A comparison of different methods to handle missing data in the context of propensity score analysis
Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, w...
Saved in:
Published in | European journal of epidemiology Vol. 34; no. 1; pp. 23 - 36 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Science + Business Media
01.01.2019
Springer Netherlands Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, we compared four strategies of handling missing covariate values in propensity matching and propensity weighting. These methods include: complete case analysis, missing indicator method, multiple imputation and combining multiple imputation and missing indicator method. Concurrently, we aimed to provide guidance in choosing the optimal strategy. Simulated scenarios varied regarding missing mechanism, presence of effect modification or unmeasured confounding. Additionally, we demonstrated how missingness graphs help clarifying the missing structure. When no effect modification existed, complete case analysis yielded valid causal treatment effects even when data were missing not at random. In some situations, complete case analysis was also able to partially correct for unmeasured confounding. Multiple imputation worked well if the data were missing (completely) at random, and if the imputation model was correctly specified. In the presence of effect modification, more complex imputation models than default options of commonly used statistical software were required. Multiple imputation may fail when data are missing not at random. Here, combining multiple imputation and the missing indicator method reduced the bias as the missing indicator variable can be a proxy for unobserved confounding. The optimal way to handle missing values in covariates of propensity score models depends on the missing data structure and the presence of effect modification. When effect modification is present, default settings of imputation methods may yield biased results even if data are missing at random. |
---|---|
AbstractList | Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, we compared four strategies of handling missing covariate values in propensity matching and propensity weighting. These methods include: complete case analysis, missing indicator method, multiple imputation and combining multiple imputation and missing indicator method. Concurrently, we aimed to provide guidance in choosing the optimal strategy. Simulated scenarios varied regarding missing mechanism, presence of effect modification or unmeasured confounding. Additionally, we demonstrated how missingness graphs help clarifying the missing structure. When no effect modification existed, complete case analysis yielded valid causal treatment effects even when data were missing not at random. In some situations, complete case analysis was also able to partially correct for unmeasured confounding. Multiple imputation worked well if the data were missing (completely) at random, and if the imputation model was correctly specified. In the presence of effect modification, more complex imputation models than default options of commonly used statistical software were required. Multiple imputation may fail when data are missing not at random. Here, combining multiple imputation and the missing indicator method reduced the bias as the missing indicator variable can be a proxy for unobserved confounding. The optimal way to handle missing values in covariates of propensity score models depends on the missing data structure and the presence of effect modification. When effect modification is present, default settings of imputation methods may yield biased results even if data are missing at random. Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, we compared four strategies of handling missing covariate values in propensity matching and propensity weighting. These methods include: complete case analysis, missing indicator method, multiple imputation and combining multiple imputation and missing indicator method. Concurrently, we aimed to provide guidance in choosing the optimal strategy. Simulated scenarios varied regarding missing mechanism, presence of effect modification or unmeasured confounding. Additionally, we demonstrated how missingness graphs help clarifying the missing structure. When no effect modification existed, complete case analysis yielded valid causal treatment effects even when data were missing not at random. In some situations, complete case analysis was also able to partially correct for unmeasured confounding. Multiple imputation worked well if the data were missing (completely) at random, and if the imputation model was correctly specified. In the presence of effect modification, more complex imputation models than default options of commonly used statistical software were required. Multiple imputation may fail when data are missing not at random. Here, combining multiple imputation and the missing indicator method reduced the bias as the missing indicator variable can be a proxy for unobserved confounding. The optimal way to handle missing values in covariates of propensity score models depends on the missing data structure and the presence of effect modification. When effect modification is present, default settings of imputation methods may yield biased results even if data are missing at random.Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, we compared four strategies of handling missing covariate values in propensity matching and propensity weighting. These methods include: complete case analysis, missing indicator method, multiple imputation and combining multiple imputation and missing indicator method. Concurrently, we aimed to provide guidance in choosing the optimal strategy. Simulated scenarios varied regarding missing mechanism, presence of effect modification or unmeasured confounding. Additionally, we demonstrated how missingness graphs help clarifying the missing structure. When no effect modification existed, complete case analysis yielded valid causal treatment effects even when data were missing not at random. In some situations, complete case analysis was also able to partially correct for unmeasured confounding. Multiple imputation worked well if the data were missing (completely) at random, and if the imputation model was correctly specified. In the presence of effect modification, more complex imputation models than default options of commonly used statistical software were required. Multiple imputation may fail when data are missing not at random. Here, combining multiple imputation and the missing indicator method reduced the bias as the missing indicator variable can be a proxy for unobserved confounding. The optimal way to handle missing values in covariates of propensity score models depends on the missing data structure and the presence of effect modification. When effect modification is present, default settings of imputation methods may yield biased results even if data are missing at random. |
Author | le Cessie, Saskia Choi, Jungyeon Dekkers, Olaf M. |
Author_xml | – sequence: 1 givenname: Jungyeon surname: Choi fullname: Choi, Jungyeon – sequence: 2 givenname: Olaf M. surname: Dekkers fullname: Dekkers, Olaf M. – sequence: 3 givenname: Saskia surname: le Cessie fullname: le Cessie, Saskia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30341708$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvFDEcxC0URC4HH4ACZImGZsHvR4MURbykSDRQW8brvfNp115sX8Tl0-NjwwEpUrn4z288o7kAZzFFD8BzjN5ghOTbgpHgrENYdYgx2d0-AivMJe0kUewMrBDVtCNao3NwUcoOIaSQ5k_AOUWUYYnUCvSX0KVptjmUFGEaYB-GwWcfK5x83aa-wJrg1sZ-9HAKpYS4gb2tFoYI69Y3Olb_sx7ROafZxxLqARaXsoc22vFQQnkKHg92LP7Z3bsG3z68_3r1qbv-8vHz1eV15zhXtZNSqIEwxTV12DGGe4kEk1oIopxmA6dKSyKw4j2XjjtqqbcE0d4zximydA3eLb7z_vvke9daZDuaOYfJ5oNJNpj_LzFszSbdGEEJ15o0g9d3Bjn92PtSTavs_Dja6NO-GIIJlYQrRpv01T3pLu1zK_xbRTRWqIVag5f_JjpF-TNAE-BF4HIqJfvhJMHIHEc2y8imjWyOI5vbxsh7jAvV1pCOpcL4IEkWsrRf4sbnv6Efgl4s0K7UlE_5mBKaCkLpLzYNxQ8 |
CitedBy_id | crossref_primary_10_1111_1467_9477_12224 crossref_primary_10_1016_j_ccc_2023_02_003 crossref_primary_10_1080_24709360_2022_2069457 crossref_primary_10_1007_s00521_020_04855_1 crossref_primary_10_1016_j_athoracsur_2021_05_010 crossref_primary_10_1093_bioinformatics_btz898 crossref_primary_10_1177_10944281241246772 crossref_primary_10_1002_pds_5371 crossref_primary_10_1111_cdoe_12807 crossref_primary_10_1038_s41598_025_89623_8 crossref_primary_10_1007_s10916_019_1274_9 crossref_primary_10_1080_19466315_2022_2108136 crossref_primary_10_37394_23206_2021_20_43 crossref_primary_10_1093_ejendo_lvae067 crossref_primary_10_1161_JAHA_121_023588 crossref_primary_10_1080_00220973_2023_2287447 crossref_primary_10_3389_fcvm_2023_1154875 crossref_primary_10_3390_psych4020028 crossref_primary_10_1016_j_ebiom_2022_104176 crossref_primary_10_1093_aje_kwaa124 crossref_primary_10_1186_s12978_022_01442_6 crossref_primary_10_1080_07853890_2023_2249018 crossref_primary_10_3390_psych3040043 crossref_primary_10_3390_ijerph18136694 crossref_primary_10_1186_s12889_023_15111_1 crossref_primary_10_1016_j_jeoa_2021_100346 crossref_primary_10_1186_s12879_024_09299_9 crossref_primary_10_1007_s40747_021_00349_2 crossref_primary_10_1186_s12874_020_01068_x crossref_primary_10_1186_s12874_023_01843_6 crossref_primary_10_1186_s12874_023_01847_2 crossref_primary_10_1002_sim_8581 crossref_primary_10_1214_22_AOAS1727 crossref_primary_10_1214_21_AOAS1510 crossref_primary_10_1245_s10434_022_11865_x crossref_primary_10_1007_s10654_018_0461_1 crossref_primary_10_1080_08856257_2023_2195073 crossref_primary_10_1097_HTR_0000000000000798 crossref_primary_10_1016_j_drugalcdep_2024_111081 crossref_primary_10_1080_01621459_2023_2231581 crossref_primary_10_1177_15266028241278137 crossref_primary_10_1186_s12874_021_01454_z crossref_primary_10_3389_fimmu_2025_1531708 crossref_primary_10_1186_s12874_023_01954_0 crossref_primary_10_1016_j_jclinepi_2020_03_028 crossref_primary_10_1186_s12885_024_12558_2 crossref_primary_10_3390_jcm9051378 crossref_primary_10_1177_10283153241235698 crossref_primary_10_1097_MD_0000000000015376 crossref_primary_10_3389_fendo_2024_1324617 crossref_primary_10_15280_jlm_2022_12_3_119 crossref_primary_10_2139_ssrn_4161625 crossref_primary_10_1007_s11042_021_10727_0 crossref_primary_10_1017_S2045796024000015 crossref_primary_10_1111_jgs_16970 crossref_primary_10_3390_electronics12234809 crossref_primary_10_1007_s10654_019_00538_x crossref_primary_10_1097_EDE_0000000000001618 crossref_primary_10_1093_ije_dyae170 crossref_primary_10_3390_curroncol30070478 crossref_primary_10_3390_ijerph16224381 crossref_primary_10_1007_s40744_024_00736_4 crossref_primary_10_1177_14727978251322052 crossref_primary_10_1177_25152459241236149 crossref_primary_10_1016_j_ajt_2023_10_028 crossref_primary_10_1016_j_jcrc_2022_154118 crossref_primary_10_2139_ssrn_4173049 crossref_primary_10_3390_math11194118 crossref_primary_10_1080_00273171_2024_2307529 crossref_primary_10_3389_fcvm_2022_982209 crossref_primary_10_1111_all_15823 crossref_primary_10_1007_s00127_022_02279_x crossref_primary_10_3390_jcm12062301 crossref_primary_10_14309_ajg_0000000000001167 crossref_primary_10_1001_jamanetworkopen_2024_3286 crossref_primary_10_1007_s13132_022_01089_5 crossref_primary_10_3389_fphar_2022_869804 crossref_primary_10_1111_dom_13929 crossref_primary_10_3892_mco_2022_2517 crossref_primary_10_2147_CLEP_S436131 crossref_primary_10_3390_stats5020029 crossref_primary_10_1159_000520518 crossref_primary_10_22237_jmasm_1608552120 crossref_primary_10_1136_bmj_2022_072308 crossref_primary_10_1002_pst_2389 crossref_primary_10_1093_neuros_nyaa315 crossref_primary_10_1097_CCE_0000000000000623 crossref_primary_10_1002_jac5_1591 crossref_primary_10_1080_10543406_2021_2011898 crossref_primary_10_18553_jmcp_2020_26_5_610 crossref_primary_10_1093_aje_kwac202 crossref_primary_10_1007_s11135_021_01114_w crossref_primary_10_3389_fcvm_2023_1211294 crossref_primary_10_1016_j_clcc_2023_08_003 crossref_primary_10_1177_10760296251317520 crossref_primary_10_1136_bmjopen_2021_053332 crossref_primary_10_1001_jamaoncol_2022_0877 |
Cites_doi | 10.1007/s10260-007-0086-0 10.1002/sim.6837 10.1002/sim.3697 10.2217/cer-2017-0071 10.1002/sim.4067 10.1177/0962280216674296 10.1016/j.jclinepi.2016.07.004 10.1093/oxfordjournals.aje.a117592 10.1093/biomet/70.1.41 10.1198/000313001317098266 10.3102/1076998616687084 10.1016/j.jclinepi.2009.08.028 10.1371/journal.pmed.1001885 10.1093/aje/kwt212 10.1177/0962280210394483 10.1002/sim.2580 10.1080/00273171.2011.568786 10.1177/0962280212445945 10.1002/pst.433 10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B 10.1002/sim.3944 10.1016/j.jclinepi.2006.01.015 10.1002/sim.3150 10.1177/0962280213519716 10.1503/cmaj.110977 10.1177/0962280206074463 10.1002/mpr.329 10.1214/ss/1177010269 10.1002/sim.2781 10.1002/sim.1981 10.1080/01621459.2000.10474263 10.1016/j.jclinepi.2006.01.014 10.1177/0272989X09341755 10.1016/j.jclinepi.2007.07.011 10.1177/0962280217713032 10.1016/j.jclinepi.2006.01.009 10.1080/03610926.2012.700371 10.2427/12630 10.1080/10705511.2014.937378 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 European Journal of Epidemiology is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: European Journal of Epidemiology is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T2 7TK 7TS 7U7 7U9 7X7 7XB 88C 88E 8AO 8C1 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BENPR C1K CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH H94 K9. M0S M0T M1P M2O MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1007/s10654-018-0447-z |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Health and Safety Science Abstracts (Full archive) Neurosciences Abstracts Physical Education Index Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Healthcare Administration Database Medical Database ProQuest research library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Pharma Collection Physical Education Index Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Research Library Health & Safety Science Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health Virology and AIDS Abstracts ProQuest Central Basic Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Health Management ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1573-7284 |
EndPage | 36 |
ExternalDocumentID | PMC6325992 30341708 10_1007_s10654_018_0447_z 48693623 |
Genre | Journal Article Comparative Study |
GroupedDBID | --- -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7X7 88E 8AO 8C1 8FI 8FJ 8G5 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AACGO AAHNG AAIAL AAJBT AAJKR AANCE AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPLY ABQBU ABSXP ABTEG ABTKH ABTLG ABTMW ABUWG ABWNU ABXPI ABXSQ ACAOD ACDTI ACGFO ACGFS ACHIC ACHSB ACHXU ACIHN ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSTC ACZOJ ADBBV ADHHG ADHIR ADIMF ADJJI ADKNI ADKPE ADQXQ ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEXZC AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI AQVQM ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BPHCQ BSONS BVXVI CCPQU CS3 CSCUP DCCCD DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF I09 I5X IHE IJ- IKXTQ IMOTQ IPSME ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JENOY JLS JPM JSG JST JZLTJ KDC KOV KPH LAK LLZTM M0T M1P M2O M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9S PF0 PHGZM PHGZT PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV ROL RPX RRX RSV S16 S27 S37 S3B SA0 SAP SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~EX -53 -5E -5G -BR -EM ADINQ C6C DOOOF GQ6 Z7U Z7W Z81 Z82 Z83 Z87 Z8O Z8Q Z8U Z8V Z8W Z91 -Y2 1SB 2.D 28- 2P1 2VQ 3SX 53G 5QI AANXM AARHV AAYTO AAYXX ABQSL ABULA ACBXY ACUDM ADHKG ADULT AEBTG AEFIE AEKMD AFEXP AGGDS AGQPQ AJBLW BBWZM CAG CITATION COF EN4 GRRUI H13 HGD HQ3 HTVGU HZ~ JAAYA JBMMH JHFFW JKQEH JLXEF KOW LAS N2Q NDZJH O9- OVD R4E RNI RZC RZE RZK S1Z S26 S28 SCLPG SDE T16 TEORI WK6 ZXP CGR CUY CVF ECM EIF NPM 3V. 7QL 7T2 7TK 7TS 7U7 7U9 7XB 8FK ABRTQ C1K H94 K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c558t-7768f248593c1c441d7064796628c94f5389726185d57c5c3a3ea203de44530a3 |
IEDL.DBID | 7X7 |
ISSN | 0393-2990 1573-7284 |
IngestDate | Thu Aug 21 14:32:04 EDT 2025 Fri Jul 11 02:02:17 EDT 2025 Sat Aug 23 14:16:11 EDT 2025 Thu Apr 03 07:05:39 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jul 01 03:04:03 EDT 2025 Fri Feb 21 02:41:47 EST 2025 Thu Jun 19 22:09:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Effect modification Missing data Propensity score analysis Missingness graph Multiple imputation Missing indicator |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-7768f248593c1c441d7064796628c94f5389726185d57c5c3a3ea203de44530a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0002-1914-3488 |
OpenAccessLink | https://link.springer.com/10.1007/s10654-018-0447-z |
PMID | 30341708 |
PQID | 2122918045 |
PQPubID | 33638 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6325992 proquest_miscellaneous_2123725843 proquest_journals_2122918045 pubmed_primary_30341708 crossref_primary_10_1007_s10654_018_0447_z crossref_citationtrail_10_1007_s10654_018_0447_z springer_journals_10_1007_s10654_018_0447_z jstor_primary_48693623 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Netherlands |
PublicationTitle | European journal of epidemiology |
PublicationTitleAbbrev | Eur J Epidemiol |
PublicationTitleAlternate | Eur J Epidemiol |
PublicationYear | 2019 |
Publisher | Springer Science + Business Media Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Science + Business Media – name: Springer Netherlands – name: Springer Nature B.V |
References | Mitra, Reiter (CR31) 2016; 25 Moons, Donders, Stijnen, Harrell (CR35) 2006; 59 Leyrat, Seaman, White, Douglas, Smeeth, Kim (CR32) 2017 Austin (CR39) 2011; 10 Benchimol, Smeeth, Guttmann, Harron, Moher, Petersen (CR15) 2015; 12 Meng (CR41) 1994; 9 White, Thompson (CR17) 2005; 24 van Buuren (CR28) 2007; 16 Seaman, White (CR36) 2014; 43 Austin, Schuster (CR10) 2016; 25 Kleinke (CR27) 2017; 42 Buuren, Groothuis-Oudshoorn (CR26) 2010; 45 Mattei (CR34) 2009; 18 Malla, Perera-Salazar, McFadden, Ogero, Stepniewska, English (CR43) 2018; 7 Tilling, Williamson, Spratt, Sterne, Carpenter (CR29) 2016; 80 CR38 Austin (CR8) 2008; 61 Williamson, Morley, Lucas, Carpenter (CR3) 2012; 21 Austin (CR4) 2009; 29 de Vries (CR33) 2016; 25 Donders, van der Heijden, Stijnen, Moons (CR12) 2006; 59 White, Carlin (CR22) 2010; 29 Hernan, Robins (CR40) 2010 unvan der Heijden, Donders, Stijnen, Moons (CR19) 2006; 59 Austin, Grootendorst, Anderson (CR9) 2007; 26 Horton, Lipsitz (CR14) 2001; 55 D’Agostino, Rubin (CR16) 2000; 95 Austin (CR7) 2007; 26 White, Royston, Wood (CR13) 2011; 30 Lunt (CR37) 2014; 179 Austin (CR2) 2008; 27 Austin (CR5) 2009; 28 Quartagno, Carpenter (CR42) 2016; 35 Knol, Janssen, Donders, Egberts, Heerdink, Grobbee (CR20) 2010; 63 Groenwold, White, Donders, Carpenter, Altman, Moons (CR21) 2012; 184 Penning de Vries, Groenwold (CR30) 2017; 14 Rosenbaum, Rubin (CR1) 1983; 70 Austin (CR6) 2011; 46 Greenland, Finkle (CR18) 1995; 142 d’Agostino (CR11) 1998; 17 Mohan, Pearl, Tian (CR23) 2013; 26 Thoemmes, Mohan (CR24) 2015; 22 Azur, Stuart, Frangakis, Leaf (CR25) 2011; 20 IR White (447_CR13) 2011; 30 S Greenland (447_CR18) 1995; 142 A Mattei (447_CR34) 2009; 18 IR White (447_CR17) 2005; 24 MJ Knol (447_CR20) 2010; 63 RB D’Agostino (447_CR16) 2000; 95 L Malla (447_CR43) 2018; 7 X-L Meng (447_CR41) 1994; 9 PR Rosenbaum (447_CR1) 1983; 70 K Mohan (447_CR23) 2013; 26 PC Austin (447_CR5) 2009; 28 EI Benchimol (447_CR15) 2015; 12 M Lunt (447_CR37) 2014; 179 IR White (447_CR22) 2010; 29 PC Austin (447_CR10) 2016; 25 F Thoemmes (447_CR24) 2015; 22 M Quartagno (447_CR42) 2016; 35 PC Austin (447_CR2) 2008; 27 PC Austin (447_CR6) 2011; 46 GJ Heijden unvan der (447_CR19) 2006; 59 PC Austin (447_CR7) 2007; 26 MJ Azur (447_CR25) 2011; 20 PC Austin (447_CR39) 2011; 10 K Tilling (447_CR29) 2016; 80 PC Austin (447_CR8) 2008; 61 R Mitra (447_CR31) 2016; 25 PC Austin (447_CR9) 2007; 26 447_CR38 KGM Moons (447_CR35) 2006; 59 E Williamson (447_CR3) 2012; 21 S Buuren van (447_CR28) 2007; 16 S Seaman (447_CR36) 2014; 43 S Buuren (447_CR26) 2010; 45 AR Donders (447_CR12) 2006; 59 NJ Horton (447_CR14) 2001; 55 MA Hernan (447_CR40) 2010 K Kleinke (447_CR27) 2017; 42 RHH Groenwold (447_CR21) 2012; 184 RB d’Agostino (447_CR11) 1998; 17 B Penning de Vries (447_CR30) 2017; 14 Penning Vries de (447_CR33) 2016; 25 PC Austin (447_CR4) 2009; 29 C Leyrat (447_CR32) 2017 |
References_xml | – volume: 18 start-page: 257 issue: 2 year: 2009 end-page: 273 ident: CR34 article-title: Estimating and using propensity score in presence of missing background data: an application to assess the impact of childbearing on wellbeing publication-title: Stat Methods Appl doi: 10.1007/s10260-007-0086-0 – volume: 35 start-page: 2938 issue: 17 year: 2016 end-page: 2954 ident: CR42 article-title: Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covariates publication-title: Stat Med doi: 10.1002/sim.6837 – volume: 28 start-page: 3083 issue: 25 year: 2009 end-page: 3107 ident: CR5 article-title: Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples publication-title: Stat Med doi: 10.1002/sim.3697 – volume: 7 start-page: 271 issue: 3 year: 2018 end-page: 279 ident: CR43 article-title: Handling missing data in propensity score estimation in comparative effectiveness evaluations: a systematic review publication-title: J Comp Eff Res doi: 10.2217/cer-2017-0071 – year: 2010 ident: CR40 publication-title: Causal inference – volume: 26 start-page: 1277 year: 2013 end-page: 1285 ident: CR23 article-title: Graphical models for inference with missing data publication-title: Adv Neural Inf Process Syst – volume: 30 start-page: 377 issue: 4 year: 2011 end-page: 399 ident: CR13 article-title: Multiple imputation using chained equations: issues and guidance for practice publication-title: Stat Med doi: 10.1002/sim.4067 – volume: 25 start-page: 3066 issue: 6 year: 2016 end-page: 3068 ident: CR33 article-title: B, Groenwold R. Comments on propensity score matching following multiple imputation publication-title: Stat Methods Med Res doi: 10.1177/0962280216674296 – volume: 80 start-page: 107 year: 2016 end-page: 115 ident: CR29 article-title: Appropriate inclusion of interactions was needed to avoid bias in multiple imputation publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2016.07.004 – volume: 142 start-page: 1255 issue: 12 year: 1995 end-page: 1264 ident: CR18 article-title: A critical look at methods for handling missing covariates in epidemiologic regression analyses publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a117592 – volume: 45 start-page: 1 year: 2010 end-page: 68 ident: CR26 article-title: Mice: multivariate imputation by chained equations in R publication-title: J Stat Softw – volume: 70 start-page: 41 issue: 1 year: 1983 end-page: 55 ident: CR1 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika doi: 10.1093/biomet/70.1.41 – volume: 55 start-page: 244 issue: 3 year: 2001 end-page: 254 ident: CR14 article-title: Multiple imputation in practice publication-title: Am Stat doi: 10.1198/000313001317098266 – volume: 42 start-page: 371 issue: 4 year: 2017 end-page: 404 ident: CR27 article-title: Multiple imputation under violated distributional assumptions: a systematic evaluation of the assumed robustness of predictive mean matching publication-title: J Educ Behav Stat doi: 10.3102/1076998616687084 – volume: 63 start-page: 728 issue: 7 year: 2010 end-page: 736 ident: CR20 article-title: Unpredictable bias when using the missing indicator method or complete case analysis for missing confounder values: an empirical example publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2009.08.028 – volume: 12 start-page: e1001885 issue: 10 year: 2015 ident: CR15 article-title: The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement publication-title: PLOS Med doi: 10.1371/journal.pmed.1001885 – volume: 179 start-page: 226 issue: 2 year: 2014 end-page: 235 ident: CR37 article-title: Selecting an appropriate caliper can be essential for achieving good balance with propensity score matching publication-title: Am J Epidemiol doi: 10.1093/aje/kwt212 – volume: 21 start-page: 273 issue: 3 year: 2012 end-page: 293 ident: CR3 article-title: Propensity scores: from naive enthusiasm to intuitive understanding publication-title: Stat Methods Med Res doi: 10.1177/0962280210394483 – volume: 26 start-page: 734 issue: 4 year: 2007 end-page: 753 ident: CR9 article-title: A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study publication-title: Stat Med doi: 10.1002/sim.2580 – volume: 46 start-page: 399 issue: 3 year: 2011 end-page: 424 ident: CR6 article-title: An introduction to propensity score methods for reducing the effects of confounding in observational studies publication-title: Multivar Behav Res doi: 10.1080/00273171.2011.568786 – volume: 25 start-page: 188 issue: 1 year: 2016 end-page: 204 ident: CR31 article-title: A comparison of two methods of estimating propensity scores after multiple imputation publication-title: Stat Methods Med Res doi: 10.1177/0962280212445945 – volume: 10 start-page: 150 issue: 2 year: 2011 end-page: 161 ident: CR39 article-title: Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies publication-title: Pharm Stat doi: 10.1002/pst.433 – volume: 17 start-page: 2265 issue: 19 year: 1998 end-page: 2281 ident: CR11 article-title: Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group publication-title: Stat Med doi: 10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B – volume: 29 start-page: 2920 issue: 28 year: 2010 end-page: 2931 ident: CR22 article-title: Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values publication-title: Stat Med doi: 10.1002/sim.3944 – ident: CR38 – volume: 59 start-page: 1102 issue: 10 year: 2006 end-page: 1109 ident: CR19 article-title: Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: a clinical example publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2006.01.015 – volume: 27 start-page: 2037 issue: 12 year: 2008 end-page: 2049 ident: CR2 article-title: A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003 publication-title: Stat Med doi: 10.1002/sim.3150 – volume: 25 start-page: 2214 issue: 5 year: 2016 end-page: 2237 ident: CR10 article-title: The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: a simulation study publication-title: Stat Methods Med Res doi: 10.1177/0962280213519716 – volume: 184 start-page: 1265 issue: 11 year: 2012 end-page: 1269 ident: CR21 article-title: Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis publication-title: CMAJ doi: 10.1503/cmaj.110977 – volume: 16 start-page: 219 issue: 3 year: 2007 end-page: 242 ident: CR28 article-title: Multiple imputation of discrete and continuous data by fully conditional specification publication-title: Stat Methods Med Res doi: 10.1177/0962280206074463 – volume: 20 start-page: 40 issue: 1 year: 2011 end-page: 49 ident: CR25 article-title: Multiple imputation by chained equations: what is it and how does it work? publication-title: Int J Methods Psychiatr Res doi: 10.1002/mpr.329 – volume: 9 start-page: 538 issue: 4 year: 1994 end-page: 558 ident: CR41 article-title: Multiple-imputation inferences with uncongenial sources of input publication-title: Stat Sci doi: 10.1214/ss/1177010269 – volume: 26 start-page: 3078 issue: 16 year: 2007 end-page: 3094 ident: CR7 article-title: The performance of different propensity score methods for estimating marginal odds ratios publication-title: Stat Med doi: 10.1002/sim.2781 – volume: 24 start-page: 993 issue: 7 year: 2005 end-page: 1007 ident: CR17 article-title: Adjusting for partially missing baseline measurements in randomized trials publication-title: Stat Med doi: 10.1002/sim.1981 – volume: 95 start-page: 749 issue: 451 year: 2000 end-page: 759 ident: CR16 article-title: Estimating and using propensity scores with partially missing data publication-title: J Am Stat Assoc doi: 10.1080/01621459.2000.10474263 – volume: 59 start-page: 1087 issue: 10 year: 2006 end-page: 1091 ident: CR12 article-title: Review: a gentle introduction to imputation of missing values publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2006.01.014 – volume: 29 start-page: 661 issue: 6 year: 2009 end-page: 677 ident: CR4 article-title: The relative ability of different propensity score methods to balance measured covariates between treated and untreated subjects in observational studies publication-title: Med Decis Mak doi: 10.1177/0272989X09341755 – volume: 61 start-page: 537 issue: 6 year: 2008 end-page: 545 ident: CR8 article-title: The performance of different propensity-score methods for estimating relative risks publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2007.07.011 – year: 2017 ident: CR32 article-title: Propensity score analysis with partially observed covariates: how should multiple imputation be used? publication-title: Stat Methods Med Res doi: 10.1177/0962280217713032 – volume: 59 start-page: 1092 issue: 10 year: 2006 end-page: 1101 ident: CR35 article-title: Using the outcome for imputation of missing predictor values was preferred publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2006.01.009 – volume: 43 start-page: 3499 issue: 16 year: 2014 end-page: 3515 ident: CR36 article-title: Inverse probability weighting with missing predictors of treatment assignment or missingness publication-title: Commun Stat Theory Methods doi: 10.1080/03610926.2012.700371 – volume: 14 start-page: e12630 issue: 4 year: 2017 ident: CR30 article-title: A comparison of approaches to implementing propensity score methods following multiple imputation publication-title: Epidemiol Biostat Public Health doi: 10.2427/12630 – volume: 22 start-page: 631 issue: 4 year: 2015 end-page: 642 ident: CR24 article-title: Graphical representation of missing data problems publication-title: Struct Equ Model Multidiscip J doi: 10.1080/10705511.2014.937378 – year: 2017 ident: 447_CR32 publication-title: Stat Methods Med Res doi: 10.1177/0962280217713032 – volume: 18 start-page: 257 issue: 2 year: 2009 ident: 447_CR34 publication-title: Stat Methods Appl doi: 10.1007/s10260-007-0086-0 – volume: 7 start-page: 271 issue: 3 year: 2018 ident: 447_CR43 publication-title: J Comp Eff Res doi: 10.2217/cer-2017-0071 – volume: 142 start-page: 1255 issue: 12 year: 1995 ident: 447_CR18 publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a117592 – volume: 10 start-page: 150 issue: 2 year: 2011 ident: 447_CR39 publication-title: Pharm Stat doi: 10.1002/pst.433 – volume: 179 start-page: 226 issue: 2 year: 2014 ident: 447_CR37 publication-title: Am J Epidemiol doi: 10.1093/aje/kwt212 – volume: 29 start-page: 661 issue: 6 year: 2009 ident: 447_CR4 publication-title: Med Decis Mak doi: 10.1177/0272989X09341755 – volume: 27 start-page: 2037 issue: 12 year: 2008 ident: 447_CR2 publication-title: Stat Med doi: 10.1002/sim.3150 – volume: 24 start-page: 993 issue: 7 year: 2005 ident: 447_CR17 publication-title: Stat Med doi: 10.1002/sim.1981 – volume: 59 start-page: 1092 issue: 10 year: 2006 ident: 447_CR35 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2006.01.009 – volume: 26 start-page: 734 issue: 4 year: 2007 ident: 447_CR9 publication-title: Stat Med doi: 10.1002/sim.2580 – volume: 59 start-page: 1087 issue: 10 year: 2006 ident: 447_CR12 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2006.01.014 – volume: 35 start-page: 2938 issue: 17 year: 2016 ident: 447_CR42 publication-title: Stat Med doi: 10.1002/sim.6837 – volume: 26 start-page: 1277 year: 2013 ident: 447_CR23 publication-title: Adv Neural Inf Process Syst – volume: 43 start-page: 3499 issue: 16 year: 2014 ident: 447_CR36 publication-title: Commun Stat Theory Methods doi: 10.1080/03610926.2012.700371 – volume: 46 start-page: 399 issue: 3 year: 2011 ident: 447_CR6 publication-title: Multivar Behav Res doi: 10.1080/00273171.2011.568786 – volume: 25 start-page: 188 issue: 1 year: 2016 ident: 447_CR31 publication-title: Stat Methods Med Res doi: 10.1177/0962280212445945 – ident: 447_CR38 – volume: 55 start-page: 244 issue: 3 year: 2001 ident: 447_CR14 publication-title: Am Stat doi: 10.1198/000313001317098266 – volume: 21 start-page: 273 issue: 3 year: 2012 ident: 447_CR3 publication-title: Stat Methods Med Res doi: 10.1177/0962280210394483 – volume: 9 start-page: 538 issue: 4 year: 1994 ident: 447_CR41 publication-title: Stat Sci doi: 10.1214/ss/1177010269 – volume: 95 start-page: 749 issue: 451 year: 2000 ident: 447_CR16 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2000.10474263 – volume: 80 start-page: 107 year: 2016 ident: 447_CR29 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2016.07.004 – volume: 42 start-page: 371 issue: 4 year: 2017 ident: 447_CR27 publication-title: J Educ Behav Stat doi: 10.3102/1076998616687084 – volume: 22 start-page: 631 issue: 4 year: 2015 ident: 447_CR24 publication-title: Struct Equ Model Multidiscip J doi: 10.1080/10705511.2014.937378 – volume: 26 start-page: 3078 issue: 16 year: 2007 ident: 447_CR7 publication-title: Stat Med doi: 10.1002/sim.2781 – volume: 63 start-page: 728 issue: 7 year: 2010 ident: 447_CR20 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2009.08.028 – volume: 45 start-page: 1 year: 2010 ident: 447_CR26 publication-title: J Stat Softw – volume: 25 start-page: 2214 issue: 5 year: 2016 ident: 447_CR10 publication-title: Stat Methods Med Res doi: 10.1177/0962280213519716 – volume-title: Causal inference year: 2010 ident: 447_CR40 – volume: 59 start-page: 1102 issue: 10 year: 2006 ident: 447_CR19 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2006.01.015 – volume: 184 start-page: 1265 issue: 11 year: 2012 ident: 447_CR21 publication-title: CMAJ doi: 10.1503/cmaj.110977 – volume: 16 start-page: 219 issue: 3 year: 2007 ident: 447_CR28 publication-title: Stat Methods Med Res doi: 10.1177/0962280206074463 – volume: 17 start-page: 2265 issue: 19 year: 1998 ident: 447_CR11 publication-title: Stat Med doi: 10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B – volume: 30 start-page: 377 issue: 4 year: 2011 ident: 447_CR13 publication-title: Stat Med doi: 10.1002/sim.4067 – volume: 70 start-page: 41 issue: 1 year: 1983 ident: 447_CR1 publication-title: Biometrika doi: 10.1093/biomet/70.1.41 – volume: 29 start-page: 2920 issue: 28 year: 2010 ident: 447_CR22 publication-title: Stat Med doi: 10.1002/sim.3944 – volume: 12 start-page: e1001885 issue: 10 year: 2015 ident: 447_CR15 publication-title: PLOS Med doi: 10.1371/journal.pmed.1001885 – volume: 14 start-page: e12630 issue: 4 year: 2017 ident: 447_CR30 publication-title: Epidemiol Biostat Public Health doi: 10.2427/12630 – volume: 20 start-page: 40 issue: 1 year: 2011 ident: 447_CR25 publication-title: Int J Methods Psychiatr Res doi: 10.1002/mpr.329 – volume: 28 start-page: 3083 issue: 25 year: 2009 ident: 447_CR5 publication-title: Stat Med doi: 10.1002/sim.3697 – volume: 25 start-page: 3066 issue: 6 year: 2016 ident: 447_CR33 publication-title: Stat Methods Med Res doi: 10.1177/0962280216674296 – volume: 61 start-page: 537 issue: 6 year: 2008 ident: 447_CR8 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2007.07.011 |
SSID | ssj0008095 |
Score | 2.542355 |
Snippet | Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in... |
SourceID | pubmedcentral proquest pubmed crossref springer jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 23 |
SubjectTerms | Cardiology Cohort Studies Computer Simulation Confounding Factors (Epidemiology) Data Interpretation, Statistical Data structures Epidemiology Humans Infectious Diseases Medicine Medicine & Public Health METHODS Missing data Models, Statistical Observational studies Oncology Propensity Score Public Health Statistical analysis Statistics as Topic - methods |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB9ahVIQUat2rUoEn1oCe_na5PEoigj61APfllyySwXZE2998a_vzGZ39VoV-ryTkM0kM7_MJ8CpjYip50Jz4aPjygTFrdaeB6tRXdTGzyvKRr66NhczdXmjb_o87uUQ7T64JDtJ_SLZzWiKmLA8V6rgTx9hXdPTHQ_xTExH8WvzrtUK5ZxykrWDK_O1KVaUUYpHfA1p_hsw-ZfXtFNG51uw2aNINk1s34YPVbMDn656P_kObCRrHEtJRl8gTlkYGw6yRc2GvigtSy2kl6xdsFRxgSHnyYDAKHiU3TYMISKjiHYU4zT0nsz3DYVysCXVwGS-r2uyC7Pzs18_L3jfX4EHrW2LwNrYmkqaORkmAXFRLCj1FB9AwganapSFrsAXltVRF0EH6WXlRS5jpZSWuZd7sNYsmuorsIg40MwdwreolIvGChV0XnscVkXEEBnkw0aXoS8-Tj0w7srnssnEmxJ5UxJvyqcMvo9D7lPljfeI9zrujZTKGlyRkBkcDuws-9u5LFFdCzexiGYzOBk_4-6Ss8Q31eKxo5GFQHiGU-wn7o-To9pXkyK3GRQr52IkoJrdq1-a299d7W4j8W443I8fwwl6Xtabf3fwX9Tf4DOiOpfsRIew1j48VkeInNr5cXdT_gARVQ7F priority: 102 providerName: Springer Nature |
Title | A comparison of different methods to handle missing data in the context of propensity score analysis |
URI | https://www.jstor.org/stable/48693623 https://link.springer.com/article/10.1007/s10654-018-0447-z https://www.ncbi.nlm.nih.gov/pubmed/30341708 https://www.proquest.com/docview/2122918045 https://www.proquest.com/docview/2123725843 https://pubmed.ncbi.nlm.nih.gov/PMC6325992 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJiEkhGAwCIzJSDyBLFLHdpwn1FYtE2gVQlQqT1FqJ9oklHRr9rK_nrvYSVU-9pI82I5i3_n8830CvDMOMfVaKC4Kl3GpreRGqYJbo_C4qHSxLika-Xyhz5byy0qtgsJtG9wqe5nYCWrXWNKRf0QRK7KRQQTyaXPFqWoUWVdDCY37cEipy8ilK10NFy4EQ13VFQo_5SR2e6umD53TivwvDI-lTPnt3rnkXRP_BTr_9p38w4DanUvzJ_A4AEo29hzwFO6V9RE8OA8m8yN45BVzzMcbPQM3ZnaoPciaivUlUlrmq0lvWdswn3yBIROQLoGRHym7rBmiRUbO7SjRaeiGNPk1eXWwLaXDZEVIcfIclvPZj-kZD6UWuFXKtIixtakou1mW2JFFiORSikLFu5AwNpMVisUsxcuWUU6lVtmkSMpCxIkrpVRJXCTHcFA3dfkSmENIqNcZIjknZea0EdKquCpwWOkQTkQQ9wud25CHnMph_Mp3GZSJNjnSJifa5LcRvB-GbHwSjrs6H3fUG3pKo_GPRBLBSU_OPGzUbb5jqwjeDs24umQ3Keqyuen6JKlApIafeOGpP3wcEYAcpbGJIN3ji6EDpe_eb6kvL7o03jrBbZLhenzoOWj3W_-d3au7J_EaHiKiy7yO6AQO2uub8g2ipnZ92m0NfJrp6BQOx_PJZEHvzz-_zvA9mS2-fcfWqZ7icynGvwHp4hjj |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQSVEIJCS0oBI8EFZJH1I3EOCBVotaXdFUKt1FvI2olaqUoWNlVFfxS_kZk4yWp59NZzbMvxjMefPTPfALw0DjH1VGguMpdwFVnFjdYZt0bjcVFE2TSnbOTxJBodq88n-mQFfnW5MBRW2dnExlC7ytIb-Vs0sSIZGkQg72ffOVWNIu9qV0LDq8VB_vMSr2zzd_ufUL6vhNjbPfo44m1VAW61NjXCycgUROSVSDu0iAZcTAmXCPuFsYkq0AIkMd4rjHY6ttrKTOaZCKXLldIyzCSOewtWlcSrzABWP-xOvnztbb8JmzovlPDKydB3flSfrBdpivgwPFQq5ldLJ6EPhvwXzP07WvMPl21zEu7dh3sthGU7XucewEpersPtceukX4e7_imQ-Qynh-B2mO2rHbKqYF1Rlpr5-tVzVlfM0z0wVDt6vWAUucrOSob4lFE4PZ4h1HVGvoOS4kjYnAg4WdaSqjyC4xsRwwYMyqrMHwNzCEKjaYLY0SmVuMgIZXVYZNgtdwhgAgi7hU5ty3xOBTjO0wVnM8kmRdmkJJv0KoDXfZeZp_24rvFGI72-pTIRzkjIALY7caataZinC0UO4EX_GVeXPDVZmVcXTRsZC8SGOMSml34_OGIONYxDE0C8pBd9AyIMX_5Snp02xOGRxI2Z4Hq86TRoMa3__t3W9T_xHO6MjsaH6eH-5OAJrCGeTPwL1TYM6h8X-VPEbPX0WbtRGHy76b35G1t-TIs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7UCkUoRavV1Koj6IsyNDuXzORBpFiX1trig4V9i9mZBAuSbLspxf40f53nZJIs66VvfZ4LM3Mu882cG8Ar6xFTT4XmIvcpV4lT3Gqdc2c1Xhdlkk8LikY-PkkOTtWniZ6swK8-FobcKnud2CpqXzv6I99FFSvSkUUEslt2bhFf9sfvZ-ecKkiRpbUvpxFY5Kj4eYXPt_m7w32k9Wshxh-_fjjgXYUB7rS2DULLxJaU1CuVbuQQGXhDwZf4BBDWpapEbZAafGNY7bVx2slcFrmIpS-U0jLOJc57B-4aqUckY2YyPPYQiLUVXyj0lZPK7y2qIWwv0eT7YXmslOHXS3dicIv8F-D922_zD-NteyeO78NGB2bZXuC-B7BSVJuwdtyZ6zdhPXwKshDr9BD8HnND3UNWl6wvz9KwUMl6zpqahcQPDBmQ_jEY-bCys4ohUmXkWI8koaEzsiJU5FHC5pSKk-VdepVHcHorRNiC1aquiifAPMLRZJoiivRKpT6xQjkdlzkOKzxCmQji_qAz1-VAp1IcP7JF9maiTYa0yYg22XUEb4Yhs5AA5KbOWy31hp7KJrgiISPY6cmZdUpini1YOoKXQzOeLtls8qqoL9s-0ghEiTjF40D9YXJEH2pkYhuBWeKLoQOlDl9uqc6-tynEE4kimuJ5vO05aLGs_-5u--ZNvIA1lMjs8-HJ0VO4h8AyDV9VO7DaXFwWzxC8NdPnrZQw-HbbYvkbfAtPWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+different+methods+to+handle+missing+data+in+the+context+of+propensity+score+analysis&rft.jtitle=European+journal+of+epidemiology&rft.au=Choi%2C+Jungyeon&rft.au=Dekkers%2C+Olaf+M&rft.au=le+Cessie%2C+Saskia&rft.date=2019-01-01&rft.issn=1573-7284&rft.eissn=1573-7284&rft.volume=34&rft.issue=1&rft.spage=23&rft_id=info:doi/10.1007%2Fs10654-018-0447-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0393-2990&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0393-2990&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0393-2990&client=summon |