Neuromolecular responses to social challenge: Common mechanisms across mouse, stickleback fish, and honey bee

Significance In some cases similar molecular programs (i.e., conserved genes and gene networks) underlie the expression of phenotypic traits that evolve repeatedly across diverse species. We investigated this possibility in the context of social behavioral response, using a comparative genomics appr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 50; pp. 17929 - 17934
Main Authors Rittschof, Clare C., Bukhari, Syed Abbas, Sloofman, Laura G., Troy, Joseph M., Caetano-Anollés, Derek, Cash-Ahmed, Amy, Kent, Molly, Lu, Xiaochen, Sanogo, Yibayiri O., Weisner, Patricia A., Zhang, Huimin, Bell, Alison M., Ma, Jian, Sinha, Saurabh, Robinson, Gene E., Stubbs, Lisa
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 16.12.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Significance In some cases similar molecular programs (i.e., conserved genes and gene networks) underlie the expression of phenotypic traits that evolve repeatedly across diverse species. We investigated this possibility in the context of social behavioral response, using a comparative genomics approach for three distantly related species: house mouse ( Mus musculus ), stickleback fish ( Gasterosteus aculeatus ), and honey bee ( Apis mellifera ). An experience of territory intrusion modulated similar brain functional processes across species, including hormone-mediated signal transduction, neurodevelopment, chromosome organization, and energy metabolism. Several homologous transcription factors also responded consistently to territory intrusion, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. These results indicate that conserved genetic “toolkits” are involved in independent evolutions of social behavior. Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse ( Mus musculus ), stickleback fish ( Gasterosteus aculeatus ), and honey bee ( Apis mellifera ). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic “toolkits” that are used in independent evolutions of the response to social challenge in diverse taxa.
AbstractList Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.
In some cases similar molecular programs (i.e., conserved genes and gene networks) underlie the expression of phenotypic traits that evolve repeatedly across diverse species. We investigated this possibility in the context of social behavioral response, using a comparative genomics approach for three distantly related species: house mouse ( Mus musculus ), stickleback fish ( Gasterosteus aculeatus ), and honey bee ( Apis mellifera ). An experience of territory intrusion modulated similar brain functional processes across species, including hormone-mediated signal transduction, neurodevelopment, chromosome organization, and energy metabolism. Several homologous transcription factors also responded consistently to territory intrusion, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. These results indicate that conserved genetic “toolkits” are involved in independent evolutions of social behavior. Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse ( Mus musculus ), stickleback fish ( Gasterosteus aculeatus ), and honey bee ( Apis mellifera ). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic “toolkits” that are used in independent evolutions of the response to social challenge in diverse taxa.
Significance In some cases similar molecular programs (i.e., conserved genes and gene networks) underlie the expression of phenotypic traits that evolve repeatedly across diverse species. We investigated this possibility in the context of social behavioral response, using a comparative genomics approach for three distantly related species: house mouse ( Mus musculus ), stickleback fish ( Gasterosteus aculeatus ), and honey bee ( Apis mellifera ). An experience of territory intrusion modulated similar brain functional processes across species, including hormone-mediated signal transduction, neurodevelopment, chromosome organization, and energy metabolism. Several homologous transcription factors also responded consistently to territory intrusion, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. These results indicate that conserved genetic “toolkits” are involved in independent evolutions of social behavior. Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse ( Mus musculus ), stickleback fish ( Gasterosteus aculeatus ), and honey bee ( Apis mellifera ). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic “toolkits” that are used in independent evolutions of the response to social challenge in diverse taxa.
Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.
Author Zhang, Huimin
Rittschof, Clare C.
Ma, Jian
Sinha, Saurabh
Stubbs, Lisa
Troy, Joseph M.
Sloofman, Laura G.
Weisner, Patricia A.
Kent, Molly
Robinson, Gene E.
Caetano-Anollés, Derek
Sanogo, Yibayiri O.
Bell, Alison M.
Cash-Ahmed, Amy
Lu, Xiaochen
Bukhari, Syed Abbas
Author_xml – sequence: 1
  givenname: Clare C.
  surname: Rittschof
  fullname: Rittschof, Clare C.
– sequence: 2
  givenname: Syed Abbas
  surname: Bukhari
  fullname: Bukhari, Syed Abbas
– sequence: 3
  givenname: Laura G.
  surname: Sloofman
  fullname: Sloofman, Laura G.
– sequence: 4
  givenname: Joseph M.
  surname: Troy
  fullname: Troy, Joseph M.
– sequence: 5
  givenname: Derek
  surname: Caetano-Anollés
  fullname: Caetano-Anollés, Derek
– sequence: 6
  givenname: Amy
  surname: Cash-Ahmed
  fullname: Cash-Ahmed, Amy
– sequence: 7
  givenname: Molly
  surname: Kent
  fullname: Kent, Molly
– sequence: 8
  givenname: Xiaochen
  surname: Lu
  fullname: Lu, Xiaochen
– sequence: 9
  givenname: Yibayiri O.
  surname: Sanogo
  fullname: Sanogo, Yibayiri O.
– sequence: 10
  givenname: Patricia A.
  surname: Weisner
  fullname: Weisner, Patricia A.
– sequence: 11
  givenname: Huimin
  surname: Zhang
  fullname: Zhang, Huimin
– sequence: 12
  givenname: Alison M.
  surname: Bell
  fullname: Bell, Alison M.
– sequence: 13
  givenname: Jian
  surname: Ma
  fullname: Ma, Jian
– sequence: 14
  givenname: Saurabh
  surname: Sinha
  fullname: Sinha, Saurabh
– sequence: 15
  givenname: Gene E.
  surname: Robinson
  fullname: Robinson, Gene E.
– sequence: 16
  givenname: Lisa
  surname: Stubbs
  fullname: Stubbs, Lisa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25453090$$D View this record in MEDLINE/PubMed
BookMark eNqFkslv1DAUxiNURBc4cwIsceHQaZ-XeOGAhEZsUgUH6NlynJeZTBN7iBOk_vc4zDBAD_Rkye_3fW89LY5CDFgUTylcUFD8chtcuqCCAZeGUvqgOKFg6EIKA0fFCQBTCy2YOC5OU9oAgCk1PCqOWSlKDgZOiv4zTkPsY4d-6txABkzbGBImMkaSom9dR_zadR2GFb4my9j3MZAe819oU5-I80NMifRxSnhO0tj6mw4r529I06b1OXGhJutc9C2pEB8XDxvXJXyyf8-K6_fvvi0_Lq6-fPi0fHu18GWpx4XUyklkuuaVq6SqoEEDjfCKCoE1pTXVjVNNDdQ5LyqFAj1K2hjua-AC-VnxZue7naoea49hHFxnt0Pbu-HWRtfafyOhXdtV_GEFU5xrmQ1e7Q2G-H3CNNq-TR67zgXMnVqqgYOWTLL7USkhL8jkid-PcmVMydTs-vIOuonTEPLQZsqUOb2ETD3_u89Dg7_3m4HLHfBrSwM2B4SCnS_Izhdk_1xQVpR3FL4d3djGeVBt9x8d2ZcyBw5ZKLVlVijDTEae7ZBNGuNwYARnSms6F_tiF29ctG41tMlef2VAJQDlWinNfwIP1ujt
CitedBy_id crossref_primary_10_1242_jeb_176917
crossref_primary_10_1007_s00265_023_03321_x
crossref_primary_10_1111_gbb_12502
crossref_primary_10_1016_j_cobeha_2015_07_006
crossref_primary_10_1007_s00359_018_1252_6
crossref_primary_10_1038_s41598_022_12363_6
crossref_primary_10_1098_rstb_2020_0441
crossref_primary_10_1534_g3_119_400947
crossref_primary_10_1371_journal_pone_0251653
crossref_primary_10_1111_gbb_12509
crossref_primary_10_1016_j_tics_2019_06_003
crossref_primary_10_1016_j_yhbeh_2022_105246
crossref_primary_10_1016_j_cobeha_2015_09_008
crossref_primary_10_1093_bioinformatics_btw428
crossref_primary_10_1177_26331055231163589
crossref_primary_10_1186_s12864_015_1577_2
crossref_primary_10_1038_s41598_019_51223_8
crossref_primary_10_1111_gbb_12597
crossref_primary_10_1186_s12862_018_1199_9
crossref_primary_10_1038_s41559_017_0411_4
crossref_primary_10_1073_pnas_2002268117
crossref_primary_10_1111_gbb_12753
crossref_primary_10_1186_s12864_019_6202_3
crossref_primary_10_1007_s00265_016_2206_z
crossref_primary_10_1038_s41598_020_59808_4
crossref_primary_10_1073_pnas_1820846116
crossref_primary_10_1016_j_tics_2022_12_012
crossref_primary_10_1371_journal_pcbi_1004921
crossref_primary_10_1111_mec_15502
crossref_primary_10_3389_fnsys_2016_00069
crossref_primary_10_1038_s41467_018_02971_0
crossref_primary_10_1371_journal_pone_0137726
crossref_primary_10_1016_j_cobeha_2015_10_014
crossref_primary_10_1038_s41598_020_66494_9
crossref_primary_10_1371_journal_pbio_3001837
crossref_primary_10_1007_s13592_017_0527_1
crossref_primary_10_1134_S1022795419090059
crossref_primary_10_1242_jeb_188649
crossref_primary_10_1038_s41467_021_21095_6
crossref_primary_10_3389_fnbeh_2021_660464
crossref_primary_10_1016_j_cobeha_2015_11_007
crossref_primary_10_1371_journal_pgen_1006840
crossref_primary_10_1093_molbev_msy217
crossref_primary_10_1016_j_anbehav_2018_02_013
crossref_primary_10_1093_nar_gkv195
crossref_primary_10_1073_pnas_1813775116
crossref_primary_10_1146_annurev_genom_111720_081402
crossref_primary_10_1038_s41598_017_08733_0
crossref_primary_10_1093_cz_zoac067
crossref_primary_10_1111_biom_13848
crossref_primary_10_1002_jnr_24443
crossref_primary_10_1093_bioinformatics_btw151
crossref_primary_10_1038_srep15572
crossref_primary_10_1093_gbe_evy212
crossref_primary_10_1016_j_yhbeh_2019_06_013
crossref_primary_10_1186_s12864_021_07466_9
crossref_primary_10_1242_jeb_153163
crossref_primary_10_1016_j_yhbeh_2025_105698
crossref_primary_10_1016_j_yhbeh_2025_105692
crossref_primary_10_1242_jeb_207324
crossref_primary_10_1093_icb_icw118
crossref_primary_10_1007_s12304_018_9324_0
crossref_primary_10_3389_fnmol_2017_00275
crossref_primary_10_1126_science_aax9553
crossref_primary_10_1371_journal_pone_0143183
crossref_primary_10_1002_glia_23235
crossref_primary_10_1016_j_neuron_2017_06_027
crossref_primary_10_1098_rspb_2019_0901
crossref_primary_10_1016_j_bbr_2016_03_015
crossref_primary_10_1534_g3_118_200857
crossref_primary_10_1073_pnas_2016154118
crossref_primary_10_1016_j_oneear_2024_07_012
crossref_primary_10_1101_gr_276953_122
crossref_primary_10_1242_jeb_161596
crossref_primary_10_1186_s12940_021_00761_8
crossref_primary_10_1186_s12983_017_0199_8
crossref_primary_10_1073_pnas_1712292114
crossref_primary_10_1093_gbe_evaa007
crossref_primary_10_1093_gbe_evaa128
crossref_primary_10_1002_ece3_70795
crossref_primary_10_1016_j_anbehav_2020_05_010
crossref_primary_10_1111_1749_4877_12339
crossref_primary_10_1242_jeb_200196
crossref_primary_10_1016_j_yhbeh_2022_105171
crossref_primary_10_1111_gbb_12275
crossref_primary_10_1371_journal_pcbi_1007162
crossref_primary_10_1073_pnas_1708127114
crossref_primary_10_1093_icb_icx005
crossref_primary_10_1101_gr_214221_116
crossref_primary_10_1038_s41467_018_05903_0
crossref_primary_10_1186_s12864_018_4594_0
crossref_primary_10_1073_pnas_1811758115
crossref_primary_10_1016_j_biopsych_2020_11_022
crossref_primary_10_1073_pnas_1811967115
crossref_primary_10_1163_1568539X_00003393
crossref_primary_10_3390_insects12060498
crossref_primary_10_1111_mec_14837
crossref_primary_10_1016_j_psychres_2020_113608
crossref_primary_10_1111_gbb_12379
crossref_primary_10_1214_19_EJS1663
crossref_primary_10_1038_s41559_023_02249_9
crossref_primary_10_3389_fnbeh_2021_777873
crossref_primary_10_1146_annurev_neuro_092820_012959
crossref_primary_10_1371_journal_pgen_1009474
crossref_primary_10_1016_j_yhbeh_2016_10_004
crossref_primary_10_1073_pnas_1921625117
crossref_primary_10_3390_insects16030300
crossref_primary_10_7554_eLife_62850
crossref_primary_10_1186_s12864_019_6417_3
crossref_primary_10_1186_s12864_023_09411_4
crossref_primary_10_1038_s41467_022_34446_8
Cites_doi 10.1038/sj.npp.1300311
10.1002/(SICI)1521-1878(199802)20:2<116::AID-BIES4>3.0.CO;2-R
10.1038/nrg3483
10.1038/nature09736
10.1016/j.tig.2007.05.001
10.1038/370375a0
10.1073/pnas.0404085101
10.1098/rspb.2007.1454
10.1002/cne.22410
10.1016/S0006-8993(02)02461-7
10.1038/ncomms4177
10.1016/j.cell.2012.12.009
10.1126/science.1159277
10.1038/nature08144
10.1002/cne.22228
10.1186/1471-2350-8-74
10.1016/j.ydbio.2006.09.035
10.1126/science.1063127
10.1073/pnas.1114093108
10.1073/pnas.0907043106
10.1073/pnas.1205283109
10.1038/ncomms4634
10.1016/j.psyneuen.2010.06.008
10.1038/nature13138
10.1073/pnas.0608391104
10.1074/jbc.M301119200
10.1186/gb-2009-10-3-r29
10.1016/j.biocel.2012.05.008
10.1534/genetics.110.122754
10.1093/nar/gkp950
10.1093/bioinformatics/btn592
10.1093/nar/gkq388
10.1093/nar/gks1116
10.1111/mec.12580
10.1016/j.ajhg.2008.05.015
10.1371/journal.pone.0021800
10.4161/cbt.313
10.1016/j.bbrc.2009.06.023
10.1146/annurev-genom-090711-163809
10.1016/j.cell.2007.04.041
10.1523/JNEUROSCI.0296-09.2009
10.1002/syn.20737
10.1186/1471-2105-14-70
10.1073/pnas.1412306111
10.1002/cne.21881
10.1186/1471-2164-15-86
10.1073/pnas.050566897
10.1038/nrn1702
10.1038/nprot.2013.092
10.1002/cne.22132
10.1093/hmg/ddn380
10.1186/1751-0473-5-3
10.1371/journal.pcbi.1001049
10.1523/JNEUROSCI.4342-04.2005
10.1093/bioinformatics/btg1040
10.1369/jhc.2010.955757
10.1016/j.tplants.2006.02.008
10.1016/j.cub.2013.11.035
10.1093/hmg/ddt400
10.1038/nn.3573
10.1016/j.biopsych.2008.03.017
10.1073/pnas.0503357102
10.1242/jeb.084905
10.1525/bio.2013.63.6.8
10.1002/hipo.20218
10.1111/j.1365-2826.2011.02174.x
10.1016/j.yhbeh.2005.02.003
10.1126/science.1132292
10.1093/bioinformatics/btp616
10.1038/ncb2324
10.1038/onc.2008.419
10.1074/jbc.270.41.24361
10.1073/pnas.0812998106
10.1146/annurev.cellbio.20.010403.113126
10.1016/j.physbeh.2007.01.012
10.1016/j.neuroscience.2004.06.010
10.1098/rspb.2012.2087
10.1523/JNEUROSCI.5301-11.2012
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Dec 16, 2014
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Dec 16, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
F1W
H95
L.G
7S9
L.6
5PM
DOI 10.1073/pnas.1420369111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
AGRICOLA
MEDLINE

Virology and AIDS Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Toolkits for social behavior
EISSN 1091-6490
EndPage 17934
ExternalDocumentID PMC4273386
3534500741
25453090
10_1073_pnas_1420369111
111_50_17929
43278810
US201600138778
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM082937
– fundername: Simons Foundation (SF)
  grantid: 291812
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
F1W
H95
L.G
7S9
L.6
5PM
ID FETCH-LOGICAL-c558t-687a6e28d3bab67b0fe90f4c7144ed11d18fa7fd01aac4b7e4ece61f93cd034e3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:30:47 EDT 2025
Fri Jul 11 03:07:56 EDT 2025
Fri Jul 11 16:50:27 EDT 2025
Fri Jul 11 01:02:55 EDT 2025
Mon Jun 30 08:32:01 EDT 2025
Thu Apr 03 07:02:33 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Tue Jul 01 01:53:17 EDT 2025
Wed Nov 11 00:29:54 EST 2020
Thu May 29 08:43:07 EDT 2025
Wed Dec 27 19:06:02 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords NF-κB signaling
brain metabolism
genetic hotspot
aggression
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c558t-687a6e28d3bab67b0fe90f4c7144ed11d18fa7fd01aac4b7e4ece61f93cd034e3
Notes http://dx.doi.org/10.1073/pnas.1420369111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Reviewers: D.K., Columbia University; and K.P.W., The University of Chicago and Argonne National Laboratory.
Author contributions: C.C.R., A.M.B., J.M., S.S., G.E.R., and L.S. designed research; C.C.R., D.C.-A., A.C.-A., M.K., X.L., Y.O.S., P.A.W., and H.Z. performed research; C.C.R., S.A.B., L.G.S., J.M.T., D.C.-A., and S.S. analyzed data; and C.C.R., S.S., G.E.R., and L.S. wrote the paper.
Contributed by Gene E. Robinson, October 24, 2014 (sent for review September 17, 2014; reviewed by Darcy Kelly and Kevin P. White)
2S.A.B., L.G.S., and J.M.T. contributed equally to this work.
OpenAccessLink https://www.pnas.org/content/pnas/111/50/17929.full.pdf
PMID 25453090
PQID 1639503060
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1660420945
pubmed_primary_25453090
proquest_journals_1639503060
crossref_citationtrail_10_1073_pnas_1420369111
jstor_primary_43278810
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4273386
proquest_miscellaneous_1637995272
crossref_primary_10_1073_pnas_1420369111
fao_agris_US201600138778
proquest_miscellaneous_1803086262
pnas_primary_111_50_17929
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-16
PublicationDateYYYYMMDD 2014-12-16
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_77_2
e_1_3_3_79_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_76_2
e_1_3_3_70_2
e_1_3_3_78_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
Martin A (e_1_3_3_2_2) 2013; 67
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
References_xml – ident: e_1_3_3_13_2
  doi: 10.1038/sj.npp.1300311
– ident: e_1_3_3_3_2
  doi: 10.1002/(SICI)1521-1878(199802)20:2<116::AID-BIES4>3.0.CO;2-R
– ident: e_1_3_3_1_2
  doi: 10.1038/nrg3483
– ident: e_1_3_3_9_2
  doi: 10.1038/nature09736
– ident: e_1_3_3_4_2
  doi: 10.1016/j.tig.2007.05.001
– ident: e_1_3_3_55_2
  doi: 10.1038/370375a0
– ident: e_1_3_3_43_2
  doi: 10.1073/pnas.0404085101
– ident: e_1_3_3_70_2
  doi: 10.1098/rspb.2007.1454
– ident: e_1_3_3_63_2
  doi: 10.1002/cne.22410
– ident: e_1_3_3_50_2
  doi: 10.1016/S0006-8993(02)02461-7
– ident: e_1_3_3_57_2
  doi: 10.1038/ncomms4177
– ident: e_1_3_3_79_2
  doi: 10.1016/j.cell.2012.12.009
– ident: e_1_3_3_26_2
  doi: 10.1126/science.1159277
– ident: e_1_3_3_12_2
  doi: 10.1038/nature08144
– ident: e_1_3_3_17_2
  doi: 10.1002/cne.22228
– ident: e_1_3_3_28_2
  doi: 10.1186/1471-2350-8-74
– ident: e_1_3_3_54_2
  doi: 10.1016/j.ydbio.2006.09.035
– ident: e_1_3_3_40_2
  doi: 10.1126/science.1063127
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.1114093108
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.0907043106
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.1205283109
– ident: e_1_3_3_45_2
  doi: 10.1038/ncomms4634
– ident: e_1_3_3_60_2
  doi: 10.1016/j.psyneuen.2010.06.008
– volume: 67
  start-page: 1235
  year: 2013
  ident: e_1_3_3_2_2
  article-title: The loci of repeated evolution: A catalog of genetic hotspots of phenotypic variation
  publication-title: Evolution
– ident: e_1_3_3_44_2
  doi: 10.1038/nature13138
– ident: e_1_3_3_52_2
  doi: 10.1073/pnas.0608391104
– ident: e_1_3_3_15_2
  doi: 10.1074/jbc.M301119200
– ident: e_1_3_3_32_2
  doi: 10.1186/gb-2009-10-3-r29
– ident: e_1_3_3_18_2
  doi: 10.1016/j.biocel.2012.05.008
– ident: e_1_3_3_69_2
  doi: 10.1534/genetics.110.122754
– ident: e_1_3_3_78_2
  doi: 10.1093/nar/gkp950
– ident: e_1_3_3_10_2
  doi: 10.1093/bioinformatics/btn592
– ident: e_1_3_3_73_2
  doi: 10.1093/nar/gkq388
– ident: e_1_3_3_21_2
  doi: 10.1093/nar/gks1116
– ident: e_1_3_3_5_2
  doi: 10.1111/mec.12580
– ident: e_1_3_3_29_2
  doi: 10.1016/j.ajhg.2008.05.015
– ident: e_1_3_3_11_2
  doi: 10.1371/journal.pone.0021800
– ident: e_1_3_3_34_2
  doi: 10.4161/cbt.313
– ident: e_1_3_3_47_2
  doi: 10.1016/j.bbrc.2009.06.023
– ident: e_1_3_3_30_2
  doi: 10.1146/annurev-genom-090711-163809
– ident: e_1_3_3_53_2
  doi: 10.1016/j.cell.2007.04.041
– ident: e_1_3_3_68_2
  doi: 10.1523/JNEUROSCI.0296-09.2009
– ident: e_1_3_3_49_2
  doi: 10.1002/syn.20737
– ident: e_1_3_3_74_2
  doi: 10.1186/1471-2105-14-70
– ident: e_1_3_3_24_2
  doi: 10.1073/pnas.1412306111
– ident: e_1_3_3_25_2
  doi: 10.1002/cne.21881
– ident: e_1_3_3_71_2
  doi: 10.1186/1471-2164-15-86
– ident: e_1_3_3_56_2
  doi: 10.1073/pnas.050566897
– ident: e_1_3_3_62_2
  doi: 10.1038/nrn1702
– ident: e_1_3_3_76_2
  doi: 10.1038/nprot.2013.092
– ident: e_1_3_3_35_2
  doi: 10.1002/cne.22132
– ident: e_1_3_3_27_2
  doi: 10.1093/hmg/ddn380
– ident: e_1_3_3_75_2
  doi: 10.1186/1751-0473-5-3
– ident: e_1_3_3_66_2
  doi: 10.1371/journal.pcbi.1001049
– ident: e_1_3_3_42_2
  doi: 10.1523/JNEUROSCI.4342-04.2005
– ident: e_1_3_3_77_2
  doi: 10.1093/bioinformatics/btg1040
– ident: e_1_3_3_39_2
  doi: 10.1369/jhc.2010.955757
– ident: e_1_3_3_41_2
  doi: 10.1016/j.tplants.2006.02.008
– ident: e_1_3_3_61_2
  doi: 10.1016/j.cub.2013.11.035
– ident: e_1_3_3_38_2
  doi: 10.1093/hmg/ddt400
– ident: e_1_3_3_48_2
  doi: 10.1038/nn.3573
– ident: e_1_3_3_59_2
  doi: 10.1016/j.biopsych.2008.03.017
– ident: e_1_3_3_65_2
  doi: 10.1073/pnas.0503357102
– ident: e_1_3_3_31_2
  doi: 10.1242/jeb.084905
– ident: e_1_3_3_6_2
  doi: 10.1525/bio.2013.63.6.8
– ident: e_1_3_3_64_2
  doi: 10.1002/hipo.20218
– ident: e_1_3_3_46_2
  doi: 10.1111/j.1365-2826.2011.02174.x
– ident: e_1_3_3_58_2
  doi: 10.1016/j.yhbeh.2005.02.003
– ident: e_1_3_3_20_2
  doi: 10.1126/science.1132292
– ident: e_1_3_3_72_2
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_3_3_22_2
  doi: 10.1038/ncb2324
– ident: e_1_3_3_36_2
  doi: 10.1038/onc.2008.419
– ident: e_1_3_3_37_2
  doi: 10.1074/jbc.270.41.24361
– ident: e_1_3_3_51_2
  doi: 10.1073/pnas.0812998106
– ident: e_1_3_3_16_2
  doi: 10.1146/annurev.cellbio.20.010403.113126
– ident: e_1_3_3_67_2
  doi: 10.1016/j.physbeh.2007.01.012
– ident: e_1_3_3_19_2
  doi: 10.1016/j.neuroscience.2004.06.010
– ident: e_1_3_3_8_2
  doi: 10.1098/rspb.2012.2087
– ident: e_1_3_3_14_2
  doi: 10.1523/JNEUROSCI.5301-11.2012
SSID ssj0009580
Score 2.507583
Snippet Significance In some cases similar molecular programs (i.e., conserved genes and gene networks) underlie the expression of phenotypic traits that evolve...
Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like...
In some cases similar molecular programs (i.e., conserved genes and gene networks) underlie the expression of phenotypic traits that evolve repeatedly across...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17929
SubjectTerms Animals
Apis mellifera
Base Sequence
Bees
Bees - genetics
Bees - physiology
Biological Evolution
Biological Sciences
Brain
Brain - physiology
chromosomes
DNA Primers - genetics
Energy conservation
Energy metabolism
Energy Metabolism - physiology
Evolution
Evolutionary genetics
Fish
Gasterosteus aculeatus
Genes
Genomics
Genomics - methods
Genotype & phenotype
Honey
Honey bees
Human aggression
Immunohistochemistry
Insect genetics
Mice
Microscopy, Fluorescence
Molecular Sequence Annotation
Molecular Sequence Data
Mus musculus
neurodevelopment
Neurons
Nonnative species
Polymerase Chain Reaction
Rodents
Sequence Analysis, RNA
signal transduction
Signal Transduction - physiology
Smegmamorpha - genetics
Smegmamorpha - physiology
Social Behavior
Species diversity
Species Specificity
Territoriality
transcription (genetics)
transcription factors
Transcription Factors - metabolism
Title Neuromolecular responses to social challenge: Common mechanisms across mouse, stickleback fish, and honey bee
URI https://www.jstor.org/stable/43278810
http://www.pnas.org/content/111/50/17929.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25453090
https://www.proquest.com/docview/1639503060
https://www.proquest.com/docview/1637995272
https://www.proquest.com/docview/1660420945
https://www.proquest.com/docview/1803086262
https://pubmed.ncbi.nlm.nih.gov/PMC4273386
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbYuHBBDBgLDGQkDkNZSuI4ccJtQqAJiWoSq7RbZDsOrbam0xIu_PU8_4jbjG4CLv2ROHaa9_Wzn-33PYTeFRnjIlY0yqUUEQWnIxJNTaOGNYSmtCak1vOQ36b56Yx-vcgu1iv4JrqkFxP5a2tcyf9YFY6BXXWU7D9Y1lcKB-Az2BdewcLw-lc2NsoayyHBbXhj97ta0QY3GS6HZCna9dfRIGDtpdLhvotu2YXc9JKh9v9tgkVo4_JKCS4vw2bRzYfNnfNVC-Qh1Gjj0Jnv_Lphq8F0mFs8WUeqOProwig8m7q8x26eITFqhjYMclOme-v1mwRLoNOjNix6oiynwpAkyqnNCupJ11GsRZfVnnUcChThJkHU8N3Od_7B9kBPOkVxyzsgfL2i6pl7LKE9-060kJ5elGWs2EEPCfgUxLD4pkJzYeOV3C8YdKBY-uFWC6MhzE7DV8NeVi2QC0W3OSu399xuDGLOn6DHzvvAJxZKe-iBap-iveEB4yMnQv7-GVqOsYU9tnC_whZb2GPrI7bIwmtkYYssbJB1jDdwhTWujjGgChtUYUDVczT78vn802nkUnNEMsuKPsoLxnNFijoVXORMxI0q44ZKBv65qpOkToqGs6aOE84lFUxRJVWeNGUq6zilKt1Huy20cYAwzUoqRcLrpBSUprLMapExGMjWTMEbCdBkeNqVdLr1On3KVWX2T7C00s-8WpsnQEf-gmsr2XJ30QMwX8V_QIdajVESoH1jU18FTYlOvRAHKDC1-KrBg86geo3aAB0Olq8cT0Bz4ARk2jWHS9_608DiemmOtwrsoMtoZUbCyH1lcuhh45Jm95QptP5UTnKo54UFnL9RAs5SGpdwF2wERV9AK82Pz7SLuVGcp-DkpEX-8u7H9Qo9WpPGIdrtb36q1zBc78Ub8zf7DeKI58k
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuromolecular+responses+to+social+challenge%3A+Common+mechanisms+across+mouse%2C+stickleback+fish%2C+and+honey+bee&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.date=2014-12-16&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=50&rft.spage=17929&rft.epage=17934&rft_id=info:doi/10.1073%2Fpnas.1420369111&rft.externalDocID=US201600138778
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F50.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F50.cover.gif