A Bayesian approach for generalized linear models with explanatory biomarker measurement variables subject to detection limit: an application to acute lung injury

Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenari...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied statistics Vol. 39; no. 8; pp. 1733 - 1747
Main Authors Wu, Huiyun, Chen, Qingxia, Ware, Lorraine B., Koyama, Tatsuki
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.08.2012
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenario in which the response variable is subject to the DL; only a few methods consider explanatory variables when dealing with DLs. We propose a Bayesian approach for generalized linear models with explanatory variables subject to lower, upper, or interval DLs. In simulation studies, we compared the proposed Bayesian approach to four commonly used methods in a logistic regression model with explanatory variable measurements subject to the DL. We also applied the Bayesian approach and other four methods in a real study, in which a panel of cytokine biomarkers was studied for their association with acute lung injury (ALI). We found that IL8 was associated with a moderate increase in risk for ALI in the model based on the proposed Bayesian approach.
AbstractList Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenario in which the response variable is subject to the DL; only a few methods consider explanatory variables when dealing with DLs. We propose a Bayesian approach for generalized linear models with explanatory variables subject to lower, upper, or interval DLs. In simulation studies, we compared the proposed Bayesian approach to four commonly used methods in a logistic regression model with explanatory variable measurements subject to the DL. We also applied the Bayesian approach and other four methods in a real study, in which a panel of cytokine biomarkers was studied for their association with acute lung injury (ALI). We found that IL8 was associated with a moderate increase in risk for ALI in the model based on the proposed Bayesian approach. [PUBLICATION ABSTRACT]
Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenario in which the response variable is subject to detection limit; only a few methods consider explanatory variables when dealing with DLs. We propose a Bayesian approach for generalized linear models with explanatory variables subject to lower, upper, or interval DLs. In simulation studies, we compared the proposed Bayesian approach to four commonly used methods in a logistic regression model with explanatory variable measurements subject to DL. We also applied the Bayesian approach and other four methods in a real study, in which a panel of cytokine biomarkers was studied for their association with acute lung injury (ALI). We found that IL8 was associated with a moderate increase in risk for ALI in the model based on the proposed Bayesian approach.
Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenario in which the response variable is subject to the DL; only a few methods consider explanatory variables when dealing with DLs. We propose a Bayesian approach for generalized linear models with explanatory variables subject to lower, upper, or interval DLs. In simulation studies, we compared the proposed Bayesian approach to four commonly used methods in a logistic regression model with explanatory variable measurements subject to the DL. We also applied the Bayesian approach and other four methods in a real study, in which a panel of cytokine biomarkers was studied for their association with acute lung injury (ALI). We found that IL8 was associated with a moderate increase in risk for ALI in the model based on the proposed Bayesian approach.
Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenario in which the response variable is subject to detection limit; only a few methods consider explanatory variables when dealing with DLs. We propose a Bayesian approach for generalized linear models with explanatory variables subject to lower, upper, or interval DLs. In simulation studies, we compared the proposed Bayesian approach to four commonly used methods in a logistic regression model with explanatory variable measurements subject to DL. We also applied the Bayesian approach and other four methods in a real study, in which a panel of cytokine biomarkers was studied for their association with acute lung injury (ALI). We found that IL8 was associated with a moderate increase in risk for ALI in the model based on the proposed Bayesian approach.Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenario in which the response variable is subject to detection limit; only a few methods consider explanatory variables when dealing with DLs. We propose a Bayesian approach for generalized linear models with explanatory variables subject to lower, upper, or interval DLs. In simulation studies, we compared the proposed Bayesian approach to four commonly used methods in a logistic regression model with explanatory variable measurements subject to DL. We also applied the Bayesian approach and other four methods in a real study, in which a panel of cytokine biomarkers was studied for their association with acute lung injury (ALI). We found that IL8 was associated with a moderate increase in risk for ALI in the model based on the proposed Bayesian approach.
Author Ware, Lorraine B.
Chen, Qingxia
Koyama, Tatsuki
Wu, Huiyun
AuthorAffiliation a Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
b Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
AuthorAffiliation_xml – name: b Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
– name: a Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
Author_xml – sequence: 1
  givenname: Huiyun
  surname: Wu
  fullname: Wu, Huiyun
  organization: Department of Biostatistics , Vanderbilt University School of Medicine
– sequence: 2
  givenname: Qingxia
  surname: Chen
  fullname: Chen, Qingxia
  email: cindy.chen@Vanderbilt.Edu
  organization: Department of Biostatistics , Vanderbilt University School of Medicine
– sequence: 3
  givenname: Lorraine B.
  surname: Ware
  fullname: Ware, Lorraine B.
  organization: Department of Medicine , Vanderbilt University School of Medicine
– sequence: 4
  givenname: Tatsuki
  surname: Koyama
  fullname: Koyama, Tatsuki
  organization: Department of Biostatistics , Vanderbilt University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23049157$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhkeoiF7gDRCyxIZNgi9je9wFqFTcpEpsYG054zOJg8cOtqclPA5PitO0FXRBV8eyv_P7XP7j5iDEAE3znOA5wR1-jakQrRRsTjGhc9ERJuij5qgGPMOc0YPmaIfMdsxhc5zzGmPcEc6eNIeU4VYRLo-a32fondlCdiYgs9mkaPoVGmJCSwiQjHe_wCLvApiExmjBZ3TlygrBz403wZSYtmjh4mjSd6gEmDwlGCEUdGmSMwsPGeVpsYa-oBKRhVJPLoaqObpyivbfeteb69uKmH4qgPwUlsiF9ZS2T5vHg_EZnt3Ek-bbh_dfzz_NLr58_Hx-djHrOe_KjNthsK1SlFGBh65tQQ2kB6yUkZIxAbRV3aCwJG3HQSy6wUjLbEuZtFZJzk6aN3vdzbQYwfa1iToAvUmudrfV0Tj970twK72Ml5q1ghGCq8CrG4EUf0yQix5d7sHXQUGcsiYdFVxKStXDKCNcKE4JqejLe-g6TinUSWiCK6A6KWSlXvxd_F3Vt5uuQLsH-hRzTjDcIQTrnaH0raH0zlB6b6iadnovrXfleld1BM4_lPx2n-xCtdRormLyVhez9TENyYTeZc3-q_AH6lHmKg
CitedBy_id crossref_primary_10_1002_sim_6242
crossref_primary_10_1007_s10865_016_9784_0
crossref_primary_10_1080_10543406_2017_1372768
crossref_primary_10_1002_sim_9536
crossref_primary_10_1007_s12561_013_9099_4
crossref_primary_10_1080_10618600_2022_2035233
crossref_primary_10_1002_cem_2586
crossref_primary_10_1002_sim_6830
crossref_primary_10_6000_1929_6029_2014_03_01_5
crossref_primary_10_1002_bimj_201800275
crossref_primary_10_1186_s12940_018_0400_3
crossref_primary_10_1093_biomet_asv055
Cites_doi 10.1056/NEJMoa032193
10.1186/cc3949
10.1016/0022-5193(66)90119-6
10.1093/biomet/63.3.581
10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
10.1002/art.24598
10.1002/9781119013563
10.1097/00001648-199507000-00005
10.1097/TA.0b013e3181c40728
10.1080/1047322X.1990.10389587
10.1001/jama.2009.1347
10.1097/EDE.0b013e3181ce9a61
10.1002/sim.3410
10.1378/chest.09-1484
10.2307/1914031
10.1007/978-1-4757-3462-1
10.1186/1471-2172-9-59
10.1164/ajrccm.160.5.9901097
10.1111/1467-9868.00170
10.1097/00003246-199609000-00004
10.1016/0140-6736(93)90416-E
10.1378/chest.125.1.212
10.1002/sim.3001
10.1023/A:1008929526011
10.1111/j.1467-9876.2005.00512.x
10.1093/aje/kwj039
10.1021/es0111129
10.1186/cc2459
10.1080/15298660108984622
10.1111/j.0006-341X.2001.00022.x
10.1111/j.1541-0420.2005.00438.x
10.1289/ehp.7199
10.1097/EDE.0b013e3181ce97d8
10.1111/j.0006-341X.1999.00625.x
10.1111/j.0006-341X.2001.01238.x
10.1097/01.CCM.0000150825.01762.90
10.1093/aje/kwf217
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
Copyright Taylor & Francis Ltd. 2012
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
– notice: Copyright Taylor & Francis Ltd. 2012
DBID AAYXX
CITATION
NPM
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1080/02664763.2012.681362
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database

Aerospace Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1360-0532
EndPage 1747
ExternalDocumentID PMC3463110
2692232271
23049157
10_1080_02664763_2012_681362
681362
Genre Journal Article
Feature
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: TL1 RR024978
– fundername: NHLBI NIH HHS
  grantid: U01 HL081332
– fundername: NCRR NIH HHS
  grantid: UL1 RR024975
– fundername: NCRR NIH HHS
  grantid: KL2 RR024977
– fundername: NHLBI NIH HHS
  grantid: R21 HL097334
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: U01 HL081332 || HL
– fundername: National Center for Research Resources : NCRR
  grantid: UL1 RR024975 || RR
GroupedDBID .7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
7WY
8FL
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBE
EBO
EBR
EBS
EBU
ECR
EJD
EMK
EPL
E~A
E~B
F5P
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
K60
K6~
KYCEM
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RPM
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
07G
1TA
8C1
8FE
8FG
8G5
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ABJCF
ABUWG
ACAGQ
ACGEE
ADBBV
ADYSH
AEUMN
AFKRA
AFRVT
AGCQS
AGLEN
AGROQ
AHMOU
AI.
AIYEW
ALCKM
AMEWO
AMPGV
AMVHM
AMXXU
ARAPS
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BPHCQ
BPLKW
C06
CAG
CCPQU
CITATION
COF
CRFIH
DMQIW
DWIFK
DWQXO
FRNLG
FYUFA
GNUQQ
GUQSH
HCIFZ
IVXBP
K6V
K7-
L6V
LJTGL
M0C
M2O
M7S
NHB
NUSFT
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PTHSS
QCRFL
TAQ
TFMCV
TOXWX
UB9
UKHRP
UU8
V3K
V4Q
VH1
NPM
PJZUB
PPXIY
PQGLB
TASJS
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c558t-5dffd49923260f844e9f1ce099a77336e2498f9071485e6b8fa7d3d4237dd9753
ISSN 0266-4763
IngestDate Thu Aug 21 18:14:22 EDT 2025
Thu Jul 10 22:36:19 EDT 2025
Fri Jul 11 08:17:16 EDT 2025
Wed Aug 13 07:42:53 EDT 2025
Mon Jul 21 06:04:14 EDT 2025
Tue Jul 01 02:25:06 EDT 2025
Thu Apr 24 23:05:58 EDT 2025
Wed Dec 25 09:04:17 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c558t-5dffd49923260f844e9f1ce099a77336e2498f9071485e6b8fa7d3d4237dd9753
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
These authors contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3463110
PMID 23049157
PQID 1021198767
PQPubID 32901
PageCount 15
ParticipantIDs proquest_miscellaneous_1826577229
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3463110
informaworld_taylorfrancis_310_1080_02664763_2012_681362
pubmed_primary_23049157
crossref_primary_10_1080_02664763_2012_681362
crossref_citationtrail_10_1080_02664763_2012_681362
proquest_journals_1021198767
proquest_miscellaneous_1315695211
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-00
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle Journal of applied statistics
PublicationTitleAlternate J Appl Stat
PublicationYear 2012
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Laffon M. (CIT0019) 1999; 160
CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
Little R. A. (CIT0021) 2004; 14
CIT0034
CIT0011
CIT0033
Parsons P. E. (CIT0029) 2005; 33
CIT0014
CIT0036
CIT0013
Little A. (CIT0023) 2002
CIT0035
CIT0016
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
CIT0041
CIT0040
CIT0020
CIT0042
CIT0001
CIT0022
R Development Core Team (CIT0038) 2012
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0001
  doi: 10.1056/NEJMoa032193
– ident: CIT0034
  doi: 10.1186/cc3949
– ident: CIT0018
  doi: 10.1016/0022-5193(66)90119-6
– ident: CIT0032
  doi: 10.1093/biomet/63.3.581
– ident: CIT0020
  doi: 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
– ident: CIT0024
  doi: 10.1002/art.24598
– ident: CIT0011
– volume-title: Statistical Analysis with Missing Data
  year: 2002
  ident: CIT0023
  doi: 10.1002/9781119013563
– ident: CIT0009
  doi: 10.1097/00001648-199507000-00005
– ident: CIT0008
  doi: 10.1097/TA.0b013e3181c40728
– ident: CIT0014
  doi: 10.1080/1047322X.1990.10389587
– ident: CIT0030
  doi: 10.1001/jama.2009.1347
– ident: CIT0002
  doi: 10.1097/EDE.0b013e3181ce9a61
– ident: CIT0010
  doi: 10.1002/sim.3410
– volume-title: R Foundation for Statistical Computing
  year: 2012
  ident: CIT0038
– ident: CIT0040
  doi: 10.1378/chest.09-1484
– ident: CIT0037
  doi: 10.2307/1914031
– ident: CIT0007
  doi: 10.1007/978-1-4757-3462-1
– ident: CIT0039
  doi: 10.1186/1471-2172-9-59
– volume: 160
  start-page: 1443
  year: 1999
  ident: CIT0019
  publication-title: Am. J. Respir. Crit. Care. Med.
  doi: 10.1164/ajrccm.160.5.9901097
– ident: CIT0016
  doi: 10.1111/1467-9868.00170
– volume: 14
  start-page: 949
  year: 2004
  ident: CIT0021
  publication-title: Statist. Sinica
– ident: CIT0027
  doi: 10.1097/00003246-199609000-00004
– ident: CIT0005
  doi: 10.1016/0140-6736(93)90416-E
– ident: CIT0012
– ident: CIT0041
  doi: 10.1378/chest.125.1.212
– ident: CIT0036
  doi: 10.1002/sim.3001
– ident: CIT0042
  doi: 10.1023/A:1008929526011
– ident: CIT0004
  doi: 10.1111/j.1467-9876.2005.00512.x
– ident: CIT0033
  doi: 10.1093/aje/kwj039
– ident: CIT0035
  doi: 10.1021/es0111129
– ident: CIT0017
  doi: 10.1186/cc2459
– ident: CIT0006
  doi: 10.1080/15298660108984622
– ident: CIT0013
  doi: 10.1111/j.0006-341X.2001.00022.x
– ident: CIT0022
– ident: CIT0003
  doi: 10.1111/j.1541-0420.2005.00438.x
– ident: CIT0025
  doi: 10.1289/ehp.7199
– ident: CIT0028
  doi: 10.1097/EDE.0b013e3181ce97d8
– ident: CIT0015
  doi: 10.1111/j.0006-341X.1999.00625.x
– ident: CIT0026
  doi: 10.1111/j.0006-341X.2001.01238.x
– volume: 33
  start-page: 230
  issue: 1
  year: 2005
  ident: CIT0029
  publication-title: Crit. Care Med.
  doi: 10.1097/01.CCM.0000150825.01762.90
– ident: CIT0031
  doi: 10.1093/aje/kwf217
SSID ssj0008153
Score 2.0041234
Snippet Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1733
SubjectTerms Applied statistics
Bayesian
Bayesian analysis
biomarker
Biomarkers
detection limit
generalized linear model
Generalized linear models
Injuries
Injury prevention
Lung diseases
lung injury
Lungs
Mathematical models
Medical diagnosis
Panels
Studies
Variables
Title A Bayesian approach for generalized linear models with explanatory biomarker measurement variables subject to detection limit: an application to acute lung injury
URI https://www.tandfonline.com/doi/abs/10.1080/02664763.2012.681362
https://www.ncbi.nlm.nih.gov/pubmed/23049157
https://www.proquest.com/docview/1021198767
https://www.proquest.com/docview/1315695211
https://www.proquest.com/docview/1826577229
https://pubmed.ncbi.nlm.nih.gov/PMC3463110
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELeq7WU8IBj_CgMZibcpU-M4acJb2ZgKGxNonZh4idzYHoXSTm2C1n0cvhxfgzs7cRNWlT8vUdVc4kT3y_nOvvsdIS9kIrgMOfd0lHQ9HnQysINZx9OJ5r5mCXZ8wWyLk6h_xt-eh-et1s9a1lKRD_ey65V1Jf-jVfgP9IpVsv-gWXdT-AN-g37hCBqG41_puLf7SiyUKYOsuMFN2uCF5ZIeXYM3iW6kmNmON2Upm7q6HIuJ3V7H8nvM0AGJ5Wrh7neIoLGmar47L4a4UoMuqlS5so3Fx1gVZcqkzcDVuh8KiQwTD8aFqZT5UjQLrmveryi9XyxoslzRbnoozHRYjBaFA-5-WUPyASbaq9FyJhF2Bf14OsNOF2rZQvpouhDfjF88EPm8-Dqqr25gmkhcX90Y3Gg0Ust2mhve2MjjlY1U1oYHEe7vBw0jbxmTSjDHNYvtdy0Rx42ppMy9hAHw_pgEyPaiGG7OllNnlS7Q752m7w8O0-M3J0fNs8ZTYFECXhhjyHWwySCeAYO82esffPronIbYt4Sp1ftUVZ5IA7_iERpeVINjd1Wk9HvCb82DGtwht0vl057F8V3SUpNtcuud4w2eb5OtUweHe-RHj1bwphW8KTwCrcGbWnhTC2-K8KY1eFMHb1qDN3XwpiW8aT6lDt7UwPsltcNW4EYRA26K4KYW3PfJ2eHrwX7fK1uKeFkYxrkXSq0lBPmgjaijY85Vov1MQZgkukgMqhhPYp1gVV8cqmgYa9GVgcTcMSmxBv0B2ZhMJ-oRoZHMmFCMdSSaNSmGfCiklkJrzsMsC9skqFSUZiXfPrZ9Gad-RctbKjZFxaZWsW3iuasuLd_MH-TjuvbT3Hww2n4rabD-0p0KKWlp1OYgjZSP4CJ12-S5Ow1TDu4jiomaFiAT-GGUgN_vr5GJWRQC0lnSJg8t-Nz7mK19P4QRug1YOgGkvG-emYw-G-r7gEcBBCyP1z_6E7K1tCU7ZCOfFeopxA758Fn53f0CUNAe0Q
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOVAOPMqjCwWMxDVLHnYe3AqiWqDdUytxsxw_ysI2WzUJgv4cfikzdhy6FRQJzh47sTyZzIy_-YaQF7qSTHPGIptXRcSyWIEdVHFkK8sSm1bY8QXRFvN8dsTef-QBTdgOsEqMoa0ninC2Gj9uTEYHSNxLiBtyBh8GIrPSaV4mzgpfh2ULVPUsno_GuEw8ESXMiHBKqJ77wyprf6c17tLfeaCXgZQX_kx7t0kd9uQBKV-mfVdP1fklusf_2vQdcmvwW-muV7S75JpptsjNg5H0td0im-i4et7ne-THLn0tvxss0aSBt5zCPumx57lenBtN8TXkGXXdeFqKKWFqvp0uZeOu_ilSAyB6CCR-ZTLpV4jusd6rpW1fYxaJdiuqTecwZQ2sebLoXlH_2JCRRBGp-s7QJRg3umg-gyrdJ0d7bw_fzKKhH0SkOC-7iGtrNURo4ATmsS0ZM5VNlAEfVxbI6mgglCxthSVZJTd5XVpZ6Ewj8EdrLCB-QDaaVWO2Cc21SqVJ01ijTmpZs1pqq6W1jHGl-IRkQQ-EGsjSsWfHUiSBU3U4DoHHIfxxTEg0zjr1ZCF_kS8vqpjoXJLG-o4qIrt66k5QRzFYnVZgm3ZMIuXFhDwfh8Fe4CWQbMyqB5kMIvYKnLbkChmIOTmEXWk1IQ-9ho_7cfeyCYcnFGu6PwogX_n6SLP45HjLM5Zn4G0--vddPyM3ZocH-2L_3fzDY7KJIx6MuUM2urPePAEHsaufOhPwE_FZXC4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkVA5FCjQLi1gJK5Z8rCdhFt5rMprxYFKvUWOH-3Ckl01DoL-nP5SZuIk7FZQJDh77MTyZDIz_uYbQp7qXDLNGQusyNOAJaECO6jCwOaWRTbOseMLoi2m4vCIvT3mxytV_AirxBjaeqKI1lbjx73UtkfEPYOwQTD4LhCYFY9FFrVG-LrAOkss4gingy3OIs9DCTMCnNIXz_1hlbWf0xp16e8c0Ms4ypUf0-QWkf2WPB7ly7hx5VidX2J7_J893yZbnddKD7ya3SHXTLVNbn4YKF_rbbKJbqtnfb5LLg7oC_nDYIEm7VnLKWyTnniW69m50RTfQp7RthdPTTEhTM335VxW7cU_RWIAxA6BxK88Jv0GsT1We9W0bkrMIVG3oNq4FlFWwZpfZ-459Y_t85EoIlXjDJ2DaaOz6jMo0j1yNHn96eVh0HWDCBTnmQu4tlZDfAYuoAhtxpjJbaQMeLgyRU5HA4FkZnMsyMq4EWVmZaoTjbAfrbF8-D7ZqBaV2SVUaBVLE8ehRo3UsmSl1FZLaxnjSvERSXo1KFRHlY4dO-ZF1DOqdsdR4HEU_jhGJBhmLT1VyF_ks1UNK1yborG-n0qRXD11v9fGorM5dYFN2jGFJNIReTIMg7XAKyBZmUUDMgnE6zm4bNEVMhBxcgi64nxEdryCD_tpb2UjDk9I11R_EEC28vWRanbaspYnTCTgaz74910_Jjc-vpoU799M3-2RTRzwSMx9suHOGvMQvENXPmoNwE9jnlrS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+approach+for+generalized+linear+models+with+explanatory+biomarker+measurement+variables+subject+to+detection+limit%3A+an+application+to+acute+lung+injury&rft.jtitle=Journal+of+applied+statistics&rft.au=Wu%2C+Huiyun&rft.au=Chen%2C+Qingxia&rft.au=Ware%2C+Lorraine+B&rft.au=Koyama%2C+Tatsuki&rft.date=2012-08-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=39&rft.issue=8&rft.spage=1733&rft_id=info:doi/10.1080%2F02664763.2012.681362&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2692232271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon