Neuromolecular responses to social challenge: Common mechanisms across mouse, stickleback fish, and honey bee
Significance In some cases similar molecular programs (i.e., conserved genes and gene networks) underlie the expression of phenotypic traits that evolve repeatedly across diverse species. We investigated this possibility in the context of social behavioral response, using a comparative genomics appr...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 50; pp. 17929 - 17934 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
16.12.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Significance In some cases similar molecular programs (i.e., conserved genes and gene networks) underlie the expression of phenotypic traits that evolve repeatedly across diverse species. We investigated this possibility in the context of social behavioral response, using a comparative genomics approach for three distantly related species: house mouse ( Mus musculus ), stickleback fish ( Gasterosteus aculeatus ), and honey bee ( Apis mellifera ). An experience of territory intrusion modulated similar brain functional processes across species, including hormone-mediated signal transduction, neurodevelopment, chromosome organization, and energy metabolism. Several homologous transcription factors also responded consistently to territory intrusion, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. These results indicate that conserved genetic “toolkits” are involved in independent evolutions of social behavior.
Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse ( Mus musculus ), stickleback fish ( Gasterosteus aculeatus ), and honey bee ( Apis mellifera ). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic “toolkits” that are used in independent evolutions of the response to social challenge in diverse taxa. |
---|---|
AbstractList | Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa. In some cases similar molecular programs (i.e., conserved genes and gene networks) underlie the expression of phenotypic traits that evolve repeatedly across diverse species. We investigated this possibility in the context of social behavioral response, using a comparative genomics approach for three distantly related species: house mouse ( Mus musculus ), stickleback fish ( Gasterosteus aculeatus ), and honey bee ( Apis mellifera ). An experience of territory intrusion modulated similar brain functional processes across species, including hormone-mediated signal transduction, neurodevelopment, chromosome organization, and energy metabolism. Several homologous transcription factors also responded consistently to territory intrusion, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. These results indicate that conserved genetic “toolkits” are involved in independent evolutions of social behavior. Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse ( Mus musculus ), stickleback fish ( Gasterosteus aculeatus ), and honey bee ( Apis mellifera ). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic “toolkits” that are used in independent evolutions of the response to social challenge in diverse taxa. Significance In some cases similar molecular programs (i.e., conserved genes and gene networks) underlie the expression of phenotypic traits that evolve repeatedly across diverse species. We investigated this possibility in the context of social behavioral response, using a comparative genomics approach for three distantly related species: house mouse ( Mus musculus ), stickleback fish ( Gasterosteus aculeatus ), and honey bee ( Apis mellifera ). An experience of territory intrusion modulated similar brain functional processes across species, including hormone-mediated signal transduction, neurodevelopment, chromosome organization, and energy metabolism. Several homologous transcription factors also responded consistently to territory intrusion, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. These results indicate that conserved genetic “toolkits” are involved in independent evolutions of social behavior. Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse ( Mus musculus ), stickleback fish ( Gasterosteus aculeatus ), and honey bee ( Apis mellifera ). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic “toolkits” that are used in independent evolutions of the response to social challenge in diverse taxa. Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa. |
Author | Zhang, Huimin Rittschof, Clare C. Ma, Jian Sinha, Saurabh Stubbs, Lisa Troy, Joseph M. Sloofman, Laura G. Weisner, Patricia A. Kent, Molly Robinson, Gene E. Caetano-Anollés, Derek Sanogo, Yibayiri O. Bell, Alison M. Cash-Ahmed, Amy Lu, Xiaochen Bukhari, Syed Abbas |
Author_xml | – sequence: 1 givenname: Clare C. surname: Rittschof fullname: Rittschof, Clare C. – sequence: 2 givenname: Syed Abbas surname: Bukhari fullname: Bukhari, Syed Abbas – sequence: 3 givenname: Laura G. surname: Sloofman fullname: Sloofman, Laura G. – sequence: 4 givenname: Joseph M. surname: Troy fullname: Troy, Joseph M. – sequence: 5 givenname: Derek surname: Caetano-Anollés fullname: Caetano-Anollés, Derek – sequence: 6 givenname: Amy surname: Cash-Ahmed fullname: Cash-Ahmed, Amy – sequence: 7 givenname: Molly surname: Kent fullname: Kent, Molly – sequence: 8 givenname: Xiaochen surname: Lu fullname: Lu, Xiaochen – sequence: 9 givenname: Yibayiri O. surname: Sanogo fullname: Sanogo, Yibayiri O. – sequence: 10 givenname: Patricia A. surname: Weisner fullname: Weisner, Patricia A. – sequence: 11 givenname: Huimin surname: Zhang fullname: Zhang, Huimin – sequence: 12 givenname: Alison M. surname: Bell fullname: Bell, Alison M. – sequence: 13 givenname: Jian surname: Ma fullname: Ma, Jian – sequence: 14 givenname: Saurabh surname: Sinha fullname: Sinha, Saurabh – sequence: 15 givenname: Gene E. surname: Robinson fullname: Robinson, Gene E. – sequence: 16 givenname: Lisa surname: Stubbs fullname: Stubbs, Lisa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25453090$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkslv1DAUxiNURBc4cwIsceHQaZ-XeOGAhEZsUgUH6NlynJeZTBN7iBOk_vc4zDBAD_Rkye_3fW89LY5CDFgUTylcUFD8chtcuqCCAZeGUvqgOKFg6EIKA0fFCQBTCy2YOC5OU9oAgCk1PCqOWSlKDgZOiv4zTkPsY4d-6txABkzbGBImMkaSom9dR_zadR2GFb4my9j3MZAe819oU5-I80NMifRxSnhO0tj6mw4r529I06b1OXGhJutc9C2pEB8XDxvXJXyyf8-K6_fvvi0_Lq6-fPi0fHu18GWpx4XUyklkuuaVq6SqoEEDjfCKCoE1pTXVjVNNDdQ5LyqFAj1K2hjua-AC-VnxZue7naoea49hHFxnt0Pbu-HWRtfafyOhXdtV_GEFU5xrmQ1e7Q2G-H3CNNq-TR67zgXMnVqqgYOWTLL7USkhL8jkid-PcmVMydTs-vIOuonTEPLQZsqUOb2ETD3_u89Dg7_3m4HLHfBrSwM2B4SCnS_Izhdk_1xQVpR3FL4d3djGeVBt9x8d2ZcyBw5ZKLVlVijDTEae7ZBNGuNwYARnSms6F_tiF29ctG41tMlef2VAJQDlWinNfwIP1ujt |
CitedBy_id | crossref_primary_10_1242_jeb_176917 crossref_primary_10_1007_s00265_023_03321_x crossref_primary_10_1111_gbb_12502 crossref_primary_10_1016_j_cobeha_2015_07_006 crossref_primary_10_1007_s00359_018_1252_6 crossref_primary_10_1038_s41598_022_12363_6 crossref_primary_10_1098_rstb_2020_0441 crossref_primary_10_1534_g3_119_400947 crossref_primary_10_1371_journal_pone_0251653 crossref_primary_10_1111_gbb_12509 crossref_primary_10_1016_j_tics_2019_06_003 crossref_primary_10_1016_j_yhbeh_2022_105246 crossref_primary_10_1016_j_cobeha_2015_09_008 crossref_primary_10_1093_bioinformatics_btw428 crossref_primary_10_1177_26331055231163589 crossref_primary_10_1186_s12864_015_1577_2 crossref_primary_10_1038_s41598_019_51223_8 crossref_primary_10_1111_gbb_12597 crossref_primary_10_1186_s12862_018_1199_9 crossref_primary_10_1038_s41559_017_0411_4 crossref_primary_10_1073_pnas_2002268117 crossref_primary_10_1111_gbb_12753 crossref_primary_10_1186_s12864_019_6202_3 crossref_primary_10_1007_s00265_016_2206_z crossref_primary_10_1038_s41598_020_59808_4 crossref_primary_10_1073_pnas_1820846116 crossref_primary_10_1016_j_tics_2022_12_012 crossref_primary_10_1371_journal_pcbi_1004921 crossref_primary_10_1111_mec_15502 crossref_primary_10_3389_fnsys_2016_00069 crossref_primary_10_1038_s41467_018_02971_0 crossref_primary_10_1371_journal_pone_0137726 crossref_primary_10_1016_j_cobeha_2015_10_014 crossref_primary_10_1038_s41598_020_66494_9 crossref_primary_10_1371_journal_pbio_3001837 crossref_primary_10_1007_s13592_017_0527_1 crossref_primary_10_1134_S1022795419090059 crossref_primary_10_1242_jeb_188649 crossref_primary_10_1038_s41467_021_21095_6 crossref_primary_10_3389_fnbeh_2021_660464 crossref_primary_10_1016_j_cobeha_2015_11_007 crossref_primary_10_1371_journal_pgen_1006840 crossref_primary_10_1093_molbev_msy217 crossref_primary_10_1016_j_anbehav_2018_02_013 crossref_primary_10_1093_nar_gkv195 crossref_primary_10_1073_pnas_1813775116 crossref_primary_10_1146_annurev_genom_111720_081402 crossref_primary_10_1038_s41598_017_08733_0 crossref_primary_10_1093_cz_zoac067 crossref_primary_10_1111_biom_13848 crossref_primary_10_1002_jnr_24443 crossref_primary_10_1093_bioinformatics_btw151 crossref_primary_10_1038_srep15572 crossref_primary_10_1093_gbe_evy212 crossref_primary_10_1016_j_yhbeh_2019_06_013 crossref_primary_10_1186_s12864_021_07466_9 crossref_primary_10_1242_jeb_153163 crossref_primary_10_1016_j_yhbeh_2025_105698 crossref_primary_10_1016_j_yhbeh_2025_105692 crossref_primary_10_1242_jeb_207324 crossref_primary_10_1093_icb_icw118 crossref_primary_10_1007_s12304_018_9324_0 crossref_primary_10_3389_fnmol_2017_00275 crossref_primary_10_1126_science_aax9553 crossref_primary_10_1371_journal_pone_0143183 crossref_primary_10_1002_glia_23235 crossref_primary_10_1016_j_neuron_2017_06_027 crossref_primary_10_1098_rspb_2019_0901 crossref_primary_10_1016_j_bbr_2016_03_015 crossref_primary_10_1534_g3_118_200857 crossref_primary_10_1073_pnas_2016154118 crossref_primary_10_1016_j_oneear_2024_07_012 crossref_primary_10_1101_gr_276953_122 crossref_primary_10_1242_jeb_161596 crossref_primary_10_1186_s12940_021_00761_8 crossref_primary_10_1186_s12983_017_0199_8 crossref_primary_10_1073_pnas_1712292114 crossref_primary_10_1093_gbe_evaa007 crossref_primary_10_1093_gbe_evaa128 crossref_primary_10_1002_ece3_70795 crossref_primary_10_1016_j_anbehav_2020_05_010 crossref_primary_10_1111_1749_4877_12339 crossref_primary_10_1242_jeb_200196 crossref_primary_10_1016_j_yhbeh_2022_105171 crossref_primary_10_1111_gbb_12275 crossref_primary_10_1371_journal_pcbi_1007162 crossref_primary_10_1073_pnas_1708127114 crossref_primary_10_1093_icb_icx005 crossref_primary_10_1101_gr_214221_116 crossref_primary_10_1038_s41467_018_05903_0 crossref_primary_10_1186_s12864_018_4594_0 crossref_primary_10_1073_pnas_1811758115 crossref_primary_10_1016_j_biopsych_2020_11_022 crossref_primary_10_1073_pnas_1811967115 crossref_primary_10_1163_1568539X_00003393 crossref_primary_10_3390_insects12060498 crossref_primary_10_1111_mec_14837 crossref_primary_10_1016_j_psychres_2020_113608 crossref_primary_10_1111_gbb_12379 crossref_primary_10_1214_19_EJS1663 crossref_primary_10_1038_s41559_023_02249_9 crossref_primary_10_3389_fnbeh_2021_777873 crossref_primary_10_1146_annurev_neuro_092820_012959 crossref_primary_10_1371_journal_pgen_1009474 crossref_primary_10_1016_j_yhbeh_2016_10_004 crossref_primary_10_1073_pnas_1921625117 crossref_primary_10_3390_insects16030300 crossref_primary_10_7554_eLife_62850 crossref_primary_10_1186_s12864_019_6417_3 crossref_primary_10_1186_s12864_023_09411_4 crossref_primary_10_1038_s41467_022_34446_8 |
Cites_doi | 10.1038/sj.npp.1300311 10.1002/(SICI)1521-1878(199802)20:2<116::AID-BIES4>3.0.CO;2-R 10.1038/nrg3483 10.1038/nature09736 10.1016/j.tig.2007.05.001 10.1038/370375a0 10.1073/pnas.0404085101 10.1098/rspb.2007.1454 10.1002/cne.22410 10.1016/S0006-8993(02)02461-7 10.1038/ncomms4177 10.1016/j.cell.2012.12.009 10.1126/science.1159277 10.1038/nature08144 10.1002/cne.22228 10.1186/1471-2350-8-74 10.1016/j.ydbio.2006.09.035 10.1126/science.1063127 10.1073/pnas.1114093108 10.1073/pnas.0907043106 10.1073/pnas.1205283109 10.1038/ncomms4634 10.1016/j.psyneuen.2010.06.008 10.1038/nature13138 10.1073/pnas.0608391104 10.1074/jbc.M301119200 10.1186/gb-2009-10-3-r29 10.1016/j.biocel.2012.05.008 10.1534/genetics.110.122754 10.1093/nar/gkp950 10.1093/bioinformatics/btn592 10.1093/nar/gkq388 10.1093/nar/gks1116 10.1111/mec.12580 10.1016/j.ajhg.2008.05.015 10.1371/journal.pone.0021800 10.4161/cbt.313 10.1016/j.bbrc.2009.06.023 10.1146/annurev-genom-090711-163809 10.1016/j.cell.2007.04.041 10.1523/JNEUROSCI.0296-09.2009 10.1002/syn.20737 10.1186/1471-2105-14-70 10.1073/pnas.1412306111 10.1002/cne.21881 10.1186/1471-2164-15-86 10.1073/pnas.050566897 10.1038/nrn1702 10.1038/nprot.2013.092 10.1002/cne.22132 10.1093/hmg/ddn380 10.1186/1751-0473-5-3 10.1371/journal.pcbi.1001049 10.1523/JNEUROSCI.4342-04.2005 10.1093/bioinformatics/btg1040 10.1369/jhc.2010.955757 10.1016/j.tplants.2006.02.008 10.1016/j.cub.2013.11.035 10.1093/hmg/ddt400 10.1038/nn.3573 10.1016/j.biopsych.2008.03.017 10.1073/pnas.0503357102 10.1242/jeb.084905 10.1525/bio.2013.63.6.8 10.1002/hipo.20218 10.1111/j.1365-2826.2011.02174.x 10.1016/j.yhbeh.2005.02.003 10.1126/science.1132292 10.1093/bioinformatics/btp616 10.1038/ncb2324 10.1038/onc.2008.419 10.1074/jbc.270.41.24361 10.1073/pnas.0812998106 10.1146/annurev.cellbio.20.010403.113126 10.1016/j.physbeh.2007.01.012 10.1016/j.neuroscience.2004.06.010 10.1098/rspb.2012.2087 10.1523/JNEUROSCI.5301-11.2012 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Dec 16, 2014 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Dec 16, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 F1W H95 L.G 7S9 L.6 5PM |
DOI | 10.1073/pnas.1420369111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef AGRICOLA MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Toolkits for social behavior |
EISSN | 1091-6490 |
EndPage | 17934 |
ExternalDocumentID | PMC4273386 3534500741 25453090 10_1073_pnas_1420369111 111_50_17929 43278810 US201600138778 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM082937 – fundername: Simons Foundation (SF) grantid: 291812 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 F1W H95 L.G 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c558t-687a6e28d3bab67b0fe90f4c7144ed11d18fa7fd01aac4b7e4ece61f93cd034e3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:30:47 EDT 2025 Fri Jul 11 03:07:56 EDT 2025 Fri Jul 11 16:50:27 EDT 2025 Fri Jul 11 01:02:55 EDT 2025 Mon Jun 30 08:32:01 EDT 2025 Thu Apr 03 07:02:33 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Tue Jul 01 01:53:17 EDT 2025 Wed Nov 11 00:29:54 EST 2020 Thu May 29 08:43:07 EDT 2025 Wed Dec 27 19:06:02 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | NF-κB signaling brain metabolism genetic hotspot aggression |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c558t-687a6e28d3bab67b0fe90f4c7144ed11d18fa7fd01aac4b7e4ece61f93cd034e3 |
Notes | http://dx.doi.org/10.1073/pnas.1420369111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Reviewers: D.K., Columbia University; and K.P.W., The University of Chicago and Argonne National Laboratory. Author contributions: C.C.R., A.M.B., J.M., S.S., G.E.R., and L.S. designed research; C.C.R., D.C.-A., A.C.-A., M.K., X.L., Y.O.S., P.A.W., and H.Z. performed research; C.C.R., S.A.B., L.G.S., J.M.T., D.C.-A., and S.S. analyzed data; and C.C.R., S.S., G.E.R., and L.S. wrote the paper. Contributed by Gene E. Robinson, October 24, 2014 (sent for review September 17, 2014; reviewed by Darcy Kelly and Kevin P. White) 2S.A.B., L.G.S., and J.M.T. contributed equally to this work. |
OpenAccessLink | https://www.pnas.org/content/pnas/111/50/17929.full.pdf |
PMID | 25453090 |
PQID | 1639503060 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1660420945 pubmed_primary_25453090 proquest_journals_1639503060 crossref_citationtrail_10_1073_pnas_1420369111 jstor_primary_43278810 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4273386 proquest_miscellaneous_1637995272 crossref_primary_10_1073_pnas_1420369111 fao_agris_US201600138778 proquest_miscellaneous_1803086262 pnas_primary_111_50_17929 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-16 |
PublicationDateYYYYMMDD | 2014-12-16 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_77_2 e_1_3_3_79_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 Martin A (e_1_3_3_2_2) 2013; 67 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 |
References_xml | – ident: e_1_3_3_13_2 doi: 10.1038/sj.npp.1300311 – ident: e_1_3_3_3_2 doi: 10.1002/(SICI)1521-1878(199802)20:2<116::AID-BIES4>3.0.CO;2-R – ident: e_1_3_3_1_2 doi: 10.1038/nrg3483 – ident: e_1_3_3_9_2 doi: 10.1038/nature09736 – ident: e_1_3_3_4_2 doi: 10.1016/j.tig.2007.05.001 – ident: e_1_3_3_55_2 doi: 10.1038/370375a0 – ident: e_1_3_3_43_2 doi: 10.1073/pnas.0404085101 – ident: e_1_3_3_70_2 doi: 10.1098/rspb.2007.1454 – ident: e_1_3_3_63_2 doi: 10.1002/cne.22410 – ident: e_1_3_3_50_2 doi: 10.1016/S0006-8993(02)02461-7 – ident: e_1_3_3_57_2 doi: 10.1038/ncomms4177 – ident: e_1_3_3_79_2 doi: 10.1016/j.cell.2012.12.009 – ident: e_1_3_3_26_2 doi: 10.1126/science.1159277 – ident: e_1_3_3_12_2 doi: 10.1038/nature08144 – ident: e_1_3_3_17_2 doi: 10.1002/cne.22228 – ident: e_1_3_3_28_2 doi: 10.1186/1471-2350-8-74 – ident: e_1_3_3_54_2 doi: 10.1016/j.ydbio.2006.09.035 – ident: e_1_3_3_40_2 doi: 10.1126/science.1063127 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.1114093108 – ident: e_1_3_3_7_2 doi: 10.1073/pnas.0907043106 – ident: e_1_3_3_33_2 doi: 10.1073/pnas.1205283109 – ident: e_1_3_3_45_2 doi: 10.1038/ncomms4634 – ident: e_1_3_3_60_2 doi: 10.1016/j.psyneuen.2010.06.008 – volume: 67 start-page: 1235 year: 2013 ident: e_1_3_3_2_2 article-title: The loci of repeated evolution: A catalog of genetic hotspots of phenotypic variation publication-title: Evolution – ident: e_1_3_3_44_2 doi: 10.1038/nature13138 – ident: e_1_3_3_52_2 doi: 10.1073/pnas.0608391104 – ident: e_1_3_3_15_2 doi: 10.1074/jbc.M301119200 – ident: e_1_3_3_32_2 doi: 10.1186/gb-2009-10-3-r29 – ident: e_1_3_3_18_2 doi: 10.1016/j.biocel.2012.05.008 – ident: e_1_3_3_69_2 doi: 10.1534/genetics.110.122754 – ident: e_1_3_3_78_2 doi: 10.1093/nar/gkp950 – ident: e_1_3_3_10_2 doi: 10.1093/bioinformatics/btn592 – ident: e_1_3_3_73_2 doi: 10.1093/nar/gkq388 – ident: e_1_3_3_21_2 doi: 10.1093/nar/gks1116 – ident: e_1_3_3_5_2 doi: 10.1111/mec.12580 – ident: e_1_3_3_29_2 doi: 10.1016/j.ajhg.2008.05.015 – ident: e_1_3_3_11_2 doi: 10.1371/journal.pone.0021800 – ident: e_1_3_3_34_2 doi: 10.4161/cbt.313 – ident: e_1_3_3_47_2 doi: 10.1016/j.bbrc.2009.06.023 – ident: e_1_3_3_30_2 doi: 10.1146/annurev-genom-090711-163809 – ident: e_1_3_3_53_2 doi: 10.1016/j.cell.2007.04.041 – ident: e_1_3_3_68_2 doi: 10.1523/JNEUROSCI.0296-09.2009 – ident: e_1_3_3_49_2 doi: 10.1002/syn.20737 – ident: e_1_3_3_74_2 doi: 10.1186/1471-2105-14-70 – ident: e_1_3_3_24_2 doi: 10.1073/pnas.1412306111 – ident: e_1_3_3_25_2 doi: 10.1002/cne.21881 – ident: e_1_3_3_71_2 doi: 10.1186/1471-2164-15-86 – ident: e_1_3_3_56_2 doi: 10.1073/pnas.050566897 – ident: e_1_3_3_62_2 doi: 10.1038/nrn1702 – ident: e_1_3_3_76_2 doi: 10.1038/nprot.2013.092 – ident: e_1_3_3_35_2 doi: 10.1002/cne.22132 – ident: e_1_3_3_27_2 doi: 10.1093/hmg/ddn380 – ident: e_1_3_3_75_2 doi: 10.1186/1751-0473-5-3 – ident: e_1_3_3_66_2 doi: 10.1371/journal.pcbi.1001049 – ident: e_1_3_3_42_2 doi: 10.1523/JNEUROSCI.4342-04.2005 – ident: e_1_3_3_77_2 doi: 10.1093/bioinformatics/btg1040 – ident: e_1_3_3_39_2 doi: 10.1369/jhc.2010.955757 – ident: e_1_3_3_41_2 doi: 10.1016/j.tplants.2006.02.008 – ident: e_1_3_3_61_2 doi: 10.1016/j.cub.2013.11.035 – ident: e_1_3_3_38_2 doi: 10.1093/hmg/ddt400 – ident: e_1_3_3_48_2 doi: 10.1038/nn.3573 – ident: e_1_3_3_59_2 doi: 10.1016/j.biopsych.2008.03.017 – ident: e_1_3_3_65_2 doi: 10.1073/pnas.0503357102 – ident: e_1_3_3_31_2 doi: 10.1242/jeb.084905 – ident: e_1_3_3_6_2 doi: 10.1525/bio.2013.63.6.8 – ident: e_1_3_3_64_2 doi: 10.1002/hipo.20218 – ident: e_1_3_3_46_2 doi: 10.1111/j.1365-2826.2011.02174.x – ident: e_1_3_3_58_2 doi: 10.1016/j.yhbeh.2005.02.003 – ident: e_1_3_3_20_2 doi: 10.1126/science.1132292 – ident: e_1_3_3_72_2 doi: 10.1093/bioinformatics/btp616 – ident: e_1_3_3_22_2 doi: 10.1038/ncb2324 – ident: e_1_3_3_36_2 doi: 10.1038/onc.2008.419 – ident: e_1_3_3_37_2 doi: 10.1074/jbc.270.41.24361 – ident: e_1_3_3_51_2 doi: 10.1073/pnas.0812998106 – ident: e_1_3_3_16_2 doi: 10.1146/annurev.cellbio.20.010403.113126 – ident: e_1_3_3_67_2 doi: 10.1016/j.physbeh.2007.01.012 – ident: e_1_3_3_19_2 doi: 10.1016/j.neuroscience.2004.06.010 – ident: e_1_3_3_8_2 doi: 10.1098/rspb.2012.2087 – ident: e_1_3_3_14_2 doi: 10.1523/JNEUROSCI.5301-11.2012 |
SSID | ssj0009580 |
Score | 2.507583 |
Snippet | Significance In some cases similar molecular programs (i.e., conserved genes and gene networks) underlie the expression of phenotypic traits that evolve... Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like... In some cases similar molecular programs (i.e., conserved genes and gene networks) underlie the expression of phenotypic traits that evolve repeatedly across... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17929 |
SubjectTerms | Animals Apis mellifera Base Sequence Bees Bees - genetics Bees - physiology Biological Evolution Biological Sciences Brain Brain - physiology chromosomes DNA Primers - genetics Energy conservation Energy metabolism Energy Metabolism - physiology Evolution Evolutionary genetics Fish Gasterosteus aculeatus Genes Genomics Genomics - methods Genotype & phenotype Honey Honey bees Human aggression Immunohistochemistry Insect genetics Mice Microscopy, Fluorescence Molecular Sequence Annotation Molecular Sequence Data Mus musculus neurodevelopment Neurons Nonnative species Polymerase Chain Reaction Rodents Sequence Analysis, RNA signal transduction Signal Transduction - physiology Smegmamorpha - genetics Smegmamorpha - physiology Social Behavior Species diversity Species Specificity Territoriality transcription (genetics) transcription factors Transcription Factors - metabolism |
Title | Neuromolecular responses to social challenge: Common mechanisms across mouse, stickleback fish, and honey bee |
URI | https://www.jstor.org/stable/43278810 http://www.pnas.org/content/111/50/17929.abstract https://www.ncbi.nlm.nih.gov/pubmed/25453090 https://www.proquest.com/docview/1639503060 https://www.proquest.com/docview/1637995272 https://www.proquest.com/docview/1660420945 https://www.proquest.com/docview/1803086262 https://pubmed.ncbi.nlm.nih.gov/PMC4273386 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbYuHBBDBgLDGQkDkNZSuI4ccJtQqAJiWoSq7RbZDsOrbam0xIu_PU8_4jbjG4CLv2ROHaa9_Wzn-33PYTeFRnjIlY0yqUUEQWnIxJNTaOGNYSmtCak1vOQ36b56Yx-vcgu1iv4JrqkFxP5a2tcyf9YFY6BXXWU7D9Y1lcKB-Az2BdewcLw-lc2NsoayyHBbXhj97ta0QY3GS6HZCna9dfRIGDtpdLhvotu2YXc9JKh9v9tgkVo4_JKCS4vw2bRzYfNnfNVC-Qh1Gjj0Jnv_Lphq8F0mFs8WUeqOProwig8m7q8x26eITFqhjYMclOme-v1mwRLoNOjNix6oiynwpAkyqnNCupJ11GsRZfVnnUcChThJkHU8N3Od_7B9kBPOkVxyzsgfL2i6pl7LKE9-060kJ5elGWs2EEPCfgUxLD4pkJzYeOV3C8YdKBY-uFWC6MhzE7DV8NeVi2QC0W3OSu399xuDGLOn6DHzvvAJxZKe-iBap-iveEB4yMnQv7-GVqOsYU9tnC_whZb2GPrI7bIwmtkYYssbJB1jDdwhTWujjGgChtUYUDVczT78vn802nkUnNEMsuKPsoLxnNFijoVXORMxI0q44ZKBv65qpOkToqGs6aOE84lFUxRJVWeNGUq6zilKt1Huy20cYAwzUoqRcLrpBSUprLMapExGMjWTMEbCdBkeNqVdLr1On3KVWX2T7C00s-8WpsnQEf-gmsr2XJ30QMwX8V_QIdajVESoH1jU18FTYlOvRAHKDC1-KrBg86geo3aAB0Olq8cT0Bz4ARk2jWHS9_608DiemmOtwrsoMtoZUbCyH1lcuhh45Jm95QptP5UTnKo54UFnL9RAs5SGpdwF2wERV9AK82Pz7SLuVGcp-DkpEX-8u7H9Qo9WpPGIdrtb36q1zBc78Ub8zf7DeKI58k |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuromolecular+responses+to+social+challenge%3A+Common+mechanisms+across+mouse%2C+stickleback+fish%2C+and+honey+bee&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.date=2014-12-16&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=50&rft.spage=17929&rft.epage=17934&rft_id=info:doi/10.1073%2Fpnas.1420369111&rft.externalDocID=US201600138778 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F50.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F50.cover.gif |