A Bayesian approach for generalized linear models with explanatory biomarker measurement variables subject to detection limit: an application to acute lung injury
Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenari...
Saved in:
Published in | Journal of applied statistics Vol. 39; no. 8; pp. 1733 - 1747 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
01.08.2012
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenario in which the response variable is subject to the DL; only a few methods consider explanatory variables when dealing with DLs. We propose a Bayesian approach for generalized linear models with explanatory variables subject to lower, upper, or interval DLs. In simulation studies, we compared the proposed Bayesian approach to four commonly used methods in a logistic regression model with explanatory variable measurements subject to the DL. We also applied the Bayesian approach and other four methods in a real study, in which a panel of cytokine biomarkers was studied for their association with acute lung injury (ALI). We found that IL8 was associated with a moderate increase in risk for ALI in the model based on the proposed Bayesian approach. |
---|---|
AbstractList | Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenario in which the response variable is subject to the DL; only a few methods consider explanatory variables when dealing with DLs. We propose a Bayesian approach for generalized linear models with explanatory variables subject to lower, upper, or interval DLs. In simulation studies, we compared the proposed Bayesian approach to four commonly used methods in a logistic regression model with explanatory variable measurements subject to the DL. We also applied the Bayesian approach and other four methods in a real study, in which a panel of cytokine biomarkers was studied for their association with acute lung injury (ALI). We found that IL8 was associated with a moderate increase in risk for ALI in the model based on the proposed Bayesian approach. [PUBLICATION ABSTRACT] Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenario in which the response variable is subject to detection limit; only a few methods consider explanatory variables when dealing with DLs. We propose a Bayesian approach for generalized linear models with explanatory variables subject to lower, upper, or interval DLs. In simulation studies, we compared the proposed Bayesian approach to four commonly used methods in a logistic regression model with explanatory variable measurements subject to DL. We also applied the Bayesian approach and other four methods in a real study, in which a panel of cytokine biomarkers was studied for their association with acute lung injury (ALI). We found that IL8 was associated with a moderate increase in risk for ALI in the model based on the proposed Bayesian approach. Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenario in which the response variable is subject to the DL; only a few methods consider explanatory variables when dealing with DLs. We propose a Bayesian approach for generalized linear models with explanatory variables subject to lower, upper, or interval DLs. In simulation studies, we compared the proposed Bayesian approach to four commonly used methods in a logistic regression model with explanatory variable measurements subject to the DL. We also applied the Bayesian approach and other four methods in a real study, in which a panel of cytokine biomarkers was studied for their association with acute lung injury (ALI). We found that IL8 was associated with a moderate increase in risk for ALI in the model based on the proposed Bayesian approach. Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenario in which the response variable is subject to detection limit; only a few methods consider explanatory variables when dealing with DLs. We propose a Bayesian approach for generalized linear models with explanatory variables subject to lower, upper, or interval DLs. In simulation studies, we compared the proposed Bayesian approach to four commonly used methods in a logistic regression model with explanatory variable measurements subject to DL. We also applied the Bayesian approach and other four methods in a real study, in which a panel of cytokine biomarkers was studied for their association with acute lung injury (ALI). We found that IL8 was associated with a moderate increase in risk for ALI in the model based on the proposed Bayesian approach.Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits (DLs), however, compromise the application of biomarkers in research and practice. Most existing methods to handle non-detects focus on a scenario in which the response variable is subject to detection limit; only a few methods consider explanatory variables when dealing with DLs. We propose a Bayesian approach for generalized linear models with explanatory variables subject to lower, upper, or interval DLs. In simulation studies, we compared the proposed Bayesian approach to four commonly used methods in a logistic regression model with explanatory variable measurements subject to DL. We also applied the Bayesian approach and other four methods in a real study, in which a panel of cytokine biomarkers was studied for their association with acute lung injury (ALI). We found that IL8 was associated with a moderate increase in risk for ALI in the model based on the proposed Bayesian approach. |
Author | Ware, Lorraine B. Chen, Qingxia Koyama, Tatsuki Wu, Huiyun |
AuthorAffiliation | a Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA b Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA |
AuthorAffiliation_xml | – name: b Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA – name: a Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA |
Author_xml | – sequence: 1 givenname: Huiyun surname: Wu fullname: Wu, Huiyun organization: Department of Biostatistics , Vanderbilt University School of Medicine – sequence: 2 givenname: Qingxia surname: Chen fullname: Chen, Qingxia email: cindy.chen@Vanderbilt.Edu organization: Department of Biostatistics , Vanderbilt University School of Medicine – sequence: 3 givenname: Lorraine B. surname: Ware fullname: Ware, Lorraine B. organization: Department of Medicine , Vanderbilt University School of Medicine – sequence: 4 givenname: Tatsuki surname: Koyama fullname: Koyama, Tatsuki organization: Department of Biostatistics , Vanderbilt University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23049157$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhkeoiF7gDRCyxIZNgi9je9wFqFTcpEpsYG054zOJg8cOtqclPA5PitO0FXRBV8eyv_P7XP7j5iDEAE3znOA5wR1-jakQrRRsTjGhc9ERJuij5qgGPMOc0YPmaIfMdsxhc5zzGmPcEc6eNIeU4VYRLo-a32fondlCdiYgs9mkaPoVGmJCSwiQjHe_wCLvApiExmjBZ3TlygrBz403wZSYtmjh4mjSd6gEmDwlGCEUdGmSMwsPGeVpsYa-oBKRhVJPLoaqObpyivbfeteb69uKmH4qgPwUlsiF9ZS2T5vHg_EZnt3Ek-bbh_dfzz_NLr58_Hx-djHrOe_KjNthsK1SlFGBh65tQQ2kB6yUkZIxAbRV3aCwJG3HQSy6wUjLbEuZtFZJzk6aN3vdzbQYwfa1iToAvUmudrfV0Tj970twK72Ml5q1ghGCq8CrG4EUf0yQix5d7sHXQUGcsiYdFVxKStXDKCNcKE4JqejLe-g6TinUSWiCK6A6KWSlXvxd_F3Vt5uuQLsH-hRzTjDcIQTrnaH0raH0zlB6b6iadnovrXfleld1BM4_lPx2n-xCtdRormLyVhez9TENyYTeZc3-q_AH6lHmKg |
CitedBy_id | crossref_primary_10_1002_sim_6242 crossref_primary_10_1007_s10865_016_9784_0 crossref_primary_10_1080_10543406_2017_1372768 crossref_primary_10_1002_sim_9536 crossref_primary_10_1007_s12561_013_9099_4 crossref_primary_10_1080_10618600_2022_2035233 crossref_primary_10_1002_cem_2586 crossref_primary_10_1002_sim_6830 crossref_primary_10_6000_1929_6029_2014_03_01_5 crossref_primary_10_1002_bimj_201800275 crossref_primary_10_1186_s12940_018_0400_3 crossref_primary_10_1093_biomet_asv055 |
Cites_doi | 10.1056/NEJMoa032193 10.1186/cc3949 10.1016/0022-5193(66)90119-6 10.1093/biomet/63.3.581 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 10.1002/art.24598 10.1002/9781119013563 10.1097/00001648-199507000-00005 10.1097/TA.0b013e3181c40728 10.1080/1047322X.1990.10389587 10.1001/jama.2009.1347 10.1097/EDE.0b013e3181ce9a61 10.1002/sim.3410 10.1378/chest.09-1484 10.2307/1914031 10.1007/978-1-4757-3462-1 10.1186/1471-2172-9-59 10.1164/ajrccm.160.5.9901097 10.1111/1467-9868.00170 10.1097/00003246-199609000-00004 10.1016/0140-6736(93)90416-E 10.1378/chest.125.1.212 10.1002/sim.3001 10.1023/A:1008929526011 10.1111/j.1467-9876.2005.00512.x 10.1093/aje/kwj039 10.1021/es0111129 10.1186/cc2459 10.1080/15298660108984622 10.1111/j.0006-341X.2001.00022.x 10.1111/j.1541-0420.2005.00438.x 10.1289/ehp.7199 10.1097/EDE.0b013e3181ce97d8 10.1111/j.0006-341X.1999.00625.x 10.1111/j.0006-341X.2001.01238.x 10.1097/01.CCM.0000150825.01762.90 10.1093/aje/kwf217 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2012 Copyright Taylor & Francis Ltd. 2012 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 – notice: Copyright Taylor & Francis Ltd. 2012 |
DBID | AAYXX CITATION NPM 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1080/02664763.2012.681362 |
DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Aerospace Database Aerospace Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1360-0532 |
EndPage | 1747 |
ExternalDocumentID | PMC3463110 2692232271 23049157 10_1080_02664763_2012_681362 681362 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: TL1 RR024978 – fundername: NHLBI NIH HHS grantid: U01 HL081332 – fundername: NCRR NIH HHS grantid: UL1 RR024975 – fundername: NCRR NIH HHS grantid: KL2 RR024977 – fundername: NHLBI NIH HHS grantid: R21 HL097334 – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: U01 HL081332 || HL – fundername: National Center for Research Resources : NCRR grantid: UL1 RR024975 || RR |
GroupedDBID | .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 7WY 8FL 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AJWEG AKBVH AKOOK AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBE EBO EBR EBS EBU ECR EJD EMK EPL E~A E~B F5P GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G K60 K6~ KYCEM M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RPM RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TH9 TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ 07G 1TA 8C1 8FE 8FG 8G5 AAGDL AAHIA AAIKQ AAKBW AAYXX ABJCF ABUWG ACAGQ ACGEE ADBBV ADYSH AEUMN AFKRA AFRVT AGCQS AGLEN AGROQ AHMOU AI. AIYEW ALCKM AMEWO AMPGV AMVHM AMXXU ARAPS AZQEC BCCOT BENPR BEZIV BGLVJ BPHCQ BPLKW C06 CAG CCPQU CITATION COF CRFIH DMQIW DWIFK DWQXO FRNLG FYUFA GNUQQ GUQSH HCIFZ IVXBP K6V K7- L6V LJTGL M0C M2O M7S NHB NUSFT P62 PHGZM PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PTHSS QCRFL TAQ TFMCV TOXWX UB9 UKHRP UU8 V3K V4Q VH1 NPM PJZUB PPXIY PQGLB TASJS 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c558t-5dffd49923260f844e9f1ce099a77336e2498f9071485e6b8fa7d3d4237dd9753 |
ISSN | 0266-4763 |
IngestDate | Thu Aug 21 18:14:22 EDT 2025 Thu Jul 10 22:36:19 EDT 2025 Fri Jul 11 08:17:16 EDT 2025 Wed Aug 13 07:42:53 EDT 2025 Mon Jul 21 06:04:14 EDT 2025 Tue Jul 01 02:25:06 EDT 2025 Thu Apr 24 23:05:58 EDT 2025 Wed Dec 25 09:04:17 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c558t-5dffd49923260f844e9f1ce099a77336e2498f9071485e6b8fa7d3d4237dd9753 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 These authors contributed equally to this work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3463110 |
PMID | 23049157 |
PQID | 1021198767 |
PQPubID | 32901 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1826577229 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3463110 informaworld_taylorfrancis_310_1080_02664763_2012_681362 pubmed_primary_23049157 crossref_primary_10_1080_02664763_2012_681362 crossref_citationtrail_10_1080_02664763_2012_681362 proquest_journals_1021198767 proquest_miscellaneous_1315695211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-00 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Abingdon |
PublicationTitle | Journal of applied statistics |
PublicationTitleAlternate | J Appl Stat |
PublicationYear | 2012 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Laffon M. (CIT0019) 1999; 160 CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 Little R. A. (CIT0021) 2004; 14 CIT0034 CIT0011 CIT0033 Parsons P. E. (CIT0029) 2005; 33 CIT0014 CIT0036 CIT0013 Little A. (CIT0023) 2002 CIT0035 CIT0016 CIT0015 CIT0037 CIT0018 CIT0017 CIT0039 CIT0041 CIT0040 CIT0020 CIT0042 CIT0001 CIT0022 R Development Core Team (CIT0038) 2012 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0001 doi: 10.1056/NEJMoa032193 – ident: CIT0034 doi: 10.1186/cc3949 – ident: CIT0018 doi: 10.1016/0022-5193(66)90119-6 – ident: CIT0032 doi: 10.1093/biomet/63.3.581 – ident: CIT0020 doi: 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 – ident: CIT0024 doi: 10.1002/art.24598 – ident: CIT0011 – volume-title: Statistical Analysis with Missing Data year: 2002 ident: CIT0023 doi: 10.1002/9781119013563 – ident: CIT0009 doi: 10.1097/00001648-199507000-00005 – ident: CIT0008 doi: 10.1097/TA.0b013e3181c40728 – ident: CIT0014 doi: 10.1080/1047322X.1990.10389587 – ident: CIT0030 doi: 10.1001/jama.2009.1347 – ident: CIT0002 doi: 10.1097/EDE.0b013e3181ce9a61 – ident: CIT0010 doi: 10.1002/sim.3410 – volume-title: R Foundation for Statistical Computing year: 2012 ident: CIT0038 – ident: CIT0040 doi: 10.1378/chest.09-1484 – ident: CIT0037 doi: 10.2307/1914031 – ident: CIT0007 doi: 10.1007/978-1-4757-3462-1 – ident: CIT0039 doi: 10.1186/1471-2172-9-59 – volume: 160 start-page: 1443 year: 1999 ident: CIT0019 publication-title: Am. J. Respir. Crit. Care. Med. doi: 10.1164/ajrccm.160.5.9901097 – ident: CIT0016 doi: 10.1111/1467-9868.00170 – volume: 14 start-page: 949 year: 2004 ident: CIT0021 publication-title: Statist. Sinica – ident: CIT0027 doi: 10.1097/00003246-199609000-00004 – ident: CIT0005 doi: 10.1016/0140-6736(93)90416-E – ident: CIT0012 – ident: CIT0041 doi: 10.1378/chest.125.1.212 – ident: CIT0036 doi: 10.1002/sim.3001 – ident: CIT0042 doi: 10.1023/A:1008929526011 – ident: CIT0004 doi: 10.1111/j.1467-9876.2005.00512.x – ident: CIT0033 doi: 10.1093/aje/kwj039 – ident: CIT0035 doi: 10.1021/es0111129 – ident: CIT0017 doi: 10.1186/cc2459 – ident: CIT0006 doi: 10.1080/15298660108984622 – ident: CIT0013 doi: 10.1111/j.0006-341X.2001.00022.x – ident: CIT0022 – ident: CIT0003 doi: 10.1111/j.1541-0420.2005.00438.x – ident: CIT0025 doi: 10.1289/ehp.7199 – ident: CIT0028 doi: 10.1097/EDE.0b013e3181ce97d8 – ident: CIT0015 doi: 10.1111/j.0006-341X.1999.00625.x – ident: CIT0026 doi: 10.1111/j.0006-341X.2001.01238.x – volume: 33 start-page: 230 issue: 1 year: 2005 ident: CIT0029 publication-title: Crit. Care Med. doi: 10.1097/01.CCM.0000150825.01762.90 – ident: CIT0031 doi: 10.1093/aje/kwf217 |
SSID | ssj0008153 |
Score | 2.0041234 |
Snippet | Biomarkers have the potential to improve our understanding of disease diagnosis and prognosis. Biomarker levels that fall below the assay detection limits... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1733 |
SubjectTerms | Applied statistics Bayesian Bayesian analysis biomarker Biomarkers detection limit generalized linear model Generalized linear models Injuries Injury prevention Lung diseases lung injury Lungs Mathematical models Medical diagnosis Panels Studies Variables |
Title | A Bayesian approach for generalized linear models with explanatory biomarker measurement variables subject to detection limit: an application to acute lung injury |
URI | https://www.tandfonline.com/doi/abs/10.1080/02664763.2012.681362 https://www.ncbi.nlm.nih.gov/pubmed/23049157 https://www.proquest.com/docview/1021198767 https://www.proquest.com/docview/1315695211 https://www.proquest.com/docview/1826577229 https://pubmed.ncbi.nlm.nih.gov/PMC3463110 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELeq7WU8IBj_CgMZibcpU-M4acJb2ZgKGxNonZh4idzYHoXSTm2C1n0cvhxfgzs7cRNWlT8vUdVc4kT3y_nOvvsdIS9kIrgMOfd0lHQ9HnQysINZx9OJ5r5mCXZ8wWyLk6h_xt-eh-et1s9a1lKRD_ey65V1Jf-jVfgP9IpVsv-gWXdT-AN-g37hCBqG41_puLf7SiyUKYOsuMFN2uCF5ZIeXYM3iW6kmNmON2Upm7q6HIuJ3V7H8nvM0AGJ5Wrh7neIoLGmar47L4a4UoMuqlS5so3Fx1gVZcqkzcDVuh8KiQwTD8aFqZT5UjQLrmveryi9XyxoslzRbnoozHRYjBaFA-5-WUPyASbaq9FyJhF2Bf14OsNOF2rZQvpouhDfjF88EPm8-Dqqr25gmkhcX90Y3Gg0Ust2mhve2MjjlY1U1oYHEe7vBw0jbxmTSjDHNYvtdy0Rx42ppMy9hAHw_pgEyPaiGG7OllNnlS7Q752m7w8O0-M3J0fNs8ZTYFECXhhjyHWwySCeAYO82esffPronIbYt4Sp1ftUVZ5IA7_iERpeVINjd1Wk9HvCb82DGtwht0vl057F8V3SUpNtcuud4w2eb5OtUweHe-RHj1bwphW8KTwCrcGbWnhTC2-K8KY1eFMHb1qDN3XwpiW8aT6lDt7UwPsltcNW4EYRA26K4KYW3PfJ2eHrwX7fK1uKeFkYxrkXSq0lBPmgjaijY85Vov1MQZgkukgMqhhPYp1gVV8cqmgYa9GVgcTcMSmxBv0B2ZhMJ-oRoZHMmFCMdSSaNSmGfCiklkJrzsMsC9skqFSUZiXfPrZ9Gad-RctbKjZFxaZWsW3iuasuLd_MH-TjuvbT3Hww2n4rabD-0p0KKWlp1OYgjZSP4CJ12-S5Ow1TDu4jiomaFiAT-GGUgN_vr5GJWRQC0lnSJg8t-Nz7mK19P4QRug1YOgGkvG-emYw-G-r7gEcBBCyP1z_6E7K1tCU7ZCOfFeopxA758Fn53f0CUNAe0Q |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOVAOPMqjCwWMxDVLHnYe3AqiWqDdUytxsxw_ysI2WzUJgv4cfikzdhy6FRQJzh47sTyZzIy_-YaQF7qSTHPGIptXRcSyWIEdVHFkK8sSm1bY8QXRFvN8dsTef-QBTdgOsEqMoa0ninC2Gj9uTEYHSNxLiBtyBh8GIrPSaV4mzgpfh2ULVPUsno_GuEw8ESXMiHBKqJ77wyprf6c17tLfeaCXgZQX_kx7t0kd9uQBKV-mfVdP1fklusf_2vQdcmvwW-muV7S75JpptsjNg5H0td0im-i4et7ne-THLn0tvxss0aSBt5zCPumx57lenBtN8TXkGXXdeFqKKWFqvp0uZeOu_ilSAyB6CCR-ZTLpV4jusd6rpW1fYxaJdiuqTecwZQ2sebLoXlH_2JCRRBGp-s7QJRg3umg-gyrdJ0d7bw_fzKKhH0SkOC-7iGtrNURo4ATmsS0ZM5VNlAEfVxbI6mgglCxthSVZJTd5XVpZ6Ewj8EdrLCB-QDaaVWO2Cc21SqVJ01ijTmpZs1pqq6W1jHGl-IRkQQ-EGsjSsWfHUiSBU3U4DoHHIfxxTEg0zjr1ZCF_kS8vqpjoXJLG-o4qIrt66k5QRzFYnVZgm3ZMIuXFhDwfh8Fe4CWQbMyqB5kMIvYKnLbkChmIOTmEXWk1IQ-9ho_7cfeyCYcnFGu6PwogX_n6SLP45HjLM5Zn4G0--vddPyM3ZocH-2L_3fzDY7KJIx6MuUM2urPePAEHsaufOhPwE_FZXC4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkVA5FCjQLi1gJK5Z8rCdhFt5rMprxYFKvUWOH-3Ckl01DoL-nP5SZuIk7FZQJDh77MTyZDIz_uYbQp7qXDLNGQusyNOAJaECO6jCwOaWRTbOseMLoi2m4vCIvT3mxytV_AirxBjaeqKI1lbjx73UtkfEPYOwQTD4LhCYFY9FFrVG-LrAOkss4gingy3OIs9DCTMCnNIXz_1hlbWf0xp16e8c0Ms4ypUf0-QWkf2WPB7ly7hx5VidX2J7_J893yZbnddKD7ya3SHXTLVNbn4YKF_rbbKJbqtnfb5LLg7oC_nDYIEm7VnLKWyTnniW69m50RTfQp7RthdPTTEhTM335VxW7cU_RWIAxA6BxK88Jv0GsT1We9W0bkrMIVG3oNq4FlFWwZpfZ-459Y_t85EoIlXjDJ2DaaOz6jMo0j1yNHn96eVh0HWDCBTnmQu4tlZDfAYuoAhtxpjJbaQMeLgyRU5HA4FkZnMsyMq4EWVmZaoTjbAfrbF8-D7ZqBaV2SVUaBVLE8ehRo3UsmSl1FZLaxnjSvERSXo1KFRHlY4dO-ZF1DOqdsdR4HEU_jhGJBhmLT1VyF_ks1UNK1yborG-n0qRXD11v9fGorM5dYFN2jGFJNIReTIMg7XAKyBZmUUDMgnE6zm4bNEVMhBxcgi64nxEdryCD_tpb2UjDk9I11R_EEC28vWRanbaspYnTCTgaz74910_Jjc-vpoU799M3-2RTRzwSMx9suHOGvMQvENXPmoNwE9jnlrS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+approach+for+generalized+linear+models+with+explanatory+biomarker+measurement+variables+subject+to+detection+limit%3A+an+application+to+acute+lung+injury&rft.jtitle=Journal+of+applied+statistics&rft.au=Wu%2C+Huiyun&rft.au=Chen%2C+Qingxia&rft.au=Ware%2C+Lorraine+B&rft.au=Koyama%2C+Tatsuki&rft.date=2012-08-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=39&rft.issue=8&rft.spage=1733&rft_id=info:doi/10.1080%2F02664763.2012.681362&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2692232271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon |