A comparison of different methods to handle missing data in the context of propensity score analysis

Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, w...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of epidemiology Vol. 34; no. 1; pp. 23 - 36
Main Authors Choi, Jungyeon, Dekkers, Olaf M., le Cessie, Saskia
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Science + Business Media 01.01.2019
Springer Netherlands
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, we compared four strategies of handling missing covariate values in propensity matching and propensity weighting. These methods include: complete case analysis, missing indicator method, multiple imputation and combining multiple imputation and missing indicator method. Concurrently, we aimed to provide guidance in choosing the optimal strategy. Simulated scenarios varied regarding missing mechanism, presence of effect modification or unmeasured confounding. Additionally, we demonstrated how missingness graphs help clarifying the missing structure. When no effect modification existed, complete case analysis yielded valid causal treatment effects even when data were missing not at random. In some situations, complete case analysis was also able to partially correct for unmeasured confounding. Multiple imputation worked well if the data were missing (completely) at random, and if the imputation model was correctly specified. In the presence of effect modification, more complex imputation models than default options of commonly used statistical software were required. Multiple imputation may fail when data are missing not at random. Here, combining multiple imputation and the missing indicator method reduced the bias as the missing indicator variable can be a proxy for unobserved confounding. The optimal way to handle missing values in covariates of propensity score models depends on the missing data structure and the presence of effect modification. When effect modification is present, default settings of imputation methods may yield biased results even if data are missing at random.
AbstractList Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, we compared four strategies of handling missing covariate values in propensity matching and propensity weighting. These methods include: complete case analysis, missing indicator method, multiple imputation and combining multiple imputation and missing indicator method. Concurrently, we aimed to provide guidance in choosing the optimal strategy. Simulated scenarios varied regarding missing mechanism, presence of effect modification or unmeasured confounding. Additionally, we demonstrated how missingness graphs help clarifying the missing structure. When no effect modification existed, complete case analysis yielded valid causal treatment effects even when data were missing not at random. In some situations, complete case analysis was also able to partially correct for unmeasured confounding. Multiple imputation worked well if the data were missing (completely) at random, and if the imputation model was correctly specified. In the presence of effect modification, more complex imputation models than default options of commonly used statistical software were required. Multiple imputation may fail when data are missing not at random. Here, combining multiple imputation and the missing indicator method reduced the bias as the missing indicator variable can be a proxy for unobserved confounding. The optimal way to handle missing values in covariates of propensity score models depends on the missing data structure and the presence of effect modification. When effect modification is present, default settings of imputation methods may yield biased results even if data are missing at random.
Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, we compared four strategies of handling missing covariate values in propensity matching and propensity weighting. These methods include: complete case analysis, missing indicator method, multiple imputation and combining multiple imputation and missing indicator method. Concurrently, we aimed to provide guidance in choosing the optimal strategy. Simulated scenarios varied regarding missing mechanism, presence of effect modification or unmeasured confounding. Additionally, we demonstrated how missingness graphs help clarifying the missing structure. When no effect modification existed, complete case analysis yielded valid causal treatment effects even when data were missing not at random. In some situations, complete case analysis was also able to partially correct for unmeasured confounding. Multiple imputation worked well if the data were missing (completely) at random, and if the imputation model was correctly specified. In the presence of effect modification, more complex imputation models than default options of commonly used statistical software were required. Multiple imputation may fail when data are missing not at random. Here, combining multiple imputation and the missing indicator method reduced the bias as the missing indicator variable can be a proxy for unobserved confounding. The optimal way to handle missing values in covariates of propensity score models depends on the missing data structure and the presence of effect modification. When effect modification is present, default settings of imputation methods may yield biased results even if data are missing at random.Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, we compared four strategies of handling missing covariate values in propensity matching and propensity weighting. These methods include: complete case analysis, missing indicator method, multiple imputation and combining multiple imputation and missing indicator method. Concurrently, we aimed to provide guidance in choosing the optimal strategy. Simulated scenarios varied regarding missing mechanism, presence of effect modification or unmeasured confounding. Additionally, we demonstrated how missingness graphs help clarifying the missing structure. When no effect modification existed, complete case analysis yielded valid causal treatment effects even when data were missing not at random. In some situations, complete case analysis was also able to partially correct for unmeasured confounding. Multiple imputation worked well if the data were missing (completely) at random, and if the imputation model was correctly specified. In the presence of effect modification, more complex imputation models than default options of commonly used statistical software were required. Multiple imputation may fail when data are missing not at random. Here, combining multiple imputation and the missing indicator method reduced the bias as the missing indicator variable can be a proxy for unobserved confounding. The optimal way to handle missing values in covariates of propensity score models depends on the missing data structure and the presence of effect modification. When effect modification is present, default settings of imputation methods may yield biased results even if data are missing at random.
Author le Cessie, Saskia
Choi, Jungyeon
Dekkers, Olaf M.
Author_xml – sequence: 1
  givenname: Jungyeon
  surname: Choi
  fullname: Choi, Jungyeon
– sequence: 2
  givenname: Olaf M.
  surname: Dekkers
  fullname: Dekkers, Olaf M.
– sequence: 3
  givenname: Saskia
  surname: le Cessie
  fullname: le Cessie, Saskia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30341708$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFDEcxC0URC4HH4ACZImGZsHvR4MURbykSDRQW8brvfNp115sX8Tl0-NjwwEpUrn4z288o7kAZzFFD8BzjN5ghOTbgpHgrENYdYgx2d0-AivMJe0kUewMrBDVtCNao3NwUcoOIaSQ5k_AOUWUYYnUCvSX0KVptjmUFGEaYB-GwWcfK5x83aa-wJrg1sZ-9HAKpYS4gb2tFoYI69Y3Olb_sx7ROafZxxLqARaXsoc22vFQQnkKHg92LP7Z3bsG3z68_3r1qbv-8vHz1eV15zhXtZNSqIEwxTV12DGGe4kEk1oIopxmA6dKSyKw4j2XjjtqqbcE0d4zximydA3eLb7z_vvke9daZDuaOYfJ5oNJNpj_LzFszSbdGEEJ15o0g9d3Bjn92PtSTavs_Dja6NO-GIIJlYQrRpv01T3pLu1zK_xbRTRWqIVag5f_JjpF-TNAE-BF4HIqJfvhJMHIHEc2y8imjWyOI5vbxsh7jAvV1pCOpcL4IEkWsrRf4sbnv6Efgl4s0K7UlE_5mBKaCkLpLzYNxQ8
CitedBy_id crossref_primary_10_1111_1467_9477_12224
crossref_primary_10_1016_j_ccc_2023_02_003
crossref_primary_10_1080_24709360_2022_2069457
crossref_primary_10_1007_s00521_020_04855_1
crossref_primary_10_1016_j_athoracsur_2021_05_010
crossref_primary_10_1093_bioinformatics_btz898
crossref_primary_10_1177_10944281241246772
crossref_primary_10_1002_pds_5371
crossref_primary_10_1111_cdoe_12807
crossref_primary_10_1038_s41598_025_89623_8
crossref_primary_10_1007_s10916_019_1274_9
crossref_primary_10_1080_19466315_2022_2108136
crossref_primary_10_37394_23206_2021_20_43
crossref_primary_10_1093_ejendo_lvae067
crossref_primary_10_1161_JAHA_121_023588
crossref_primary_10_1080_00220973_2023_2287447
crossref_primary_10_3389_fcvm_2023_1154875
crossref_primary_10_3390_psych4020028
crossref_primary_10_1016_j_ebiom_2022_104176
crossref_primary_10_1093_aje_kwaa124
crossref_primary_10_1186_s12978_022_01442_6
crossref_primary_10_1080_07853890_2023_2249018
crossref_primary_10_3390_psych3040043
crossref_primary_10_3390_ijerph18136694
crossref_primary_10_1186_s12889_023_15111_1
crossref_primary_10_1016_j_jeoa_2021_100346
crossref_primary_10_1186_s12879_024_09299_9
crossref_primary_10_1007_s40747_021_00349_2
crossref_primary_10_1186_s12874_020_01068_x
crossref_primary_10_1186_s12874_023_01843_6
crossref_primary_10_1186_s12874_023_01847_2
crossref_primary_10_1002_sim_8581
crossref_primary_10_1214_22_AOAS1727
crossref_primary_10_1214_21_AOAS1510
crossref_primary_10_1245_s10434_022_11865_x
crossref_primary_10_1007_s10654_018_0461_1
crossref_primary_10_1080_08856257_2023_2195073
crossref_primary_10_1097_HTR_0000000000000798
crossref_primary_10_1016_j_drugalcdep_2024_111081
crossref_primary_10_1080_01621459_2023_2231581
crossref_primary_10_1177_15266028241278137
crossref_primary_10_1186_s12874_021_01454_z
crossref_primary_10_3389_fimmu_2025_1531708
crossref_primary_10_1186_s12874_023_01954_0
crossref_primary_10_1016_j_jclinepi_2020_03_028
crossref_primary_10_1186_s12885_024_12558_2
crossref_primary_10_3390_jcm9051378
crossref_primary_10_1177_10283153241235698
crossref_primary_10_1097_MD_0000000000015376
crossref_primary_10_3389_fendo_2024_1324617
crossref_primary_10_15280_jlm_2022_12_3_119
crossref_primary_10_2139_ssrn_4161625
crossref_primary_10_1007_s11042_021_10727_0
crossref_primary_10_1017_S2045796024000015
crossref_primary_10_1111_jgs_16970
crossref_primary_10_3390_electronics12234809
crossref_primary_10_1007_s10654_019_00538_x
crossref_primary_10_1097_EDE_0000000000001618
crossref_primary_10_1093_ije_dyae170
crossref_primary_10_3390_curroncol30070478
crossref_primary_10_3390_ijerph16224381
crossref_primary_10_1007_s40744_024_00736_4
crossref_primary_10_1177_14727978251322052
crossref_primary_10_1177_25152459241236149
crossref_primary_10_1016_j_ajt_2023_10_028
crossref_primary_10_1016_j_jcrc_2022_154118
crossref_primary_10_2139_ssrn_4173049
crossref_primary_10_3390_math11194118
crossref_primary_10_1080_00273171_2024_2307529
crossref_primary_10_3389_fcvm_2022_982209
crossref_primary_10_1111_all_15823
crossref_primary_10_1007_s00127_022_02279_x
crossref_primary_10_3390_jcm12062301
crossref_primary_10_14309_ajg_0000000000001167
crossref_primary_10_1001_jamanetworkopen_2024_3286
crossref_primary_10_1007_s13132_022_01089_5
crossref_primary_10_3389_fphar_2022_869804
crossref_primary_10_1111_dom_13929
crossref_primary_10_3892_mco_2022_2517
crossref_primary_10_2147_CLEP_S436131
crossref_primary_10_3390_stats5020029
crossref_primary_10_1159_000520518
crossref_primary_10_22237_jmasm_1608552120
crossref_primary_10_1136_bmj_2022_072308
crossref_primary_10_1002_pst_2389
crossref_primary_10_1093_neuros_nyaa315
crossref_primary_10_1097_CCE_0000000000000623
crossref_primary_10_1002_jac5_1591
crossref_primary_10_1080_10543406_2021_2011898
crossref_primary_10_18553_jmcp_2020_26_5_610
crossref_primary_10_1093_aje_kwac202
crossref_primary_10_1007_s11135_021_01114_w
crossref_primary_10_3389_fcvm_2023_1211294
crossref_primary_10_1016_j_clcc_2023_08_003
crossref_primary_10_1177_10760296251317520
crossref_primary_10_1136_bmjopen_2021_053332
crossref_primary_10_1001_jamaoncol_2022_0877
Cites_doi 10.1007/s10260-007-0086-0
10.1002/sim.6837
10.1002/sim.3697
10.2217/cer-2017-0071
10.1002/sim.4067
10.1177/0962280216674296
10.1016/j.jclinepi.2016.07.004
10.1093/oxfordjournals.aje.a117592
10.1093/biomet/70.1.41
10.1198/000313001317098266
10.3102/1076998616687084
10.1016/j.jclinepi.2009.08.028
10.1371/journal.pmed.1001885
10.1093/aje/kwt212
10.1177/0962280210394483
10.1002/sim.2580
10.1080/00273171.2011.568786
10.1177/0962280212445945
10.1002/pst.433
10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B
10.1002/sim.3944
10.1016/j.jclinepi.2006.01.015
10.1002/sim.3150
10.1177/0962280213519716
10.1503/cmaj.110977
10.1177/0962280206074463
10.1002/mpr.329
10.1214/ss/1177010269
10.1002/sim.2781
10.1002/sim.1981
10.1080/01621459.2000.10474263
10.1016/j.jclinepi.2006.01.014
10.1177/0272989X09341755
10.1016/j.jclinepi.2007.07.011
10.1177/0962280217713032
10.1016/j.jclinepi.2006.01.009
10.1080/03610926.2012.700371
10.2427/12630
10.1080/10705511.2014.937378
ContentType Journal Article
Copyright The Author(s) 2018
European Journal of Epidemiology is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: European Journal of Epidemiology is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T2
7TK
7TS
7U7
7U9
7X7
7XB
88C
88E
8AO
8C1
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
H94
K9.
M0S
M0T
M1P
M2O
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1007/s10654-018-0447-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Health and Safety Science Abstracts (Full archive)
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
Medical Database
ProQuest research library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
Physical Education Index
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
Health & Safety Science Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest Central Basic
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Research Library Prep

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-7284
EndPage 36
ExternalDocumentID PMC6325992
30341708
10_1007_s10654_018_0447_z
48693623
Genre Journal Article
Comparative Study
GroupedDBID ---
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7X7
88E
8AO
8C1
8FI
8FJ
8G5
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AACGO
AAHNG
AAIAL
AAJBT
AAJKR
AANCE
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABPLY
ABQBU
ABSXP
ABTEG
ABTKH
ABTLG
ABTMW
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACDTI
ACGFO
ACGFS
ACHIC
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADJJI
ADKNI
ADKPE
ADQXQ
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AEXZC
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
AQVQM
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
CCPQU
CS3
CSCUP
DCCCD
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
I09
I5X
IHE
IJ-
IKXTQ
IMOTQ
IPSME
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JENOY
JLS
JPM
JSG
JST
JZLTJ
KDC
KOV
KPH
LAK
LLZTM
M0T
M1P
M2O
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9S
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
ROL
RPX
RRX
RSV
S16
S27
S37
S3B
SA0
SAP
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~EX
-53
-5E
-5G
-BR
-EM
ADINQ
C6C
DOOOF
GQ6
Z7U
Z7W
Z81
Z82
Z83
Z87
Z8O
Z8Q
Z8U
Z8V
Z8W
Z91
-Y2
1SB
2.D
28-
2P1
2VQ
3SX
53G
5QI
AANXM
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACBXY
ACUDM
ADHKG
ADULT
AEBTG
AEFIE
AEKMD
AFEXP
AGGDS
AGQPQ
AJBLW
BBWZM
CAG
CITATION
COF
EN4
GRRUI
H13
HGD
HQ3
HTVGU
HZ~
JAAYA
JBMMH
JHFFW
JKQEH
JLXEF
KOW
LAS
N2Q
NDZJH
O9-
OVD
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
SDE
T16
TEORI
WK6
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T2
7TK
7TS
7U7
7U9
7XB
8FK
ABRTQ
C1K
H94
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c558t-7768f248593c1c441d7064796628c94f5389726185d57c5c3a3ea203de44530a3
IEDL.DBID 7X7
ISSN 0393-2990
1573-7284
IngestDate Thu Aug 21 14:32:04 EDT 2025
Fri Jul 11 02:02:17 EDT 2025
Sat Aug 23 14:16:11 EDT 2025
Thu Apr 03 07:05:39 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Tue Jul 01 03:04:03 EDT 2025
Fri Feb 21 02:41:47 EST 2025
Thu Jun 19 22:09:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Effect modification
Missing data
Propensity score analysis
Missingness graph
Multiple imputation
Missing indicator
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-7768f248593c1c441d7064796628c94f5389726185d57c5c3a3ea203de44530a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-1914-3488
OpenAccessLink https://link.springer.com/10.1007/s10654-018-0447-z
PMID 30341708
PQID 2122918045
PQPubID 33638
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6325992
proquest_miscellaneous_2123725843
proquest_journals_2122918045
pubmed_primary_30341708
crossref_primary_10_1007_s10654_018_0447_z
crossref_citationtrail_10_1007_s10654_018_0447_z
springer_journals_10_1007_s10654_018_0447_z
jstor_primary_48693623
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationTitle European journal of epidemiology
PublicationTitleAbbrev Eur J Epidemiol
PublicationTitleAlternate Eur J Epidemiol
PublicationYear 2019
Publisher Springer Science + Business Media
Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Science + Business Media
– name: Springer Netherlands
– name: Springer Nature B.V
References Mitra, Reiter (CR31) 2016; 25
Moons, Donders, Stijnen, Harrell (CR35) 2006; 59
Leyrat, Seaman, White, Douglas, Smeeth, Kim (CR32) 2017
Austin (CR39) 2011; 10
Benchimol, Smeeth, Guttmann, Harron, Moher, Petersen (CR15) 2015; 12
Meng (CR41) 1994; 9
White, Thompson (CR17) 2005; 24
van Buuren (CR28) 2007; 16
Seaman, White (CR36) 2014; 43
Austin, Schuster (CR10) 2016; 25
Kleinke (CR27) 2017; 42
Buuren, Groothuis-Oudshoorn (CR26) 2010; 45
Mattei (CR34) 2009; 18
Malla, Perera-Salazar, McFadden, Ogero, Stepniewska, English (CR43) 2018; 7
Tilling, Williamson, Spratt, Sterne, Carpenter (CR29) 2016; 80
CR38
Austin (CR8) 2008; 61
Williamson, Morley, Lucas, Carpenter (CR3) 2012; 21
Austin (CR4) 2009; 29
de Vries (CR33) 2016; 25
Donders, van der Heijden, Stijnen, Moons (CR12) 2006; 59
White, Carlin (CR22) 2010; 29
Hernan, Robins (CR40) 2010
unvan der Heijden, Donders, Stijnen, Moons (CR19) 2006; 59
Austin, Grootendorst, Anderson (CR9) 2007; 26
Horton, Lipsitz (CR14) 2001; 55
D’Agostino, Rubin (CR16) 2000; 95
Austin (CR7) 2007; 26
White, Royston, Wood (CR13) 2011; 30
Lunt (CR37) 2014; 179
Austin (CR2) 2008; 27
Austin (CR5) 2009; 28
Quartagno, Carpenter (CR42) 2016; 35
Knol, Janssen, Donders, Egberts, Heerdink, Grobbee (CR20) 2010; 63
Groenwold, White, Donders, Carpenter, Altman, Moons (CR21) 2012; 184
Penning de Vries, Groenwold (CR30) 2017; 14
Rosenbaum, Rubin (CR1) 1983; 70
Austin (CR6) 2011; 46
Greenland, Finkle (CR18) 1995; 142
d’Agostino (CR11) 1998; 17
Mohan, Pearl, Tian (CR23) 2013; 26
Thoemmes, Mohan (CR24) 2015; 22
Azur, Stuart, Frangakis, Leaf (CR25) 2011; 20
IR White (447_CR13) 2011; 30
S Greenland (447_CR18) 1995; 142
A Mattei (447_CR34) 2009; 18
IR White (447_CR17) 2005; 24
MJ Knol (447_CR20) 2010; 63
RB D’Agostino (447_CR16) 2000; 95
L Malla (447_CR43) 2018; 7
X-L Meng (447_CR41) 1994; 9
PR Rosenbaum (447_CR1) 1983; 70
K Mohan (447_CR23) 2013; 26
PC Austin (447_CR5) 2009; 28
EI Benchimol (447_CR15) 2015; 12
M Lunt (447_CR37) 2014; 179
IR White (447_CR22) 2010; 29
PC Austin (447_CR10) 2016; 25
F Thoemmes (447_CR24) 2015; 22
M Quartagno (447_CR42) 2016; 35
PC Austin (447_CR2) 2008; 27
PC Austin (447_CR6) 2011; 46
GJ Heijden unvan der (447_CR19) 2006; 59
PC Austin (447_CR7) 2007; 26
MJ Azur (447_CR25) 2011; 20
PC Austin (447_CR39) 2011; 10
K Tilling (447_CR29) 2016; 80
PC Austin (447_CR8) 2008; 61
R Mitra (447_CR31) 2016; 25
PC Austin (447_CR9) 2007; 26
447_CR38
KGM Moons (447_CR35) 2006; 59
E Williamson (447_CR3) 2012; 21
S Buuren van (447_CR28) 2007; 16
S Seaman (447_CR36) 2014; 43
S Buuren (447_CR26) 2010; 45
AR Donders (447_CR12) 2006; 59
NJ Horton (447_CR14) 2001; 55
MA Hernan (447_CR40) 2010
K Kleinke (447_CR27) 2017; 42
RHH Groenwold (447_CR21) 2012; 184
RB d’Agostino (447_CR11) 1998; 17
B Penning de Vries (447_CR30) 2017; 14
Penning Vries de (447_CR33) 2016; 25
PC Austin (447_CR4) 2009; 29
C Leyrat (447_CR32) 2017
References_xml – volume: 18
  start-page: 257
  issue: 2
  year: 2009
  end-page: 273
  ident: CR34
  article-title: Estimating and using propensity score in presence of missing background data: an application to assess the impact of childbearing on wellbeing
  publication-title: Stat Methods Appl
  doi: 10.1007/s10260-007-0086-0
– volume: 35
  start-page: 2938
  issue: 17
  year: 2016
  end-page: 2954
  ident: CR42
  article-title: Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covariates
  publication-title: Stat Med
  doi: 10.1002/sim.6837
– volume: 28
  start-page: 3083
  issue: 25
  year: 2009
  end-page: 3107
  ident: CR5
  article-title: Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples
  publication-title: Stat Med
  doi: 10.1002/sim.3697
– volume: 7
  start-page: 271
  issue: 3
  year: 2018
  end-page: 279
  ident: CR43
  article-title: Handling missing data in propensity score estimation in comparative effectiveness evaluations: a systematic review
  publication-title: J Comp Eff Res
  doi: 10.2217/cer-2017-0071
– year: 2010
  ident: CR40
  publication-title: Causal inference
– volume: 26
  start-page: 1277
  year: 2013
  end-page: 1285
  ident: CR23
  article-title: Graphical models for inference with missing data
  publication-title: Adv Neural Inf Process Syst
– volume: 30
  start-page: 377
  issue: 4
  year: 2011
  end-page: 399
  ident: CR13
  article-title: Multiple imputation using chained equations: issues and guidance for practice
  publication-title: Stat Med
  doi: 10.1002/sim.4067
– volume: 25
  start-page: 3066
  issue: 6
  year: 2016
  end-page: 3068
  ident: CR33
  article-title: B, Groenwold R. Comments on propensity score matching following multiple imputation
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280216674296
– volume: 80
  start-page: 107
  year: 2016
  end-page: 115
  ident: CR29
  article-title: Appropriate inclusion of interactions was needed to avoid bias in multiple imputation
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2016.07.004
– volume: 142
  start-page: 1255
  issue: 12
  year: 1995
  end-page: 1264
  ident: CR18
  article-title: A critical look at methods for handling missing covariates in epidemiologic regression analyses
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a117592
– volume: 45
  start-page: 1
  year: 2010
  end-page: 68
  ident: CR26
  article-title: Mice: multivariate imputation by chained equations in R
  publication-title: J Stat Softw
– volume: 70
  start-page: 41
  issue: 1
  year: 1983
  end-page: 55
  ident: CR1
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
– volume: 55
  start-page: 244
  issue: 3
  year: 2001
  end-page: 254
  ident: CR14
  article-title: Multiple imputation in practice
  publication-title: Am Stat
  doi: 10.1198/000313001317098266
– volume: 42
  start-page: 371
  issue: 4
  year: 2017
  end-page: 404
  ident: CR27
  article-title: Multiple imputation under violated distributional assumptions: a systematic evaluation of the assumed robustness of predictive mean matching
  publication-title: J Educ Behav Stat
  doi: 10.3102/1076998616687084
– volume: 63
  start-page: 728
  issue: 7
  year: 2010
  end-page: 736
  ident: CR20
  article-title: Unpredictable bias when using the missing indicator method or complete case analysis for missing confounder values: an empirical example
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2009.08.028
– volume: 12
  start-page: e1001885
  issue: 10
  year: 2015
  ident: CR15
  article-title: The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement
  publication-title: PLOS Med
  doi: 10.1371/journal.pmed.1001885
– volume: 179
  start-page: 226
  issue: 2
  year: 2014
  end-page: 235
  ident: CR37
  article-title: Selecting an appropriate caliper can be essential for achieving good balance with propensity score matching
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwt212
– volume: 21
  start-page: 273
  issue: 3
  year: 2012
  end-page: 293
  ident: CR3
  article-title: Propensity scores: from naive enthusiasm to intuitive understanding
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280210394483
– volume: 26
  start-page: 734
  issue: 4
  year: 2007
  end-page: 753
  ident: CR9
  article-title: A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study
  publication-title: Stat Med
  doi: 10.1002/sim.2580
– volume: 46
  start-page: 399
  issue: 3
  year: 2011
  end-page: 424
  ident: CR6
  article-title: An introduction to propensity score methods for reducing the effects of confounding in observational studies
  publication-title: Multivar Behav Res
  doi: 10.1080/00273171.2011.568786
– volume: 25
  start-page: 188
  issue: 1
  year: 2016
  end-page: 204
  ident: CR31
  article-title: A comparison of two methods of estimating propensity scores after multiple imputation
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280212445945
– volume: 10
  start-page: 150
  issue: 2
  year: 2011
  end-page: 161
  ident: CR39
  article-title: Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies
  publication-title: Pharm Stat
  doi: 10.1002/pst.433
– volume: 17
  start-page: 2265
  issue: 19
  year: 1998
  end-page: 2281
  ident: CR11
  article-title: Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B
– volume: 29
  start-page: 2920
  issue: 28
  year: 2010
  end-page: 2931
  ident: CR22
  article-title: Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values
  publication-title: Stat Med
  doi: 10.1002/sim.3944
– ident: CR38
– volume: 59
  start-page: 1102
  issue: 10
  year: 2006
  end-page: 1109
  ident: CR19
  article-title: Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: a clinical example
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2006.01.015
– volume: 27
  start-page: 2037
  issue: 12
  year: 2008
  end-page: 2049
  ident: CR2
  article-title: A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
  publication-title: Stat Med
  doi: 10.1002/sim.3150
– volume: 25
  start-page: 2214
  issue: 5
  year: 2016
  end-page: 2237
  ident: CR10
  article-title: The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: a simulation study
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280213519716
– volume: 184
  start-page: 1265
  issue: 11
  year: 2012
  end-page: 1269
  ident: CR21
  article-title: Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis
  publication-title: CMAJ
  doi: 10.1503/cmaj.110977
– volume: 16
  start-page: 219
  issue: 3
  year: 2007
  end-page: 242
  ident: CR28
  article-title: Multiple imputation of discrete and continuous data by fully conditional specification
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280206074463
– volume: 20
  start-page: 40
  issue: 1
  year: 2011
  end-page: 49
  ident: CR25
  article-title: Multiple imputation by chained equations: what is it and how does it work?
  publication-title: Int J Methods Psychiatr Res
  doi: 10.1002/mpr.329
– volume: 9
  start-page: 538
  issue: 4
  year: 1994
  end-page: 558
  ident: CR41
  article-title: Multiple-imputation inferences with uncongenial sources of input
  publication-title: Stat Sci
  doi: 10.1214/ss/1177010269
– volume: 26
  start-page: 3078
  issue: 16
  year: 2007
  end-page: 3094
  ident: CR7
  article-title: The performance of different propensity score methods for estimating marginal odds ratios
  publication-title: Stat Med
  doi: 10.1002/sim.2781
– volume: 24
  start-page: 993
  issue: 7
  year: 2005
  end-page: 1007
  ident: CR17
  article-title: Adjusting for partially missing baseline measurements in randomized trials
  publication-title: Stat Med
  doi: 10.1002/sim.1981
– volume: 95
  start-page: 749
  issue: 451
  year: 2000
  end-page: 759
  ident: CR16
  article-title: Estimating and using propensity scores with partially missing data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2000.10474263
– volume: 59
  start-page: 1087
  issue: 10
  year: 2006
  end-page: 1091
  ident: CR12
  article-title: Review: a gentle introduction to imputation of missing values
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2006.01.014
– volume: 29
  start-page: 661
  issue: 6
  year: 2009
  end-page: 677
  ident: CR4
  article-title: The relative ability of different propensity score methods to balance measured covariates between treated and untreated subjects in observational studies
  publication-title: Med Decis Mak
  doi: 10.1177/0272989X09341755
– volume: 61
  start-page: 537
  issue: 6
  year: 2008
  end-page: 545
  ident: CR8
  article-title: The performance of different propensity-score methods for estimating relative risks
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2007.07.011
– year: 2017
  ident: CR32
  article-title: Propensity score analysis with partially observed covariates: how should multiple imputation be used?
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280217713032
– volume: 59
  start-page: 1092
  issue: 10
  year: 2006
  end-page: 1101
  ident: CR35
  article-title: Using the outcome for imputation of missing predictor values was preferred
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2006.01.009
– volume: 43
  start-page: 3499
  issue: 16
  year: 2014
  end-page: 3515
  ident: CR36
  article-title: Inverse probability weighting with missing predictors of treatment assignment or missingness
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2012.700371
– volume: 14
  start-page: e12630
  issue: 4
  year: 2017
  ident: CR30
  article-title: A comparison of approaches to implementing propensity score methods following multiple imputation
  publication-title: Epidemiol Biostat Public Health
  doi: 10.2427/12630
– volume: 22
  start-page: 631
  issue: 4
  year: 2015
  end-page: 642
  ident: CR24
  article-title: Graphical representation of missing data problems
  publication-title: Struct Equ Model Multidiscip J
  doi: 10.1080/10705511.2014.937378
– year: 2017
  ident: 447_CR32
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280217713032
– volume: 18
  start-page: 257
  issue: 2
  year: 2009
  ident: 447_CR34
  publication-title: Stat Methods Appl
  doi: 10.1007/s10260-007-0086-0
– volume: 7
  start-page: 271
  issue: 3
  year: 2018
  ident: 447_CR43
  publication-title: J Comp Eff Res
  doi: 10.2217/cer-2017-0071
– volume: 142
  start-page: 1255
  issue: 12
  year: 1995
  ident: 447_CR18
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a117592
– volume: 10
  start-page: 150
  issue: 2
  year: 2011
  ident: 447_CR39
  publication-title: Pharm Stat
  doi: 10.1002/pst.433
– volume: 179
  start-page: 226
  issue: 2
  year: 2014
  ident: 447_CR37
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwt212
– volume: 29
  start-page: 661
  issue: 6
  year: 2009
  ident: 447_CR4
  publication-title: Med Decis Mak
  doi: 10.1177/0272989X09341755
– volume: 27
  start-page: 2037
  issue: 12
  year: 2008
  ident: 447_CR2
  publication-title: Stat Med
  doi: 10.1002/sim.3150
– volume: 24
  start-page: 993
  issue: 7
  year: 2005
  ident: 447_CR17
  publication-title: Stat Med
  doi: 10.1002/sim.1981
– volume: 59
  start-page: 1092
  issue: 10
  year: 2006
  ident: 447_CR35
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2006.01.009
– volume: 26
  start-page: 734
  issue: 4
  year: 2007
  ident: 447_CR9
  publication-title: Stat Med
  doi: 10.1002/sim.2580
– volume: 59
  start-page: 1087
  issue: 10
  year: 2006
  ident: 447_CR12
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2006.01.014
– volume: 35
  start-page: 2938
  issue: 17
  year: 2016
  ident: 447_CR42
  publication-title: Stat Med
  doi: 10.1002/sim.6837
– volume: 26
  start-page: 1277
  year: 2013
  ident: 447_CR23
  publication-title: Adv Neural Inf Process Syst
– volume: 43
  start-page: 3499
  issue: 16
  year: 2014
  ident: 447_CR36
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2012.700371
– volume: 46
  start-page: 399
  issue: 3
  year: 2011
  ident: 447_CR6
  publication-title: Multivar Behav Res
  doi: 10.1080/00273171.2011.568786
– volume: 25
  start-page: 188
  issue: 1
  year: 2016
  ident: 447_CR31
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280212445945
– ident: 447_CR38
– volume: 55
  start-page: 244
  issue: 3
  year: 2001
  ident: 447_CR14
  publication-title: Am Stat
  doi: 10.1198/000313001317098266
– volume: 21
  start-page: 273
  issue: 3
  year: 2012
  ident: 447_CR3
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280210394483
– volume: 9
  start-page: 538
  issue: 4
  year: 1994
  ident: 447_CR41
  publication-title: Stat Sci
  doi: 10.1214/ss/1177010269
– volume: 95
  start-page: 749
  issue: 451
  year: 2000
  ident: 447_CR16
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2000.10474263
– volume: 80
  start-page: 107
  year: 2016
  ident: 447_CR29
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2016.07.004
– volume: 42
  start-page: 371
  issue: 4
  year: 2017
  ident: 447_CR27
  publication-title: J Educ Behav Stat
  doi: 10.3102/1076998616687084
– volume: 22
  start-page: 631
  issue: 4
  year: 2015
  ident: 447_CR24
  publication-title: Struct Equ Model Multidiscip J
  doi: 10.1080/10705511.2014.937378
– volume: 26
  start-page: 3078
  issue: 16
  year: 2007
  ident: 447_CR7
  publication-title: Stat Med
  doi: 10.1002/sim.2781
– volume: 63
  start-page: 728
  issue: 7
  year: 2010
  ident: 447_CR20
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2009.08.028
– volume: 45
  start-page: 1
  year: 2010
  ident: 447_CR26
  publication-title: J Stat Softw
– volume: 25
  start-page: 2214
  issue: 5
  year: 2016
  ident: 447_CR10
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280213519716
– volume-title: Causal inference
  year: 2010
  ident: 447_CR40
– volume: 59
  start-page: 1102
  issue: 10
  year: 2006
  ident: 447_CR19
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2006.01.015
– volume: 184
  start-page: 1265
  issue: 11
  year: 2012
  ident: 447_CR21
  publication-title: CMAJ
  doi: 10.1503/cmaj.110977
– volume: 16
  start-page: 219
  issue: 3
  year: 2007
  ident: 447_CR28
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280206074463
– volume: 17
  start-page: 2265
  issue: 19
  year: 1998
  ident: 447_CR11
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B
– volume: 30
  start-page: 377
  issue: 4
  year: 2011
  ident: 447_CR13
  publication-title: Stat Med
  doi: 10.1002/sim.4067
– volume: 70
  start-page: 41
  issue: 1
  year: 1983
  ident: 447_CR1
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
– volume: 29
  start-page: 2920
  issue: 28
  year: 2010
  ident: 447_CR22
  publication-title: Stat Med
  doi: 10.1002/sim.3944
– volume: 12
  start-page: e1001885
  issue: 10
  year: 2015
  ident: 447_CR15
  publication-title: PLOS Med
  doi: 10.1371/journal.pmed.1001885
– volume: 14
  start-page: e12630
  issue: 4
  year: 2017
  ident: 447_CR30
  publication-title: Epidemiol Biostat Public Health
  doi: 10.2427/12630
– volume: 20
  start-page: 40
  issue: 1
  year: 2011
  ident: 447_CR25
  publication-title: Int J Methods Psychiatr Res
  doi: 10.1002/mpr.329
– volume: 28
  start-page: 3083
  issue: 25
  year: 2009
  ident: 447_CR5
  publication-title: Stat Med
  doi: 10.1002/sim.3697
– volume: 25
  start-page: 3066
  issue: 6
  year: 2016
  ident: 447_CR33
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280216674296
– volume: 61
  start-page: 537
  issue: 6
  year: 2008
  ident: 447_CR8
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2007.07.011
SSID ssj0008095
Score 2.542355
Snippet Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23
SubjectTerms Cardiology
Cohort Studies
Computer Simulation
Confounding Factors (Epidemiology)
Data Interpretation, Statistical
Data structures
Epidemiology
Humans
Infectious Diseases
Medicine
Medicine & Public Health
METHODS
Missing data
Models, Statistical
Observational studies
Oncology
Propensity Score
Public Health
Statistical analysis
Statistics as Topic - methods
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB9ahVIQUat2rUoEn1oCe_na5PEoigj61APfllyySwXZE2998a_vzGZ39VoV-ryTkM0kM7_MJ8CpjYip50Jz4aPjygTFrdaeB6tRXdTGzyvKRr66NhczdXmjb_o87uUQ7T64JDtJ_SLZzWiKmLA8V6rgTx9hXdPTHQ_xTExH8WvzrtUK5ZxykrWDK_O1KVaUUYpHfA1p_hsw-ZfXtFNG51uw2aNINk1s34YPVbMDn656P_kObCRrHEtJRl8gTlkYGw6yRc2GvigtSy2kl6xdsFRxgSHnyYDAKHiU3TYMISKjiHYU4zT0nsz3DYVysCXVwGS-r2uyC7Pzs18_L3jfX4EHrW2LwNrYmkqaORkmAXFRLCj1FB9AwganapSFrsAXltVRF0EH6WXlRS5jpZSWuZd7sNYsmuorsIg40MwdwreolIvGChV0XnscVkXEEBnkw0aXoS8-Tj0w7srnssnEmxJ5UxJvyqcMvo9D7lPljfeI9zrujZTKGlyRkBkcDuws-9u5LFFdCzexiGYzOBk_4-6Ss8Q31eKxo5GFQHiGU-wn7o-To9pXkyK3GRQr52IkoJrdq1-a299d7W4j8W443I8fwwl6Xtabf3fwX9Tf4DOiOpfsRIew1j48VkeInNr5cXdT_gARVQ7F
  priority: 102
  providerName: Springer Nature
Title A comparison of different methods to handle missing data in the context of propensity score analysis
URI https://www.jstor.org/stable/48693623
https://link.springer.com/article/10.1007/s10654-018-0447-z
https://www.ncbi.nlm.nih.gov/pubmed/30341708
https://www.proquest.com/docview/2122918045
https://www.proquest.com/docview/2123725843
https://pubmed.ncbi.nlm.nih.gov/PMC6325992
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJiEkhGAwCIzJSDyBLFLHdpwn1FYtE2gVQlQqT1FqJ9oklHRr9rK_nrvYSVU-9pI82I5i3_n8830CvDMOMfVaKC4Kl3GpreRGqYJbo_C4qHSxLika-Xyhz5byy0qtgsJtG9wqe5nYCWrXWNKRf0QRK7KRQQTyaXPFqWoUWVdDCY37cEipy8ilK10NFy4EQ13VFQo_5SR2e6umD53TivwvDI-lTPnt3rnkXRP_BTr_9p38w4DanUvzJ_A4AEo29hzwFO6V9RE8OA8m8yN45BVzzMcbPQM3ZnaoPciaivUlUlrmq0lvWdswn3yBIROQLoGRHym7rBmiRUbO7SjRaeiGNPk1eXWwLaXDZEVIcfIclvPZj-kZD6UWuFXKtIixtakou1mW2JFFiORSikLFu5AwNpMVisUsxcuWUU6lVtmkSMpCxIkrpVRJXCTHcFA3dfkSmENIqNcZIjknZea0EdKquCpwWOkQTkQQ9wud25CHnMph_Mp3GZSJNjnSJifa5LcRvB-GbHwSjrs6H3fUG3pKo_GPRBLBSU_OPGzUbb5jqwjeDs24umQ3Keqyuen6JKlApIafeOGpP3wcEYAcpbGJIN3ji6EDpe_eb6kvL7o03jrBbZLhenzoOWj3W_-d3au7J_EaHiKiy7yO6AQO2uub8g2ipnZ92m0NfJrp6BQOx_PJZEHvzz-_zvA9mS2-fcfWqZ7icynGvwHp4hjj
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQSVEIJCS0oBI8EFZJH1I3EOCBVotaXdFUKt1FvI2olaqUoWNlVFfxS_kZk4yWp59NZzbMvxjMefPTPfALw0DjH1VGguMpdwFVnFjdYZt0bjcVFE2TSnbOTxJBodq88n-mQFfnW5MBRW2dnExlC7ytIb-Vs0sSIZGkQg72ffOVWNIu9qV0LDq8VB_vMSr2zzd_ufUL6vhNjbPfo44m1VAW61NjXCycgUROSVSDu0iAZcTAmXCPuFsYkq0AIkMd4rjHY6ttrKTOaZCKXLldIyzCSOewtWlcSrzABWP-xOvnztbb8JmzovlPDKydB3flSfrBdpivgwPFQq5ldLJ6EPhvwXzP07WvMPl21zEu7dh3sthGU7XucewEpersPtceukX4e7_imQ-Qynh-B2mO2rHbKqYF1Rlpr5-tVzVlfM0z0wVDt6vWAUucrOSob4lFE4PZ4h1HVGvoOS4kjYnAg4WdaSqjyC4xsRwwYMyqrMHwNzCEKjaYLY0SmVuMgIZXVYZNgtdwhgAgi7hU5ty3xOBTjO0wVnM8kmRdmkJJv0KoDXfZeZp_24rvFGI72-pTIRzkjIALY7caataZinC0UO4EX_GVeXPDVZmVcXTRsZC8SGOMSml34_OGIONYxDE0C8pBd9AyIMX_5Snp02xOGRxI2Z4Hq86TRoMa3__t3W9T_xHO6MjsaH6eH-5OAJrCGeTPwL1TYM6h8X-VPEbPX0WbtRGHy76b35G1t-TIs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7UCkUoRavV1Koj6IsyNDuXzORBpFiX1trig4V9i9mZBAuSbLspxf40f53nZJIs66VvfZ4LM3Mu882cG8Ar6xFTT4XmIvcpV4lT3Gqdc2c1Xhdlkk8LikY-PkkOTtWniZ6swK8-FobcKnud2CpqXzv6I99FFSvSkUUEslt2bhFf9sfvZ-ecKkiRpbUvpxFY5Kj4eYXPt_m7w32k9Wshxh-_fjjgXYUB7rS2DULLxJaU1CuVbuQQGXhDwZf4BBDWpapEbZAafGNY7bVx2slcFrmIpS-U0jLOJc57B-4aqUckY2YyPPYQiLUVXyj0lZPK7y2qIWwv0eT7YXmslOHXS3dicIv8F-D922_zD-NteyeO78NGB2bZXuC-B7BSVJuwdtyZ6zdhPXwKshDr9BD8HnND3UNWl6wvz9KwUMl6zpqahcQPDBmQ_jEY-bCys4ohUmXkWI8koaEzsiJU5FHC5pSKk-VdepVHcHorRNiC1aquiifAPMLRZJoiivRKpT6xQjkdlzkOKzxCmQji_qAz1-VAp1IcP7JF9maiTYa0yYg22XUEb4Yhs5AA5KbOWy31hp7KJrgiISPY6cmZdUpini1YOoKXQzOeLtls8qqoL9s-0ghEiTjF40D9YXJEH2pkYhuBWeKLoQOlDl9uqc6-tynEE4kimuJ5vO05aLGs_-5u--ZNvIA1lMjs8-HJ0VO4h8AyDV9VO7DaXFwWzxC8NdPnrZQw-HbbYvkbfAtPWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+different+methods+to+handle+missing+data+in+the+context+of+propensity+score+analysis&rft.jtitle=European+journal+of+epidemiology&rft.au=Choi%2C+Jungyeon&rft.au=Dekkers%2C+Olaf+M&rft.au=le+Cessie%2C+Saskia&rft.date=2019-01-01&rft.issn=1573-7284&rft.eissn=1573-7284&rft.volume=34&rft.issue=1&rft.spage=23&rft_id=info:doi/10.1007%2Fs10654-018-0447-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0393-2990&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0393-2990&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0393-2990&client=summon