s10533_022_00956_2 crossref_primary_10_1016_j_catena_2014_04_008 crossref_primary_10_1111_gcb_14070 crossref_primary_10_1111_sum_13064 crossref_primary_10_1021_acs_est_9b01834 crossref_primary_10_1007_s10021_012_9583_6 crossref_primary_10_1016_j_catena_2017_10_019 crossref_primary_10_1111_gcbb_12265 crossref_primary_10_3389_fmicb_2018_02456 crossref_primary_10_3390_ijerph192113721 crossref_primary_10_1038_nclimate3071 crossref_primary_10_1016_j_biombioe_2012_01_037 crossref_primary_10_1007_s00374_022_01691_4 crossref_primary_10_1016_j_soilbio_2021_108315 crossref_primary_10_1007_s00374_010_0440_5 crossref_primary_10_1371_journal_pone_0150898 crossref_primary_10_1016_j_agee_2017_12_006 crossref_primary_10_1007_s10533_018_0523_1 crossref_primary_10_1111_gcbb_12379 crossref_primary_10_1007_s11104_016_3121_9 crossref_primary_10_1002_ecs2_2434 crossref_primary_10_1016_j_foreco_2016_03_047 crossref_primary_10_1016_j_soilbio_2014_09_013 crossref_primary_10_1029_2010JG001587 crossref_primary_10_1890_0012_9623_91_1_94 crossref_primary_10_1016_j_foreco_2019_117477 crossref_primary_10_1016_j_geoderma_2019_114001 crossref_primary_10_1016_j_agee_2018_07_005 crossref_primary_10_1038_nature17174 crossref_primary_10_1007_s10533_012_9741_0 crossref_primary_10_1002_ecy_2345 crossref_primary_10_1016_j_ecoleng_2021_106348 crossref_primary_10_1111_gcbb_12126 crossref_primary_10_1016_j_soilbio_2016_05_006 crossref_primary_10_17221_473_2018_PSE crossref_primary_10_19047_0136_1694_2017_90_3_38 crossref_primary_10_1007_s10973_014_4256_7 crossref_primary_10_1002_ldr_2601 crossref_primary_10_1016_j_soilbio_2015_10_002 crossref_primary_10_1088_1748_9326_abac36 crossref_primary_10_1016_j_soilbio_2016_06_020 crossref_primary_10_1016_j_envsoft_2023_105786 crossref_primary_10_1007_s10021_011_9417_y crossref_primary_10_1016_j_geoderma_2018_02_039 crossref_primary_10_1111_gcbb_12598 crossref_primary_10_3390_agriculture11090903 crossref_primary_10_4236_as_2021_123014 crossref_primary_10_1111_gcbb_12354 crossref_primary_10_1016_j_ecoleng_2024_107186 crossref_primary_10_1111_nph_18914 crossref_primary_10_1016_j_soilbio_2010_09_001 crossref_primary_10_3390_agronomy14040869 crossref_primary_10_3389_fenvs_2018_00070 crossref_primary_10_1094_PBIOMES_5_1 crossref_primary_10_5194_gmd_13_4413_2020 crossref_primary_10_1016_j_geoderma_2020_114700 crossref_primary_10_1016_j_soilbio_2019_02_014 crossref_primary_10_1890_13_0616_1 crossref_primary_10_1016_j_catena_2020_104575 crossref_primary_10_1016_j_still_2019_04_009 crossref_primary_10_1002_ep_13775 crossref_primary_10_1007_s10533_023_01098_9 crossref_primary_10_1007_s00248_019_01414_7 crossref_primary_10_1371_journal_pone_0148785 crossref_primary_10_1007_s10533_021_00819_2 crossref_primary_10_1016_j_scitotenv_2023_163204 crossref_primary_10_1016_j_soilbio_2015_11_023 crossref_primary_10_1016_j_scitotenv_2015_09_041 crossref_primary_10_1071_SR12374 crossref_primary_10_1038_s41467_022_28715_9 crossref_primary_10_1016_j_geoderma_2023_116760 crossref_primary_10_2136_sssaj2011_0337 crossref_primary_10_3390_microorganisms8071018 crossref_primary_10_1111_j_1365_2486_2012_02643_x crossref_primary_10_1007_s10705_016_9786_x crossref_primary_10_1016_j_scitotenv_2021_145307 crossref_primary_10_1038_srep11043 crossref_primary_10_1007_s10533_015_0079_2 crossref_primary_10_1016_j_foreco_2012_12_015 crossref_primary_10_1016_S1002_0160_12_60015_0 crossref_primary_10_4236_ojss_2013_37035 crossref_primary_10_1016_j_geoderma_2023_116404 crossref_primary_10_1016_j_soilbio_2015_09_005 crossref_primary_10_1016_j_apsoil_2021_104099 crossref_primary_10_1016_j_soilbio_2015_09_002 crossref_primary_10_1016_j_apsoil_2017_07_008 crossref_primary_10_1111_gcb_12987 crossref_primary_10_1111_gcb_12982 crossref_primary_10_1038_s41598_018_34981_9 crossref_primary_10_1007_s00572_021_01029_2 crossref_primary_10_1029_2023GB007934 crossref_primary_10_1007_s10533_018_0481_7 crossref_primary_10_1016_j_soilbio_2014_07_027 crossref_primary_10_1016_j_soilbio_2015_05_018 crossref_primary_10_1016_j_scitotenv_2020_142287 crossref_primary_10_3389_fevo_2019_00315 crossref_primary_10_1016_j_scitotenv_2023_169351 crossref_primary_10_1111_j_1461_0248_2009_01360_x crossref_primary_10_1080_1065657X_2017_1342106 crossref_primary_10_1111_nph_13494 crossref_primary_10_1111_ele_12712 crossref_primary_10_1016_j_soilbio_2013_10_033 crossref_primary_10_1007_s10533_008_9257_9 crossref_primary_10_1007_s10533_017_0304_2 crossref_primary_10_1016_j_geoderma_2009_11_011 crossref_primary_10_1007_s10533_012_9821_1 crossref_primary_10_1007_s10533_016_0201_0 crossref_primary_10_1016_j_soilbio_2020_108080 crossref_primary_10_1021_es203745k crossref_primary_10_1016_j_soilbio_2016_07_010 crossref_primary_10_1016_j_agee_2016_08_016 crossref_primary_10_1016_j_agee_2023_108567 crossref_primary_10_1017_sus_2018_11 crossref_primary_10_5194_bg_11_3899_2014 crossref_primary_10_1007_s10021_011_9501_3 crossref_primary_10_3390_agronomy13112843 crossref_primary_10_1890_09_2325_1 crossref_primary_10_1007_s11104_017_3401_z crossref_primary_10_1890_13_1274_1 crossref_primary_10_2136_sssaj2019_02_0047 crossref_primary_10_1111_gcb_13979 crossref_primary_10_3390_f12111588 crossref_primary_10_1007_s10021_016_0104_x crossref_primary_10_1111_gcb_17092 crossref_primary_10_1038_nature10386 crossref_primary_10_1525_elementa_2022_00023 crossref_primary_10_1002_rcm_4124 crossref_primary_10_1016_j_soilbio_2021_108390 crossref_primary_10_1007_s10533_012_9735_y crossref_primary_10_3389_fmicb_2023_1256269 crossref_primary_10_1890_13_1418_1 crossref_primary_10_1111_gcb_12519 crossref_primary_10_1080_03650340_2021_1875130 crossref_primary_10_1016_j_geoderma_2009_02_007 crossref_primary_10_1016_j_scitotenv_2022_161153 crossref_primary_10_1016_j_soilbio_2021_108289 crossref_primary_10_1590_18069657rbcs20160203 crossref_primary_10_1016_j_soilbio_2019_107530 crossref_primary_10_1071_SR13156 crossref_primary_10_1007_s11769_021_1232_6 crossref_primary_10_1038_srep29607 crossref_primary_10_1002_agg2_20395 crossref_primary_10_1016_j_soilbio_2014_06_022 crossref_primary_10_3390_f14061234 crossref_primary_10_1016_j_scitotenv_2013_08_026 crossref_primary_10_5194_soil_6_131_2020 crossref_primary_10_1016_j_ecolind_2019_106042 crossref_primary_10_1002_rcm_7973 crossref_primary_10_1016_j_ejsobi_2017_04_005 crossref_primary_10_1111_gcb_17156 crossref_primary_10_1038_ncomms13630 crossref_primary_10_1002_eap_2784 crossref_primary_10_1016_j_soilbio_2014_06_013 crossref_primary_10_1007_s10533_018_0428_z crossref_primary_10_1007_s10533_022_01008_5 crossref_primary_10_1007_s00248_018_1215_z crossref_primary_10_1002_saj2_20118 crossref_primary_10_3389_fmars_2017_00125 crossref_primary_10_1007_s10533_018_0513_3 crossref_primary_10_1016_j_soilbio_2021_108189 crossref_primary_10_1016_j_soilbio_2016_09_007 crossref_primary_10_1111_1462_2920_15705 crossref_primary_10_1007_s42729_023_01439_5 crossref_primary_10_1007_s10533_010_9510_x crossref_primary_10_1016_j_agee_2022_108080 crossref_primary_10_1007_s11104_020_04728_5 crossref_primary_10_1016_j_ecoleng_2011_10_008 crossref_primary_10_1007_s10533_021_00793_9 crossref_primary_10_1007_s10533_014_9980_3 crossref_primary_10_1007_s10533_011_9658_z crossref_primary_10_1007_s10021_011_9510_2 crossref_primary_10_1111_gcb_17175 crossref_primary_10_4141_cjss10022 crossref_primary_10_1111_gcb_12832 crossref_primary_10_1016_j_still_2018_04_011 crossref_primary_10_1016_j_agee_2011_08_020 crossref_primary_10_1007_s10533_019_00577_2 crossref_primary_10_1016_j_orggeochem_2012_02_006 crossref_primary_10_1016_j_still_2019_104535 crossref_primary_10_1111_gcb_16073 crossref_primary_10_1007_s10533_012_9822_0 crossref_primary_10_1007_s10705_019_10005_4 crossref_primary_10_1002_ldr_4392 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2007 Elsevier B.V. 2009 INIST-CNRS |
Copyright_xml | – notice: 2007 Elsevier B.V. – notice: 2009 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7ST 7U6 C1K SOI 7QH 7UA 7SU 8FD FR3 KR7 7X8 |
DOI | 10.1016/j.scitotenv.2007.11.013 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Environment Abstracts Aqualine Water Resources Abstracts Environmental Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Aqualine Water Resources Abstracts Civil Engineering Abstracts Engineering Research Database Technology Research Database Environmental Engineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Environment Abstracts Civil Engineering Abstracts MEDLINE Aqualine MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences Ecology |
EISSN | 1879-1026 |
EndPage | 307 |
ExternalDocumentID | 10_1016_j_scitotenv_2007_11_013 18190951 20815092 S0048969707012077 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Rocky Mountains United States San Juan Mountains Colorado U. S. Rocky Mountains |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K WUQ XPP ZXP ZY4 ~02 ~G- ~KM AAPBV ABPIF ABPTK IQODW AAHBH AAXKI AKRWK CGR CUY CVF ECM EIF NPM AAYXX ACRPL ADNMO CITATION 7ST 7U6 C1K SOI 7QH 7UA 7SU 8FD FR3 KR7 7X8 |
ID | FETCH-LOGICAL-c558t-77c0c765043c41edcbbd49408f36082b4bdd7a9d1c441292f18818051c78afb23 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 |
IngestDate | Fri Oct 25 09:39:49 EDT 2024 Fri Oct 25 02:27:17 EDT 2024 Fri Oct 25 02:23:01 EDT 2024 Sun Sep 29 07:42:09 EDT 2024 Fri Dec 06 03:17:16 EST 2024 Sat Sep 28 07:53:36 EDT 2024 Sun Oct 22 16:04:15 EDT 2023 Fri Feb 23 02:34:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Pyrolysis-GC/MS Decomposition Carbon Soil organic mater Disturbance carbohydrates models lipids gas chromatograms lignin North America mass spectroscopy principal components analysis pyrolysis carbon proteins ecosystems organic materials soils |
Language | English |
License | CC BY 4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MeetingName | Biogeochemistry of Forested Ecosystems |
MergedId | FETCHMERGED-LOGICAL-c558t-77c0c765043c41edcbbd49408f36082b4bdd7a9d1c441292f18818051c78afb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 18190951 |
PQID | 20234931 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_69672154 proquest_miscellaneous_35396890 proquest_miscellaneous_20237320 proquest_miscellaneous_20234931 crossref_primary_10_1016_j_scitotenv_2007_11_013 pubmed_primary_18190951 pascalfrancis_primary_20815092 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2007_11_013 |
PublicationCentury | 2000 |
PublicationDate | 2008-10-15 |
PublicationDateYYYYMMDD | 2008-10-15 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: Netherlands |
PublicationTitle | Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2008 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Kauppi, Sedjo (bib41) 2001 Wang, Baldock, Dalala, Moody (bib88) 2004; 36 Mendham, Mathers, O'Connell, Grove, Saffigna (bib54) 2002; 34 Gleixner, Poirier, Bol, Balesdent (bib24) 2002; 33 Kelleher, Simpson, Simpson (bib42) 2006; 70 Filley, Cody, Goodell, Jellison, Noser, Ostrofsky (bib19) 2002; 33 Kögel-Knabner (bib46) 2002; 34 Nierop, van Bergen, Buurman, van Lagen (bib59) 2005; 127 Anderson, Paul (bib2) 1984; 48 Preston, Trofymow, Sayer, Niu (bib66) 1997; 75 Sinsabaugh, Zak, Gallo, Lauber, Amonette (bib78) 2004; 36 Baldock, Oades, Nelson, Skene, Golchin, Clarke (bib6) 1997; 35 Gallo, Lauber, Cabaniss, Waldrop, Sinsabaugh, Zak (bib22) 2005; 11 Golchin, Oades, Skjemstad, Clarke (bib25) 1994; 32 Masai, Katayama, Fukuda (bib52) 2007; 71 Six, Merckx, Kimpe, Paustian, Elliott (bib80) 2000; 51 Lopez, Vargas-Garcia, Suarez-Estrella, Moreno (bib50) 2006; 57 Kandeler, Stemmer, Klimanek (bib40) 1999; 31 Waldrop, Zak, Sinsabaugh, Gallo, Lauber (bib87) 2004; 14 Kirk, Farrell (bib44) 1987; 41 Denef, Six, Bossuyt, Frey, Elliott, Merckx (bib12) 2001; 33 Gleixner, Czimczik, Kramer, Luhker, Schmidt (bib23) 2001 Trinsoutrot, Recous, Mary, Nicolardot (bib85) 2000; 32 Nierop, Pulleman, Marinissen (bib58) 2001; 33 Grandy, Robertson (bib28) 2007; 10 Saiz-Jimenez, Hermosin, Guggenberger, Zech (bib71) 1996; 47 Zak, Kling (bib91) 2006; 87 Preston (bib65) 1996; 161 Wickland KP, Neff JC. Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry in press Berg (bib9) 2000; 133 Hassink, Whitmore (bib34) 1997; 61 Nierop, Preston, Verstraten (bib60) 2006; 38 Preston, Trofymow, Flanagan (bib67) 2006; 86 Balesdent (bib7) 1996; 47 CAST (bib10) 2004 Jokic, Wang, Liu, Frenkel, Huang (bib39) 2004; 35 Kögel-Knabner (bib45) 2000; 31 Mathers, Mao, Xu, Saffigna, Berners-Price, Perera (bib53) 2000; 38 Spaccini, Piccolo, Haberhauer, Gerzabek (bib84) 2000; 51 Grandy, Robertson (bib27) 2006; 70 Schmidt, Kögel-Knabner (bib75) 2002; 53 Hassink (bib33) 1997; 191 Baldock, Oades, Waters, Peng, Vassallo, Wilson (bib5) 1992; 16 Kiem, Kögel-Knabner (bib43) 2003; 35 Mikutta, Kleber, Torn, Jahn (bib55) 2006; 77 Six, Feller, Denef, Ogle, de Moraes sá (bib81) 2002; 22 Neff, Townsend, Gleixner, Lehman, Turnbull, Bowman (bib57) 2002; 419 Guggenberger, Zech, Haumaier, Christensen (bib32) 1995; 46 Dignac, Bahri, Rumpel, Rasse, Bardoux, Balesdent (bib15) 2005; 128 Filley, Nierop, Wang (bib20) 2006; 37 Shaver, Peterson, Sherrod (bib77) 2003; 116 Ekschmitt, Liu, Vetter, Fox, Wolters (bib16) 2005; 128 Hempfling, Schulten (bib35) 1990; 15 Dai, Ping, Michaelson (bib11) 2002; 33 Lal (bib48) 2004; 304 Waldrop, Firestone (bib86) 2004; 138 Jastrow, Boutton, Miller (bib38) 1996; 60 Baldock, Oades, Vassallo, Wilson (bib4) 1990; 28 Wickland KP, Neff JC, Aiken GR. Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability. Ecosystems in press Denef, Six, Merckx, Paustian (bib13) 2004; 68 Puget, Angers, Chenu (bib68) 1999; 31 Dignac, Knicker, Kögel-Knabner (bib14) 2002; 33 Hopkins, Chudek, Webster, Barraclough (bib36) 1997; 48 Neff, Harden, Gleixner (bib56) 2005; 35 Adani, Spagnol, Nierop (bib1) 2007; 82 Sinsabaugh, Gallo, Lauber, Waldrop, Zak (bib79) 2005; 75 Gregorich, Monreal, Schnitzer, Schulten (bib30) 1996; 161 Sohi, Mahieu, Arah, Powlson, Madari, Gaunt (bib83) 2001; 65 Grandy, Robertson (bib26) 2006; 12 Schlesinger (bib74) 1997 Guggenberger, Christensen, Zech (bib31) 1994; 45 Poirier, Sohi, Gaunt, Mahieu, Randall, Powlson (bib64) 2005; 36 Frey, Knorr, Parrent, Simpson (bib21) 2004; 196 Grandy, Neff, Weintraub (bib29) 2007; 39 Endo, Hayashi, Hibi, Hosono, Beppu, Ueda (bib17) 2003; 133 Saiz-jimenez (bib70) 1994; 28 Baldock, Oades, Vassallo, Wilson (bib3) 1990; 28 Smith, Goulding, Smith, Powlson, Smith, Falloon (bib82) 2001; 60 Mahieu, Powlson, Randall (bib51) 1999; 63 Paustian, Robertson, Elliott (bib62) 1996 Schimel, Weintraub (bib73) 2003; 35 Samukawa (bib72) 1996 Lobe, Du Preez, Amelung (bib49) 2002; 53 Plante, Conant, Stewart, Paustian, Six (bib63) 2006; 70 Lal (bib47) 2003; 22 Balesdent, Chenu, Balabane (bib8) 2000; 53 Fierer, Schimel (bib18) 2003; 67 Janzen, Campbell, Brandt, Lafond, Townley-Smith (bib37) 1992; 56 Schulten, Schnitzer (bib76) 1992; 153 White, Garland, Beyer, Yoshikawa (bib89) 2004; 71 Wynn, Bird, Vellen, Grand-Clement, Carter, Berry (bib90) 2006; 20 Roberson, Shlomo, Shennan, Firestone (bib69) 1995; 59 Oades, Waters, Vassallo, Wilson, Jones (bib61) 1988; 26 |
References_xml | – volume: 34 start-page: 139 year: 2002 end-page: 162 ident: bib46 article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter publication-title: Soil Biol Biochem contributor: fullname: Kögel-Knabner – volume: 35 start-page: 1061 year: 1997 end-page: 1083 ident: bib6 article-title: Assessing the extent of decomposition of natural organic materials using sold-state 13C NMR spectroscopy publication-title: Aust J Soil Res contributor: fullname: Clarke – volume: 28 start-page: 193 year: 1990 end-page: 212 ident: bib3 article-title: Solid-state CP/MAS publication-title: Aust J Soil Res contributor: fullname: Wilson – volume: 31 start-page: 55 year: 1999 end-page: 63 ident: bib68 article-title: Nature of carbohydrates associated with water-stable aggregates of two cultivated soils publication-title: Soil Biol Biochem contributor: fullname: Chenu – volume: 45 start-page: 449 year: 1994 end-page: 458 ident: bib31 article-title: Land-use effects on the composition of organic-matter in particle-size separates of soil. 1. Lignin and carbohydrate signature publication-title: Eur J Soil Sci contributor: fullname: Zech – volume: 128 start-page: 3 year: 2005 end-page: 17 ident: bib15 article-title: Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France) publication-title: Geoderma contributor: fullname: Balesdent – volume: 161 start-page: 680 year: 1996 end-page: 693 ident: bib30 article-title: Transformation of plant residues into soil organic matter: chemical characterization of plant tissue, isolated soil fractions, and whole soils publication-title: Soil Sci contributor: fullname: Schulten – start-page: 437 year: 1996 end-page: 457 ident: bib72 article-title: Chemical characterization of soil organic matter by Curie-point pyrolysis-gas chromatography–mass spectrometry publication-title: Mass Spectrometry of Soils contributor: fullname: Samukawa – volume: 34 start-page: 1669 year: 2002 end-page: 1673 ident: bib54 article-title: Impact of land-use on soil organic matter quality in south-western Australia— characterization with C-13 CP/MAS NMR spectroscopy publication-title: Soil Biol Biochem contributor: fullname: Saffigna – volume: 20 start-page: GB1007 year: 2006 ident: bib90 article-title: Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls publication-title: Glob Biogeochem. Cycles contributor: fullname: Berry – volume: 35 start-page: 747 year: 2004 end-page: 762 ident: bib39 article-title: Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature: the role of δ-MnO publication-title: Org Geochem contributor: fullname: Huang – volume: 116 start-page: 149 year: 2003 end-page: 164 ident: bib77 article-title: Cropping intensification in dryland systems improves soil physical properties: regression relations publication-title: Geoderma contributor: fullname: Sherrod – volume: 48 start-page: 623 year: 1997 end-page: 631 ident: bib36 article-title: Following the decomposition of ryegrass labelled with C-13 and N-15 in soil by solid-state nuclear magnetic resonance spectroscopy publication-title: Eur J Soil Sci contributor: fullname: Barraclough – volume: 70 start-page: 4080 year: 2006 end-page: 4094 ident: bib42 article-title: Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy publication-title: Geochim Cosmochim Acta contributor: fullname: Simpson – year: 2004 ident: bib10 article-title: Emissions and mitigation of agricultural greenhouse gases publication-title: Climate Change and Greenhouse Gas Mitigation: Challenges and Opportunities for Agriculture contributor: fullname: CAST – volume: 59 start-page: 1587 year: 1995 end-page: 1594 ident: bib69 article-title: Nutritional management of microbial polysaccharide production and aggregation in an agricultural soil publication-title: Soil Sci Soc Am J contributor: fullname: Firestone – volume: 31 start-page: 609 year: 2000 end-page: 625 ident: bib45 article-title: Analytical approaches for characterizing soil organic matter publication-title: Org Geochem contributor: fullname: Kögel-Knabner – volume: 63 start-page: 307 year: 1999 end-page: 319 ident: bib51 article-title: Statistical analysis of published carbon-13 CPMAS NMR spectra of soil organic matter publication-title: Soil Sci Soc Am J contributor: fullname: Randall – volume: 33 start-page: 407 year: 2002 end-page: 419 ident: bib11 article-title: Characterizing soil organic matter in Arctic tundra soils by different analytical approaches publication-title: Org Geochem contributor: fullname: Michaelson – volume: 32 start-page: 285 year: 1994 end-page: 309 ident: bib25 article-title: Study of free and occluded particulate organic-matter in soils by solid-state C-13 CP/MAS NMR-spectroscopy and scanning electron-microscopy publication-title: Aust J Soil Res contributor: fullname: Clarke – volume: 53 start-page: 383 year: 2002 end-page: 391 ident: bib75 article-title: Organic matter in particle-size fractions from A and B horizons of a Haplic Alisol publication-title: Eur J Soil Sci contributor: fullname: Kögel-Knabner – volume: 133 start-page: 13 year: 2000 end-page: 22 ident: bib9 article-title: Litter decomposition and organic matter turnover in northern forest soils publication-title: For Ecol Manag contributor: fullname: Berg – volume: 38 start-page: 2794 year: 2006 end-page: 2802 ident: bib60 article-title: Linking the B ring hydroxylation pattern of condensed tannins to C, N and P mineralization. A case study using four tannins publication-title: Soil Biol Biochem contributor: fullname: Verstraten – volume: 22 start-page: 755 year: 2002 end-page: 775 ident: bib81 article-title: Soil organic matter, biota and aggregation in temperate and tropical soils— effects of no-tillage publication-title: Agronomie contributor: fullname: de Moraes sá – volume: 15 start-page: 131 year: 1990 end-page: 145 ident: bib35 article-title: Chemical characterization of the organic-matter in forest soils by Curie-point pyrolysis GC MS and pyrolysis field-ionization mass-spectrometry publication-title: Org Geochem contributor: fullname: Schulten – volume: 53 start-page: 553 year: 2002 end-page: 562 ident: bib49 article-title: Influence of prolonged arable cropping on lignin compounds in sandy soils of the South African Highveld publication-title: Eur J Soil Sci contributor: fullname: Amelung – volume: 31 start-page: 261 year: 1999 end-page: 273 ident: bib40 article-title: Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management publication-title: Soil Biol Biochem contributor: fullname: Klimanek – volume: 41 start-page: 465 year: 1987 end-page: 505 ident: bib44 article-title: Enzymatic combustion: the microbial degradation of lignin publication-title: Annu Rev Microbiol contributor: fullname: Farrell – volume: 127 start-page: 36 year: 2005 end-page: 51 ident: bib59 article-title: NaOH and Na publication-title: Geoderma contributor: fullname: van Lagen – year: 1997 ident: bib74 article-title: An Analysis of Global Change contributor: fullname: Schlesinger – volume: 71 start-page: 107 year: 2004 end-page: 118 ident: bib89 article-title: Pyrolysis-GC/MS fingerprinting of environmental samples publication-title: J Anal Appl Pyrolysis contributor: fullname: Yoshikawa – volume: 37 start-page: 711 year: 2006 end-page: 727 ident: bib20 article-title: The contribution of polyhydroxyl aromatic compounds to tetramethylammonium hydroxide lignin-based proxies publication-title: Org Geochem contributor: fullname: Wang – volume: 33 start-page: 357 year: 2002 end-page: 366 ident: bib24 article-title: Molecular dynamics of organic matter in a cultivated soil publication-title: Org Geochem contributor: fullname: Balesdent – volume: 419 start-page: 915 year: 2002 end-page: 917 ident: bib57 article-title: Variable effects of nitrogen additions on the stability and turnover of soil carbon publication-title: Nature contributor: fullname: Bowman – volume: 26 start-page: 289 year: 1988 end-page: 299 ident: bib61 article-title: Influence of management on the composition of organic matter in a red-brown earth as shown by publication-title: Aust J Soil Res contributor: fullname: Jones – volume: 67 start-page: 798 year: 2003 end-page: 805 ident: bib18 article-title: A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil publication-title: Soil Sci Soc Am J contributor: fullname: Schimel – volume: 51 start-page: 283 year: 2000 end-page: 293 ident: bib80 article-title: A re-evaluation of the enriched labile soil organic matter fraction publication-title: Eur J Soil Sci contributor: fullname: Elliott – volume: 46 start-page: 147 year: 1995 end-page: 158 ident: bib32 article-title: Land-use effects on the composition of organic-matter in particle-size separates of soils. 2. CPMAS and solution C-13 NMR analysis publication-title: Eur J Soil Sci contributor: fullname: Christensen – volume: 68 start-page: 1935 year: 2004 end-page: 1944 ident: bib13 article-title: Carbon sequestration in microaggregates of no-tillage soils with different clay mineralogy publication-title: Soil Sci Soc Am J contributor: fullname: Paustian – volume: 39 start-page: 2701 year: 2007 end-page: 2711 ident: bib29 article-title: Carbon structure and enzyme activities in alpine and forest ecosystems publication-title: Soil Biol Biochem contributor: fullname: Weintraub – volume: 56 start-page: 1799 year: 1992 end-page: 1806 ident: bib37 article-title: Light-fraction organic matter in soils from long-term crop rotations publication-title: Soil Sci Soc Am J contributor: fullname: Townley-Smith – volume: 196 start-page: 159 year: 2004 end-page: 171 ident: bib21 article-title: Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests publication-title: For Ecol Manage contributor: fullname: Simpson – volume: 51 start-page: 583 year: 2000 end-page: 594 ident: bib84 article-title: Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by C-13 distribution and CPMAS-NMR spectra publication-title: Eur J Soil Sci contributor: fullname: Gerzabek – volume: 191 start-page: 77 year: 1997 end-page: 87 ident: bib33 article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles publication-title: Plant Soil contributor: fullname: Hassink – volume: 32 start-page: 1717 year: 2000 end-page: 1730 ident: bib85 article-title: C and N fluxes of decomposing publication-title: Soil Biol Biochem contributor: fullname: Nicolardot – volume: 47 start-page: 485 year: 1996 end-page: 493 ident: bib7 article-title: The significance of organic separates to carbon dynamics and its modeling in some cultivated soils publication-title: Eur J Soil Sci contributor: fullname: Balesdent – volume: 128 start-page: 167 year: 2005 end-page: 176 ident: bib16 article-title: Strategies used by soil biota to overcome soil organic matter stability— why is dead organic matter left over in the soil? publication-title: Geoderma contributor: fullname: Wolters – volume: 28 start-page: 1773 year: 1994 end-page: 1780 ident: bib70 article-title: Analytical pyrolysis of humic substances— pitfalls, limitations, and possible solutions publication-title: Environ Sci Technol contributor: fullname: Saiz-jimenez – volume: 61 start-page: 131 year: 1997 end-page: 139 ident: bib34 article-title: A model of the physical protection of organic matter in soils publication-title: Soil Sci Soc Am J contributor: fullname: Whitmore – start-page: 301 year: 2001 end-page: 344 ident: bib41 article-title: Technological and economic potential of options to enhance, maintain, and manage biological carbon reservoirs and geo-engineering publication-title: Climate Change 2001 contributor: fullname: Sedjo – volume: 22 start-page: 151 year: 2003 end-page: 184 ident: bib47 article-title: Global potential of soil carbon sequestration to mitigate the greenhouse effect publication-title: Crit Rev Plant Sci contributor: fullname: Lal – volume: 75 start-page: 201 year: 2005 end-page: 215 ident: bib79 article-title: Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition publication-title: Biogeochemistry contributor: fullname: Zak – volume: 33 start-page: 111 year: 2002 end-page: 124 ident: bib19 article-title: Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi publication-title: Org Geochem contributor: fullname: Ostrofsky – volume: 70 start-page: 287 year: 2006 end-page: 296 ident: bib63 article-title: Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions publication-title: Soil Sci Soc Am J contributor: fullname: Six – volume: 33 start-page: 1599 year: 2001 end-page: 1611 ident: bib12 article-title: Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics publication-title: Soil Biol Biochem contributor: fullname: Merckx – volume: 38 start-page: 769 year: 2000 end-page: 787 ident: bib53 article-title: Recent advances in the application of C-13 and N-15 NMR spectroscopy to soil organic matter studies publication-title: Aust J Soil Res contributor: fullname: Perera – volume: 33 start-page: 1715 year: 2002 end-page: 1726 ident: bib14 article-title: Effect of N content and soil texture on the decomposition of organic matter in forest soils as revealed by solid-state CPMAS NMR spectroscopy publication-title: Org Geochem contributor: fullname: Kögel-Knabner – volume: 36 start-page: 1509 year: 2004 end-page: 1515 ident: bib78 article-title: Nitrogen deposition and dissolved organic carbon production in northern temperate forests publication-title: Soil Biol Biochem contributor: fullname: Amonette – volume: 75 start-page: 1601 year: 1997 end-page: 1613 ident: bib66 article-title: publication-title: Can J Bot contributor: fullname: Niu – volume: 71 start-page: 1 year: 2007 end-page: 15 ident: bib52 article-title: Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds publication-title: Biosci Biotechnol Biochem contributor: fullname: Fukuda – volume: 35 start-page: 549 year: 2003 end-page: 563 ident: bib73 article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model publication-title: Soil Biol Biochem contributor: fullname: Weintraub – volume: 36 start-page: 1174 year: 2005 end-page: 1189 ident: bib64 article-title: The chemical composition of measurable soil organic matter pools publication-title: Org Geochem contributor: fullname: Powlson – volume: 77 start-page: 25 year: 2006 end-page: 56 ident: bib55 article-title: Stabilization of soil organic matter: association with minerals or chemical recalcitrance? publication-title: Biogeochemistry contributor: fullname: Jahn – year: 1996 ident: bib62 article-title: Management impacts on carbon storage and gas fluxes (CO publication-title: Soil Management and the Greenhouse Effect, Advances in Soil Science contributor: fullname: Elliott – volume: 48 start-page: 298 year: 1984 end-page: 301 ident: bib2 article-title: Organo-mineral complexes and their study by radiocarbon dating publication-title: Soil Sci Soc Am J contributor: fullname: Paul – volume: 28 start-page: 213 year: 1990 end-page: 225 ident: bib4 article-title: Solid-state CP/MAS publication-title: Aust J Soil Res contributor: fullname: Wilson – volume: 133 start-page: 671 year: 2003 end-page: 677 ident: bib17 article-title: Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus publication-title: J Biochem contributor: fullname: Ueda – volume: 60 start-page: 801 year: 1996 end-page: 807 ident: bib38 article-title: Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance publication-title: Soil Sci Soc Am J contributor: fullname: Miller – volume: 53 start-page: 215 year: 2000 end-page: 230 ident: bib8 article-title: Relationship of soil organic matter dynamics to physical protection and tillage publication-title: Soil Tillage Res contributor: fullname: Balabane – volume: 70 start-page: 1398 year: 2006 end-page: 1406 ident: bib27 article-title: Aggregation and organic matter protection following cultivation of an undisturbed soil profile publication-title: Soil Sci Soc Am J contributor: fullname: Robertson – volume: 35 start-page: 2178 year: 2005 end-page: 2187 ident: bib56 article-title: Fire effects on soil organic matter content and composition in boreal interior Alaska publication-title: Can J For Res contributor: fullname: Gleixner – volume: 153 start-page: 205 year: 1992 end-page: 224 ident: bib76 article-title: Structural studies on soil humic acids by Curie-point pyrolysis-gas chromatography mass-spectrometry publication-title: Soil Sci contributor: fullname: Schnitzer – volume: 86 start-page: 235 year: 2006 end-page: 245 ident: bib67 article-title: Decomposition, delta publication-title: Can J Soil Sci contributor: fullname: Flanagan – volume: 304 start-page: 1623 year: 2004 end-page: 1627 ident: bib48 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science contributor: fullname: Lal – volume: 82 start-page: 55 year: 2007 end-page: 65 ident: bib1 article-title: Biochemical origin and refractory properties of humic acid extracted from maize plants: the contribution of lignin publication-title: Biogeochemistry contributor: fullname: Nierop – volume: 35 start-page: 101 year: 2003 end-page: 118 ident: bib43 article-title: Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils publication-title: Soil Biol Biochem contributor: fullname: Kögel-Knabner – volume: 47 start-page: 61 year: 1996 end-page: 69 ident: bib71 article-title: Land use effects on the composition of organic matter in soil particle size separates. 3. Analytical pyrolysis publication-title: Eur J Soil Sci contributor: fullname: Zech – volume: 57 start-page: 24 year: 2006 end-page: 30 ident: bib50 article-title: Biodelignification and humification of horticultural plant residues by fungi publication-title: Int Biodeterior Biodegrad contributor: fullname: Moreno – volume: 16 start-page: 1 year: 1992 end-page: 42 ident: bib5 article-title: Aspects of the chemical-structure of soil organic materials as revealed by solid-state publication-title: Biogeochemistry contributor: fullname: Wilson – volume: 12 start-page: 1507 year: 2006 end-page: 1520 ident: bib26 article-title: Initial cultivation of a temperate-region soil immediately accelerates aggregate turnover and CO publication-title: Glob Chang Biol contributor: fullname: Robertson – volume: 11 start-page: 1514 year: 2005 end-page: 1521 ident: bib22 article-title: Soil organic matter and litter chemistry response to experimental N deposition in northern temperate deciduous forest ecosystems publication-title: Glob Chang Biol contributor: fullname: Zak – volume: 60 start-page: 237 year: 2001 end-page: 252 ident: bib82 article-title: Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential publication-title: Nutr Cycl Agroecosyst contributor: fullname: Falloon – start-page: 201 year: 2001 end-page: 215 ident: bib23 article-title: Plant compounds and their turnover and stabilization as soil organic matter publication-title: Global Biogeochemical Cycles in the Climate System contributor: fullname: Schmidt – volume: 10 start-page: 58 year: 2007 end-page: 73 ident: bib28 article-title: Land use intensity effects on soil C accumulation rates and mechanisms publication-title: Ecosystems contributor: fullname: Robertson – volume: 138 start-page: 275 year: 2004 end-page: 284 ident: bib86 article-title: Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities publication-title: Oecologia contributor: fullname: Firestone – volume: 161 start-page: 144 year: 1996 end-page: 166 ident: bib65 article-title: Applications of NMR to soil organic matter analysis: history and prospects publication-title: Soil Sci contributor: fullname: Preston – volume: 87 start-page: 1659 year: 2006 end-page: 1670 ident: bib91 article-title: Microbial community composition and function across an arctic tundra landscape publication-title: Ecology contributor: fullname: Kling – volume: 33 start-page: 755 year: 2001 end-page: 764 ident: bib58 article-title: Management induced organic matter differentiation in grassland and arable soil: a study using pyrolysis techniques publication-title: Soil Biol Biochem contributor: fullname: Marinissen – volume: 65 start-page: 1121 year: 2001 end-page: 1128 ident: bib83 article-title: A procedure for isolating soil organic matter fractions suitable for modeling publication-title: Soil Sci Soc Am J contributor: fullname: Gaunt – volume: 14 start-page: 1172 year: 2004 end-page: 1177 ident: bib87 article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity publication-title: Ecol Appl contributor: fullname: Lauber – volume: 36 start-page: 2045 year: 2004 end-page: 2058 ident: bib88 article-title: Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemical analysis publication-title: Soil Biol Biochem contributor: fullname: Moody |
SSID | ssj0000781 |
Score | 2.5140061 |
Snippet | Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the... |
SourceID | proquest crossref pubmed pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 297 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Biochemistry Biological Biological and medical sciences Carbon Carbon - chemistry Carbon - metabolism Control equipment Decomposition Disturbance Dynamic mechanical properties Dynamics Earth sciences Earth, ocean, space Ecology Ecosystem Ecosystems Exact sciences and technology Fertilizers Fundamental and applied biological sciences. Psychology Litter Management Mathematical models Microorganisms Models, Biological Molecular structure Nitrogen - chemistry Nitrogen - metabolism Organic Chemicals - chemistry Organic Chemicals - metabolism Placing Plants (organisms) Pyrolysis-GC/MS Soil Soil (material) Soil Microbiology Soil organic mater Soils Spectroscopy Surficial geology Synecology Terrestrial ecosystems Time Factors Transformations |
Title | Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic matter structure and function |
URI | https://dx.doi.org/10.1016/j.scitotenv.2007.11.013 https://www.ncbi.nlm.nih.gov/pubmed/18190951 https://search.proquest.com/docview/20234931 https://search.proquest.com/docview/20237320 https://search.proquest.com/docview/35396890 https://search.proquest.com/docview/69672154 |
Volume | 404 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6ahpCQJgSFQflRfOBaFju2Y-82VZsK1XZATOwWJbYjBbG0It2kXTjxh_NenKzqoePAqVL6krR-79mfk_e-D-AjD9R4IPmU9DamUjqJKaVxs1KlorKOF6bTWDq_0PNL-eVKXe3BbOiFobLKfu6Pc3o3W_dHjvrRPFrVNfX4SmO1zTBouUgy6iiXKiEVg0-_N2UeRGYT3zJjYqP1Vo0XXne9RGx6G7kMic6Tp7tWqINV0eK4VVHwYjci7Vams2fwtIeU7CT-6uewF5oRPI4ik3cjODzd9LKhWZ_M7QgO4iM7FjuRXsCf80Eql82Yj0r1LfP0-JnK0a-PGcYUK2vS2OpIBpgPVJHel32xoSqbFY1n9bplsQOT0VfL-ieLAlKOXXeUniwy1978iva0vtJVXsLl2em32XzaizRMnVJmjejcJS7TRITmJA_elaWXViamSjXCi1KW3meF9dwh8BJWVNxQe7niLjNFVYr0EPabZRNeA8usCrh_0cbhaVwFBP8yuFIUJrM6SDeGZHBMvopcHPlQpPYjv_clKWtmuLPJ0ZdjOB4cmG-FVY4rxr9Pnmy5_P6mAnEUAi0xhg9DDOSYlfSqpWjC8qbNSZRe2pQ_bJGlItltkarUamMfsNBW4wZeyTG8igG4GRYCegie3_zP_38LT0TP_svVO9jHsAjvEYKty0mXYxN4dPJ5Mb-gz8XX74u_ObE1WQ |
link.rule.ids | 309,310,314,780,784,789,790,4502,23930,23931,24116,25140,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RUNVKqGq3pV1awIdeV8SO4wc3tAItj90TSNysxHGkVCW7ahYk7v3hjGOH1R6WHnpNxk7imbE_OzPzAfykzicecDryfBsjzi1HlxK4WalSVmlLc9VxLE1nYnLLL--yuy0Y97kwPqwyzv1hTu9m63jlOI7m8aKufY4vV1poiUZLWSLlG9hBNCDRtHdOL64ms9WELFUgzuPo29hgLcwLu17OEZ4-hnKGvqInTTctUruLvMWhqwLnxWZQ2i1O5x_hQ0SV5DS8-CfYcs0A3gaeyacB7J2t0tlQLPpzO4DdcGpHQjLSZ_g77dlyyZiUgay-JaU_gfYR6fcnBM2KFLWn2erqDJDS-aD0GPlF-sBskjclqZctCUmYxN-a179J4JCy5L6r6klC8dqHP0HeL7G-ly9we352M56MIk_DyGaZWiJAt4mVwtdCs5y60hZFyTVPVJUKRBgFL8pS5rqkFrEX06yiymeYZ9RKlVcFS_dgu5k37hsQqTOHWxihLDajmUP8z50tWK6kFo7bISS9YswilOMwfZzaL_OiS0-uKXFzY1CXQzjpFWjWLMvgovHvxodrKn95KEMohViLDeGotwGDjun_tuSNmz-0xvPSc53S1yVkypLNEmmWaqH0KxJCC9zDZ3wIX4MBrobFYz3Ez_v_8_1H8G5yM7021xezq-_wnsViwDT7AdtoIu4AEdmyOIwe9wwyfzZ3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Science+of+the+total+environment&rft.atitle=Molecular+C+dynamics+downstream+%3A+The+biochemical+decomposition+sequence+and+its+impact+on+soil+organic+matter+structure+and+function&rft.au=STUART+GRANDY%2C+A&rft.au=NEFF%2C+Jason+C&rft.date=2008-10-15&rft.pub=Elsevier&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=404&rft.issue=2-3&rft.spage=297&rft.epage=307&rft_id=info:doi/10.1016%2Fj.scitotenv.2007.11.013&rft.externalDBID=n%2Fa&rft.externalDocID=20815092 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |