Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination
Resting-state functional magnetic resonance imaging (rs-fMRI) has become an increasingly important tool in mapping the functional networks of the brain. This tool has been used to examine network changes induced by cognitive and emotional states, neurological traits, and neuropsychiatric disorders....
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 117; pp. 67 - 79 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.08.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 |
DOI | 10.1016/j.neuroimage.2015.05.015 |
Cover
Loading…
Abstract | Resting-state functional magnetic resonance imaging (rs-fMRI) has become an increasingly important tool in mapping the functional networks of the brain. This tool has been used to examine network changes induced by cognitive and emotional states, neurological traits, and neuropsychiatric disorders. However, noise that remains in the rs-fMRI data after preprocessing has limited the reliability of individual-subject results, wherein scanner artifacts, subject movements, and other noise sources induce non-neural temporal correlations in the blood oxygen level-dependent (BOLD) timeseries. Numerous preprocessing methods have been proposed to isolate and remove these confounds; however, the field has not coalesced around a standard preprocessing pipeline. In comparisons, these preprocessing methods are often assessed with only a single metric of rs-fMRI data quality, such as reliability, without considering other aspects in tandem, such as signal-to-noise ratio and group discriminability. The present study seeks to identify the data preprocessing pipeline that optimizes rs-fMRI data across multiple outcome measures. Specifically, we aim to minimize the noise in the data and maximize result reliability, while retaining the unique features that characterize distinct groups. We examine how these metrics are influenced by bandpass filter selection and noise regression in four datasets, totaling 181 rs-fMRI scans and 38 subject-driven memory scans. Additionally, we perform two different rs-fMRI analysis methods – dual regression and region-of-interest based functional connectivity – and highlight the preprocessing parameters that optimize both approaches. Our results expand upon previous reports of individual-scan reliability, and demonstrate that preprocessing parameter selection can significantly change the noisiness, reliability, and heterogeneity of rs-fMRI data. The application of our findings to rs-fMRI data analysis should improve the validity and reliability of rs-fMRI results, both at the individual-subject level and the group level.
•We examine hundreds of permutations of preprocessing parameters.•We measure how these parameters affect scan noise, reliability, and group discriminability.•We validate our findings on multiple datasets collected both by us and other groups.•Parameter selection influences noise, reliability, and group discriminability.•These metrics can be optimized simultaneously with correct parameter selection. |
---|---|
AbstractList | Resting-state functional magnetic resonance imaging (rs-fMRI) has become an increasingly important tool in mapping the functional networks of the brain. This tool has been used to examine network changes induced by cognitive and emotional states, neurological traits, and neuropsychiatric disorders. However, noise that remains in the rs-fMRI data after preprocessing has limited the reliability of individual-subject results, wherein scanner artifacts, subject movements, and other noise sources induce non-neural temporal correlations in the blood oxygen level-dependent (BOLD) timeseries. Numerous preprocessing methods have been proposed to isolate and remove these confounds; however, the field has not coalesced around a standard preprocessing pipeline. In comparisons, these preprocessing methods are often assessed with only a single metric of rs-fMRI data quality, such as reliability, without considering other aspects in tandem, such as signal-to-noise ratio and group discriminability. The present study seeks to identify the data preprocessing pipeline that optimizes rs-fMRI data across multiple outcome measures. Specifically, we aim to minimize the noise in the data and maximize result reliability, while retaining the unique features that characterize distinct groups. We examine how these metrics are influenced by bandpass filter selection and noise regression in four datasets, totaling 181 rs-fMRI scans and 38 subject-driven memory scans. Additionally, we perform two different rs-fMRI analysis methods - dual regression and region-of-interest based functional connectivity - and highlight the preprocessing parameters that optimize both approaches. Our results expand upon previous reports of individual-scan reliability, and demonstrate that preprocessing parameter selection can significantly change the noisiness, reliability, and heterogeneity of rs-fMRI data. The application of our findings to rs-fMRI data analysis should improve the validity and reliability of rs-fMRI results, both at the individual-subject level and the group level. Resting-state functional magnetic resonance imaging (rs-fMRI) has become an increasingly important tool in mapping the functional networks of the brain. This tool has been used to examine network changes induced by cognitive and emotional states, neurological traits, and neuropsychiatric disorders. However, noise that remains in the rs-fMRI data after preprocessing has limited the reliability of individual-subject results, wherein scanner artifacts, subject movements, and other noise sources induce non-neural temporal correlations in the blood oxygen level-dependent (BOLD) timeseries. Numerous preprocessing methods have been proposed to isolate and remove these confounds; however, the field has not coalesced around a standard preprocessing pipeline. In comparisons, these preprocessing methods are often assessed with only a single metric of rs-fMRI data quality, such as reliability, without considering other aspects in tandem, such as signal-to-noise ratio and group discriminability. The present study seeks to identify the data preprocessing pipeline that optimizes rs-fMRI data across multiple outcome measures. Specifically, we aim to minimize the noise in the data and maximize result reliability, while retaining the unique features that characterize distinct groups. We examine how these metrics are influenced by bandpass filter selection and noise regression in four datasets, totaling 181 rs-fMRI scans and 38 subject-driven memory scans. Additionally, we perform two different rs-fMRI analysis methods – dual regression and region-of-interest based functional connectivity – and highlight the preprocessing parameters that optimize both approaches. Our results expand upon previous reports of individual-scan reliability, and demonstrate that preprocessing parameter selection can significantly change the noisiness, reliability, and heterogeneity of rs-fMRI data. The application of our findings to rs-fMRI data analysis should improve the validity and reliability of rs-fMRI results, both at the individual-subject level and the group level. •We examine hundreds of permutations of preprocessing parameters.•We measure how these parameters affect scan noise, reliability, and group discriminability.•We validate our findings on multiple datasets collected both by us and other groups.•Parameter selection influences noise, reliability, and group discriminability.•These metrics can be optimized simultaneously with correct parameter selection. |
Author | Price, Collin M. Shirer, William R. Ng, Bernard Jiang, Heidi Greicius, Michael D. |
Author_xml | – sequence: 1 givenname: William R. surname: Shirer fullname: Shirer, William R. email: shirer@stanford.edu organization: Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA – sequence: 2 givenname: Heidi surname: Jiang fullname: Jiang, Heidi email: hhjiang@u.northwestern.edu organization: Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA – sequence: 3 givenname: Collin M. surname: Price fullname: Price, Collin M. organization: Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA – sequence: 4 givenname: Bernard surname: Ng fullname: Ng, Bernard organization: Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA – sequence: 5 givenname: Michael D. surname: Greicius fullname: Greicius, Michael D. organization: Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25987368$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9vEzEQxS1URP_AV0CWuHDoBju79toXRCmlVCoUpeVseb3j4LCxF3sXKT30s-MkBaRciDSyffi955l5x-jABw8IYUomlFD-ZjHxMMbglnoOkymhbEJyUfYEHVEiWSFZPT1Yv1lZCErlITpOaUEIkbQSz9DhlElRl1wcoYebfnBLd68HFzwOFsdU2M-zK_w1QtHHYCAl5-fYhogv_HftDbT41s297oovwSXAt9DruJGf4jtIQzGDIV94Bp3TjevcsDrF2rf4Moaxxx9cMjH_6DeS5-ip1V2CF4_3Cfr28eLu_FNxfXN5dX52XRjGxFBw3nBNK16LxpaGm1ZQCUSXDeP5FFJPpdVVzYURlvASGBGk1q3Vtq615E15gl5vffNIP8fcnlrmPqDrtIcwJkXrigtZ5b39H-VSlJLUTGb01Q66CGPMq8mUEIRUjPK14ctHamyW0Ko-j6_jSv0JIQNiC5gYUopg_yKUqHXeaqH-5a3WeSuSi7IsfbsjNW7YbHaI2nX7GLzfGkDe_i8HUSXjYJ2yi2AG1Qa3j8m7HRPTOe-M7n7Aaj-L39Nw49U |
CitedBy_id | crossref_primary_10_1088_1741_2552_aab66b crossref_primary_10_1016_j_neurobiolaging_2022_05_012 crossref_primary_10_1002_brb3_1705 crossref_primary_10_1016_j_dcn_2024_101464 crossref_primary_10_1016_j_neuroimage_2021_117864 crossref_primary_10_1162_jocn_a_01687 crossref_primary_10_1002_hbm_25701 crossref_primary_10_1016_j_mex_2024_102789 crossref_primary_10_3389_fncom_2016_00084 crossref_primary_10_1007_s11682_024_00903_9 crossref_primary_10_3389_fpsyt_2019_00156 crossref_primary_10_1002_hbm_26517 crossref_primary_10_1007_s11682_020_00396_2 crossref_primary_10_1016_j_neuroimage_2024_120585 crossref_primary_10_3389_fnins_2022_1000863 crossref_primary_10_1523_JNEUROSCI_1570_24_2025 crossref_primary_10_1002_hbm_26631 crossref_primary_10_1109_ACCESS_2019_2937482 crossref_primary_10_1007_s12021_022_09610_6 crossref_primary_10_1093_cercor_bhad393 crossref_primary_10_1016_j_tics_2022_12_011 crossref_primary_10_1002_hbm_26194 crossref_primary_10_3389_fnins_2019_00825 crossref_primary_10_1016_j_neurobiolaging_2018_10_002 crossref_primary_10_1016_j_neuroimage_2021_118449 crossref_primary_10_1016_j_neuroimage_2020_117056 crossref_primary_10_1162_imag_a_00411 crossref_primary_10_1016_j_neuroimage_2021_118284 crossref_primary_10_1093_schbul_sbz053 crossref_primary_10_3389_fnins_2017_00256 crossref_primary_10_1002_hbm_70184 crossref_primary_10_1093_cercor_bhx230 crossref_primary_10_1002_dev_22366 crossref_primary_10_1088_1361_6560_abb2ec crossref_primary_10_1002_hbm_25698 crossref_primary_10_1016_j_dcn_2020_100902 crossref_primary_10_1016_j_neubiorev_2024_105846 crossref_primary_10_1002_hbm_25332 crossref_primary_10_1016_j_jneumeth_2020_108884 crossref_primary_10_1017_S0033291719001442 crossref_primary_10_1016_j_nicl_2017_01_018 crossref_primary_10_1016_j_bbr_2021_113707 crossref_primary_10_1016_j_cortex_2020_08_028 crossref_primary_10_1155_2016_8240894 crossref_primary_10_1523_ENEURO_0129_19_2019 crossref_primary_10_1162_imag_a_00347 crossref_primary_10_1002_hbm_26535 crossref_primary_10_1360_TB_2024_0204 crossref_primary_10_1162_netn_a_00419 crossref_primary_10_3390_sym13091655 crossref_primary_10_1016_j_biopsycho_2024_108882 crossref_primary_10_1152_jn_00411_2021 crossref_primary_10_1016_j_neuroimage_2019_03_015 crossref_primary_10_1016_j_neuroimage_2022_119654 crossref_primary_10_3389_fnins_2022_1073800 crossref_primary_10_3389_fpubh_2019_00311 crossref_primary_10_1002_hbm_26091 crossref_primary_10_1002_wcs_1694 crossref_primary_10_1016_j_neuroimage_2020_117549 crossref_primary_10_1038_s42003_023_05566_8 crossref_primary_10_1093_cercor_bhw253 crossref_primary_10_1016_j_dcn_2023_101271 crossref_primary_10_1016_j_pscychresns_2022_111541 crossref_primary_10_3389_fnhum_2025_1531123 crossref_primary_10_1038_s41386_024_01962_8 crossref_primary_10_3389_fnins_2017_00075 crossref_primary_10_1016_j_ynirp_2021_100055 crossref_primary_10_1002_hbm_23653 crossref_primary_10_1002_hbm_24468 crossref_primary_10_1016_j_nicl_2019_102052 crossref_primary_10_1016_j_neuroimage_2021_118193 crossref_primary_10_1016_j_neuroimage_2019_116157 crossref_primary_10_1016_j_neuroimage_2023_120152 crossref_primary_10_1002_hbm_24389 crossref_primary_10_1002_hbm_26280 crossref_primary_10_1016_j_dcn_2018_02_004 crossref_primary_10_1016_j_neuroimage_2016_11_029 crossref_primary_10_1002_hbm_24381 crossref_primary_10_1016_j_neuroimage_2016_12_061 crossref_primary_10_1371_journal_pcbi_1005031 crossref_primary_10_1002_mrm_26365 crossref_primary_10_1007_s00429_024_02796_2 crossref_primary_10_1016_j_neuroimage_2020_117024 crossref_primary_10_3389_fpsyt_2023_1102368 crossref_primary_10_1016_j_jpain_2016_04_005 crossref_primary_10_1101_lm_048199_118 crossref_primary_10_3390_brainsci13111508 crossref_primary_10_1177_0271678X231204769 crossref_primary_10_1016_j_cobeha_2020_12_012 crossref_primary_10_1002_hbm_25462 crossref_primary_10_3389_fnagi_2016_00318 crossref_primary_10_3389_fnins_2016_00515 crossref_primary_10_1016_j_neuroimage_2018_03_011 crossref_primary_10_1016_j_neuroimage_2023_119972 crossref_primary_10_1007_s11682_022_00708_8 crossref_primary_10_1007_s11682_021_00584_8 crossref_primary_10_1007_s11357_021_00503_1 crossref_primary_10_1109_JBHI_2022_3159031 crossref_primary_10_3389_fnins_2021_624911 crossref_primary_10_1089_brain_2018_0610 crossref_primary_10_1016_j_neuroimage_2021_118648 crossref_primary_10_1016_j_neuroimage_2016_10_045 crossref_primary_10_1089_brain_2020_0970 crossref_primary_10_1155_2017_1403940 crossref_primary_10_3233_JAD_220946 crossref_primary_10_1016_j_neuroimage_2021_118246 crossref_primary_10_1016_j_mri_2021_10_028 crossref_primary_10_3233_JAD_180106 crossref_primary_10_1080_00207454_2019_1698568 crossref_primary_10_3389_fnins_2023_1206604 crossref_primary_10_3390_s23135866 crossref_primary_10_1002_hbm_24528 crossref_primary_10_3389_fnagi_2020_00177 crossref_primary_10_1016_j_neuroimage_2023_120297 crossref_primary_10_1016_j_neubiorev_2021_07_024 crossref_primary_10_1111_ejn_13717 crossref_primary_10_1177_1352458520977160 crossref_primary_10_3389_fnhum_2016_00314 crossref_primary_10_3389_fpsyg_2021_708973 crossref_primary_10_1152_jn_00675_2015 crossref_primary_10_1111_nyas_12882 crossref_primary_10_1016_j_bpsc_2016_03_004 crossref_primary_10_1016_j_jneumeth_2018_09_033 crossref_primary_10_1016_j_psyneuen_2019_04_001 crossref_primary_10_1016_j_biopsycho_2022_108349 crossref_primary_10_1016_j_media_2024_103403 crossref_primary_10_1093_ijnp_pyy100 crossref_primary_10_1016_j_jad_2025_01_157 crossref_primary_10_1002_hbm_22897 crossref_primary_10_1016_j_drugalcdep_2018_08_006 crossref_primary_10_1016_j_neuroimage_2016_04_047 crossref_primary_10_1089_brain_2017_0517 crossref_primary_10_1002_hbm_23500 crossref_primary_10_1016_j_neuroimage_2021_118331 crossref_primary_10_1016_j_neuropsychologia_2020_107737 crossref_primary_10_3174_ajnr_A8067 crossref_primary_10_1016_j_nicl_2016_03_016 crossref_primary_10_1002_hbm_24433 crossref_primary_10_1007_s00429_016_1286_x crossref_primary_10_1093_cercor_bhad097 crossref_primary_10_1162_NETN_a_00013 crossref_primary_10_3389_fnagi_2021_758298 crossref_primary_10_1038_s41398_017_0074_6 crossref_primary_10_1016_j_neuroimage_2016_05_062 crossref_primary_10_1162_netn_a_00054 crossref_primary_10_1016_j_neuropsychologia_2015_06_036 crossref_primary_10_1097_j_pain_0000000000000356 crossref_primary_10_1016_j_neuroimage_2016_12_018 |
Cites_doi | 10.1073/pnas.0811168106 10.1002/mrm.1910350312 10.1523/JNEUROSCI.3189-09.2009 10.1016/j.neuroimage.2009.05.012 10.1016/j.neuroimage.2011.10.018 10.1016/j.mri.2006.09.042 10.1093/cercor/bhn256 10.1016/j.neuroimage.2013.08.048 10.1016/j.neuroimage.2012.08.052 10.1016/j.neuroimage.2013.11.046 10.1016/j.neuroimage.2012.08.022 10.1523/JNEUROSCI.3987-10.2010 10.1523/JNEUROSCI.5587-06.2007 10.1016/j.neuroimage.2010.05.081 10.1002/mrm.1910340409 10.1016/j.mri.2007.03.009 10.1016/j.biopsych.2013.07.010 10.1523/JNEUROSCI.3874-05.2006 10.1006/nimg.2002.1132 10.1016/j.biopsych.2006.09.020 10.1073/pnas.0135058100 10.1002/hbm.20813 10.1093/brain/awq075 10.1016/S1053-8119(03)00097-1 10.1016/j.neuron.2009.03.024 10.1523/JNEUROSCI.5730-10.2011 10.1016/j.neuroimage.2013.04.081 10.1098/rstb.2005.1634 10.1212/WNL.78.1_MeetingAbstracts.P03.082 10.1073/pnas.0811879106 10.1016/j.neuroimage.2011.08.048 10.1002/mrm.1222 10.1016/j.neuroimage.2010.11.080 10.1016/j.neuroimage.2009.10.080 10.1523/JNEUROSCI.0305-12.2012 10.1002/mrm.1910390305 10.1002/hbm.10022 10.1002/mrm.22159 10.1073/pnas.0905267106 10.1002/mrm.10267 10.1002/hbm.10062 10.1093/cercor/bhr099 10.1016/j.neuroimage.2008.09.036 10.1212/WNL.34.7.939 10.1016/j.neuroimage.2013.03.004 10.1016/j.neuroimage.2012.03.017 10.1016/j.neuroimage.2009.05.005 10.1006/nimg.2001.1034 10.1073/pnas.0911855107 10.1152/jn.90777.2008 10.1016/j.neuroimage.2011.10.039 10.1073/pnas.0308627101 10.1007/s00429-009-0208-6 10.1016/j.neuroimage.2007.04.042 10.1016/j.neuroimage.2011.08.044 10.1006/nimg.2000.0582 10.1089/brain.2011.0018 10.1002/hbm.22307 10.1016/j.neuroimage.2005.08.044 10.1073/pnas.0601417103 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Aug 15, 2015 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Aug 15, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2015.05.015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 79 |
ExternalDocumentID | 4321092465 25987368 10_1016_j_neuroimage_2015_05_015 S105381191500395X |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS073498 – fundername: NINDS NIH HHS grantid: NS073498 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c558t-66b6a14678bf3c6cd819e0a3b560a389a29fa4768c8f063e50807adfaf77a96b3 |
IEDL.DBID | BENPR |
ISSN | 1053-8119 |
IngestDate | Thu Sep 04 23:01:52 EDT 2025 Fri Sep 05 07:00:40 EDT 2025 Wed Aug 13 11:36:57 EDT 2025 Wed Feb 19 02:26:48 EST 2025 Tue Jul 01 03:01:42 EDT 2025 Thu Apr 24 22:51:05 EDT 2025 Fri Feb 23 02:25:09 EST 2024 Tue Aug 26 16:31:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Resting-state Temporal filter Preprocessing Reliability Global signal Noise |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-66b6a14678bf3c6cd819e0a3b560a389a29fa4768c8f063e50807adfaf77a96b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25987368 |
PQID | 1880045167 |
PQPubID | 2031077 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1746894957 proquest_miscellaneous_1698390759 proquest_journals_1880045167 pubmed_primary_25987368 crossref_primary_10_1016_j_neuroimage_2015_05_015 crossref_citationtrail_10_1016_j_neuroimage_2015_05_015 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2015_05_015 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_05_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-15 |
PublicationDateYYYYMMDD | 2015-08-15 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Hampson, Peterson, Skudlarski, Gatenby, Gore (bb0135) 2002; 15 Thomason, Dennis, Joshi, Joshi, Dinov, Chang, Henry, Johnson, Thompson, Toga, Glover, Van Horn, Gotlib (bb0280) 2011; 55 Craddock, Holtzheimer, Hu, Mayberg (bb0060) 2009; 62 Honey, Sporns, Cammoun, Gigandet, Thiran, Meuli, Hagmann (bb0145) 2009; 106 Zhou, Greicius, Gennatas, Growdon, Jang, Rabinovici, Kramer, Weiner, Miller, Seeley (bb0305) 2010; 133 Glover, Lai (bb0105) 1998; 39 Kim, Adalsteinsson, Glover, Spielman (bb0165) 2002; 48 Bellec, Perlbarg, Jbabdi, Pelegrini-Issac, Anton, Doyon, Benali (bb0030) 2006; 29 Davey, Grayden, Egan, Johnston (bb0080) 2013; 64 Power, Barnes, Snyder, Schlaggar, Petersen (bb0205) 2012; 59 Chai, Castanon, Ongur, Whitfield-Gabrieli (bb0050) 2012; 59 Fox, Zhang, Snyder, Raichle (bb0090) 2009; 101 McKhann, Drachman, Folstein, Katzman, Price, Stadlan (bb0190) 1984; 34 Greicius, Krasnow, Reiss, Menon (bb0120) 2003; 100 Braun, Plichta, Esslinger, Sauer, Haddad, Grimm, Mier, Mohnke, Heinz, Erk, Walter, Seiferth, Kirsch, Meyer-Lindenberg (bb0045) 2012; 59 Friston, Williams, Howard, Frackowiak, Turner (bb0095) 1996; 35 Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bb0070) 2006; 103 Ashburner, Friston (bb0015) 2000; 11 Filippini, MacIntosh, Hough, Goodwin, Frisoni, Smith, Matthews, Beckmann, Mackay (bb0085) 2009; 106 Johnson, Sperling, Sepulcre (bb0160) 2013; 74 Perlbarg, Bellec, Anton, Pelegrini-Issac, Doyon, Benali (bb0200) 2007; 25 Richiardi, Eryilmaz, Schwartz, Vuilleumier, Van De Ville (bb0220) 2010; 56 Kiviniemi, Starck, Remes, Long, Nikkinen, Haapea, Veijola, Moilanen, Isohanni, Zang, Tervonen (bb0175) 2009; 30 Satterthwaite, Elliott, Gerraty, Ruparel, Loughead, Calkins, Eickhoff, Hakonarson, Gur, Gur, Wolf (bb0230) 2013; 64 Shehzad, Kelly, Reiss, Gee, Gotimer, Uddin, Lee, Margulies, Roy, Biswal, Petkova, Castellanos, Milham (bb0245) 2009; 19 Behzadi, Restom, Liau, Liu (bb0025) 2007; 37 Zuo, Kelly, Adelstein, Klein, Castellanos, Milham (bb0310) 2010; 49 Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann, Adelstein, Buckner, Colcombe, Dogonowski, Ernst, Fair, Hampson, Hoptman, Hyde, Kiviniemi, Kotter, Li, Lin, Lowe, Mackay, Madden, Madsen, Margulies, Mayberg, McMahon, Monk, Mostofsky, Nagel, Pekar, Peltier, Petersen, Riedl, Rombouts, Rypma, Schlaggar, Schmidt, Seidler, Siegle, Sorg, Teng, Veijola, Villringer, Walter, Wang, Weng, Whitfield-Gabrieli, Williamson, Windischberger, Zang, Zhang, Castellanos, Milham (bb0040) 2010; 107 Beckmann, DeLuca, Devlin, Smith (bb0020) 2005; 360 Siegel, Power, Dubis, Vogel, Church, Schlaggar, Petersen (bb0260) 2014; 35 Wu, Chen, Liu, Chao, Biswal, Lin (bb0290) 2011; 1 Smith (bb0265) 2002; 17 Greicius, Flores, Menon, Glover, Solvason, Kenna, Reiss, Schatzberg (bb0115) 2007; 62 Strother, Anderson, Hansen, Kjems, Kustra, Sidtis, Frutiger, Muley, LaConte, Rottenberg (bb0275) 2002; 15 Seeley, Crawford, Zhou, Miller, Greicius (bb0235) 2009; 62 Power, Mitra, Laumann, Snyder, Schlagger, Petersen (bb0215) 2014; 84 Kiviniemi, Kantola, Jauhiainen, Hyvarinen, Tervonen (bb0170) 2003; 19 Seeley, Menon, Schatzberg, Keller, Glover, Kenna, Reiss, Greicius (bb0240) 2007; 27 Power, Barnes, Snyder, Schlaggar, Petersen (bb0210) 2013; 76 Glover (bb0100) 2012; 62 Achard, Salvador, Whitcher, Suckling, Bullmore (bb0005) 2006; 26 Murphy, Birn, Handwerker, Jones, Bandettini (bb0195) 2009; 44 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bb0270) 2009; 106 Yan, Cheung, Kelly, Colcombe, Craddock, Di Martino, Li, Zuo, Castellanos, Milham (bb0295) 2013; 76 Sheline, Morris, Snyder, Price, Yan, D'Angelo, Liu, Dixit, Benzinger, Fagan, Goate, Mintun (bb0250) 2010; 30 Yan, Craddock, Zuo, Zang, Milham (bb0300) 2013; 80 Damoiseaux, Seeley, Zhou, Shirer, Coppola, Karydas, Rosen, Miller, Kramer, Greicius, Alzheimer's Disease Neuroimaging (bb0075) 2012; 32 Chang, Glover (bb0055) 2009; 47 Biswal, Yetkin, Haughton, Hyde (bb0035) 1995; 34 Weissenbacher, Kasess, Gerstl, Lanzenberger, Moser, Windischberger (bb0285) 2009; 47 Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bb0225) 2014; 90 Shirer, Ryali, Rykhlevskaia, Menon, Greicius (bb0255) 2012; 22 Andersson, Jenkinson, Smith (bb0010) 2007 Greicius, Srivastava, Reiss, Menon (bb0125) 2004; 101 Guo, Kurth, Zhou, Mayer, Eickhoff, Kramer, Seeley (bb0130) 2012; 78 Ko, Darvas, Poliakov, Ojemann, Sorensen (bb0180) 2011; 31 Glover, Law (bb0110) 2001; 46 Damoiseaux, Greicius (bb0065) 2009; 213 Lemieux, Salek-Haddadi, Lund, Laufs, Carmichael (bb0185) 2007; 25 Hedden, Van Dijk, Becker, Mehta, Sperling, Johnson, Buckner (bb0140) 2009; 29 Jenkinson, Bannister, Brady, Smith (bb0150) 2002; 17 Craddock (10.1016/j.neuroimage.2015.05.015_bb0060) 2009; 62 Ko (10.1016/j.neuroimage.2015.05.015_bb0180) 2011; 31 Perlbarg (10.1016/j.neuroimage.2015.05.015_bb0200) 2007; 25 Achard (10.1016/j.neuroimage.2015.05.015_bb0005) 2006; 26 Filippini (10.1016/j.neuroimage.2015.05.015_bb0085) 2009; 106 Glover (10.1016/j.neuroimage.2015.05.015_bb0105) 1998; 39 Biswal (10.1016/j.neuroimage.2015.05.015_bb0040) 2010; 107 Hedden (10.1016/j.neuroimage.2015.05.015_bb0140) 2009; 29 Salimi-Khorshidi (10.1016/j.neuroimage.2015.05.015_bb0225) 2014; 90 Johnson (10.1016/j.neuroimage.2015.05.015_bb0160) 2013; 74 Yan (10.1016/j.neuroimage.2015.05.015_bb0295) 2013; 76 Fox (10.1016/j.neuroimage.2015.05.015_bb0090) 2009; 101 Beckmann (10.1016/j.neuroimage.2015.05.015_bb0020) 2005; 360 Chai (10.1016/j.neuroimage.2015.05.015_bb0050) 2012; 59 Guo (10.1016/j.neuroimage.2015.05.015_bb0130) 2012; 78 Kiviniemi (10.1016/j.neuroimage.2015.05.015_bb0175) 2009; 30 Biswal (10.1016/j.neuroimage.2015.05.015_bb0035) 1995; 34 Greicius (10.1016/j.neuroimage.2015.05.015_bb0120) 2003; 100 Seeley (10.1016/j.neuroimage.2015.05.015_bb0240) 2007; 27 Damoiseaux (10.1016/j.neuroimage.2015.05.015_bb0065) 2009; 213 Honey (10.1016/j.neuroimage.2015.05.015_bb0145) 2009; 106 Behzadi (10.1016/j.neuroimage.2015.05.015_bb0025) 2007; 37 Davey (10.1016/j.neuroimage.2015.05.015_bb0080) 2013; 64 Richiardi (10.1016/j.neuroimage.2015.05.015_bb0220) 2010; 56 Power (10.1016/j.neuroimage.2015.05.015_bb0205) 2012; 59 Satterthwaite (10.1016/j.neuroimage.2015.05.015_bb0230) 2013; 64 Zhou (10.1016/j.neuroimage.2015.05.015_bb0305) 2010; 133 Weissenbacher (10.1016/j.neuroimage.2015.05.015_bb0285) 2009; 47 Yan (10.1016/j.neuroimage.2015.05.015_bb0300) 2013; 80 Greicius (10.1016/j.neuroimage.2015.05.015_bb0125) 2004; 101 Greicius (10.1016/j.neuroimage.2015.05.015_bb0115) 2007; 62 McKhann (10.1016/j.neuroimage.2015.05.015_bb0190) 1984; 34 Glover (10.1016/j.neuroimage.2015.05.015_bb0110) 2001; 46 Power (10.1016/j.neuroimage.2015.05.015_bb0215) 2014; 84 Wu (10.1016/j.neuroimage.2015.05.015_bb0290) 2011; 1 Lemieux (10.1016/j.neuroimage.2015.05.015_bb0185) 2007; 25 Strother (10.1016/j.neuroimage.2015.05.015_bb0275) 2002; 15 Kim (10.1016/j.neuroimage.2015.05.015_bb0165) 2002; 48 Ashburner (10.1016/j.neuroimage.2015.05.015_bb0015) 2000; 11 Glover (10.1016/j.neuroimage.2015.05.015_bb0100) 2012; 62 Murphy (10.1016/j.neuroimage.2015.05.015_bb0195) 2009; 44 Andersson (10.1016/j.neuroimage.2015.05.015_bb0010) 2007 Smith (10.1016/j.neuroimage.2015.05.015_bb0265) 2002; 17 Hampson (10.1016/j.neuroimage.2015.05.015_bb0135) 2002; 15 Thomason (10.1016/j.neuroimage.2015.05.015_bb0280) 2011; 55 Chang (10.1016/j.neuroimage.2015.05.015_bb0055) 2009; 47 Friston (10.1016/j.neuroimage.2015.05.015_bb0095) 1996; 35 Shehzad (10.1016/j.neuroimage.2015.05.015_bb0245) 2009; 19 Smith (10.1016/j.neuroimage.2015.05.015_bb0270) 2009; 106 Sheline (10.1016/j.neuroimage.2015.05.015_bb0250) 2010; 30 Damoiseaux (10.1016/j.neuroimage.2015.05.015_bb0070) 2006; 103 Jenkinson (10.1016/j.neuroimage.2015.05.015_bb0150) 2002; 17 Seeley (10.1016/j.neuroimage.2015.05.015_bb0235) 2009; 62 Power (10.1016/j.neuroimage.2015.05.015_bb0210) 2013; 76 Shirer (10.1016/j.neuroimage.2015.05.015_bb0255) 2012; 22 Braun (10.1016/j.neuroimage.2015.05.015_bb0045) 2012; 59 Kiviniemi (10.1016/j.neuroimage.2015.05.015_bb0170) 2003; 19 Bellec (10.1016/j.neuroimage.2015.05.015_bb0030) 2006; 29 Siegel (10.1016/j.neuroimage.2015.05.015_bb0260) 2014; 35 Damoiseaux (10.1016/j.neuroimage.2015.05.015_bb0075) 2012; 32 Zuo (10.1016/j.neuroimage.2015.05.015_bb0310) 2010; 49 |
References_xml | – volume: 74 start-page: 318 year: 2013 end-page: 319 ident: bb0160 article-title: Functional connectivity in Alzheimer's disease: measurement and meaning publication-title: Biol. Psychiatry – volume: 80 start-page: 246 year: 2013 end-page: 262 ident: bb0300 article-title: Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes publication-title: NeuroImage – volume: 15 start-page: 747 year: 2002 end-page: 771 ident: bb0275 article-title: The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework publication-title: NeuroImage – volume: 90 start-page: 449 year: 2014 end-page: 468 ident: bb0225 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: NeuroImage – volume: 37 start-page: 90 year: 2007 end-page: 101 ident: bb0025 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: NeuroImage – volume: 47 start-page: 1448 year: 2009 end-page: 1459 ident: bb0055 article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations publication-title: NeuroImage – volume: 19 start-page: 253 year: 2003 end-page: 260 ident: bb0170 article-title: Independent component analysis of nondeterministic fMRI signal sources publication-title: NeuroImage – volume: 64 start-page: 240 year: 2013 end-page: 256 ident: bb0230 article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data publication-title: NeuroImage – volume: 133 start-page: 1352 year: 2010 end-page: 1367 ident: bb0305 article-title: Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease publication-title: Brain – volume: 56 start-page: 616 year: 2010 end-page: 626 ident: bb0220 article-title: Decoding brain states from fMRI connectivity graphs publication-title: NeuroImage – volume: 22 start-page: 158 year: 2012 end-page: 165 ident: bb0255 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cereb. Cortex – volume: 107 start-page: 4734 year: 2010 end-page: 4739 ident: bb0040 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 101 start-page: 3270 year: 2009 end-page: 3283 ident: bb0090 article-title: The Global Signal and Observed Anticorrelated Resting State Brain Networks publication-title: J. Neurophysiol. – volume: 29 start-page: 12686 year: 2009 end-page: 12694 ident: bb0140 article-title: Disruption of functional connectivity in clinically normal older adults harboring amyloid burden publication-title: J. Neurosci. – volume: 100 start-page: 253 year: 2003 end-page: 258 ident: bb0120 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 62 start-page: 42 year: 2009 end-page: 52 ident: bb0235 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bb0270 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 39 start-page: 361 year: 1998 end-page: 368 ident: bb0105 article-title: Self-navigated spiral fMRI: interleaved versus single-shot publication-title: Magn. Reson. Med. – volume: 101 start-page: 4637 year: 2004 end-page: 4642 ident: bb0125 article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 26 start-page: 63 year: 2006 end-page: 72 ident: bb0005 article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs publication-title: J. Neurosci. – volume: 44 start-page: 893 year: 2009 end-page: 905 ident: bb0195 article-title: The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? publication-title: NeuroImage – volume: 59 start-page: 2142 year: 2012 end-page: 2154 ident: bb0205 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage – volume: 27 start-page: 2349 year: 2007 end-page: 2356 ident: bb0240 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J. Neurosci. – volume: 49 start-page: 2163 year: 2010 end-page: 2177 ident: bb0310 article-title: Reliable intrinsic connectivity networks: Test-retest evaluation using ICA and dual regression approach publication-title: NeuroImage – volume: 55 start-page: 165 year: 2011 end-page: 175 ident: bb0280 article-title: Resting-state fMRI can reliably map neural networks in children publication-title: NeuroImage – volume: 30 start-page: 17035 year: 2010 end-page: 17040 ident: bb0250 article-title: APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Abeta42 publication-title: J. Neurosci. – volume: 103 start-page: 13848 year: 2006 end-page: 13853 ident: bb0070 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 30 start-page: 3865 year: 2009 end-page: 3886 ident: bb0175 article-title: Functional segmentation of the brain cortex using high model order group PICA publication-title: Hum. Brain Mapp. – volume: 78 year: 2012 ident: bb0130 article-title: One-Year Test-Retest Reliability of Intrinsic Connectivity Network fMRI in Older Adults publication-title: Neurology – volume: 46 start-page: 515 year: 2001 end-page: 522 ident: bb0110 article-title: Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts publication-title: Magn. Reson. Med. – volume: 11 start-page: 805 year: 2000 end-page: 821 ident: bb0015 article-title: Voxel-based morphometry–the methods publication-title: NeuroImage – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bb0150 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – volume: 19 start-page: 2209 year: 2009 end-page: 2229 ident: bb0245 article-title: The resting brain: unconstrained yet reliable publication-title: Cereb. Cortex – volume: 15 start-page: 247 year: 2002 end-page: 262 ident: bb0135 article-title: Detection of functional connectivity using temporal correlations in MR images publication-title: Hum. Brain Mapp. – volume: 106 start-page: 7209 year: 2009 end-page: 7214 ident: bb0085 article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bb0035 article-title: Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar Mri publication-title: Magn. Reson. Med. – volume: 32 start-page: 8254 year: 2012 end-page: 8262 ident: bb0075 article-title: Gender modulates the APOE epsilon4 effect in healthy older adults: convergent evidence from functional brain connectivity and spinal fluid tau levels publication-title: J. Neurosci. – volume: 213 start-page: 525 year: 2009 end-page: 533 ident: bb0065 article-title: Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity publication-title: Brain Struct. Funct. – volume: 76 start-page: 183 year: 2013 end-page: 201 ident: bb0295 article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics publication-title: NeuroImage – volume: 360 start-page: 1001 year: 2005 end-page: 1013 ident: bb0020 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 76 start-page: 439 year: 2013 end-page: 441 ident: bb0210 article-title: Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp publication-title: NeuroImage – volume: 48 start-page: 715 year: 2002 end-page: 722 ident: bb0165 article-title: Regularized higher-order in vivo shimming publication-title: Magn. Reson. Med. – volume: 31 start-page: 11728 year: 2011 end-page: 11732 ident: bb0180 article-title: Quasi-periodic fluctuations in default mode network electrophysiology publication-title: J. Neurosci. – volume: 84 start-page: 320 year: 2014 end-page: 341 ident: bb0215 article-title: Methods to detect, characterize, and remove artifact in resting-state fMRI publication-title: NeuroImage – volume: 34 start-page: 939 year: 1984 end-page: 944 ident: bb0190 article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease publication-title: Neurology – volume: 106 start-page: 2035 year: 2009 end-page: 2040 ident: bb0145 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 25 start-page: 894 year: 2007 end-page: 901 ident: bb0185 article-title: Modelling large motion events in fMRI studies of patients with epilepsy publication-title: Magn. Reson. Imaging – volume: 59 start-page: 1404 year: 2012 end-page: 1412 ident: bb0045 article-title: Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures publication-title: NeuroImage – volume: 35 start-page: 346 year: 1996 end-page: 355 ident: bb0095 article-title: Movement-related effects in fMRI time-series publication-title: Magn. Reson. Med. – volume: 1 start-page: 401 year: 2011 end-page: 410 ident: bb0290 article-title: Empirical evaluations of slice-timing, smoothing, and normalization effects in seed-based, resting-state functional magnetic resonance imaging analyses publication-title: Brain Connect. – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bb0265 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – year: 2007 ident: bb0010 article-title: Non-linear registration, aka Spatial normalisation publication-title: FMRIB technical report TR07JA2 – volume: 64 start-page: 728 year: 2013 end-page: 740 ident: bb0080 article-title: Filtering induces correlation in fMRI resting state data publication-title: NeuroImage – volume: 25 start-page: 35 year: 2007 end-page: 46 ident: bb0200 article-title: CORSICA: correlation of structured noise in fMRI by automatic identification of ICA components publication-title: Magn. Reson. Imaging – volume: 62 start-page: 1619 year: 2009 end-page: 1628 ident: bb0060 article-title: Disease state prediction from resting state functional connectivity publication-title: Magn. Reson. Med. – volume: 59 start-page: 1420 year: 2012 end-page: 1428 ident: bb0050 article-title: Anticorrelations in resting state networks without global signal regression publication-title: NeuroImage – volume: 35 start-page: 1981 year: 2014 end-page: 1996 ident: bb0260 article-title: Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points publication-title: Hum. Brain Mapp. – volume: 62 start-page: 429 year: 2007 end-page: 437 ident: bb0115 article-title: Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus publication-title: Biol. Psychiatry – volume: 29 start-page: 1231 year: 2006 end-page: 1243 ident: bb0030 article-title: Identification of large-scale networks in the brain using fMRI publication-title: NeuroImage – volume: 47 start-page: 1408 year: 2009 end-page: 1416 ident: bb0285 article-title: Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies publication-title: NeuroImage – volume: 62 start-page: 706 year: 2012 end-page: 712 ident: bb0100 article-title: Spiral imaging in fMRI publication-title: NeuroImage – volume: 106 start-page: 2035 year: 2009 ident: 10.1016/j.neuroimage.2015.05.015_bb0145 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0811168106 – volume: 35 start-page: 346 year: 1996 ident: 10.1016/j.neuroimage.2015.05.015_bb0095 article-title: Movement-related effects in fMRI time-series publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910350312 – volume: 29 start-page: 12686 year: 2009 ident: 10.1016/j.neuroimage.2015.05.015_bb0140 article-title: Disruption of functional connectivity in clinically normal older adults harboring amyloid burden publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3189-09.2009 – volume: 47 start-page: 1448 year: 2009 ident: 10.1016/j.neuroimage.2015.05.015_bb0055 article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.012 – volume: 59 start-page: 2142 year: 2012 ident: 10.1016/j.neuroimage.2015.05.015_bb0205 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 25 start-page: 35 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2015.05.015_bb0200 article-title: CORSICA: correlation of structured noise in fMRI by automatic identification of ICA components publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2006.09.042 – volume: 19 start-page: 2209 year: 2009 ident: 10.1016/j.neuroimage.2015.05.015_bb0245 article-title: The resting brain: unconstrained yet reliable publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn256 – volume: 84 start-page: 320 year: 2014 ident: 10.1016/j.neuroimage.2015.05.015_bb0215 article-title: Methods to detect, characterize, and remove artifact in resting-state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 64 start-page: 240 year: 2013 ident: 10.1016/j.neuroimage.2015.05.015_bb0230 article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.08.052 – volume: 90 start-page: 449 year: 2014 ident: 10.1016/j.neuroimage.2015.05.015_bb0225 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 64 start-page: 728 year: 2013 ident: 10.1016/j.neuroimage.2015.05.015_bb0080 article-title: Filtering induces correlation in fMRI resting state data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.08.022 – volume: 30 start-page: 17035 year: 2010 ident: 10.1016/j.neuroimage.2015.05.015_bb0250 article-title: APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Abeta42 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3987-10.2010 – volume: 27 start-page: 2349 year: 2007 ident: 10.1016/j.neuroimage.2015.05.015_bb0240 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5587-06.2007 – volume: 56 start-page: 616 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2015.05.015_bb0220 article-title: Decoding brain states from fMRI connectivity graphs publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.05.081 – volume: 34 start-page: 537 year: 1995 ident: 10.1016/j.neuroimage.2015.05.015_bb0035 article-title: Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar Mri publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340409 – year: 2007 ident: 10.1016/j.neuroimage.2015.05.015_bb0010 article-title: Non-linear registration, aka Spatial normalisation – volume: 25 start-page: 894 year: 2007 ident: 10.1016/j.neuroimage.2015.05.015_bb0185 article-title: Modelling large motion events in fMRI studies of patients with epilepsy publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2007.03.009 – volume: 74 start-page: 318 year: 2013 ident: 10.1016/j.neuroimage.2015.05.015_bb0160 article-title: Functional connectivity in Alzheimer's disease: measurement and meaning publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2013.07.010 – volume: 26 start-page: 63 year: 2006 ident: 10.1016/j.neuroimage.2015.05.015_bb0005 article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3874-05.2006 – volume: 17 start-page: 825 year: 2002 ident: 10.1016/j.neuroimage.2015.05.015_bb0150 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 62 start-page: 429 year: 2007 ident: 10.1016/j.neuroimage.2015.05.015_bb0115 article-title: Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2006.09.020 – volume: 100 start-page: 253 year: 2003 ident: 10.1016/j.neuroimage.2015.05.015_bb0120 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0135058100 – volume: 30 start-page: 3865 year: 2009 ident: 10.1016/j.neuroimage.2015.05.015_bb0175 article-title: Functional segmentation of the brain cortex using high model order group PICA publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20813 – volume: 133 start-page: 1352 year: 2010 ident: 10.1016/j.neuroimage.2015.05.015_bb0305 article-title: Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awq075 – volume: 19 start-page: 253 year: 2003 ident: 10.1016/j.neuroimage.2015.05.015_bb0170 article-title: Independent component analysis of nondeterministic fMRI signal sources publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00097-1 – volume: 62 start-page: 42 year: 2009 ident: 10.1016/j.neuroimage.2015.05.015_bb0235 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron doi: 10.1016/j.neuron.2009.03.024 – volume: 31 start-page: 11728 year: 2011 ident: 10.1016/j.neuroimage.2015.05.015_bb0180 article-title: Quasi-periodic fluctuations in default mode network electrophysiology publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5730-10.2011 – volume: 80 start-page: 246 year: 2013 ident: 10.1016/j.neuroimage.2015.05.015_bb0300 article-title: Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.081 – volume: 360 start-page: 1001 year: 2005 ident: 10.1016/j.neuroimage.2015.05.015_bb0020 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2005.1634 – volume: 78 year: 2012 ident: 10.1016/j.neuroimage.2015.05.015_bb0130 article-title: One-Year Test-Retest Reliability of Intrinsic Connectivity Network fMRI in Older Adults publication-title: Neurology doi: 10.1212/WNL.78.1_MeetingAbstracts.P03.082 – volume: 106 start-page: 7209 year: 2009 ident: 10.1016/j.neuroimage.2015.05.015_bb0085 article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0811879106 – volume: 59 start-page: 1420 year: 2012 ident: 10.1016/j.neuroimage.2015.05.015_bb0050 article-title: Anticorrelations in resting state networks without global signal regression publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.048 – volume: 46 start-page: 515 year: 2001 ident: 10.1016/j.neuroimage.2015.05.015_bb0110 article-title: Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1222 – volume: 55 start-page: 165 year: 2011 ident: 10.1016/j.neuroimage.2015.05.015_bb0280 article-title: Resting-state fMRI can reliably map neural networks in children publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.11.080 – volume: 49 start-page: 2163 year: 2010 ident: 10.1016/j.neuroimage.2015.05.015_bb0310 article-title: Reliable intrinsic connectivity networks: Test-retest evaluation using ICA and dual regression approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.080 – volume: 32 start-page: 8254 year: 2012 ident: 10.1016/j.neuroimage.2015.05.015_bb0075 article-title: Gender modulates the APOE epsilon4 effect in healthy older adults: convergent evidence from functional brain connectivity and spinal fluid tau levels publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0305-12.2012 – volume: 39 start-page: 361 year: 1998 ident: 10.1016/j.neuroimage.2015.05.015_bb0105 article-title: Self-navigated spiral fMRI: interleaved versus single-shot publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390305 – volume: 15 start-page: 247 year: 2002 ident: 10.1016/j.neuroimage.2015.05.015_bb0135 article-title: Detection of functional connectivity using temporal correlations in MR images publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10022 – volume: 62 start-page: 1619 year: 2009 ident: 10.1016/j.neuroimage.2015.05.015_bb0060 article-title: Disease state prediction from resting state functional connectivity publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22159 – volume: 106 start-page: 13040 year: 2009 ident: 10.1016/j.neuroimage.2015.05.015_bb0270 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0905267106 – volume: 48 start-page: 715 year: 2002 ident: 10.1016/j.neuroimage.2015.05.015_bb0165 article-title: Regularized higher-order in vivo shimming publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10267 – volume: 17 start-page: 143 year: 2002 ident: 10.1016/j.neuroimage.2015.05.015_bb0265 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – volume: 22 start-page: 158 year: 2012 ident: 10.1016/j.neuroimage.2015.05.015_bb0255 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr099 – volume: 44 start-page: 893 year: 2009 ident: 10.1016/j.neuroimage.2015.05.015_bb0195 article-title: The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.09.036 – volume: 34 start-page: 939 year: 1984 ident: 10.1016/j.neuroimage.2015.05.015_bb0190 article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease publication-title: Neurology doi: 10.1212/WNL.34.7.939 – volume: 76 start-page: 183 year: 2013 ident: 10.1016/j.neuroimage.2015.05.015_bb0295 article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.004 – volume: 76 start-page: 439 year: 2013 ident: 10.1016/j.neuroimage.2015.05.015_bb0210 article-title: Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.017 – volume: 47 start-page: 1408 year: 2009 ident: 10.1016/j.neuroimage.2015.05.015_bb0285 article-title: Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.005 – volume: 15 start-page: 747 year: 2002 ident: 10.1016/j.neuroimage.2015.05.015_bb0275 article-title: The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework publication-title: NeuroImage doi: 10.1006/nimg.2001.1034 – volume: 107 start-page: 4734 year: 2010 ident: 10.1016/j.neuroimage.2015.05.015_bb0040 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0911855107 – volume: 101 start-page: 3270 year: 2009 ident: 10.1016/j.neuroimage.2015.05.015_bb0090 article-title: The Global Signal and Observed Anticorrelated Resting State Brain Networks publication-title: J. Neurophysiol. doi: 10.1152/jn.90777.2008 – volume: 62 start-page: 706 year: 2012 ident: 10.1016/j.neuroimage.2015.05.015_bb0100 article-title: Spiral imaging in fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.039 – volume: 101 start-page: 4637 year: 2004 ident: 10.1016/j.neuroimage.2015.05.015_bb0125 article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0308627101 – volume: 213 start-page: 525 year: 2009 ident: 10.1016/j.neuroimage.2015.05.015_bb0065 article-title: Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity publication-title: Brain Struct. Funct. doi: 10.1007/s00429-009-0208-6 – volume: 37 start-page: 90 year: 2007 ident: 10.1016/j.neuroimage.2015.05.015_bb0025 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.04.042 – volume: 59 start-page: 1404 year: 2012 ident: 10.1016/j.neuroimage.2015.05.015_bb0045 article-title: Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.044 – volume: 11 start-page: 805 year: 2000 ident: 10.1016/j.neuroimage.2015.05.015_bb0015 article-title: Voxel-based morphometry–the methods publication-title: NeuroImage doi: 10.1006/nimg.2000.0582 – volume: 1 start-page: 401 year: 2011 ident: 10.1016/j.neuroimage.2015.05.015_bb0290 article-title: Empirical evaluations of slice-timing, smoothing, and normalization effects in seed-based, resting-state functional magnetic resonance imaging analyses publication-title: Brain Connect. doi: 10.1089/brain.2011.0018 – volume: 35 start-page: 1981 year: 2014 ident: 10.1016/j.neuroimage.2015.05.015_bb0260 article-title: Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22307 – volume: 29 start-page: 1231 year: 2006 ident: 10.1016/j.neuroimage.2015.05.015_bb0030 article-title: Identification of large-scale networks in the brain using fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.08.044 – volume: 103 start-page: 13848 year: 2006 ident: 10.1016/j.neuroimage.2015.05.015_bb0070 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0601417103 |
SSID | ssj0009148 |
Score | 2.5547075 |
Snippet | Resting-state functional magnetic resonance imaging (rs-fMRI) has become an increasingly important tool in mapping the functional networks of the brain. This... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 67 |
SubjectTerms | Adolescent Adult Aged Alzheimer's disease Brain - physiology Brain Mapping - methods Datasets Discrimination Female Global signal Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Middle Aged Nerve Net - physiology Neurodegeneration Noise Optimization Preprocessing Quality Regression Analysis Reliability Reproducibility of Results Resting-state Signal-To-Noise Ratio Studies Temporal filter Young Adult |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHhAXxJuFgozEsWbz8CMWJ1RaFaQtqNtKe7PsxIYgmqx2twcu_e3MxM5WHIpWQsoliSey_Jj5bH_zhZB3vshD4YVjzjUN44UVzJXas8q6OpNVneUNJifPzuTpJf-yEIs9cjTmwiCtMvn-6NMHb52eTFNrTpdtO50DMoBwA-sNgQmmYoEZ7Fyhfv77m1uah855TIcTJcPSic0TOV6DZmR7BTMXSV4ianiKu0LUXRB0CEUnD8mDhCHpx1jNR2TPd4_JvVk6JX9Cbr6CH7hKCZa0D3S1ZmF2_pl-W3m2jJkBELEo4FV63P0YOAB03n6Hj7Kzvl17OvdRErzvDukFVIWd4_7shiKBOQp7_z6ktmvosHVFP7XofJBUgyZPyeXJ8cXRKUv_WWC1ENWGSemkRY9ZuVDWsm4AJfjMlg7QkAVAYwsdLId1SV0FQDQeMF2mbBNsUMpq6cpnZL_rO_-CUAcxtygc4Mbcc-m4zhpvC--4UlqEkE2IGpvW1EmEHP-F8cuMbLOf5rZTDHaKyeDKxYTkW8tlFOLYwUaPvWfGRFNwjQaixQ62H7a2fw3IHa0PxsFiklNYG5S-QzkfqSbk7fY1TGc8o7Gd76-hjNQAWQHH6X-UUVxWGla28J3ncSBumwRWs5UqZfXyv6r_itzHO9w7z8UB2d-srv1rAF8b92aYXX8AjJ0wsA priority: 102 providerName: Elsevier |
Title | Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191500395X https://dx.doi.org/10.1016/j.neuroimage.2015.05.015 https://www.ncbi.nlm.nih.gov/pubmed/25987368 https://www.proquest.com/docview/1880045167 https://www.proquest.com/docview/1698390759 https://www.proquest.com/docview/1746894957 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdYKyEuiG8KozISxxniJP4SBzRGpw5oqbpN6i2yExuKWFLa7sBlfzvPtdOeNlWKkkP8LMsf7_38_N7PCL2zKXWpZYYYU1UkTzUjJlOWSG3KhMsyoZVPTh6N-fAy_zpjs-hwW8WwylYnbhR11ZTeR_7B84Z5LhQuPi3-En9rlD9djVdoHKAuqGDJOqj7eTCeTHe0uzQPyXAsI5JSFWN5QoTXhjFyfgXr1od4scDgyW4zULcB0I0hOn2EHkYEiY_DkD9G92z9BN0fxTPyp-jmB2iBq5heiRuHlyviRtMzPFlasgh5AWCvMKBVPKh_bSIA8Pn8J1RKxs18ZfG5DYTgTX2EL6ApZOq9s2vsw5cDrfe_I6zrCm8cV_jL3KseH1LjRZ6hy9PBxcmQxFsWSMmYXBPODddeX0rjspKXFWAEm-jMABbSAGd0qpzOYVdSSgd4xgKiS4SunHZCaMVN9hx16qa2LxE2YHHT1ABqpDbnJldJZXVqTS6EYs4lPSTari3KSEHub8L4U7SxZr-L3aAUflCKBB7KeohuJReBhmMPGdWOXtGmmYJiLMBW7CH7cSsboUiAGHtKH7aTpYgqYVXsJnAPvd3-hsXsT2h0bZtrKMMVAFZAceqOMiLnUsG-Fup5ESbitktgLytFxuWruxvwGj3wrfWuccoOUWe9vLZvAFutTR8dvL-h8BYz0Ufd45Pp94n_nn0bjvtxcf0HVoMrlA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKwEXxJtAASPBrRb7sncthBDQVAltQpWmUm_G3rXbILobklSoF34Sv5GZ9W5yapVLpb2tx7L8-L7P9syYkLc2Cl1kuWHGFAVLIs2ZiaVlmTZ5ILI8CAsMTh4MRe84-XbCTzbIvzYWBt0qW0ysgbqocjwjf495wzAXikg_TX8zfDUKb1fbJzT8tNi3l39gyzb_2N-F8X0XRXvd8dcea14VYDnn2YIJYYRGfMiMi3ORF8CJNtCxAe7XQN86kk4noMLzzAF_W1AwQaoLp12aailMDPXeIlsgMySsoq0v3eHhaJXmN0x88B2PWRaGsvEd8h5ldYbKyTngBLqUcZ8xlF9FiFcJ3pr49u6Te41ipZ_9FHtANmz5kNweNHfyj8jf74A65004J60cnc2ZG4z69HBm2dTHIQA_UlDHtFue1R4H9GhyCpWyYTWZW3pkfQLyqtyhY2gKG-Fp8IKiu7RPI365Q3VZ0PqgjO5OEOrQhQdNHpPjG-n_J2SzrEr7jFADDB9FBlRqaBNhEhkUVkfWJGkquXNBh6Rt16q8SXmOL2_8Uq1v20-1GhSFg6IC-ELeIeHScurTfqxhI9vRU21YKwCxAm5aw_bD0raRPl7SrGm93U4W1UDQXK0WTIe8Wf4G8MAbIV3a6gLKCAkCGVSjvKZMmohMwj4a6nnqJ-KyS2DvnKWxyJ5f34DX5E5vPDhQB_3h_gtyF1uOx_Ih3yabi9mFfQm6bmFeNYuJkh83vX7_A1vBY3M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLVKKlVsEG8CBYwEu1qdl19CCAFJ1FASorSVujP2jE1T0ZmQpELd8GF8HdfxTLJqlU2l2Y2vZflxz7F97zFCb20Su8RSQ4wpCpIlmhKTSkuENnnERB7FhU9OHgzZwUn29ZSebqF_TS6MD6tsfOLSURdV7s_I971umNdCYXzf1WERo07v4_Q38S9I-ZvW5jmNMEUO7dUf2L7NP_Q7MNbvkqTXPf5yQOoXBkhOqVgQxgzT3lcI49Kc5QXgo410aoAHaIBynUinM2DkuXCA5RbYTMR14bTjXEtmUqj3DtrmgIqihbY_d4ej8VryN85CIh5NiYhjWccRheiypVrl5AJ8hg8vo0E9lF4HjteR3yUI9u6jezV7xZ_CdHuAtmz5EO0M6vv5R-jvd_BAF3VqJ64cns2JG4z7eDSzZBpyEgArMTBl3C3PltEH-GjyEyolw2oyt_jIBjHyqtzDx9AUMvYnwwvsQ6eDpPjVHtZlgZeHZrgz8W7Ph_N4k8fo5Fb6_wlqlVVpnyFsAO2TxABjjW3GTCajwurEmoxzSZ2L2og3XavyWv7cv8LxSzVxbudqPSjKD4qK4ItpG8Ury2mQANnARjajp5oUV3DKCnBqA9v3K9uaBgV6s6H1bjNZVO2O5mq9eNrozeo3OBJ_O6RLW11CGSaBLAODlDeU4RkTEvbUUM_TMBFXXQL7aMFTJp7f3IDXaAfWrfrWHx6-QHd9w_0JfUx3UWsxu7QvgeItzKt6LWH047aX73-wRmef |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+rs-fMRI+Pre-processing+for+Enhanced+Signal-Noise+Separation%2C+Test-Retest+Reliability%2C+and+Group+Discrimination&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Shirer%2C+William+R&rft.au=Jiang%2C+Heidi&rft.au=Price%2C+Collin+M&rft.au=Ng%2C+Bernard&rft.date=2015-08-15&rft.eissn=1095-9572&rft.volume=117&rft.spage=67&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.05.015&rft_id=info%3Apmid%2F25987368&rft.externalDocID=25987368 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |