Model for acid-base chemistry in nanoparticle growth (MABNAG)
Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapours condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of p...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 13; no. 24; pp. 12507 - 12524 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Copernicus GmbH
20.12.2013
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapours condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of particle phase processes on particle growth rates are poorly known. Besides sulfuric acid, organic compounds are known to contribute significantly to atmospheric nanoparticle growth. In this study a particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) was developed to study the effect of salt formation on nanoparticle growth, which has been proposed as a potential mechanism lowering the equilibrium vapour pressures of organic compounds through dissociation in the particle phase and thus preventing their evaporation. MABNAG is a model for monodisperse aqueous particles and it couples dynamics of condensation to particle phase chemistry. Non-zero equilibrium vapour pressures, with both size and composition dependence, are considered for condensation. The model was applied for atmospherically relevant systems with sulfuric acid, one organic acid, ammonia, one amine and water in the gas phase allowed to condense on 3–20 nm particles. The effect of dissociation of the organic acid was found to be small under ambient conditions typical for a boreal forest site, but considerable for base-rich environments (gas phase concentrations of about 1010 cm−3 for the sum of the bases). The contribution of the bases to particle mass decreased as particle size increased, except at very high gas phase concentrations of the bases. The relative importance of amine versus ammonia did not change significantly as a function of particle size. While our results give a reasonable first estimate on the maximum contribution of salt formation to nanoparticle growth, further studies on, e.g. the thermodynamic properties of the atmospheric organics, concentrations of low-volatility organics and amines, along with studies investigating the applicability of thermodynamics for the smallest nanoparticles are needed to truly understand the acid-base chemistry of atmospheric nanoparticles. |
---|---|
AbstractList | Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapours condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of particle phase processes on particle growth rates are poorly known. Besides sulfuric acid, organic compounds are known to contribute significantly to atmospheric nanoparticle growth. In this study a particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) was developed to study the effect of salt formation on nanoparticle growth, which has been proposed as a potential mechanism lowering the equilibrium vapour pressures of organic compounds through dissociation in the particle phase and thus preventing their evaporation. MABNAG is a model for monodisperse aqueous particles and it couples dynamics of condensation to particle phase chemistry. Non-zero equilibrium vapour pressures, with both size and composition dependence, are considered for condensation. The model was applied for atmospherically relevant systems with sulfuric acid, one organic acid, ammonia, one amine and water in the gas phase allowed to condense on 3–20 nm particles. The effect of dissociation of the organic acid was found to be small under ambient conditions typical for a boreal forest site, but considerable for base-rich environments (gas phase concentrations of about 1010 cm−3 for the sum of the bases). The contribution of the bases to particle mass decreased as particle size increased, except at very high gas phase concentrations of the bases. The relative importance of amine versus ammonia did not change significantly as a function of particle size. While our results give a reasonable first estimate on the maximum contribution of salt formation to nanoparticle growth, further studies on, e.g. the thermodynamic properties of the atmospheric organics, concentrations of low-volatility organics and amines, along with studies investigating the applicability of thermodynamics for the smallest nanoparticles are needed to truly understand the acid-base chemistry of atmospheric nanoparticles. Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapours condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of particle phase processes on particle growth rates are poorly known. Besides sulfuric acid, organic compounds are known to contribute significantly to atmospheric nanoparticle growth. In this study a particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) was developed to study the effect of salt formation on nanoparticle growth, which has been proposed as a potential mechanism lowering the equilibrium vapour pressures of organic compounds through dissociation in the particle phase and thus preventing their evaporation. MABNAG is a model for monodisperse aqueous particles and it couples dynamics of condensation to particle phase chemistry. Non-zero equilibrium vapour pressures, with both size and composition dependence, are considered for condensation. The model was applied for atmospherically relevant systems with sulfuric acid, one organic acid, ammonia, one amine and water in the gas phase allowed to condense on 3-20 nm particles. The effect of dissociation of the organic acid was found to be small under ambient conditions typical for a boreal forest site, but considerable for base-rich environments (gas phase concentrations of about 10.sup.10 cm.sup.-3 for the sum of the bases). The contribution of the bases to particle mass decreased as particle size increased, except at very high gas phase concentrations of the bases. The relative importance of amine versus ammonia did not change significantly as a function of particle size. While our results give a reasonable first estimate on the maximum contribution of salt formation to nanoparticle growth, further studies on, e.g. the thermodynamic properties of the atmospheric organics, concentrations of low-volatility organics and amines, along with studies investigating the applicability of thermodynamics for the smallest nanoparticles are needed to truly understand the acid-base chemistry of atmospheric nanoparticles. Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapours condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of particle phase processes on particle growth rates are poorly known. Besides sulfuric acid, organic compounds are known to contribute significantly to atmospheric nanoparticle growth. In this study a particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) was developed to study the effect of salt formation on nanoparticle growth, which has been proposed as a potential mechanism lowering the equilibrium vapour pressures of organic compounds through dissociation in the particle phase and thus preventing their evaporation. MABNAG is a model for monodisperse aqueous particles and it couples dynamics of condensation to particle phase chemistry. Non-zero equilibrium vapour pressures, with both size and composition dependence, are considered for condensation. The model was applied for atmospherically relevant systems with sulfuric acid, one organic acid, ammonia, one amine and water in the gas phase allowed to condense on 3-20 nm particles. The effect of dissociation of the organic acid was found to be small under ambient conditions typical for a boreal forest site, but considerable for base-rich environments (gas phase concentrations of about 10(10) cm(-3) for the sum of the bases). The contribution of the bases to particle mass decreased as particle size increased, except at very high gas phase concentra-tions of the bases. The relative importance of amine versus ammonia did not change significantly as a function of particle size. While our results give a reasonable first estimate on the maximum contribution of salt formation to nanoparticle growth, further studies on, e. g. the thermodynamic properties of the atmospheric organics, concentrations of low-volatility organics and amines, along with studies investigating the applicability of thermodynamics for the smallest nanoparticles are needed to truly understand the acid-base chemistry of atmospheric nanoparticles. |
Audience | Academic |
Author | Riipinen, I Hildebrandt Ruiz, L Makkonen, U Yli-Juuti, T Barsanti, K Petäjä, T Kulmala, M Ruuskanen, T Kieloaho, A.-J |
Author_xml | – sequence: 1 fullname: Yli-Juuti, T – sequence: 2 fullname: Barsanti, K – sequence: 3 fullname: Hildebrandt Ruiz, L – sequence: 4 fullname: Kieloaho, A.-J – sequence: 5 fullname: Makkonen, U – sequence: 6 fullname: Petäjä, T – sequence: 7 fullname: Ruuskanen, T – sequence: 8 fullname: Kulmala, M – sequence: 9 fullname: Riipinen, I |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-100883$$DView record from Swedish Publication Index |
BookMark | eNptkd1LHDEUxUOxUN36B_RtwBcFR2-Sycc8-DDa1i74Af3wNdxNMmtknSzJLNb_vnFXiguShxsOv3s43LNHdoY4eEK-UDgRtG1O0S5rymvKBKiaAeUfyC6VGmrFWbPz5v-J7OX8AFBA2uySs-vo_KLqY6rQBlfPMPvK3vvHkMf0XIWhGnCIS0xjsAtfzVN8Gu-rw-vu_Ka7PPpMPva4yH7_dU7In-_ffl_8qK9uL6cX3VVthdBjLZGBUihUqxnVTjINHJ3zlitoNOceoJ050YIsMvBWCc0lQ6eZ7Sn2kk_IdOPrIj6YZQqPmJ5NxGDWQkxz85rQoGtnEhqvmcdGSa-RCUWl6J1wSklVvI43XvnJL1ezLbev4a5bu-WVoQC6ZJuQgw0-x-Iehj6OCW05jzVdo2lDFShdqJN3qPJcuaQtVfWh6FsLR1sLhRn933GOq5zN9NfPbZZuWJtizsn3_zNTMC_tm9K-odys2zcv7fN_BPefYw |
CitedBy_id | crossref_primary_10_1016_j_atmosenv_2015_09_056 crossref_primary_10_5194_acp_18_1895_2018 crossref_primary_10_1080_02786826_2022_2075250 crossref_primary_10_1021_acs_est_2c01566 crossref_primary_10_5194_acp_17_4369_2017 crossref_primary_10_1038_s41586_020_2270_4 crossref_primary_10_1080_02786826_2016_1223268 crossref_primary_10_1016_j_fuel_2020_120044 crossref_primary_10_1021_acs_jpca_7b09833 crossref_primary_10_1002_2017GL072718 crossref_primary_10_5194_acp_24_1315_2024 crossref_primary_10_1038_s41467_019_12473_2 crossref_primary_10_5194_acp_16_9321_2016 crossref_primary_10_1021_acs_est_3c09454 crossref_primary_10_1016_j_jaerosci_2014_08_008 crossref_primary_10_1021_cr500487s crossref_primary_10_1016_j_jaerosci_2022_106063 crossref_primary_10_5194_acp_14_7953_2014 crossref_primary_10_5194_acp_15_12283_2015 crossref_primary_10_5194_acp_20_7359_2020 crossref_primary_10_1038_s41598_018_32610_z crossref_primary_10_5194_acp_24_1467_2024 crossref_primary_10_5194_acp_22_155_2022 crossref_primary_10_1039_C6CP08663B crossref_primary_10_1103_RevModPhys_95_045002 crossref_primary_10_1021_acs_jpca_7b01223 crossref_primary_10_1039_C7FD00161D crossref_primary_10_1039_C7CP04468B crossref_primary_10_5194_acp_15_8217_2015 crossref_primary_10_5194_acp_18_311_2018 crossref_primary_10_1016_j_jaerosci_2020_105733 crossref_primary_10_1021_acs_est_1c02095 crossref_primary_10_1016_j_fuel_2022_126001 crossref_primary_10_5194_gmd_15_7257_2022 crossref_primary_10_1080_02786826_2024_2323641 crossref_primary_10_1016_j_atmosenv_2016_03_026 crossref_primary_10_1002_2016RG000540 crossref_primary_10_1016_j_atmosenv_2022_119252 crossref_primary_10_5194_amt_14_3351_2021 crossref_primary_10_1080_02786826_2018_1484071 crossref_primary_10_1039_C7CP06489F crossref_primary_10_1039_D1EA00103E crossref_primary_10_5194_acp_19_3137_2019 crossref_primary_10_1002_2015JD023646 crossref_primary_10_1021_acs_jpca_6b01500 crossref_primary_10_1038_s41561_023_01305_0 |
Cites_doi | 10.5194/acp-8-4095-2008 10.1029/2005JD005935 10.1021/es204556c 10.5194/acp-6-787-2006 10.5194/acp-6-315-2006 10.1126/science.1180353 10.1029/2001JD000451 10.1016/j.atmosenv.2010.10.013 10.1021/ie020506l 10.1021/j100202a074 10.5194/acp-12-3573-2012 10.1016/j.atmosres.2006.02.009 10.5194/acp-9-5447-2009 10.1021/je00017a012 10.5194/acp-10-7101-2010 10.1021/jp1052979 10.1029/2007JD009253 10.1016/j.atmosenv.2009.11.022 10.1021/jp210127w 10.5194/acp-9-8601-2009 10.5194/acp-8-2859-2008 10.1029/2005JD005901 10.1029/2010JD014186 10.1175/1520-0469(1995)052<2242:MOENPS>2.0.CO;2 10.5194/acp-9-3317-2009 10.5194/acp-7-2313-2007 10.1038/nature10343 10.5194/amt-4-571-2011 10.5194/acp-11-10599-2011 10.5194/acp-11-12865-2011 10.1021/ie00058a017 10.1029/2007GL032523 10.1021/jp056149k 10.1021/cr2001756 10.5194/acp-5-863-2005 10.5194/acp-7-1367-2007 10.1034/j.1600-0889.2001.d01-25.x 10.1073/pnas.0912127107 10.1016/S0021-8502(00)00105-1 10.1016/j.atmosenv.2010.10.012 10.1039/c3cp43446j 10.1016/j.atmosenv.2006.11.041 10.1021/ie010786p 10.5194/acp-3-361-2003 10.5194/acp-3-251-2003 10.5194/acp-11-3865-2011 10.1016/j.atmosenv.2008.01.003 10.1021/jp056150j 10.1126/science.1180315 10.5194/acp-11-9019-2011 10.1002/aic.690210607 10.1021/es072476p 10.1029/91JD00198 10.1016/j.atmosenv.2011.04.023 10.1038/ngeo1499 10.1111/j.1600-0889.2004.00095.x 10.5194/acp-9-7435-2009 10.1016/B978-0-08-016674-2.50006-6 10.5194/acp-5-1773-2005 10.1029/2011GL048115 10.5194/acp-9-2949-2009 10.1016/j.atmosenv.2013.08.019 10.5194/acp-12-225-2012 10.1016/j.scitotenv.2009.10.050 10.1038/416497a |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 Copernicus GmbH |
Copyright_xml | – notice: COPYRIGHT 2013 Copernicus GmbH |
DBID | AAYXX CITATION ISR ABAVF ADTPV AOWAS D8T DG7 ZZAVC DOA |
DOI | 10.5194/acp-13-12507-2013 |
DatabaseName | CrossRef Gale In Context: Science SWEPUB Stockholms universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Stockholms universitet SwePub Articles full text Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1680-7324 |
EndPage | 12524 |
ExternalDocumentID | oai_doaj_org_article_ad9b604e82ea476e8a257165fd5d7767 oai_DiVA_org_su_100883 A481417078 10_5194_acp_13_12507_2013 |
GroupedDBID | 23N 2WC 3V. 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BBORY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA IPNFZ ISR ITC K6- KQ8 M~E OK1 P2P P62 PATMY PCBAR PIMPY PQQKQ PROAC PYCSY Q2X RIG RKB RNS TR2 XSB ~02 ABAVF ADTPV AOWAS C1A D8T DG7 ZZAVC |
ID | FETCH-LOGICAL-c558t-6a2077a5798218d62803addec3704833e009bd59063ad039758362ad82cf1af63 |
IEDL.DBID | DOA |
ISSN | 1680-7324 1680-7316 |
IngestDate | Tue Oct 22 15:16:15 EDT 2024 Sat Aug 24 00:35:44 EDT 2024 Thu Feb 22 23:43:01 EST 2024 Tue Nov 12 22:56:51 EST 2024 Thu Aug 01 20:11:35 EDT 2024 Fri Aug 23 01:38:53 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-6a2077a5798218d62803addec3704833e009bd59063ad039758362ad82cf1af63 |
ORCID | 0000-0002-1881-9044 0000-0001-8378-1882 0000-0002-6065-8643 |
OpenAccessLink | https://doaj.org/article/ad9b604e82ea476e8a257165fd5d7767 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ad9b604e82ea476e8a257165fd5d7767 swepub_primary_oai_DiVA_org_su_100883 gale_infotracmisc_A481417078 gale_infotracacademiconefile_A481417078 gale_incontextgauss_ISR_A481417078 crossref_primary_10_5194_acp_13_12507_2013 |
PublicationCentury | 2000 |
PublicationDate | 2013-12-20 |
PublicationDateYYYYMMDD | 2013-12-20 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-20 day: 20 |
PublicationDecade | 2010 |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2013 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref74 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref36 doi: 10.5194/acp-8-4095-2008 – ident: ref62 – ident: ref66 doi: 10.1029/2005JD005935 – ident: ref8 doi: 10.1021/es204556c – ident: ref35 doi: 10.5194/acp-6-787-2006 – ident: ref2 doi: 10.5194/acp-6-315-2006 – ident: ref28 doi: 10.1126/science.1180353 – ident: ref70 doi: 10.1029/2001JD000451 – ident: ref22 doi: 10.1016/j.atmosenv.2010.10.013 – ident: ref72 doi: 10.1021/ie020506l – ident: ref12 doi: 10.1021/j100202a074 – ident: ref34 doi: 10.5194/acp-12-3573-2012 – ident: ref67 doi: 10.1016/j.atmosres.2006.02.009 – ident: ref38 doi: 10.5194/acp-9-5447-2009 – ident: ref9 doi: 10.1021/je00017a012 – ident: ref5 doi: 10.5194/acp-10-7101-2010 – ident: ref55 doi: 10.1021/jp1052979 – ident: ref27 – ident: ref33 doi: 10.1029/2007JD009253 – ident: ref58 doi: 10.1016/j.atmosenv.2009.11.022 – ident: ref15 doi: 10.1021/jp210127w – ident: ref45 doi: 10.5194/acp-9-8601-2009 – ident: ref49 doi: 10.5194/acp-8-2859-2008 – ident: ref44 doi: 10.1029/2005JD005901 – ident: ref24 doi: 10.1029/2010JD014186 – ident: ref69 doi: 10.1175/1520-0469(1995)052<2242:MOENPS>2.0.CO;2 – ident: ref57 doi: 10.5194/acp-9-3317-2009 – ident: ref47 doi: 10.5194/acp-7-2313-2007 – ident: ref31 doi: 10.1038/nature10343 – ident: ref61 doi: 10.5194/amt-4-571-2011 – ident: ref71 doi: 10.5194/acp-11-10599-2011 – ident: ref40 – ident: ref73 doi: 10.5194/acp-11-12865-2011 – ident: ref26 – ident: ref25 doi: 10.1021/ie00058a017 – ident: ref64 doi: 10.1029/2007GL032523 – ident: ref10 doi: 10.1021/jp056149k – ident: ref74 doi: 10.1021/cr2001756 – ident: ref7 doi: 10.5194/acp-5-863-2005 – ident: ref52 doi: 10.5194/acp-7-1367-2007 – ident: ref54 – ident: ref1 doi: 10.1034/j.1600-0889.2001.d01-25.x – ident: ref65 doi: 10.1073/pnas.0912127107 – ident: ref13 doi: 10.1016/S0021-8502(00)00105-1 – ident: ref21 doi: 10.1016/j.atmosenv.2010.10.012 – ident: ref56 doi: 10.1039/c3cp43446j – ident: ref68 doi: 10.1016/j.atmosenv.2006.11.041 – ident: ref41 – ident: ref3 doi: 10.1021/ie010786p – ident: ref6 doi: 10.5194/acp-3-361-2003 – ident: ref39 doi: 10.5194/acp-3-251-2003 – ident: ref59 doi: 10.5194/acp-11-3865-2011 – ident: ref32 doi: 10.1016/j.atmosenv.2008.01.003 – ident: ref11 doi: 10.1021/jp056150j – ident: ref63 doi: 10.1126/science.1180315 – ident: ref53 doi: 10.5194/acp-11-9019-2011 – ident: ref19 doi: 10.1002/aic.690210607 – ident: ref23 doi: 10.1021/es072476p – ident: ref46 – ident: ref17 doi: 10.1029/91JD00198 – ident: ref42 – ident: ref37 doi: 10.1016/j.atmosenv.2011.04.023 – ident: ref60 doi: 10.1038/ngeo1499 – ident: ref29 doi: 10.1111/j.1600-0889.2004.00095.x – ident: ref51 doi: 10.5194/acp-9-7435-2009 – ident: ref20 doi: 10.1016/B978-0-08-016674-2.50006-6 – ident: ref18 doi: 10.5194/acp-5-1773-2005 – ident: ref16 doi: 10.1029/2011GL048115 – ident: ref4 doi: 10.5194/acp-9-2949-2009 – ident: ref30 doi: 10.1016/j.atmosenv.2013.08.019 – ident: ref50 doi: 10.5194/acp-12-225-2012 – ident: ref14 – ident: ref43 doi: 10.1016/j.scitotenv.2009.10.050 – ident: ref48 doi: 10.1038/416497a |
SSID | ssj0025014 |
Score | 2.3772025 |
Snippet | Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all... |
SourceID | doaj swepub gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 12507 |
SubjectTerms | Ammonia Analysis |
Title | Model for acid-base chemistry in nanoparticle growth (MABNAG) |
URI | https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-100883 https://doaj.org/article/ad9b604e82ea476e8a257165fd5d7767 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBUECEPmQh3pJVZ_2Ic-CQLSwFaSvxKPRmef0oK1XZajf7_5lxshU5ceGYZBTZ34w838TON4S8cAHSRFCapegqJk1UrNYmMFRXAnaK7W5xR3d-rs8u5JdLdflXqy88E9bLA_fAnbhQLzSX0Uyik5WOxkGQlVqloAIq0eTVl9e7YmootXC3DEstbTjD3kz9fiawFXni_A0rBYPEziuIkVKMMlIW7r9dnkfqoTnjzB6Q-wNVpE0_xIfkTmz3STEHlrta54_h9BU9vV4C5cxXj8h7bGx2TYGGUueXgWGGon7X0Y0uW9q6Fork_oX0Cirw7jd9M2-m582nt4_Jxezjj9MzNrRHYF4p0zHtJryqnKpqA3k6aOwzhauVFxXqxIsI9GkRVA0kxAUOvEMZyFYumIlPpUtaPCF77aqNTwmVUBhyXztRCiOVB_uUeJAppRILklCQdzuI7E2vgmGhekA8LeBpS2EznhbxLMgUQbw1RAHrfAPcaocp2n-5tSDP0QUWJSpaPANz5babjf38_ZttJMRRiSpFBXk9GKVVt3beDb8UwKRQ1WpkeTiyBOD96PHL3tOjQX9Y_mzyoDdblHY2Rjz7H1M7IPcQJjwTM-GHZK9bb-MRMJtucUzuTmfzr7-OczD_AUcO8Og |
link.rule.ids | 230,315,783,787,867,888,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+for+acid-base+chemistry+in+nanoparticle+growth&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Yli-Juuti%2C+T&rft.au=Barsanti%2C+K&rft.au=Hildebrandt+Ruiz%2C+L&rft.au=Kieloaho%2C+A.-J&rft.date=2013-12-20&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.volume=13&rft.issue=24&rft.spage=12507&rft_id=info:doi/10.5194%2Facp-13-12507-2013&rft.externalDocID=A481417078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |