Electrochemical Preparation of Nanocatalysts and Their Application in Electrocatalysis
In order to solve the basic problem of high-temperature sintering of molybdenum carbide restricting the efficient construction of molybdenum carbide nanostructures and the full play of hydrogen evolution performance, this article studies the preparation of nano molybdenum carbide/boron nitrogen codo...
Saved in:
Published in | International journal of analytical chemistry Vol. 2022; pp. 1 - 6 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
27.08.2022
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to solve the basic problem of high-temperature sintering of molybdenum carbide restricting the efficient construction of molybdenum carbide nanostructures and the full play of hydrogen evolution performance, this article studies the preparation of nano molybdenum carbide/boron nitrogen codoped two-dimensional carbon composite structure catalysts and the electrochemical hydrogen evolution reaction performance. Based on the self-assembly process of gelatin molecules on the surface of a two-dimensional layered boric acid crystal template, a new strategy for constructing a high-performance electrochemical hydrogen evolution reaction catalyst based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure (η-MoC@ BN-CSs) was established. The experimental results show that the overpotential of hydrogen evolution reaction based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure catalyst is 159 mV, which is slightly higher than 67 mV of commercial Pt/C catalyst, but lower than the reported literature value in the list. The Tafel slope is 68 mV·dec−1, which is slightly higher than that of the commercial Pt/C catalyst (40 mV·dec−1) and the reference value (58 mV·dec−1), but lower than those of other reported literature values in the list, indicating that the molybdenum carbide/boron nitrogen codoped two-dimensional carbon nanocomposites have excellent catalytic performance under alkaline conditions. Conclusion. This kind of two-dimensional nanocomposite structure shows platinum-like catalytic activity when used as an electrochemical hydrogen evolution catalyst in alkaline electrolyte. It has better reaction kinetics and better stability. |
---|---|
AbstractList | In order to solve the basic problem of high-temperature sintering of molybdenum carbide restricting the efficient construction of molybdenum carbide nanostructures and the full play of hydrogen evolution performance, this article studies the preparation of nano molybdenum carbide/boron nitrogen codoped two-dimensional carbon composite structure catalysts and the electrochemical hydrogen evolution reaction performance. Based on the self-assembly process of gelatin molecules on the surface of a two-dimensional layered boric acid crystal template, a new strategy for constructing a high-performance electrochemical hydrogen evolution reaction catalyst based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure (η-MoC@ BN-CSs) was established. The experimental results show that the overpotential of hydrogen evolution reaction based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure catalyst is 159 mV, which is slightly higher than 67 mV of commercial Pt/C catalyst, but lower than the reported literature value in the list. The Tafel slope is 68 mV·dec−1, which is slightly higher than that of the commercial Pt/C catalyst (40 mV·dec−1) and the reference value (58 mV·dec−1), but lower than those of other reported literature values in the list, indicating that the molybdenum carbide/boron nitrogen codoped two-dimensional carbon nanocomposites have excellent catalytic performance under alkaline conditions. Conclusion. This kind of two-dimensional nanocomposite structure shows platinum-like catalytic activity when used as an electrochemical hydrogen evolution catalyst in alkaline electrolyte. It has better reaction kinetics and better stability. In order to solve the basic problem of high-temperature sintering of molybdenum carbide restricting the efficient construction of molybdenum carbide nanostructures and the full play of hydrogen evolution performance, this article studies the preparation of nano molybdenum carbide/boron nitrogen codoped two-dimensional carbon composite structure catalysts and the electrochemical hydrogen evolution reaction performance. Based on the self-assembly process of gelatin molecules on the surface of a two-dimensional layered boric acid crystal template, a new strategy for constructing a high-performance electrochemical hydrogen evolution reaction catalyst based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure ( η -MoC@ BN-CSs) was established. The experimental results show that the overpotential of hydrogen evolution reaction based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure catalyst is 159 mV, which is slightly higher than 67 mV of commercial Pt/C catalyst, but lower than the reported literature value in the list. The Tafel slope is 68 mV·dec −1 , which is slightly higher than that of the commercial Pt/C catalyst (40 mV·dec −1 ) and the reference value (58 mV·dec −1 ), but lower than those of other reported literature values in the list, indicating that the molybdenum carbide/boron nitrogen codoped two-dimensional carbon nanocomposites have excellent catalytic performance under alkaline conditions. Conclusion . This kind of two-dimensional nanocomposite structure shows platinum-like catalytic activity when used as an electrochemical hydrogen evolution catalyst in alkaline electrolyte. It has better reaction kinetics and better stability. In order to solve the basic problem of high-temperature sintering of molybdenum carbide restricting the efficient construction of molybdenum carbide nanostructures and the full play of hydrogen evolution performance, this article studies the preparation of nano molybdenum carbide/boron nitrogen codoped two-dimensional carbon composite structure catalysts and the electrochemical hydrogen evolution reaction performance. Based on the self-assembly process of gelatin molecules on the surface of a two-dimensional layered boric acid crystal template, a new strategy for constructing a high-performance electrochemical hydrogen evolution reaction catalyst based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure (η-MoC@ BN-CSs) was established. The experimental results show that the overpotential of hydrogen evolution reaction based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure catalyst is 159 mV, which is slightly higher than 67 mV of commercial Pt/C catalyst, but lower than the reported literature value in the list. The Tafel slope is 68 mV·dec-1, which is slightly higher than that of the commercial Pt/C catalyst (40 mV·dec-1) and the reference value (58 mV·dec-1), but lower than those of other reported literature values in the list, indicating that the molybdenum carbide/boron nitrogen codoped two-dimensional carbon nanocomposites have excellent catalytic performance under alkaline conditions. Conclusion. This kind of two-dimensional nanocomposite structure shows platinum-like catalytic activity when used as an electrochemical hydrogen evolution catalyst in alkaline electrolyte. It has better reaction kinetics and better stability.In order to solve the basic problem of high-temperature sintering of molybdenum carbide restricting the efficient construction of molybdenum carbide nanostructures and the full play of hydrogen evolution performance, this article studies the preparation of nano molybdenum carbide/boron nitrogen codoped two-dimensional carbon composite structure catalysts and the electrochemical hydrogen evolution reaction performance. Based on the self-assembly process of gelatin molecules on the surface of a two-dimensional layered boric acid crystal template, a new strategy for constructing a high-performance electrochemical hydrogen evolution reaction catalyst based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure (η-MoC@ BN-CSs) was established. The experimental results show that the overpotential of hydrogen evolution reaction based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure catalyst is 159 mV, which is slightly higher than 67 mV of commercial Pt/C catalyst, but lower than the reported literature value in the list. The Tafel slope is 68 mV·dec-1, which is slightly higher than that of the commercial Pt/C catalyst (40 mV·dec-1) and the reference value (58 mV·dec-1), but lower than those of other reported literature values in the list, indicating that the molybdenum carbide/boron nitrogen codoped two-dimensional carbon nanocomposites have excellent catalytic performance under alkaline conditions. Conclusion. This kind of two-dimensional nanocomposite structure shows platinum-like catalytic activity when used as an electrochemical hydrogen evolution catalyst in alkaline electrolyte. It has better reaction kinetics and better stability. In order to solve the basic problem of high-temperature sintering of molybdenum carbide restricting the efficient construction of molybdenum carbide nanostructures and the full play of hydrogen evolution performance, this article studies the preparation of nano molybdenum carbide/boron nitrogen codoped two-dimensional carbon composite structure catalysts and the electrochemical hydrogen evolution reaction performance. Based on the self-assembly process of gelatin molecules on the surface of a two-dimensional layered boric acid crystal template, a new strategy for constructing a high-performance electrochemical hydrogen evolution reaction catalyst based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure (η -MoC@ BN-CSs) was established. The experimental results show that the overpotential of hydrogen evolution reaction based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure catalyst is 159mV, which is slightly higher than 67mV of commercial Pt/C catalyst, but lower than the reported literature value in the list. The Tafel slope is 68mV·dec[sup.-1], which is slightly higher than that of the commercial Pt/C catalyst (40mV·dec[sup.-1]) and the reference value (58mV·dec[sup.-1]), but lower than those of other reported literature values in the list, indicating that the molybdenum carbide/boron nitrogen codoped two-dimensional carbon nanocomposites have excellent catalytic performance under alkaline conditions. Conclusion. This kind of two-dimensional nanocomposite structure shows platinum-like catalytic activity when used as an electrochemical hydrogen evolution catalyst in alkaline electrolyte. It has better reaction kinetics and better stability. |
Audience | Academic |
Author | Zhou, Hao |
AuthorAffiliation | JiangSu Vocational College of Business, NanTong 226011, JiangSu, China |
AuthorAffiliation_xml | – name: JiangSu Vocational College of Business, NanTong 226011, JiangSu, China |
Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0001-8793-5885 surname: Zhou fullname: Zhou, Hao organization: JiangSu Vocational College of BusinessNanTong 226011JiangSuChina |
BookMark | eNp9kk1vEzEQhleoiJbSGz9gJS5IkNb2-vOCFFUFKlXAIeJq-TNxtLGDvSnqv8ebDUWpAPtga_y872g887I5iSm6pnkNwSWEhFwhgNCV4Bx3AD1rziDlbMYZEyePdwpOm4tS1mBcDBAhXjSnHQWUdIKcNd9vemeGnMzKbYJRffstu63Kaggptsm3X1RMRg2qfyhDaVW07WLlQm7n221f-T0WYvvbZSJDedU896ov7uJwnjeLjzeL68-zu6-fbq_ndzNDCB9mDGhrhMXad0hxgREGEAPLNPPUIE8IZtRqxI0jDHnrBfcA6445JZBWpjtvbidbm9RabnPYqPwgkwpyH0h5KVUegumd1EJjxzvYWcEwMEJTzwijWjiKrKC-en2YvLY7vXHWuDhk1R-ZHr_EsJLLdC8FxoAJXg3eHgxy-rFzZZCbUIzrexVd2hWJGASCIQxBRd88Qddpl2P9qUoBQQSClP2hlqoWEKJPNa8ZTeWcQQox5xxV6vIvVN127GgdFx9q_EjwfhKYnErJzj_WCIEcp0qOUyUPU1Vx9AQ3Ydg3vuYJ_b9E7ybRKkSrfob_p_gFuOnbfQ |
CitedBy_id | crossref_primary_10_1155_2023_9867946 crossref_primary_10_1080_15435075_2024_2396070 |
Cites_doi | 10.1016/j.ijhydene.2020.07.174 10.4028/www.scientific.net/msf.979.89 10.1016/j.matlet.2019.126819 10.1039/c9ra09661b 10.1016/s1002-0721(14)60086-7 10.1155/2021/5325116 10.1016/j.carbon.2020.01.098 10.1016/j.ijhydene.2019.10.241 10.1016/j.jcat.2020.02.020 10.1108/ijicc-10-2020-0142 10.4028/www.scientific.net/msf.1004.265 10.1037/xlm0000987 10.1016/j.scitotenv.2019.135104 10.1016/j.carbon.2020.09.037 10.1007/s12274-020-3156-3 10.1021/acscatal.0c05634 10.1021/acs.jpcc.0c07968 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Hao Zhou. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Hao Zhou. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Hao Zhou. 2022 |
Copyright_xml | – notice: Copyright © 2022 Hao Zhou. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Hao Zhou. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2022 Hao Zhou. 2022 |
DBID | RHU RHW RHX AAYXX CITATION 8AO 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU CWDGH D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1155/2022/9884302 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Middle East & Africa Database ProQuest Materials Science Collection ProQuest Central Korea ProQuest SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Middle East & Africa Database ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1687-8779 |
Editor | Vasimalai, Nagamalai |
Editor_xml | – sequence: 1 givenname: Nagamalai surname: Vasimalai fullname: Vasimalai, Nagamalai |
EndPage | 6 |
ExternalDocumentID | oai_doaj_org_article_b9b4e8313d9740c9b6f7576b9e62d96f PMC9440798 A716148882 10_1155_2022_9884302 |
GroupedDBID | 188 29J 2WC 3V. 4.4 53G 5VS 8AO 8FE 8FG 8R4 8R5 AAJEY ABDBF ABJCF ABUWG ACIWK ADBBV ADRAZ AEGXH AENEX AFKRA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BGLVJ BPHCQ CCPQU CWDGH D1I DIK E3Z EBS ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 HYE IAO IEA ITC KB. KQ8 M48 ML- O5R OK1 PDBOC PIMPY PQQKQ PROAC Q2X RHU RHW RHX RNS RPM TR2 TUS UNMZH ~8M 0R~ 24P AAYXX ACCMX ACUHS CITATION H13 PGMZT PHGZM PHGZT PMFND AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c558t-70bdc9d4bf32a894240140d7b7f6c2f55476db28ce572fdf98f04b37ea92bac3 |
IEDL.DBID | M48 |
ISSN | 1687-8760 |
IngestDate | Wed Aug 27 01:27:20 EDT 2025 Thu Aug 21 14:10:40 EDT 2025 Fri Jul 11 06:36:49 EDT 2025 Fri Jul 25 12:21:28 EDT 2025 Tue Jun 17 22:02:01 EDT 2025 Tue Jun 10 20:59:46 EDT 2025 Thu Apr 24 23:02:56 EDT 2025 Tue Jul 01 03:32:53 EDT 2025 Sun Jun 02 18:53:00 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-70bdc9d4bf32a894240140d7b7f6c2f55476db28ce572fdf98f04b37ea92bac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correction/Retraction-3 Academic Editor: Nagamalai Vasimalai |
ORCID | 0000-0001-8793-5885 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2022/9884302 |
PMID | 36065395 |
PQID | 2709592167 |
PQPubID | 237282 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b9b4e8313d9740c9b6f7576b9e62d96f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9440798 proquest_miscellaneous_2710972410 proquest_journals_2709592167 gale_infotracmisc_A716148882 gale_infotracacademiconefile_A716148882 crossref_primary_10_1155_2022_9884302 crossref_citationtrail_10_1155_2022_9884302 hindawi_primary_10_1155_2022_9884302 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-27 |
PublicationDateYYYYMMDD | 2022-08-27 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of analytical chemistry |
PublicationYear | 2022 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 11 A. Jh (12) 2020; 384 13 15 16 17 K. Xiong (7) 2020; 6 18 19 X. Yang (2) 2020; 124 R. Huang (20) 2022; 23 K. Xu (1) 2020; 45 3 4 5 6 8 9 K. P. Padda (14) 2020; 51 10 |
References_xml | – volume: 51 start-page: 1 year: 2020 ident: 14 article-title: Long-term effect of inoculating lodgepole pine seedlings with plant growth-promoting bacteria originating from disturbed gravel mining ecosystem publication-title: Canadian Journal of Forest Research – volume: 45 start-page: 28893 issue: 53 year: 2020 ident: 1 article-title: Atomic-scale investigations of enhanced hydrogen separation performance from doping boron and nitrogen in graphdiyne membrane publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2020.07.174 – volume: 6 start-page: 1 issue: 99 year: 2020 ident: 7 article-title: Temperature-dependent rf characteristics of al2o3-passivated wse2 mosfets publication-title: IEEE Electron Device Letters – ident: 9 doi: 10.4028/www.scientific.net/msf.979.89 – ident: 5 doi: 10.1016/j.matlet.2019.126819 – ident: 3 doi: 10.1039/c9ra09661b – ident: 18 doi: 10.1016/s1002-0721(14)60086-7 – ident: 17 doi: 10.1155/2021/5325116 – ident: 6 doi: 10.1016/j.carbon.2020.01.098 – ident: 11 doi: 10.1016/j.ijhydene.2019.10.241 – volume: 384 start-page: 169 year: 2020 ident: 12 article-title: Insight into the electrochemical-cycling activation of pt/molybdenum carbide toward synergistic hydrogen evolution catalysis—sciencedirect publication-title: Journal of Catalysis doi: 10.1016/j.jcat.2020.02.020 – ident: 16 doi: 10.1108/ijicc-10-2020-0142 – ident: 4 doi: 10.4028/www.scientific.net/msf.1004.265 – ident: 19 doi: 10.1037/xlm0000987 – ident: 13 doi: 10.1016/j.scitotenv.2019.135104 – ident: 8 doi: 10.1016/j.carbon.2020.09.037 – ident: 10 doi: 10.1007/s12274-020-3156-3 – ident: 15 doi: 10.1021/acscatal.0c05634 – volume: 124 start-page: 23798 issue: 43 year: 2020 ident: 2 article-title: Metal-encapsulated boron nitride nanocages for solar-driven nitrogen fixation publication-title: Journal of Physical Chemistry C doi: 10.1021/acs.jpcc.0c07968 – volume: 23 start-page: 312 issue: 3 year: 2022 ident: 20 article-title: Analysis and research hotspots of ceramic materials in textile application publication-title: Journal of Ceramic Processing Research |
SSID | ssj0000070599 |
Score | 2.2179196 |
SecondaryResourceType | retracted_publication |
Snippet | In order to solve the basic problem of high-temperature sintering of molybdenum carbide restricting the efficient construction of molybdenum carbide... |
SourceID | doaj pubmedcentral proquest gale crossref hindawi |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Alternative energy sources Amino acids Analytical chemistry Boric acid Boron Carbon Catalysts Catalytic activity Chemical reaction, Rate of Clean technology Composite structures Electric properties Electrodes Electrolytes Electron microscopes Gelatin High temperature Hydrogen Hydrogen evolution reactions Molybdenum Molybdenum carbide Nanocomposites Nanoparticles Nanowires Nitrogen Platinum Precious metals Reaction kinetics Self-assembly |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_kQPRF_MTqKhFOfJBy3TRpksf1uOMQFB9WubfQfHEL0h63e4j_vTNtum4f5F58bYY2nUwy80smvwE4loFXKnFRuriMpdDclzrGpkRXUKM_lYK3dFH4y9fm4rv4fCkvD0p9UU7YSA88Ku7EGSeirpd1wMi38sY1SWGM7ExseDBNotUXfd4BmBoDX0XEI1Omu5QE8vmJ0VrUeQdl8kEDVf9-Qb5_RVD412YWcM7TJQ_8z_ljeJQDR7YaO_wE7sXuKTw4neq1PYMfZ2NFG58pANi3mzgSe_cd6xPDdbQfNmt-b3db1naBremQgK3-HmGzTcemt4ySm-1zWJ-frU8vylw1ofRS6l2pKhe8CcKlmrfaCHTZCKKCcio1nidUv6IaUtpHqXgKyehUCVer2BruWl-_gKOu7-JLYFKmdumlTio4kXzSJvDYtMM9LeOCLuDjpEbrM6M4Fbb4aQdkIaUlpdus9ALe76WvRyaNf8h9ohHZyxD_9fAArcJmq7B3WUUBH2g8Lc1S7JJv82UD_DHiu7IrhIkIBBFeFLCYSeKg-VnzcbaIOzq9mMzF5kVga7miTVa-bFQB7_bN9AFKbOtif0sylAKAYVRVgJqZ2UwB85ZuczUQgRuBcNzoV_9DY6_hIf0QbZdztYCj3c1tfIPx1s69HabWH42OJt4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96IPoifmK9VSKc-CDFNk2a5HE97lgExYdV9i00X9yCtMd1D_G_v5k2rVYRfWwzbdPJTCa_fPyGkBPhWSEj47kNZci5Yi5XIdQ5hIIK4qngrMGDwh8_1Zsv_MNO7BJJUv_nEj5EO4Tn7J1WildIGnkbDAxB-WY3T6UgZY0YMkWWNbgM-HcxbXH_7fFF8Bk4-uee-M4FYuDv-8VIc7lP8pfAc_6A3E8jRroem_ghuRXaR-Tu6ZSo7TH5ejamsnHp7D_9fBVGRu-upV2k0IF2wyzNj_7Q06b1dIurA3T9c-2a7ls6vWWU3PdPyPb8bHu6yVO6hNwJoQ65LKx32nMbK9YozSFWA3ry0spYOxZB7xKTRykXhGTRR61iwW0lQ6OZbVz1lBy1XRueESpEbEonVJTe8uii0p6FuhkOaGnrVUbeTmo0LlGJY0aLb2aAFEIYVLpJSs_I61n6cqTQ-Ivce2yRWQaJr4cbYAwm-ZGx2vKgqrLyAIQKp20dJUAmq0PNvK5jRt5gexp0T6iSa9IpA_gxJLoya8CHgAABV2RktZCERnOL4pNkEf-o9GoyF5O8vzdM4uwqK2uZkVdzMX4Ad7S1obtGGVz7h_FTkRG5MLOFApYl7f5iYADXHHC4Vs__r47H5B5e4kw4kytydLi6Di9gKHWwLwdHugHMtBYQ priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9QwDI_gJgQviE_RcaAgDfGAqrVp0iRP6DbdNCExTehAe6uar-0k1I67myb-e-w27egD8NpYbWrHdn6OYxNyIBzLZGA8NT73KVfMpsr7MgVXUIA_FZzVeFH4y1l5-o1_vhAXMeC2jWmVg03sDLVrLcbID5nEiBXLS_np-meKXaPwdDW20LhP9sAEKzUje0fLs_OvY5QFq9mIrolkXoI2gepnQ_a7EAj82aFWihcxqjL4pa58_2ikH1whPL5dTzah0xTKP3zSyRPyOG4m6aKX_lNyzzfPyMPjoYfbc_J92Xe5sbEsAD3f-L7Yd9vQNlCwrW0XwPm13W1p3Ti6woMDurg71qbrhg5v6SnX2xdkdbJcHZ-msZNCaoVQu1RmxlntuAkFq5Xm4MYBWDlpZCgtCyASiX2llPVCsuCCViHjppC-1szUtnhJZk3b-FeEChHq3AoVpDM82KC0Y76su7tb2jiVkI8DGysbq4xjs4sfVYc2hKiQ6VVkekLej9TXfXWNv9AdoURGGqyJ3T1oN5dVVLHKaMO9KvLCAUbKrDZlkICmjPYlc7oMCfmA8qxQc2FKto4XEODHsAZWtQDoCOAQIEdC5hNKEJqdDB_EFfGfSc-H5VJFw7Ct7pZxQt6Nw_gBTHZrfHuDNJgWAFurLCFysswmDJiONOurrji45gDRtdr_98dfk0c4VQyOMzkns93mxr-B3dXOvI0q9BuC8iHB priority: 102 providerName: ProQuest |
Title | Electrochemical Preparation of Nanocatalysts and Their Application in Electrocatalysis |
URI | https://dx.doi.org/10.1155/2022/9884302 https://www.proquest.com/docview/2709592167 https://www.proquest.com/docview/2710972410 https://pubmed.ncbi.nlm.nih.gov/PMC9440798 https://doaj.org/article/b9b4e8313d9740c9b6f7576b9e62d96f |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGJgQviE-RUSojDfGAAqljx_YDQt3UrkLaNE0d6lsUf7FKU8LaTrD_nrt8FIL4eMlDfEqc853vfo79O0IOhGOJDIzHxo98zBWzsfI-iyEUpBBPBWcFHhQ-Oc1mF_zTQix2SFdttFXg-o_QDutJXayu3n2_vv0IDv-hdnghEL-z91opniKr5B7EJIm1DE7aRL9JhCUSkSD6ysCrYApIul3wvz2gF59qGv_tZH33EmHyt2UvGe1vpfwlNk0fkgdtUknHjRU8Iju-fEzuHXW13J6Qz5Om2o1t6QHo2co3pN9VSatAYY6t6oWc2_VmTYvS0Tn-QKDjn7-36bKk3VMayeX6KZlPJ_OjWdxWVIitEGoTy8Q4qx03IWWF0hzCOQAsJ40MmWUBhkZifSllvZAsuKBVSLhJpS80M4VNn5Hdsir9c0KFCMXIChWkMzzYoLRjPivqM1zaOBWRt50ac9uyjWPRi6u8Rh1C5Kj0vFV6RF5vpb82LBt_kTvEEdnKIDd2faNafclbV8uNNtyrdJQ6wEqJ1SYLElCV0T5jTmchIm9wPHO0KeiSLdqDCPBhyIWVjwFCAkgE6BGRQU8SBs32mg9ai_hPpwedueSdfedM4gIsG2UyIq-2zfgC3PRW-uoGZXB7AJhzEhHZM7OeAvot5fKyJgnXHKC6Vvv__oQX5D52FRfJmRyQ3c3qxr-ELGtjhuSOmh4Pyd7h5PTsfFivVcD1eDEa1q4F1_PZ4gemHidH |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFqFwQTxFYIEitOKCoiWPH9gGhpXTZ0oc4LKg3K37RlVBSdreq-lH8IzN5bMkBOPUaj2xnPA_PeB6EbHNHUxEoS4zPfMIktYn0vkhAFeSgTzmjJSYKH58U06_s8yk_3SC_-lwYDKvsZWIjqF1t0Ue-SwV6rGhWiPfnPxPsGoWvq30LjZYsDv3VJZhsy3cHH-F8dyid7M_2pknXVSCxnMtVIlLjrHLMhJyWUjFQaWBkOGFEKCwNsD2BPZak9VzQ4IKSIWUmF75U1JQ2h2lvkdssB0WOiemTT2uXDpbO4U3HyqwA1gU5k_ah9pyjl4HuKilZ3rlweiXY9ApYa4Q7Z2iLX84HN95hvOYfCnByn9zrbq7xuCW1B2TDVw_J1l7fMO4R-bbfttSxXQ2C-MvCt5XF6yquQwyCvG68RVfL1TIuKxfP8JUiHl-_ocfzKu5naSHny8dkdhMIfkI2q7ryT0nMeSgzy2UQzrBgg1SO-qJsEsWUcTIib3s0atuVNMfOGj90Y9pwrhHpukN6RHbW0OdtKY-_wH3AE1nDYAHu5kO9-K47ftZGGeZlnuUODLLUKlMEAaabUb6gThUhIm_wPDWKCdiSLbtsB_gxLLilx2CngiUK9k1ERgNIODQ7GN7uKOI_mx715KI7KbTU1zwTkdfrYVwAI-sqX18gDMYgwD0ujYgYkNkAAcORan7WVCJXjKVCyWf_XvwV2ZrOjo_00cHJ4XNyF7eNXnkqRmRztbjwL-BatzIvG2aKib5h5v0Nf5hdeQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVjwuiKcILBCkVhxQtFknju0DQtvHqqWwWqEF9WbFL7oSSsruVlV_Gv-OmayzJQfg1Gs8SpzxPPyNxzOE7DBLU-5pnmg3dEkuqEmEc0UCriADf8pyWuJF4c-T4uhr_vGUnW6RX-1dGEyrbG1iY6htbTBGPqAcI1Z0WPCBD2kR04Pxh_OfCXaQwpPWtp3GWkRO3NUlwLfl--MDWOtdSseHs_2jJHQYSAxjYpXwVFsjba59Rkshc3BvADgs19wXhnqYKsd-S8I4xqm3Xgqf5jrjrpRUlyaD194i2xxBUY9s7x1Opl82AR4spMOa_pXDAhQZrE7aJt4zhjEHOpBC5FkI6LQusekcsPEPt88QmV_OO_vfbvbmH-5w_IDcD_vYeLQWvIdky1WPyN39tn3cY_LtcN1gx4SKBPF04dZ1xusqrn0MZr1uYkdXy9UyLisbz_DMIh5dn6jH8ypu37KmnC-fkNlNsPgp6VV15Z6RmDFfDg0Tnlude-OFtNQVZXNtTGorIvKuZaMyocA59tn4oRqgw5hCpqvA9IjsbqjP14U9_kK3hyuyocFy3M2DevFdBe1WWurciWyYWYBnqZG68ByAnJauoFYWPiJvcT0VGg2YkinD3Qf4MSy_pUaAWgGXAtqJSL9DCYtmOsM7QSL-M-l-Ky4q2KSlutagiLzZDOMHMM-ucvUF0mBGAuzq0ojwjph1GNAdqeZnTV1ymYMiSPH83x9_Te6A4qpPx5OTF-QezhpD9JT3SW-1uHAvYY-30q-CNsVE3bD-_gazKGML |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Preparation+of+Nanocatalysts+and+Their+Application+in+Electrocatalysis&rft.jtitle=International+journal+of+analytical+chemistry&rft.au=Zhou%2C+Hao&rft.date=2022-08-27&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-8760&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F9884302&rft.externalDocID=A716148882 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8760&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8760&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8760&client=summon |