Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination

Resting-state functional magnetic resonance imaging (rs-fMRI) has become an increasingly important tool in mapping the functional networks of the brain. This tool has been used to examine network changes induced by cognitive and emotional states, neurological traits, and neuropsychiatric disorders....

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 117; pp. 67 - 79
Main Authors Shirer, William R., Jiang, Heidi, Price, Collin M., Ng, Bernard, Greicius, Michael D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.08.2015
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
DOI10.1016/j.neuroimage.2015.05.015

Cover

Loading…
Abstract Resting-state functional magnetic resonance imaging (rs-fMRI) has become an increasingly important tool in mapping the functional networks of the brain. This tool has been used to examine network changes induced by cognitive and emotional states, neurological traits, and neuropsychiatric disorders. However, noise that remains in the rs-fMRI data after preprocessing has limited the reliability of individual-subject results, wherein scanner artifacts, subject movements, and other noise sources induce non-neural temporal correlations in the blood oxygen level-dependent (BOLD) timeseries. Numerous preprocessing methods have been proposed to isolate and remove these confounds; however, the field has not coalesced around a standard preprocessing pipeline. In comparisons, these preprocessing methods are often assessed with only a single metric of rs-fMRI data quality, such as reliability, without considering other aspects in tandem, such as signal-to-noise ratio and group discriminability. The present study seeks to identify the data preprocessing pipeline that optimizes rs-fMRI data across multiple outcome measures. Specifically, we aim to minimize the noise in the data and maximize result reliability, while retaining the unique features that characterize distinct groups. We examine how these metrics are influenced by bandpass filter selection and noise regression in four datasets, totaling 181 rs-fMRI scans and 38 subject-driven memory scans. Additionally, we perform two different rs-fMRI analysis methods – dual regression and region-of-interest based functional connectivity – and highlight the preprocessing parameters that optimize both approaches. Our results expand upon previous reports of individual-scan reliability, and demonstrate that preprocessing parameter selection can significantly change the noisiness, reliability, and heterogeneity of rs-fMRI data. The application of our findings to rs-fMRI data analysis should improve the validity and reliability of rs-fMRI results, both at the individual-subject level and the group level. •We examine hundreds of permutations of preprocessing parameters.•We measure how these parameters affect scan noise, reliability, and group discriminability.•We validate our findings on multiple datasets collected both by us and other groups.•Parameter selection influences noise, reliability, and group discriminability.•These metrics can be optimized simultaneously with correct parameter selection.
AbstractList Resting-state functional magnetic resonance imaging (rs-fMRI) has become an increasingly important tool in mapping the functional networks of the brain. This tool has been used to examine network changes induced by cognitive and emotional states, neurological traits, and neuropsychiatric disorders. However, noise that remains in the rs-fMRI data after preprocessing has limited the reliability of individual-subject results, wherein scanner artifacts, subject movements, and other noise sources induce non-neural temporal correlations in the blood oxygen level-dependent (BOLD) timeseries. Numerous preprocessing methods have been proposed to isolate and remove these confounds; however, the field has not coalesced around a standard preprocessing pipeline. In comparisons, these preprocessing methods are often assessed with only a single metric of rs-fMRI data quality, such as reliability, without considering other aspects in tandem, such as signal-to-noise ratio and group discriminability. The present study seeks to identify the data preprocessing pipeline that optimizes rs-fMRI data across multiple outcome measures. Specifically, we aim to minimize the noise in the data and maximize result reliability, while retaining the unique features that characterize distinct groups. We examine how these metrics are influenced by bandpass filter selection and noise regression in four datasets, totaling 181 rs-fMRI scans and 38 subject-driven memory scans. Additionally, we perform two different rs-fMRI analysis methods - dual regression and region-of-interest based functional connectivity - and highlight the preprocessing parameters that optimize both approaches. Our results expand upon previous reports of individual-scan reliability, and demonstrate that preprocessing parameter selection can significantly change the noisiness, reliability, and heterogeneity of rs-fMRI data. The application of our findings to rs-fMRI data analysis should improve the validity and reliability of rs-fMRI results, both at the individual-subject level and the group level.
Resting-state functional magnetic resonance imaging (rs-fMRI) has become an increasingly important tool in mapping the functional networks of the brain. This tool has been used to examine network changes induced by cognitive and emotional states, neurological traits, and neuropsychiatric disorders. However, noise that remains in the rs-fMRI data after preprocessing has limited the reliability of individual-subject results, wherein scanner artifacts, subject movements, and other noise sources induce non-neural temporal correlations in the blood oxygen level-dependent (BOLD) timeseries. Numerous preprocessing methods have been proposed to isolate and remove these confounds; however, the field has not coalesced around a standard preprocessing pipeline. In comparisons, these preprocessing methods are often assessed with only a single metric of rs-fMRI data quality, such as reliability, without considering other aspects in tandem, such as signal-to-noise ratio and group discriminability. The present study seeks to identify the data preprocessing pipeline that optimizes rs-fMRI data across multiple outcome measures. Specifically, we aim to minimize the noise in the data and maximize result reliability, while retaining the unique features that characterize distinct groups. We examine how these metrics are influenced by bandpass filter selection and noise regression in four datasets, totaling 181 rs-fMRI scans and 38 subject-driven memory scans. Additionally, we perform two different rs-fMRI analysis methods – dual regression and region-of-interest based functional connectivity – and highlight the preprocessing parameters that optimize both approaches. Our results expand upon previous reports of individual-scan reliability, and demonstrate that preprocessing parameter selection can significantly change the noisiness, reliability, and heterogeneity of rs-fMRI data. The application of our findings to rs-fMRI data analysis should improve the validity and reliability of rs-fMRI results, both at the individual-subject level and the group level. •We examine hundreds of permutations of preprocessing parameters.•We measure how these parameters affect scan noise, reliability, and group discriminability.•We validate our findings on multiple datasets collected both by us and other groups.•Parameter selection influences noise, reliability, and group discriminability.•These metrics can be optimized simultaneously with correct parameter selection.
Author Price, Collin M.
Shirer, William R.
Ng, Bernard
Jiang, Heidi
Greicius, Michael D.
Author_xml – sequence: 1
  givenname: William R.
  surname: Shirer
  fullname: Shirer, William R.
  email: shirer@stanford.edu
  organization: Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
– sequence: 2
  givenname: Heidi
  surname: Jiang
  fullname: Jiang, Heidi
  email: hhjiang@u.northwestern.edu
  organization: Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
– sequence: 3
  givenname: Collin M.
  surname: Price
  fullname: Price, Collin M.
  organization: Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
– sequence: 4
  givenname: Bernard
  surname: Ng
  fullname: Ng, Bernard
  organization: Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
– sequence: 5
  givenname: Michael D.
  surname: Greicius
  fullname: Greicius, Michael D.
  organization: Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25987368$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vEzEQxS1URP_AV0CWuHDoBju79toXRCmlVCoUpeVseb3j4LCxF3sXKT30s-MkBaRciDSyffi955l5x-jABw8IYUomlFD-ZjHxMMbglnoOkymhbEJyUfYEHVEiWSFZPT1Yv1lZCErlITpOaUEIkbQSz9DhlElRl1wcoYebfnBLd68HFzwOFsdU2M-zK_w1QtHHYCAl5-fYhogv_HftDbT41s297oovwSXAt9DruJGf4jtIQzGDIV94Bp3TjevcsDrF2rf4Moaxxx9cMjH_6DeS5-ip1V2CF4_3Cfr28eLu_FNxfXN5dX52XRjGxFBw3nBNK16LxpaGm1ZQCUSXDeP5FFJPpdVVzYURlvASGBGk1q3Vtq615E15gl5vffNIP8fcnlrmPqDrtIcwJkXrigtZ5b39H-VSlJLUTGb01Q66CGPMq8mUEIRUjPK14ctHamyW0Ko-j6_jSv0JIQNiC5gYUopg_yKUqHXeaqH-5a3WeSuSi7IsfbsjNW7YbHaI2nX7GLzfGkDe_i8HUSXjYJ2yi2AG1Qa3j8m7HRPTOe-M7n7Aaj-L39Nw49U
CitedBy_id crossref_primary_10_1088_1741_2552_aab66b
crossref_primary_10_1016_j_neurobiolaging_2022_05_012
crossref_primary_10_1002_brb3_1705
crossref_primary_10_1016_j_dcn_2024_101464
crossref_primary_10_1016_j_neuroimage_2021_117864
crossref_primary_10_1162_jocn_a_01687
crossref_primary_10_1002_hbm_25701
crossref_primary_10_1016_j_mex_2024_102789
crossref_primary_10_3389_fncom_2016_00084
crossref_primary_10_1007_s11682_024_00903_9
crossref_primary_10_3389_fpsyt_2019_00156
crossref_primary_10_1002_hbm_26517
crossref_primary_10_1007_s11682_020_00396_2
crossref_primary_10_1016_j_neuroimage_2024_120585
crossref_primary_10_3389_fnins_2022_1000863
crossref_primary_10_1523_JNEUROSCI_1570_24_2025
crossref_primary_10_1002_hbm_26631
crossref_primary_10_1109_ACCESS_2019_2937482
crossref_primary_10_1007_s12021_022_09610_6
crossref_primary_10_1093_cercor_bhad393
crossref_primary_10_1016_j_tics_2022_12_011
crossref_primary_10_1002_hbm_26194
crossref_primary_10_3389_fnins_2019_00825
crossref_primary_10_1016_j_neurobiolaging_2018_10_002
crossref_primary_10_1016_j_neuroimage_2021_118449
crossref_primary_10_1016_j_neuroimage_2020_117056
crossref_primary_10_1162_imag_a_00411
crossref_primary_10_1016_j_neuroimage_2021_118284
crossref_primary_10_1093_schbul_sbz053
crossref_primary_10_3389_fnins_2017_00256
crossref_primary_10_1002_hbm_70184
crossref_primary_10_1093_cercor_bhx230
crossref_primary_10_1002_dev_22366
crossref_primary_10_1088_1361_6560_abb2ec
crossref_primary_10_1002_hbm_25698
crossref_primary_10_1016_j_dcn_2020_100902
crossref_primary_10_1016_j_neubiorev_2024_105846
crossref_primary_10_1002_hbm_25332
crossref_primary_10_1016_j_jneumeth_2020_108884
crossref_primary_10_1017_S0033291719001442
crossref_primary_10_1016_j_nicl_2017_01_018
crossref_primary_10_1016_j_bbr_2021_113707
crossref_primary_10_1016_j_cortex_2020_08_028
crossref_primary_10_1155_2016_8240894
crossref_primary_10_1523_ENEURO_0129_19_2019
crossref_primary_10_1162_imag_a_00347
crossref_primary_10_1002_hbm_26535
crossref_primary_10_1360_TB_2024_0204
crossref_primary_10_1162_netn_a_00419
crossref_primary_10_3390_sym13091655
crossref_primary_10_1016_j_biopsycho_2024_108882
crossref_primary_10_1152_jn_00411_2021
crossref_primary_10_1016_j_neuroimage_2019_03_015
crossref_primary_10_1016_j_neuroimage_2022_119654
crossref_primary_10_3389_fnins_2022_1073800
crossref_primary_10_3389_fpubh_2019_00311
crossref_primary_10_1002_hbm_26091
crossref_primary_10_1002_wcs_1694
crossref_primary_10_1016_j_neuroimage_2020_117549
crossref_primary_10_1038_s42003_023_05566_8
crossref_primary_10_1093_cercor_bhw253
crossref_primary_10_1016_j_dcn_2023_101271
crossref_primary_10_1016_j_pscychresns_2022_111541
crossref_primary_10_3389_fnhum_2025_1531123
crossref_primary_10_1038_s41386_024_01962_8
crossref_primary_10_3389_fnins_2017_00075
crossref_primary_10_1016_j_ynirp_2021_100055
crossref_primary_10_1002_hbm_23653
crossref_primary_10_1002_hbm_24468
crossref_primary_10_1016_j_nicl_2019_102052
crossref_primary_10_1016_j_neuroimage_2021_118193
crossref_primary_10_1016_j_neuroimage_2019_116157
crossref_primary_10_1016_j_neuroimage_2023_120152
crossref_primary_10_1002_hbm_24389
crossref_primary_10_1002_hbm_26280
crossref_primary_10_1016_j_dcn_2018_02_004
crossref_primary_10_1016_j_neuroimage_2016_11_029
crossref_primary_10_1002_hbm_24381
crossref_primary_10_1016_j_neuroimage_2016_12_061
crossref_primary_10_1371_journal_pcbi_1005031
crossref_primary_10_1002_mrm_26365
crossref_primary_10_1007_s00429_024_02796_2
crossref_primary_10_1016_j_neuroimage_2020_117024
crossref_primary_10_3389_fpsyt_2023_1102368
crossref_primary_10_1016_j_jpain_2016_04_005
crossref_primary_10_1101_lm_048199_118
crossref_primary_10_3390_brainsci13111508
crossref_primary_10_1177_0271678X231204769
crossref_primary_10_1016_j_cobeha_2020_12_012
crossref_primary_10_1002_hbm_25462
crossref_primary_10_3389_fnagi_2016_00318
crossref_primary_10_3389_fnins_2016_00515
crossref_primary_10_1016_j_neuroimage_2018_03_011
crossref_primary_10_1016_j_neuroimage_2023_119972
crossref_primary_10_1007_s11682_022_00708_8
crossref_primary_10_1007_s11682_021_00584_8
crossref_primary_10_1007_s11357_021_00503_1
crossref_primary_10_1109_JBHI_2022_3159031
crossref_primary_10_3389_fnins_2021_624911
crossref_primary_10_1089_brain_2018_0610
crossref_primary_10_1016_j_neuroimage_2021_118648
crossref_primary_10_1016_j_neuroimage_2016_10_045
crossref_primary_10_1089_brain_2020_0970
crossref_primary_10_1155_2017_1403940
crossref_primary_10_3233_JAD_220946
crossref_primary_10_1016_j_neuroimage_2021_118246
crossref_primary_10_1016_j_mri_2021_10_028
crossref_primary_10_3233_JAD_180106
crossref_primary_10_1080_00207454_2019_1698568
crossref_primary_10_3389_fnins_2023_1206604
crossref_primary_10_3390_s23135866
crossref_primary_10_1002_hbm_24528
crossref_primary_10_3389_fnagi_2020_00177
crossref_primary_10_1016_j_neuroimage_2023_120297
crossref_primary_10_1016_j_neubiorev_2021_07_024
crossref_primary_10_1111_ejn_13717
crossref_primary_10_1177_1352458520977160
crossref_primary_10_3389_fnhum_2016_00314
crossref_primary_10_3389_fpsyg_2021_708973
crossref_primary_10_1152_jn_00675_2015
crossref_primary_10_1111_nyas_12882
crossref_primary_10_1016_j_bpsc_2016_03_004
crossref_primary_10_1016_j_jneumeth_2018_09_033
crossref_primary_10_1016_j_psyneuen_2019_04_001
crossref_primary_10_1016_j_biopsycho_2022_108349
crossref_primary_10_1016_j_media_2024_103403
crossref_primary_10_1093_ijnp_pyy100
crossref_primary_10_1016_j_jad_2025_01_157
crossref_primary_10_1002_hbm_22897
crossref_primary_10_1016_j_drugalcdep_2018_08_006
crossref_primary_10_1016_j_neuroimage_2016_04_047
crossref_primary_10_1089_brain_2017_0517
crossref_primary_10_1002_hbm_23500
crossref_primary_10_1016_j_neuroimage_2021_118331
crossref_primary_10_1016_j_neuropsychologia_2020_107737
crossref_primary_10_3174_ajnr_A8067
crossref_primary_10_1016_j_nicl_2016_03_016
crossref_primary_10_1002_hbm_24433
crossref_primary_10_1007_s00429_016_1286_x
crossref_primary_10_1093_cercor_bhad097
crossref_primary_10_1162_NETN_a_00013
crossref_primary_10_3389_fnagi_2021_758298
crossref_primary_10_1038_s41398_017_0074_6
crossref_primary_10_1016_j_neuroimage_2016_05_062
crossref_primary_10_1162_netn_a_00054
crossref_primary_10_1016_j_neuropsychologia_2015_06_036
crossref_primary_10_1097_j_pain_0000000000000356
crossref_primary_10_1016_j_neuroimage_2016_12_018
Cites_doi 10.1073/pnas.0811168106
10.1002/mrm.1910350312
10.1523/JNEUROSCI.3189-09.2009
10.1016/j.neuroimage.2009.05.012
10.1016/j.neuroimage.2011.10.018
10.1016/j.mri.2006.09.042
10.1093/cercor/bhn256
10.1016/j.neuroimage.2013.08.048
10.1016/j.neuroimage.2012.08.052
10.1016/j.neuroimage.2013.11.046
10.1016/j.neuroimage.2012.08.022
10.1523/JNEUROSCI.3987-10.2010
10.1523/JNEUROSCI.5587-06.2007
10.1016/j.neuroimage.2010.05.081
10.1002/mrm.1910340409
10.1016/j.mri.2007.03.009
10.1016/j.biopsych.2013.07.010
10.1523/JNEUROSCI.3874-05.2006
10.1006/nimg.2002.1132
10.1016/j.biopsych.2006.09.020
10.1073/pnas.0135058100
10.1002/hbm.20813
10.1093/brain/awq075
10.1016/S1053-8119(03)00097-1
10.1016/j.neuron.2009.03.024
10.1523/JNEUROSCI.5730-10.2011
10.1016/j.neuroimage.2013.04.081
10.1098/rstb.2005.1634
10.1212/WNL.78.1_MeetingAbstracts.P03.082
10.1073/pnas.0811879106
10.1016/j.neuroimage.2011.08.048
10.1002/mrm.1222
10.1016/j.neuroimage.2010.11.080
10.1016/j.neuroimage.2009.10.080
10.1523/JNEUROSCI.0305-12.2012
10.1002/mrm.1910390305
10.1002/hbm.10022
10.1002/mrm.22159
10.1073/pnas.0905267106
10.1002/mrm.10267
10.1002/hbm.10062
10.1093/cercor/bhr099
10.1016/j.neuroimage.2008.09.036
10.1212/WNL.34.7.939
10.1016/j.neuroimage.2013.03.004
10.1016/j.neuroimage.2012.03.017
10.1016/j.neuroimage.2009.05.005
10.1006/nimg.2001.1034
10.1073/pnas.0911855107
10.1152/jn.90777.2008
10.1016/j.neuroimage.2011.10.039
10.1073/pnas.0308627101
10.1007/s00429-009-0208-6
10.1016/j.neuroimage.2007.04.042
10.1016/j.neuroimage.2011.08.044
10.1006/nimg.2000.0582
10.1089/brain.2011.0018
10.1002/hbm.22307
10.1016/j.neuroimage.2005.08.044
10.1073/pnas.0601417103
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Aug 15, 2015
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Aug 15, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2015.05.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic

MEDLINE
ProQuest One Psychology

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 79
ExternalDocumentID 4321092465
25987368
10_1016_j_neuroimage_2015_05_015
S105381191500395X
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS073498
– fundername: NINDS NIH HHS
  grantid: NS073498
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c558t-66b6a14678bf3c6cd819e0a3b560a389a29fa4768c8f063e50807adfaf77a96b3
IEDL.DBID BENPR
ISSN 1053-8119
IngestDate Thu Sep 04 23:01:52 EDT 2025
Fri Sep 05 07:00:40 EDT 2025
Wed Aug 13 11:36:57 EDT 2025
Wed Feb 19 02:26:48 EST 2025
Tue Jul 01 03:01:42 EDT 2025
Thu Apr 24 22:51:05 EDT 2025
Fri Feb 23 02:25:09 EST 2024
Tue Aug 26 16:31:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Resting-state
Temporal filter
Preprocessing
Reliability
Global signal
Noise
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-66b6a14678bf3c6cd819e0a3b560a389a29fa4768c8f063e50807adfaf77a96b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25987368
PQID 1880045167
PQPubID 2031077
PageCount 13
ParticipantIDs proquest_miscellaneous_1746894957
proquest_miscellaneous_1698390759
proquest_journals_1880045167
pubmed_primary_25987368
crossref_primary_10_1016_j_neuroimage_2015_05_015
crossref_citationtrail_10_1016_j_neuroimage_2015_05_015
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2015_05_015
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_05_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-15
PublicationDateYYYYMMDD 2015-08-15
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2015
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Hampson, Peterson, Skudlarski, Gatenby, Gore (bb0135) 2002; 15
Thomason, Dennis, Joshi, Joshi, Dinov, Chang, Henry, Johnson, Thompson, Toga, Glover, Van Horn, Gotlib (bb0280) 2011; 55
Craddock, Holtzheimer, Hu, Mayberg (bb0060) 2009; 62
Honey, Sporns, Cammoun, Gigandet, Thiran, Meuli, Hagmann (bb0145) 2009; 106
Zhou, Greicius, Gennatas, Growdon, Jang, Rabinovici, Kramer, Weiner, Miller, Seeley (bb0305) 2010; 133
Glover, Lai (bb0105) 1998; 39
Kim, Adalsteinsson, Glover, Spielman (bb0165) 2002; 48
Bellec, Perlbarg, Jbabdi, Pelegrini-Issac, Anton, Doyon, Benali (bb0030) 2006; 29
Davey, Grayden, Egan, Johnston (bb0080) 2013; 64
Power, Barnes, Snyder, Schlaggar, Petersen (bb0205) 2012; 59
Chai, Castanon, Ongur, Whitfield-Gabrieli (bb0050) 2012; 59
Fox, Zhang, Snyder, Raichle (bb0090) 2009; 101
McKhann, Drachman, Folstein, Katzman, Price, Stadlan (bb0190) 1984; 34
Greicius, Krasnow, Reiss, Menon (bb0120) 2003; 100
Braun, Plichta, Esslinger, Sauer, Haddad, Grimm, Mier, Mohnke, Heinz, Erk, Walter, Seiferth, Kirsch, Meyer-Lindenberg (bb0045) 2012; 59
Friston, Williams, Howard, Frackowiak, Turner (bb0095) 1996; 35
Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bb0070) 2006; 103
Ashburner, Friston (bb0015) 2000; 11
Filippini, MacIntosh, Hough, Goodwin, Frisoni, Smith, Matthews, Beckmann, Mackay (bb0085) 2009; 106
Johnson, Sperling, Sepulcre (bb0160) 2013; 74
Perlbarg, Bellec, Anton, Pelegrini-Issac, Doyon, Benali (bb0200) 2007; 25
Richiardi, Eryilmaz, Schwartz, Vuilleumier, Van De Ville (bb0220) 2010; 56
Kiviniemi, Starck, Remes, Long, Nikkinen, Haapea, Veijola, Moilanen, Isohanni, Zang, Tervonen (bb0175) 2009; 30
Satterthwaite, Elliott, Gerraty, Ruparel, Loughead, Calkins, Eickhoff, Hakonarson, Gur, Gur, Wolf (bb0230) 2013; 64
Shehzad, Kelly, Reiss, Gee, Gotimer, Uddin, Lee, Margulies, Roy, Biswal, Petkova, Castellanos, Milham (bb0245) 2009; 19
Behzadi, Restom, Liau, Liu (bb0025) 2007; 37
Zuo, Kelly, Adelstein, Klein, Castellanos, Milham (bb0310) 2010; 49
Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann, Adelstein, Buckner, Colcombe, Dogonowski, Ernst, Fair, Hampson, Hoptman, Hyde, Kiviniemi, Kotter, Li, Lin, Lowe, Mackay, Madden, Madsen, Margulies, Mayberg, McMahon, Monk, Mostofsky, Nagel, Pekar, Peltier, Petersen, Riedl, Rombouts, Rypma, Schlaggar, Schmidt, Seidler, Siegle, Sorg, Teng, Veijola, Villringer, Walter, Wang, Weng, Whitfield-Gabrieli, Williamson, Windischberger, Zang, Zhang, Castellanos, Milham (bb0040) 2010; 107
Beckmann, DeLuca, Devlin, Smith (bb0020) 2005; 360
Siegel, Power, Dubis, Vogel, Church, Schlaggar, Petersen (bb0260) 2014; 35
Wu, Chen, Liu, Chao, Biswal, Lin (bb0290) 2011; 1
Smith (bb0265) 2002; 17
Greicius, Flores, Menon, Glover, Solvason, Kenna, Reiss, Schatzberg (bb0115) 2007; 62
Strother, Anderson, Hansen, Kjems, Kustra, Sidtis, Frutiger, Muley, LaConte, Rottenberg (bb0275) 2002; 15
Seeley, Crawford, Zhou, Miller, Greicius (bb0235) 2009; 62
Power, Mitra, Laumann, Snyder, Schlagger, Petersen (bb0215) 2014; 84
Kiviniemi, Kantola, Jauhiainen, Hyvarinen, Tervonen (bb0170) 2003; 19
Seeley, Menon, Schatzberg, Keller, Glover, Kenna, Reiss, Greicius (bb0240) 2007; 27
Power, Barnes, Snyder, Schlaggar, Petersen (bb0210) 2013; 76
Glover (bb0100) 2012; 62
Achard, Salvador, Whitcher, Suckling, Bullmore (bb0005) 2006; 26
Murphy, Birn, Handwerker, Jones, Bandettini (bb0195) 2009; 44
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bb0270) 2009; 106
Yan, Cheung, Kelly, Colcombe, Craddock, Di Martino, Li, Zuo, Castellanos, Milham (bb0295) 2013; 76
Sheline, Morris, Snyder, Price, Yan, D'Angelo, Liu, Dixit, Benzinger, Fagan, Goate, Mintun (bb0250) 2010; 30
Yan, Craddock, Zuo, Zang, Milham (bb0300) 2013; 80
Damoiseaux, Seeley, Zhou, Shirer, Coppola, Karydas, Rosen, Miller, Kramer, Greicius, Alzheimer's Disease Neuroimaging (bb0075) 2012; 32
Chang, Glover (bb0055) 2009; 47
Biswal, Yetkin, Haughton, Hyde (bb0035) 1995; 34
Weissenbacher, Kasess, Gerstl, Lanzenberger, Moser, Windischberger (bb0285) 2009; 47
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bb0225) 2014; 90
Shirer, Ryali, Rykhlevskaia, Menon, Greicius (bb0255) 2012; 22
Andersson, Jenkinson, Smith (bb0010) 2007
Greicius, Srivastava, Reiss, Menon (bb0125) 2004; 101
Guo, Kurth, Zhou, Mayer, Eickhoff, Kramer, Seeley (bb0130) 2012; 78
Ko, Darvas, Poliakov, Ojemann, Sorensen (bb0180) 2011; 31
Glover, Law (bb0110) 2001; 46
Damoiseaux, Greicius (bb0065) 2009; 213
Lemieux, Salek-Haddadi, Lund, Laufs, Carmichael (bb0185) 2007; 25
Hedden, Van Dijk, Becker, Mehta, Sperling, Johnson, Buckner (bb0140) 2009; 29
Jenkinson, Bannister, Brady, Smith (bb0150) 2002; 17
Craddock (10.1016/j.neuroimage.2015.05.015_bb0060) 2009; 62
Ko (10.1016/j.neuroimage.2015.05.015_bb0180) 2011; 31
Perlbarg (10.1016/j.neuroimage.2015.05.015_bb0200) 2007; 25
Achard (10.1016/j.neuroimage.2015.05.015_bb0005) 2006; 26
Filippini (10.1016/j.neuroimage.2015.05.015_bb0085) 2009; 106
Glover (10.1016/j.neuroimage.2015.05.015_bb0105) 1998; 39
Biswal (10.1016/j.neuroimage.2015.05.015_bb0040) 2010; 107
Hedden (10.1016/j.neuroimage.2015.05.015_bb0140) 2009; 29
Salimi-Khorshidi (10.1016/j.neuroimage.2015.05.015_bb0225) 2014; 90
Johnson (10.1016/j.neuroimage.2015.05.015_bb0160) 2013; 74
Yan (10.1016/j.neuroimage.2015.05.015_bb0295) 2013; 76
Fox (10.1016/j.neuroimage.2015.05.015_bb0090) 2009; 101
Beckmann (10.1016/j.neuroimage.2015.05.015_bb0020) 2005; 360
Chai (10.1016/j.neuroimage.2015.05.015_bb0050) 2012; 59
Guo (10.1016/j.neuroimage.2015.05.015_bb0130) 2012; 78
Kiviniemi (10.1016/j.neuroimage.2015.05.015_bb0175) 2009; 30
Biswal (10.1016/j.neuroimage.2015.05.015_bb0035) 1995; 34
Greicius (10.1016/j.neuroimage.2015.05.015_bb0120) 2003; 100
Seeley (10.1016/j.neuroimage.2015.05.015_bb0240) 2007; 27
Damoiseaux (10.1016/j.neuroimage.2015.05.015_bb0065) 2009; 213
Honey (10.1016/j.neuroimage.2015.05.015_bb0145) 2009; 106
Behzadi (10.1016/j.neuroimage.2015.05.015_bb0025) 2007; 37
Davey (10.1016/j.neuroimage.2015.05.015_bb0080) 2013; 64
Richiardi (10.1016/j.neuroimage.2015.05.015_bb0220) 2010; 56
Power (10.1016/j.neuroimage.2015.05.015_bb0205) 2012; 59
Satterthwaite (10.1016/j.neuroimage.2015.05.015_bb0230) 2013; 64
Zhou (10.1016/j.neuroimage.2015.05.015_bb0305) 2010; 133
Weissenbacher (10.1016/j.neuroimage.2015.05.015_bb0285) 2009; 47
Yan (10.1016/j.neuroimage.2015.05.015_bb0300) 2013; 80
Greicius (10.1016/j.neuroimage.2015.05.015_bb0125) 2004; 101
Greicius (10.1016/j.neuroimage.2015.05.015_bb0115) 2007; 62
McKhann (10.1016/j.neuroimage.2015.05.015_bb0190) 1984; 34
Glover (10.1016/j.neuroimage.2015.05.015_bb0110) 2001; 46
Power (10.1016/j.neuroimage.2015.05.015_bb0215) 2014; 84
Wu (10.1016/j.neuroimage.2015.05.015_bb0290) 2011; 1
Lemieux (10.1016/j.neuroimage.2015.05.015_bb0185) 2007; 25
Strother (10.1016/j.neuroimage.2015.05.015_bb0275) 2002; 15
Kim (10.1016/j.neuroimage.2015.05.015_bb0165) 2002; 48
Ashburner (10.1016/j.neuroimage.2015.05.015_bb0015) 2000; 11
Glover (10.1016/j.neuroimage.2015.05.015_bb0100) 2012; 62
Murphy (10.1016/j.neuroimage.2015.05.015_bb0195) 2009; 44
Andersson (10.1016/j.neuroimage.2015.05.015_bb0010) 2007
Smith (10.1016/j.neuroimage.2015.05.015_bb0265) 2002; 17
Hampson (10.1016/j.neuroimage.2015.05.015_bb0135) 2002; 15
Thomason (10.1016/j.neuroimage.2015.05.015_bb0280) 2011; 55
Chang (10.1016/j.neuroimage.2015.05.015_bb0055) 2009; 47
Friston (10.1016/j.neuroimage.2015.05.015_bb0095) 1996; 35
Shehzad (10.1016/j.neuroimage.2015.05.015_bb0245) 2009; 19
Smith (10.1016/j.neuroimage.2015.05.015_bb0270) 2009; 106
Sheline (10.1016/j.neuroimage.2015.05.015_bb0250) 2010; 30
Damoiseaux (10.1016/j.neuroimage.2015.05.015_bb0070) 2006; 103
Jenkinson (10.1016/j.neuroimage.2015.05.015_bb0150) 2002; 17
Seeley (10.1016/j.neuroimage.2015.05.015_bb0235) 2009; 62
Power (10.1016/j.neuroimage.2015.05.015_bb0210) 2013; 76
Shirer (10.1016/j.neuroimage.2015.05.015_bb0255) 2012; 22
Braun (10.1016/j.neuroimage.2015.05.015_bb0045) 2012; 59
Kiviniemi (10.1016/j.neuroimage.2015.05.015_bb0170) 2003; 19
Bellec (10.1016/j.neuroimage.2015.05.015_bb0030) 2006; 29
Siegel (10.1016/j.neuroimage.2015.05.015_bb0260) 2014; 35
Damoiseaux (10.1016/j.neuroimage.2015.05.015_bb0075) 2012; 32
Zuo (10.1016/j.neuroimage.2015.05.015_bb0310) 2010; 49
References_xml – volume: 74
  start-page: 318
  year: 2013
  end-page: 319
  ident: bb0160
  article-title: Functional connectivity in Alzheimer's disease: measurement and meaning
  publication-title: Biol. Psychiatry
– volume: 80
  start-page: 246
  year: 2013
  end-page: 262
  ident: bb0300
  article-title: Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes
  publication-title: NeuroImage
– volume: 15
  start-page: 747
  year: 2002
  end-page: 771
  ident: bb0275
  article-title: The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework
  publication-title: NeuroImage
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: bb0225
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: NeuroImage
– volume: 37
  start-page: 90
  year: 2007
  end-page: 101
  ident: bb0025
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: NeuroImage
– volume: 47
  start-page: 1448
  year: 2009
  end-page: 1459
  ident: bb0055
  article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations
  publication-title: NeuroImage
– volume: 19
  start-page: 253
  year: 2003
  end-page: 260
  ident: bb0170
  article-title: Independent component analysis of nondeterministic fMRI signal sources
  publication-title: NeuroImage
– volume: 64
  start-page: 240
  year: 2013
  end-page: 256
  ident: bb0230
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data
  publication-title: NeuroImage
– volume: 133
  start-page: 1352
  year: 2010
  end-page: 1367
  ident: bb0305
  article-title: Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease
  publication-title: Brain
– volume: 56
  start-page: 616
  year: 2010
  end-page: 626
  ident: bb0220
  article-title: Decoding brain states from fMRI connectivity graphs
  publication-title: NeuroImage
– volume: 22
  start-page: 158
  year: 2012
  end-page: 165
  ident: bb0255
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cereb. Cortex
– volume: 107
  start-page: 4734
  year: 2010
  end-page: 4739
  ident: bb0040
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 101
  start-page: 3270
  year: 2009
  end-page: 3283
  ident: bb0090
  article-title: The Global Signal and Observed Anticorrelated Resting State Brain Networks
  publication-title: J. Neurophysiol.
– volume: 29
  start-page: 12686
  year: 2009
  end-page: 12694
  ident: bb0140
  article-title: Disruption of functional connectivity in clinically normal older adults harboring amyloid burden
  publication-title: J. Neurosci.
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  ident: bb0120
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 62
  start-page: 42
  year: 2009
  end-page: 52
  ident: bb0235
  article-title: Neurodegenerative diseases target large-scale human brain networks
  publication-title: Neuron
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bb0270
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 39
  start-page: 361
  year: 1998
  end-page: 368
  ident: bb0105
  article-title: Self-navigated spiral fMRI: interleaved versus single-shot
  publication-title: Magn. Reson. Med.
– volume: 101
  start-page: 4637
  year: 2004
  end-page: 4642
  ident: bb0125
  article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 26
  start-page: 63
  year: 2006
  end-page: 72
  ident: bb0005
  article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
  publication-title: J. Neurosci.
– volume: 44
  start-page: 893
  year: 2009
  end-page: 905
  ident: bb0195
  article-title: The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced?
  publication-title: NeuroImage
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: bb0205
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 27
  start-page: 2349
  year: 2007
  end-page: 2356
  ident: bb0240
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J. Neurosci.
– volume: 49
  start-page: 2163
  year: 2010
  end-page: 2177
  ident: bb0310
  article-title: Reliable intrinsic connectivity networks: Test-retest evaluation using ICA and dual regression approach
  publication-title: NeuroImage
– volume: 55
  start-page: 165
  year: 2011
  end-page: 175
  ident: bb0280
  article-title: Resting-state fMRI can reliably map neural networks in children
  publication-title: NeuroImage
– volume: 30
  start-page: 17035
  year: 2010
  end-page: 17040
  ident: bb0250
  article-title: APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Abeta42
  publication-title: J. Neurosci.
– volume: 103
  start-page: 13848
  year: 2006
  end-page: 13853
  ident: bb0070
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 30
  start-page: 3865
  year: 2009
  end-page: 3886
  ident: bb0175
  article-title: Functional segmentation of the brain cortex using high model order group PICA
  publication-title: Hum. Brain Mapp.
– volume: 78
  year: 2012
  ident: bb0130
  article-title: One-Year Test-Retest Reliability of Intrinsic Connectivity Network fMRI in Older Adults
  publication-title: Neurology
– volume: 46
  start-page: 515
  year: 2001
  end-page: 522
  ident: bb0110
  article-title: Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts
  publication-title: Magn. Reson. Med.
– volume: 11
  start-page: 805
  year: 2000
  end-page: 821
  ident: bb0015
  article-title: Voxel-based morphometry–the methods
  publication-title: NeuroImage
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bb0150
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 19
  start-page: 2209
  year: 2009
  end-page: 2229
  ident: bb0245
  article-title: The resting brain: unconstrained yet reliable
  publication-title: Cereb. Cortex
– volume: 15
  start-page: 247
  year: 2002
  end-page: 262
  ident: bb0135
  article-title: Detection of functional connectivity using temporal correlations in MR images
  publication-title: Hum. Brain Mapp.
– volume: 106
  start-page: 7209
  year: 2009
  end-page: 7214
  ident: bb0085
  article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bb0035
  article-title: Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar Mri
  publication-title: Magn. Reson. Med.
– volume: 32
  start-page: 8254
  year: 2012
  end-page: 8262
  ident: bb0075
  article-title: Gender modulates the APOE epsilon4 effect in healthy older adults: convergent evidence from functional brain connectivity and spinal fluid tau levels
  publication-title: J. Neurosci.
– volume: 213
  start-page: 525
  year: 2009
  end-page: 533
  ident: bb0065
  article-title: Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity
  publication-title: Brain Struct. Funct.
– volume: 76
  start-page: 183
  year: 2013
  end-page: 201
  ident: bb0295
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: NeuroImage
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: bb0020
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 76
  start-page: 439
  year: 2013
  end-page: 441
  ident: bb0210
  article-title: Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp
  publication-title: NeuroImage
– volume: 48
  start-page: 715
  year: 2002
  end-page: 722
  ident: bb0165
  article-title: Regularized higher-order in vivo shimming
  publication-title: Magn. Reson. Med.
– volume: 31
  start-page: 11728
  year: 2011
  end-page: 11732
  ident: bb0180
  article-title: Quasi-periodic fluctuations in default mode network electrophysiology
  publication-title: J. Neurosci.
– volume: 84
  start-page: 320
  year: 2014
  end-page: 341
  ident: bb0215
  article-title: Methods to detect, characterize, and remove artifact in resting-state fMRI
  publication-title: NeuroImage
– volume: 34
  start-page: 939
  year: 1984
  end-page: 944
  ident: bb0190
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease
  publication-title: Neurology
– volume: 106
  start-page: 2035
  year: 2009
  end-page: 2040
  ident: bb0145
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 25
  start-page: 894
  year: 2007
  end-page: 901
  ident: bb0185
  article-title: Modelling large motion events in fMRI studies of patients with epilepsy
  publication-title: Magn. Reson. Imaging
– volume: 59
  start-page: 1404
  year: 2012
  end-page: 1412
  ident: bb0045
  article-title: Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures
  publication-title: NeuroImage
– volume: 35
  start-page: 346
  year: 1996
  end-page: 355
  ident: bb0095
  article-title: Movement-related effects in fMRI time-series
  publication-title: Magn. Reson. Med.
– volume: 1
  start-page: 401
  year: 2011
  end-page: 410
  ident: bb0290
  article-title: Empirical evaluations of slice-timing, smoothing, and normalization effects in seed-based, resting-state functional magnetic resonance imaging analyses
  publication-title: Brain Connect.
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bb0265
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– year: 2007
  ident: bb0010
  article-title: Non-linear registration, aka Spatial normalisation
  publication-title: FMRIB technical report TR07JA2
– volume: 64
  start-page: 728
  year: 2013
  end-page: 740
  ident: bb0080
  article-title: Filtering induces correlation in fMRI resting state data
  publication-title: NeuroImage
– volume: 25
  start-page: 35
  year: 2007
  end-page: 46
  ident: bb0200
  article-title: CORSICA: correlation of structured noise in fMRI by automatic identification of ICA components
  publication-title: Magn. Reson. Imaging
– volume: 62
  start-page: 1619
  year: 2009
  end-page: 1628
  ident: bb0060
  article-title: Disease state prediction from resting state functional connectivity
  publication-title: Magn. Reson. Med.
– volume: 59
  start-page: 1420
  year: 2012
  end-page: 1428
  ident: bb0050
  article-title: Anticorrelations in resting state networks without global signal regression
  publication-title: NeuroImage
– volume: 35
  start-page: 1981
  year: 2014
  end-page: 1996
  ident: bb0260
  article-title: Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points
  publication-title: Hum. Brain Mapp.
– volume: 62
  start-page: 429
  year: 2007
  end-page: 437
  ident: bb0115
  article-title: Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus
  publication-title: Biol. Psychiatry
– volume: 29
  start-page: 1231
  year: 2006
  end-page: 1243
  ident: bb0030
  article-title: Identification of large-scale networks in the brain using fMRI
  publication-title: NeuroImage
– volume: 47
  start-page: 1408
  year: 2009
  end-page: 1416
  ident: bb0285
  article-title: Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies
  publication-title: NeuroImage
– volume: 62
  start-page: 706
  year: 2012
  end-page: 712
  ident: bb0100
  article-title: Spiral imaging in fMRI
  publication-title: NeuroImage
– volume: 106
  start-page: 2035
  year: 2009
  ident: 10.1016/j.neuroimage.2015.05.015_bb0145
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0811168106
– volume: 35
  start-page: 346
  year: 1996
  ident: 10.1016/j.neuroimage.2015.05.015_bb0095
  article-title: Movement-related effects in fMRI time-series
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910350312
– volume: 29
  start-page: 12686
  year: 2009
  ident: 10.1016/j.neuroimage.2015.05.015_bb0140
  article-title: Disruption of functional connectivity in clinically normal older adults harboring amyloid burden
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3189-09.2009
– volume: 47
  start-page: 1448
  year: 2009
  ident: 10.1016/j.neuroimage.2015.05.015_bb0055
  article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.012
– volume: 59
  start-page: 2142
  year: 2012
  ident: 10.1016/j.neuroimage.2015.05.015_bb0205
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 25
  start-page: 35
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2015.05.015_bb0200
  article-title: CORSICA: correlation of structured noise in fMRI by automatic identification of ICA components
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2006.09.042
– volume: 19
  start-page: 2209
  year: 2009
  ident: 10.1016/j.neuroimage.2015.05.015_bb0245
  article-title: The resting brain: unconstrained yet reliable
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn256
– volume: 84
  start-page: 320
  year: 2014
  ident: 10.1016/j.neuroimage.2015.05.015_bb0215
  article-title: Methods to detect, characterize, and remove artifact in resting-state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 64
  start-page: 240
  year: 2013
  ident: 10.1016/j.neuroimage.2015.05.015_bb0230
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.052
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.neuroimage.2015.05.015_bb0225
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 64
  start-page: 728
  year: 2013
  ident: 10.1016/j.neuroimage.2015.05.015_bb0080
  article-title: Filtering induces correlation in fMRI resting state data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.022
– volume: 30
  start-page: 17035
  year: 2010
  ident: 10.1016/j.neuroimage.2015.05.015_bb0250
  article-title: APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Abeta42
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3987-10.2010
– volume: 27
  start-page: 2349
  year: 2007
  ident: 10.1016/j.neuroimage.2015.05.015_bb0240
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5587-06.2007
– volume: 56
  start-page: 616
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2015.05.015_bb0220
  article-title: Decoding brain states from fMRI connectivity graphs
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.05.081
– volume: 34
  start-page: 537
  year: 1995
  ident: 10.1016/j.neuroimage.2015.05.015_bb0035
  article-title: Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar Mri
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– year: 2007
  ident: 10.1016/j.neuroimage.2015.05.015_bb0010
  article-title: Non-linear registration, aka Spatial normalisation
– volume: 25
  start-page: 894
  year: 2007
  ident: 10.1016/j.neuroimage.2015.05.015_bb0185
  article-title: Modelling large motion events in fMRI studies of patients with epilepsy
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2007.03.009
– volume: 74
  start-page: 318
  year: 2013
  ident: 10.1016/j.neuroimage.2015.05.015_bb0160
  article-title: Functional connectivity in Alzheimer's disease: measurement and meaning
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2013.07.010
– volume: 26
  start-page: 63
  year: 2006
  ident: 10.1016/j.neuroimage.2015.05.015_bb0005
  article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3874-05.2006
– volume: 17
  start-page: 825
  year: 2002
  ident: 10.1016/j.neuroimage.2015.05.015_bb0150
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– volume: 62
  start-page: 429
  year: 2007
  ident: 10.1016/j.neuroimage.2015.05.015_bb0115
  article-title: Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2006.09.020
– volume: 100
  start-page: 253
  year: 2003
  ident: 10.1016/j.neuroimage.2015.05.015_bb0120
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0135058100
– volume: 30
  start-page: 3865
  year: 2009
  ident: 10.1016/j.neuroimage.2015.05.015_bb0175
  article-title: Functional segmentation of the brain cortex using high model order group PICA
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20813
– volume: 133
  start-page: 1352
  year: 2010
  ident: 10.1016/j.neuroimage.2015.05.015_bb0305
  article-title: Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awq075
– volume: 19
  start-page: 253
  year: 2003
  ident: 10.1016/j.neuroimage.2015.05.015_bb0170
  article-title: Independent component analysis of nondeterministic fMRI signal sources
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00097-1
– volume: 62
  start-page: 42
  year: 2009
  ident: 10.1016/j.neuroimage.2015.05.015_bb0235
  article-title: Neurodegenerative diseases target large-scale human brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.024
– volume: 31
  start-page: 11728
  year: 2011
  ident: 10.1016/j.neuroimage.2015.05.015_bb0180
  article-title: Quasi-periodic fluctuations in default mode network electrophysiology
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5730-10.2011
– volume: 80
  start-page: 246
  year: 2013
  ident: 10.1016/j.neuroimage.2015.05.015_bb0300
  article-title: Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.081
– volume: 360
  start-page: 1001
  year: 2005
  ident: 10.1016/j.neuroimage.2015.05.015_bb0020
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2005.1634
– volume: 78
  year: 2012
  ident: 10.1016/j.neuroimage.2015.05.015_bb0130
  article-title: One-Year Test-Retest Reliability of Intrinsic Connectivity Network fMRI in Older Adults
  publication-title: Neurology
  doi: 10.1212/WNL.78.1_MeetingAbstracts.P03.082
– volume: 106
  start-page: 7209
  year: 2009
  ident: 10.1016/j.neuroimage.2015.05.015_bb0085
  article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0811879106
– volume: 59
  start-page: 1420
  year: 2012
  ident: 10.1016/j.neuroimage.2015.05.015_bb0050
  article-title: Anticorrelations in resting state networks without global signal regression
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.048
– volume: 46
  start-page: 515
  year: 2001
  ident: 10.1016/j.neuroimage.2015.05.015_bb0110
  article-title: Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1222
– volume: 55
  start-page: 165
  year: 2011
  ident: 10.1016/j.neuroimage.2015.05.015_bb0280
  article-title: Resting-state fMRI can reliably map neural networks in children
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.11.080
– volume: 49
  start-page: 2163
  year: 2010
  ident: 10.1016/j.neuroimage.2015.05.015_bb0310
  article-title: Reliable intrinsic connectivity networks: Test-retest evaluation using ICA and dual regression approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.080
– volume: 32
  start-page: 8254
  year: 2012
  ident: 10.1016/j.neuroimage.2015.05.015_bb0075
  article-title: Gender modulates the APOE epsilon4 effect in healthy older adults: convergent evidence from functional brain connectivity and spinal fluid tau levels
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0305-12.2012
– volume: 39
  start-page: 361
  year: 1998
  ident: 10.1016/j.neuroimage.2015.05.015_bb0105
  article-title: Self-navigated spiral fMRI: interleaved versus single-shot
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390305
– volume: 15
  start-page: 247
  year: 2002
  ident: 10.1016/j.neuroimage.2015.05.015_bb0135
  article-title: Detection of functional connectivity using temporal correlations in MR images
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10022
– volume: 62
  start-page: 1619
  year: 2009
  ident: 10.1016/j.neuroimage.2015.05.015_bb0060
  article-title: Disease state prediction from resting state functional connectivity
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22159
– volume: 106
  start-page: 13040
  year: 2009
  ident: 10.1016/j.neuroimage.2015.05.015_bb0270
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0905267106
– volume: 48
  start-page: 715
  year: 2002
  ident: 10.1016/j.neuroimage.2015.05.015_bb0165
  article-title: Regularized higher-order in vivo shimming
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10267
– volume: 17
  start-page: 143
  year: 2002
  ident: 10.1016/j.neuroimage.2015.05.015_bb0265
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 22
  start-page: 158
  year: 2012
  ident: 10.1016/j.neuroimage.2015.05.015_bb0255
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr099
– volume: 44
  start-page: 893
  year: 2009
  ident: 10.1016/j.neuroimage.2015.05.015_bb0195
  article-title: The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.09.036
– volume: 34
  start-page: 939
  year: 1984
  ident: 10.1016/j.neuroimage.2015.05.015_bb0190
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease
  publication-title: Neurology
  doi: 10.1212/WNL.34.7.939
– volume: 76
  start-page: 183
  year: 2013
  ident: 10.1016/j.neuroimage.2015.05.015_bb0295
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.004
– volume: 76
  start-page: 439
  year: 2013
  ident: 10.1016/j.neuroimage.2015.05.015_bb0210
  article-title: Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.017
– volume: 47
  start-page: 1408
  year: 2009
  ident: 10.1016/j.neuroimage.2015.05.015_bb0285
  article-title: Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.005
– volume: 15
  start-page: 747
  year: 2002
  ident: 10.1016/j.neuroimage.2015.05.015_bb0275
  article-title: The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.1034
– volume: 107
  start-page: 4734
  year: 2010
  ident: 10.1016/j.neuroimage.2015.05.015_bb0040
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0911855107
– volume: 101
  start-page: 3270
  year: 2009
  ident: 10.1016/j.neuroimage.2015.05.015_bb0090
  article-title: The Global Signal and Observed Anticorrelated Resting State Brain Networks
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90777.2008
– volume: 62
  start-page: 706
  year: 2012
  ident: 10.1016/j.neuroimage.2015.05.015_bb0100
  article-title: Spiral imaging in fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.039
– volume: 101
  start-page: 4637
  year: 2004
  ident: 10.1016/j.neuroimage.2015.05.015_bb0125
  article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0308627101
– volume: 213
  start-page: 525
  year: 2009
  ident: 10.1016/j.neuroimage.2015.05.015_bb0065
  article-title: Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-009-0208-6
– volume: 37
  start-page: 90
  year: 2007
  ident: 10.1016/j.neuroimage.2015.05.015_bb0025
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.04.042
– volume: 59
  start-page: 1404
  year: 2012
  ident: 10.1016/j.neuroimage.2015.05.015_bb0045
  article-title: Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.044
– volume: 11
  start-page: 805
  year: 2000
  ident: 10.1016/j.neuroimage.2015.05.015_bb0015
  article-title: Voxel-based morphometry–the methods
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0582
– volume: 1
  start-page: 401
  year: 2011
  ident: 10.1016/j.neuroimage.2015.05.015_bb0290
  article-title: Empirical evaluations of slice-timing, smoothing, and normalization effects in seed-based, resting-state functional magnetic resonance imaging analyses
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0018
– volume: 35
  start-page: 1981
  year: 2014
  ident: 10.1016/j.neuroimage.2015.05.015_bb0260
  article-title: Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22307
– volume: 29
  start-page: 1231
  year: 2006
  ident: 10.1016/j.neuroimage.2015.05.015_bb0030
  article-title: Identification of large-scale networks in the brain using fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.08.044
– volume: 103
  start-page: 13848
  year: 2006
  ident: 10.1016/j.neuroimage.2015.05.015_bb0070
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0601417103
SSID ssj0009148
Score 2.5547075
Snippet Resting-state functional magnetic resonance imaging (rs-fMRI) has become an increasingly important tool in mapping the functional networks of the brain. This...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 67
SubjectTerms Adolescent
Adult
Aged
Alzheimer's disease
Brain - physiology
Brain Mapping - methods
Datasets
Discrimination
Female
Global signal
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Middle Aged
Nerve Net - physiology
Neurodegeneration
Noise
Optimization
Preprocessing
Quality
Regression Analysis
Reliability
Reproducibility of Results
Resting-state
Signal-To-Noise Ratio
Studies
Temporal filter
Young Adult
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHhAXxJuFgozEsWbz8CMWJ1RaFaQtqNtKe7PsxIYgmqx2twcu_e3MxM5WHIpWQsoliSey_Jj5bH_zhZB3vshD4YVjzjUN44UVzJXas8q6OpNVneUNJifPzuTpJf-yEIs9cjTmwiCtMvn-6NMHb52eTFNrTpdtO50DMoBwA-sNgQmmYoEZ7Fyhfv77m1uah855TIcTJcPSic0TOV6DZmR7BTMXSV4ianiKu0LUXRB0CEUnD8mDhCHpx1jNR2TPd4_JvVk6JX9Cbr6CH7hKCZa0D3S1ZmF2_pl-W3m2jJkBELEo4FV63P0YOAB03n6Hj7Kzvl17OvdRErzvDukFVIWd4_7shiKBOQp7_z6ktmvosHVFP7XofJBUgyZPyeXJ8cXRKUv_WWC1ENWGSemkRY9ZuVDWsm4AJfjMlg7QkAVAYwsdLId1SV0FQDQeMF2mbBNsUMpq6cpnZL_rO_-CUAcxtygc4Mbcc-m4zhpvC--4UlqEkE2IGpvW1EmEHP-F8cuMbLOf5rZTDHaKyeDKxYTkW8tlFOLYwUaPvWfGRFNwjQaixQ62H7a2fw3IHa0PxsFiklNYG5S-QzkfqSbk7fY1TGc8o7Gd76-hjNQAWQHH6X-UUVxWGla28J3ncSBumwRWs5UqZfXyv6r_itzHO9w7z8UB2d-srv1rAF8b92aYXX8AjJ0wsA
  priority: 102
  providerName: Elsevier
Title Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191500395X
https://dx.doi.org/10.1016/j.neuroimage.2015.05.015
https://www.ncbi.nlm.nih.gov/pubmed/25987368
https://www.proquest.com/docview/1880045167
https://www.proquest.com/docview/1698390759
https://www.proquest.com/docview/1746894957
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdYKyEuiG8KozISxxniJP4SBzRGpw5oqbpN6i2yExuKWFLa7sBlfzvPtdOeNlWKkkP8LMsf7_38_N7PCL2zKXWpZYYYU1UkTzUjJlOWSG3KhMsyoZVPTh6N-fAy_zpjs-hwW8WwylYnbhR11ZTeR_7B84Z5LhQuPi3-En9rlD9djVdoHKAuqGDJOqj7eTCeTHe0uzQPyXAsI5JSFWN5QoTXhjFyfgXr1od4scDgyW4zULcB0I0hOn2EHkYEiY_DkD9G92z9BN0fxTPyp-jmB2iBq5heiRuHlyviRtMzPFlasgh5AWCvMKBVPKh_bSIA8Pn8J1RKxs18ZfG5DYTgTX2EL6ApZOq9s2vsw5cDrfe_I6zrCm8cV_jL3KseH1LjRZ6hy9PBxcmQxFsWSMmYXBPODddeX0rjspKXFWAEm-jMABbSAGd0qpzOYVdSSgd4xgKiS4SunHZCaMVN9hx16qa2LxE2YHHT1ABqpDbnJldJZXVqTS6EYs4lPSTari3KSEHub8L4U7SxZr-L3aAUflCKBB7KeohuJReBhmMPGdWOXtGmmYJiLMBW7CH7cSsboUiAGHtKH7aTpYgqYVXsJnAPvd3-hsXsT2h0bZtrKMMVAFZAceqOMiLnUsG-Fup5ESbitktgLytFxuWruxvwGj3wrfWuccoOUWe9vLZvAFutTR8dvL-h8BYz0Ufd45Pp94n_nn0bjvtxcf0HVoMrlA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKwEXxJtAASPBrRb7sncthBDQVAltQpWmUm_G3rXbILobklSoF34Sv5GZ9W5yapVLpb2tx7L8-L7P9syYkLc2Cl1kuWHGFAVLIs2ZiaVlmTZ5ILI8CAsMTh4MRe84-XbCTzbIvzYWBt0qW0ysgbqocjwjf495wzAXikg_TX8zfDUKb1fbJzT8tNi3l39gyzb_2N-F8X0XRXvd8dcea14VYDnn2YIJYYRGfMiMi3ORF8CJNtCxAe7XQN86kk4noMLzzAF_W1AwQaoLp12aailMDPXeIlsgMySsoq0v3eHhaJXmN0x88B2PWRaGsvEd8h5ldYbKyTngBLqUcZ8xlF9FiFcJ3pr49u6Te41ipZ_9FHtANmz5kNweNHfyj8jf74A65004J60cnc2ZG4z69HBm2dTHIQA_UlDHtFue1R4H9GhyCpWyYTWZW3pkfQLyqtyhY2gKG-Fp8IKiu7RPI365Q3VZ0PqgjO5OEOrQhQdNHpPjG-n_J2SzrEr7jFADDB9FBlRqaBNhEhkUVkfWJGkquXNBh6Rt16q8SXmOL2_8Uq1v20-1GhSFg6IC-ELeIeHScurTfqxhI9vRU21YKwCxAm5aw_bD0raRPl7SrGm93U4W1UDQXK0WTIe8Wf4G8MAbIV3a6gLKCAkCGVSjvKZMmohMwj4a6nnqJ-KyS2DvnKWxyJ5f34DX5E5vPDhQB_3h_gtyF1uOx_Ih3yabi9mFfQm6bmFeNYuJkh83vX7_A1vBY3M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLVKKlVsEG8CBYwEu1qdl19CCAFJ1FASorSVujP2jE1T0ZmQpELd8GF8HdfxTLJqlU2l2Y2vZflxz7F97zFCb20Su8RSQ4wpCpIlmhKTSkuENnnERB7FhU9OHgzZwUn29ZSebqF_TS6MD6tsfOLSURdV7s_I971umNdCYXzf1WERo07v4_Q38S9I-ZvW5jmNMEUO7dUf2L7NP_Q7MNbvkqTXPf5yQOoXBkhOqVgQxgzT3lcI49Kc5QXgo410aoAHaIBynUinM2DkuXCA5RbYTMR14bTjXEtmUqj3DtrmgIqihbY_d4ej8VryN85CIh5NiYhjWccRheiypVrl5AJ8hg8vo0E9lF4HjteR3yUI9u6jezV7xZ_CdHuAtmz5EO0M6vv5R-jvd_BAF3VqJ64cns2JG4z7eDSzZBpyEgArMTBl3C3PltEH-GjyEyolw2oyt_jIBjHyqtzDx9AUMvYnwwvsQ6eDpPjVHtZlgZeHZrgz8W7Ph_N4k8fo5Fb6_wlqlVVpnyFsAO2TxABjjW3GTCajwurEmoxzSZ2L2og3XavyWv7cv8LxSzVxbudqPSjKD4qK4ItpG8Ury2mQANnARjajp5oUV3DKCnBqA9v3K9uaBgV6s6H1bjNZVO2O5mq9eNrozeo3OBJ_O6RLW11CGSaBLAODlDeU4RkTEvbUUM_TMBFXXQL7aMFTJp7f3IDXaAfWrfrWHx6-QHd9w_0JfUx3UWsxu7QvgeItzKt6LWH047aX73-wRmef
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+rs-fMRI+Pre-processing+for+Enhanced+Signal-Noise+Separation%2C+Test-Retest+Reliability%2C+and+Group+Discrimination&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Shirer%2C+William+R&rft.au=Jiang%2C+Heidi&rft.au=Price%2C+Collin+M&rft.au=Ng%2C+Bernard&rft.date=2015-08-15&rft.eissn=1095-9572&rft.volume=117&rft.spage=67&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.05.015&rft_id=info%3Apmid%2F25987368&rft.externalDocID=25987368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon