Model for acid-base chemistry in nanoparticle growth (MABNAG)

Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapours condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of p...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 13; no. 24; pp. 12507 - 12524
Main Authors Yli-Juuti, T, Barsanti, K, Hildebrandt Ruiz, L, Kieloaho, A.-J, Makkonen, U, Petäjä, T, Ruuskanen, T, Kulmala, M, Riipinen, I
Format Journal Article
LanguageEnglish
Published Copernicus GmbH 20.12.2013
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapours condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of particle phase processes on particle growth rates are poorly known. Besides sulfuric acid, organic compounds are known to contribute significantly to atmospheric nanoparticle growth. In this study a particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) was developed to study the effect of salt formation on nanoparticle growth, which has been proposed as a potential mechanism lowering the equilibrium vapour pressures of organic compounds through dissociation in the particle phase and thus preventing their evaporation. MABNAG is a model for monodisperse aqueous particles and it couples dynamics of condensation to particle phase chemistry. Non-zero equilibrium vapour pressures, with both size and composition dependence, are considered for condensation. The model was applied for atmospherically relevant systems with sulfuric acid, one organic acid, ammonia, one amine and water in the gas phase allowed to condense on 3–20 nm particles. The effect of dissociation of the organic acid was found to be small under ambient conditions typical for a boreal forest site, but considerable for base-rich environments (gas phase concentrations of about 1010 cm−3 for the sum of the bases). The contribution of the bases to particle mass decreased as particle size increased, except at very high gas phase concentrations of the bases. The relative importance of amine versus ammonia did not change significantly as a function of particle size. While our results give a reasonable first estimate on the maximum contribution of salt formation to nanoparticle growth, further studies on, e.g. the thermodynamic properties of the atmospheric organics, concentrations of low-volatility organics and amines, along with studies investigating the applicability of thermodynamics for the smallest nanoparticles are needed to truly understand the acid-base chemistry of atmospheric nanoparticles.
AbstractList Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapours condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of particle phase processes on particle growth rates are poorly known. Besides sulfuric acid, organic compounds are known to contribute significantly to atmospheric nanoparticle growth. In this study a particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) was developed to study the effect of salt formation on nanoparticle growth, which has been proposed as a potential mechanism lowering the equilibrium vapour pressures of organic compounds through dissociation in the particle phase and thus preventing their evaporation. MABNAG is a model for monodisperse aqueous particles and it couples dynamics of condensation to particle phase chemistry. Non-zero equilibrium vapour pressures, with both size and composition dependence, are considered for condensation. The model was applied for atmospherically relevant systems with sulfuric acid, one organic acid, ammonia, one amine and water in the gas phase allowed to condense on 3–20 nm particles. The effect of dissociation of the organic acid was found to be small under ambient conditions typical for a boreal forest site, but considerable for base-rich environments (gas phase concentrations of about 1010 cm−3 for the sum of the bases). The contribution of the bases to particle mass decreased as particle size increased, except at very high gas phase concentrations of the bases. The relative importance of amine versus ammonia did not change significantly as a function of particle size. While our results give a reasonable first estimate on the maximum contribution of salt formation to nanoparticle growth, further studies on, e.g. the thermodynamic properties of the atmospheric organics, concentrations of low-volatility organics and amines, along with studies investigating the applicability of thermodynamics for the smallest nanoparticles are needed to truly understand the acid-base chemistry of atmospheric nanoparticles.
Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapours condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of particle phase processes on particle growth rates are poorly known. Besides sulfuric acid, organic compounds are known to contribute significantly to atmospheric nanoparticle growth. In this study a particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) was developed to study the effect of salt formation on nanoparticle growth, which has been proposed as a potential mechanism lowering the equilibrium vapour pressures of organic compounds through dissociation in the particle phase and thus preventing their evaporation. MABNAG is a model for monodisperse aqueous particles and it couples dynamics of condensation to particle phase chemistry. Non-zero equilibrium vapour pressures, with both size and composition dependence, are considered for condensation. The model was applied for atmospherically relevant systems with sulfuric acid, one organic acid, ammonia, one amine and water in the gas phase allowed to condense on 3-20 nm particles. The effect of dissociation of the organic acid was found to be small under ambient conditions typical for a boreal forest site, but considerable for base-rich environments (gas phase concentrations of about 10.sup.10 cm.sup.-3 for the sum of the bases). The contribution of the bases to particle mass decreased as particle size increased, except at very high gas phase concentrations of the bases. The relative importance of amine versus ammonia did not change significantly as a function of particle size. While our results give a reasonable first estimate on the maximum contribution of salt formation to nanoparticle growth, further studies on, e.g. the thermodynamic properties of the atmospheric organics, concentrations of low-volatility organics and amines, along with studies investigating the applicability of thermodynamics for the smallest nanoparticles are needed to truly understand the acid-base chemistry of atmospheric nanoparticles.
Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapours condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of particle phase processes on particle growth rates are poorly known. Besides sulfuric acid, organic compounds are known to contribute significantly to atmospheric nanoparticle growth. In this study a particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) was developed to study the effect of salt formation on nanoparticle growth, which has been proposed as a potential mechanism lowering the equilibrium vapour pressures of organic compounds through dissociation in the particle phase and thus preventing their evaporation. MABNAG is a model for monodisperse aqueous particles and it couples dynamics of condensation to particle phase chemistry. Non-zero equilibrium vapour pressures, with both size and composition dependence, are considered for condensation. The model was applied for atmospherically relevant systems with sulfuric acid, one organic acid, ammonia, one amine and water in the gas phase allowed to condense on 3-20 nm particles. The effect of dissociation of the organic acid was found to be small under ambient conditions typical for a boreal forest site, but considerable for base-rich environments (gas phase concentrations of about 10(10) cm(-3) for the sum of the bases). The contribution of the bases to particle mass decreased as particle size increased, except at very high gas phase concentra-tions of the bases. The relative importance of amine versus ammonia did not change significantly as a function of particle size. While our results give a reasonable first estimate on the maximum contribution of salt formation to nanoparticle growth, further studies on, e. g. the thermodynamic properties of the atmospheric organics, concentrations of low-volatility organics and amines, along with studies investigating the applicability of thermodynamics for the smallest nanoparticles are needed to truly understand the acid-base chemistry of atmospheric nanoparticles.
Audience Academic
Author Riipinen, I
Hildebrandt Ruiz, L
Makkonen, U
Yli-Juuti, T
Barsanti, K
Petäjä, T
Kulmala, M
Ruuskanen, T
Kieloaho, A.-J
Author_xml – sequence: 1
  fullname: Yli-Juuti, T
– sequence: 2
  fullname: Barsanti, K
– sequence: 3
  fullname: Hildebrandt Ruiz, L
– sequence: 4
  fullname: Kieloaho, A.-J
– sequence: 5
  fullname: Makkonen, U
– sequence: 6
  fullname: Petäjä, T
– sequence: 7
  fullname: Ruuskanen, T
– sequence: 8
  fullname: Kulmala, M
– sequence: 9
  fullname: Riipinen, I
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-100883$$DView record from Swedish Publication Index
BookMark eNptkd1LHDEUxUOxUN36B_RtwBcFR2-Sycc8-DDa1i74Af3wNdxNMmtknSzJLNb_vnFXiguShxsOv3s43LNHdoY4eEK-UDgRtG1O0S5rymvKBKiaAeUfyC6VGmrFWbPz5v-J7OX8AFBA2uySs-vo_KLqY6rQBlfPMPvK3vvHkMf0XIWhGnCIS0xjsAtfzVN8Gu-rw-vu_Ka7PPpMPva4yH7_dU7In-_ffl_8qK9uL6cX3VVthdBjLZGBUihUqxnVTjINHJ3zlitoNOceoJ050YIsMvBWCc0lQ6eZ7Sn2kk_IdOPrIj6YZQqPmJ5NxGDWQkxz85rQoGtnEhqvmcdGSa-RCUWl6J1wSklVvI43XvnJL1ezLbev4a5bu-WVoQC6ZJuQgw0-x-Iehj6OCW05jzVdo2lDFShdqJN3qPJcuaQtVfWh6FsLR1sLhRn933GOq5zN9NfPbZZuWJtizsn3_zNTMC_tm9K-odys2zcv7fN_BPefYw
CitedBy_id crossref_primary_10_1016_j_atmosenv_2015_09_056
crossref_primary_10_5194_acp_18_1895_2018
crossref_primary_10_1080_02786826_2022_2075250
crossref_primary_10_1021_acs_est_2c01566
crossref_primary_10_5194_acp_17_4369_2017
crossref_primary_10_1038_s41586_020_2270_4
crossref_primary_10_1080_02786826_2016_1223268
crossref_primary_10_1016_j_fuel_2020_120044
crossref_primary_10_1021_acs_jpca_7b09833
crossref_primary_10_1002_2017GL072718
crossref_primary_10_5194_acp_24_1315_2024
crossref_primary_10_1038_s41467_019_12473_2
crossref_primary_10_5194_acp_16_9321_2016
crossref_primary_10_1021_acs_est_3c09454
crossref_primary_10_1016_j_jaerosci_2014_08_008
crossref_primary_10_1021_cr500487s
crossref_primary_10_1016_j_jaerosci_2022_106063
crossref_primary_10_5194_acp_14_7953_2014
crossref_primary_10_5194_acp_15_12283_2015
crossref_primary_10_5194_acp_20_7359_2020
crossref_primary_10_1038_s41598_018_32610_z
crossref_primary_10_5194_acp_24_1467_2024
crossref_primary_10_5194_acp_22_155_2022
crossref_primary_10_1039_C6CP08663B
crossref_primary_10_1103_RevModPhys_95_045002
crossref_primary_10_1021_acs_jpca_7b01223
crossref_primary_10_1039_C7FD00161D
crossref_primary_10_1039_C7CP04468B
crossref_primary_10_5194_acp_15_8217_2015
crossref_primary_10_5194_acp_18_311_2018
crossref_primary_10_1016_j_jaerosci_2020_105733
crossref_primary_10_1021_acs_est_1c02095
crossref_primary_10_1016_j_fuel_2022_126001
crossref_primary_10_5194_gmd_15_7257_2022
crossref_primary_10_1080_02786826_2024_2323641
crossref_primary_10_1016_j_atmosenv_2016_03_026
crossref_primary_10_1002_2016RG000540
crossref_primary_10_1016_j_atmosenv_2022_119252
crossref_primary_10_5194_amt_14_3351_2021
crossref_primary_10_1080_02786826_2018_1484071
crossref_primary_10_1039_C7CP06489F
crossref_primary_10_1039_D1EA00103E
crossref_primary_10_5194_acp_19_3137_2019
crossref_primary_10_1002_2015JD023646
crossref_primary_10_1021_acs_jpca_6b01500
crossref_primary_10_1038_s41561_023_01305_0
Cites_doi 10.5194/acp-8-4095-2008
10.1029/2005JD005935
10.1021/es204556c
10.5194/acp-6-787-2006
10.5194/acp-6-315-2006
10.1126/science.1180353
10.1029/2001JD000451
10.1016/j.atmosenv.2010.10.013
10.1021/ie020506l
10.1021/j100202a074
10.5194/acp-12-3573-2012
10.1016/j.atmosres.2006.02.009
10.5194/acp-9-5447-2009
10.1021/je00017a012
10.5194/acp-10-7101-2010
10.1021/jp1052979
10.1029/2007JD009253
10.1016/j.atmosenv.2009.11.022
10.1021/jp210127w
10.5194/acp-9-8601-2009
10.5194/acp-8-2859-2008
10.1029/2005JD005901
10.1029/2010JD014186
10.1175/1520-0469(1995)052<2242:MOENPS>2.0.CO;2
10.5194/acp-9-3317-2009
10.5194/acp-7-2313-2007
10.1038/nature10343
10.5194/amt-4-571-2011
10.5194/acp-11-10599-2011
10.5194/acp-11-12865-2011
10.1021/ie00058a017
10.1029/2007GL032523
10.1021/jp056149k
10.1021/cr2001756
10.5194/acp-5-863-2005
10.5194/acp-7-1367-2007
10.1034/j.1600-0889.2001.d01-25.x
10.1073/pnas.0912127107
10.1016/S0021-8502(00)00105-1
10.1016/j.atmosenv.2010.10.012
10.1039/c3cp43446j
10.1016/j.atmosenv.2006.11.041
10.1021/ie010786p
10.5194/acp-3-361-2003
10.5194/acp-3-251-2003
10.5194/acp-11-3865-2011
10.1016/j.atmosenv.2008.01.003
10.1021/jp056150j
10.1126/science.1180315
10.5194/acp-11-9019-2011
10.1002/aic.690210607
10.1021/es072476p
10.1029/91JD00198
10.1016/j.atmosenv.2011.04.023
10.1038/ngeo1499
10.1111/j.1600-0889.2004.00095.x
10.5194/acp-9-7435-2009
10.1016/B978-0-08-016674-2.50006-6
10.5194/acp-5-1773-2005
10.1029/2011GL048115
10.5194/acp-9-2949-2009
10.1016/j.atmosenv.2013.08.019
10.5194/acp-12-225-2012
10.1016/j.scitotenv.2009.10.050
10.1038/416497a
ContentType Journal Article
Copyright COPYRIGHT 2013 Copernicus GmbH
Copyright_xml – notice: COPYRIGHT 2013 Copernicus GmbH
DBID AAYXX
CITATION
ISR
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
DOA
DOI 10.5194/acp-13-12507-2013
DatabaseName CrossRef
Gale In Context: Science
SWEPUB Stockholms universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Stockholms universitet
SwePub Articles full text
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 12524
ExternalDocumentID oai_doaj_org_article_ad9b604e82ea476e8a257165fd5d7767
oai_DiVA_org_su_100883
A481417078
10_5194_acp_13_12507_2013
GroupedDBID 23N
2WC
3V.
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
IPNFZ
ISR
ITC
K6-
KQ8
M~E
OK1
P2P
P62
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
ABAVF
ADTPV
AOWAS
C1A
D8T
DG7
ZZAVC
ID FETCH-LOGICAL-c558t-6a2077a5798218d62803addec3704833e009bd59063ad039758362ad82cf1af63
IEDL.DBID DOA
ISSN 1680-7324
1680-7316
IngestDate Tue Oct 22 15:16:15 EDT 2024
Sat Aug 24 00:35:44 EDT 2024
Thu Feb 22 23:43:01 EST 2024
Tue Nov 12 22:56:51 EST 2024
Thu Aug 01 20:11:35 EDT 2024
Fri Aug 23 01:38:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-6a2077a5798218d62803addec3704833e009bd59063ad039758362ad82cf1af63
ORCID 0000-0002-1881-9044
0000-0001-8378-1882
0000-0002-6065-8643
OpenAccessLink https://doaj.org/article/ad9b604e82ea476e8a257165fd5d7767
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_ad9b604e82ea476e8a257165fd5d7767
swepub_primary_oai_DiVA_org_su_100883
gale_infotracmisc_A481417078
gale_infotracacademiconefile_A481417078
gale_incontextgauss_ISR_A481417078
crossref_primary_10_5194_acp_13_12507_2013
PublicationCentury 2000
PublicationDate 2013-12-20
PublicationDateYYYYMMDD 2013-12-20
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-20
  day: 20
PublicationDecade 2010
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2013
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref74
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref36
  doi: 10.5194/acp-8-4095-2008
– ident: ref62
– ident: ref66
  doi: 10.1029/2005JD005935
– ident: ref8
  doi: 10.1021/es204556c
– ident: ref35
  doi: 10.5194/acp-6-787-2006
– ident: ref2
  doi: 10.5194/acp-6-315-2006
– ident: ref28
  doi: 10.1126/science.1180353
– ident: ref70
  doi: 10.1029/2001JD000451
– ident: ref22
  doi: 10.1016/j.atmosenv.2010.10.013
– ident: ref72
  doi: 10.1021/ie020506l
– ident: ref12
  doi: 10.1021/j100202a074
– ident: ref34
  doi: 10.5194/acp-12-3573-2012
– ident: ref67
  doi: 10.1016/j.atmosres.2006.02.009
– ident: ref38
  doi: 10.5194/acp-9-5447-2009
– ident: ref9
  doi: 10.1021/je00017a012
– ident: ref5
  doi: 10.5194/acp-10-7101-2010
– ident: ref55
  doi: 10.1021/jp1052979
– ident: ref27
– ident: ref33
  doi: 10.1029/2007JD009253
– ident: ref58
  doi: 10.1016/j.atmosenv.2009.11.022
– ident: ref15
  doi: 10.1021/jp210127w
– ident: ref45
  doi: 10.5194/acp-9-8601-2009
– ident: ref49
  doi: 10.5194/acp-8-2859-2008
– ident: ref44
  doi: 10.1029/2005JD005901
– ident: ref24
  doi: 10.1029/2010JD014186
– ident: ref69
  doi: 10.1175/1520-0469(1995)052<2242:MOENPS>2.0.CO;2
– ident: ref57
  doi: 10.5194/acp-9-3317-2009
– ident: ref47
  doi: 10.5194/acp-7-2313-2007
– ident: ref31
  doi: 10.1038/nature10343
– ident: ref61
  doi: 10.5194/amt-4-571-2011
– ident: ref71
  doi: 10.5194/acp-11-10599-2011
– ident: ref40
– ident: ref73
  doi: 10.5194/acp-11-12865-2011
– ident: ref26
– ident: ref25
  doi: 10.1021/ie00058a017
– ident: ref64
  doi: 10.1029/2007GL032523
– ident: ref10
  doi: 10.1021/jp056149k
– ident: ref74
  doi: 10.1021/cr2001756
– ident: ref7
  doi: 10.5194/acp-5-863-2005
– ident: ref52
  doi: 10.5194/acp-7-1367-2007
– ident: ref54
– ident: ref1
  doi: 10.1034/j.1600-0889.2001.d01-25.x
– ident: ref65
  doi: 10.1073/pnas.0912127107
– ident: ref13
  doi: 10.1016/S0021-8502(00)00105-1
– ident: ref21
  doi: 10.1016/j.atmosenv.2010.10.012
– ident: ref56
  doi: 10.1039/c3cp43446j
– ident: ref68
  doi: 10.1016/j.atmosenv.2006.11.041
– ident: ref41
– ident: ref3
  doi: 10.1021/ie010786p
– ident: ref6
  doi: 10.5194/acp-3-361-2003
– ident: ref39
  doi: 10.5194/acp-3-251-2003
– ident: ref59
  doi: 10.5194/acp-11-3865-2011
– ident: ref32
  doi: 10.1016/j.atmosenv.2008.01.003
– ident: ref11
  doi: 10.1021/jp056150j
– ident: ref63
  doi: 10.1126/science.1180315
– ident: ref53
  doi: 10.5194/acp-11-9019-2011
– ident: ref19
  doi: 10.1002/aic.690210607
– ident: ref23
  doi: 10.1021/es072476p
– ident: ref46
– ident: ref17
  doi: 10.1029/91JD00198
– ident: ref42
– ident: ref37
  doi: 10.1016/j.atmosenv.2011.04.023
– ident: ref60
  doi: 10.1038/ngeo1499
– ident: ref29
  doi: 10.1111/j.1600-0889.2004.00095.x
– ident: ref51
  doi: 10.5194/acp-9-7435-2009
– ident: ref20
  doi: 10.1016/B978-0-08-016674-2.50006-6
– ident: ref18
  doi: 10.5194/acp-5-1773-2005
– ident: ref16
  doi: 10.1029/2011GL048115
– ident: ref4
  doi: 10.5194/acp-9-2949-2009
– ident: ref30
  doi: 10.1016/j.atmosenv.2013.08.019
– ident: ref50
  doi: 10.5194/acp-12-225-2012
– ident: ref14
– ident: ref43
  doi: 10.1016/j.scitotenv.2009.10.050
– ident: ref48
  doi: 10.1038/416497a
SSID ssj0025014
Score 2.3772025
Snippet Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all...
SourceID doaj
swepub
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 12507
SubjectTerms Ammonia
Analysis
Title Model for acid-base chemistry in nanoparticle growth (MABNAG)
URI https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-100883
https://doaj.org/article/ad9b604e82ea476e8a257165fd5d7767
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBUECEPmQh3pJVZ_2Ic-CQLSwFaSvxKPRmef0oK1XZajf7_5lxshU5ceGYZBTZ34w838TON4S8cAHSRFCapegqJk1UrNYmMFRXAnaK7W5xR3d-rs8u5JdLdflXqy88E9bLA_fAnbhQLzSX0Uyik5WOxkGQlVqloAIq0eTVl9e7YmootXC3DEstbTjD3kz9fiawFXni_A0rBYPEziuIkVKMMlIW7r9dnkfqoTnjzB6Q-wNVpE0_xIfkTmz3STEHlrta54_h9BU9vV4C5cxXj8h7bGx2TYGGUueXgWGGon7X0Y0uW9q6Fork_oX0Cirw7jd9M2-m582nt4_Jxezjj9MzNrRHYF4p0zHtJryqnKpqA3k6aOwzhauVFxXqxIsI9GkRVA0kxAUOvEMZyFYumIlPpUtaPCF77aqNTwmVUBhyXztRCiOVB_uUeJAppRILklCQdzuI7E2vgmGhekA8LeBpS2EznhbxLMgUQbw1RAHrfAPcaocp2n-5tSDP0QUWJSpaPANz5babjf38_ZttJMRRiSpFBXk9GKVVt3beDb8UwKRQ1WpkeTiyBOD96PHL3tOjQX9Y_mzyoDdblHY2Rjz7H1M7IPcQJjwTM-GHZK9bb-MRMJtucUzuTmfzr7-OczD_AUcO8Og
link.rule.ids 230,315,783,787,867,888,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+for+acid-base+chemistry+in+nanoparticle+growth&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Yli-Juuti%2C+T&rft.au=Barsanti%2C+K&rft.au=Hildebrandt+Ruiz%2C+L&rft.au=Kieloaho%2C+A.-J&rft.date=2013-12-20&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.volume=13&rft.issue=24&rft.spage=12507&rft_id=info:doi/10.5194%2Facp-13-12507-2013&rft.externalDocID=A481417078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon