Modeling GABA Alterations in Schizophrenia: A Link Between Impaired Inhibition and Altered Gamma and Beta Range Auditory Entrainment
1 Department of Mathematics and Statistics, 2 Center for BioDynamics, Boston University, Boston; 3 McLean Hospital, Harvard Medical School, Belmont; and 4 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts Submitted 6 August 2007; accepted...
Saved in:
Published in | Journal of neurophysiology Vol. 99; no. 5; pp. 2656 - 2671 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Phys Soc
01.05.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1 Department of Mathematics and Statistics, 2 Center for BioDynamics, Boston University, Boston; 3 McLean Hospital, Harvard Medical School, Belmont; and 4 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
Submitted 6 August 2007;
accepted in final form 20 February 2008
The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15–70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD 67 (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general.
Address for reprint requests and other correspondence: D. Vierling-Claassen, Boston University Math Dept. (E-mail: dorea{at}math.bu.edu ) |
---|---|
AbstractList | 1 Department of Mathematics and Statistics, 2 Center for BioDynamics, Boston University, Boston; 3 McLean Hospital, Harvard Medical School, Belmont; and 4 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
Submitted 6 August 2007;
accepted in final form 20 February 2008
The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15–70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD 67 (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general.
Address for reprint requests and other correspondence: D. Vierling-Claassen, Boston University Math Dept. (E-mail: dorea{at}math.bu.edu ) The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15-70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD sub(67) (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general. The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15–70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD 67 (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general. The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15-70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD(67) (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general. The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15-70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD(67) (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general.The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15-70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD(67) (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general. |
Author | Stufflebeam, Steven Kopell, Nancy Vierling-Claassen, Dorea Siekmeier, Peter |
AuthorAffiliation | 4 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 1 Department of Mathematics and Statistics, Boston University, Boston 2 Center for BioDynamics, Boston University, Boston 3 McLean Hospital, Harvard Medical School, Belmont |
AuthorAffiliation_xml | – name: 1 Department of Mathematics and Statistics, Boston University, Boston – name: 3 McLean Hospital, Harvard Medical School, Belmont – name: 2 Center for BioDynamics, Boston University, Boston – name: 4 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts |
Author_xml | – sequence: 1 fullname: Vierling-Claassen, Dorea – sequence: 2 fullname: Siekmeier, Peter – sequence: 3 fullname: Stufflebeam, Steven – sequence: 4 fullname: Kopell, Nancy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18287555$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLeFI1fkE5yyOHYd2xyQ0qpdVlqEBOVsOfFk4yWx03xQljN_ON7dUj4k1JOt8e89P83MCTrywQNCz1MyT1NOX2_8nBApyJwSIh6hWazRJOVKHqEZIfHOiBDH6GQYNiQSnNAn6DiVVArO-Qz9eB8sNM6v8SI_z3HejNCb0QU_YOfxp7J230NX9-CdeYNzvHL-Cz6H8RbA42XbGdeDxUtfu8LtVNh4ezCJ5YVpW7OvRIXBH41fA84n68bQb_GlH3vjfAt-fIoeV6YZ4NndeYo-X11eX7xLVh8Wy4t8lZScyzHhilh5xpTNQGRGSW5LxiuVEloaZVJlJJMmFQWxoCpOpE0raaDglBlaSlqwU_T24NtNRQu2hF2ERne9a02_1cE4_feLd7Veh6-aZkJlgkeDl3cGfbiZYBh164YSmsZ4CNOgBRGMpYo-CFKSZWecswi--DPSfZZfE4pAcgDKPgxDD9VvhOjdBuiN1_sN0LsNiDz7hy_duJ_ort3NQ6rarevbOFTd1dvBhSast_pqappr-DZGjVKax27wTHe2iqpX_1fFD-5p9hPjJtXj |
CitedBy_id | crossref_primary_10_1016_j_pnpbp_2024_111123 crossref_primary_10_1186_1471_2202_12_S1_O4 crossref_primary_10_1137_080738052 crossref_primary_10_1016_j_neuropharm_2023_109707 crossref_primary_10_1523_JNEUROSCI_0629_15_2015 crossref_primary_10_1007_s10827_017_0666_4 crossref_primary_10_1111_pcn_12998 crossref_primary_10_1111_psyp_13074 crossref_primary_10_3389_fnins_2023_1127040 crossref_primary_10_1016_j_conb_2012_02_009 crossref_primary_10_1038_s41537_022_00255_7 crossref_primary_10_1038_s41598_019_53682_5 crossref_primary_10_1016_j_clinph_2018_08_007 crossref_primary_10_1016_j_neuroimage_2024_120862 crossref_primary_10_1016_j_schres_2008_08_015 crossref_primary_10_1038_npp_2014_19 crossref_primary_10_3389_fncom_2016_00089 crossref_primary_10_1007_s11571_024_10150_9 crossref_primary_10_1016_j_bpsc_2016_07_006 crossref_primary_10_1016_j_nicl_2019_101732 crossref_primary_10_1016_j_pnpbp_2024_111096 crossref_primary_10_1016_j_brs_2014_02_010 crossref_primary_10_1038_s41386_020_00806_5 crossref_primary_10_1016_j_biopsych_2010_11_021 crossref_primary_10_1111_ejn_16298 crossref_primary_10_1371_journal_pcbi_1010364 crossref_primary_10_1016_j_ijpsycho_2013_07_005 crossref_primary_10_1038_s41398_018_0261_0 crossref_primary_10_1016_j_biopsych_2012_03_034 crossref_primary_10_1016_j_schres_2012_04_003 crossref_primary_10_1177_1550059419868872 crossref_primary_10_3389_fpsyt_2025_1473693 crossref_primary_10_1093_schbul_sbv092 crossref_primary_10_1016_j_neuropharm_2011_02_007 crossref_primary_10_1038_s41537_020_00113_4 crossref_primary_10_1093_schbul_sbae090 crossref_primary_10_1371_journal_pone_0134979 crossref_primary_10_1016_j_ijpsycho_2012_04_002 crossref_primary_10_1016_j_neubiorev_2015_09_014 crossref_primary_10_1152_jn_00535_2009 crossref_primary_10_1038_s41598_022_13228_8 crossref_primary_10_1186_1471_2202_16_S1_P305 crossref_primary_10_1016_j_pnpbp_2018_04_016 crossref_primary_10_12688_f1000research_12155_1 crossref_primary_10_1016_j_biopsych_2015_02_005 crossref_primary_10_1063_1_4824320 crossref_primary_10_1111_cns_12081 crossref_primary_10_1080_03080188_2022_2036520 crossref_primary_10_3389_fpsyt_2020_00507 crossref_primary_10_1080_10253890_2019_1583203 crossref_primary_10_1152_jn_00401_2019 crossref_primary_10_3389_fpsyt_2019_00534 crossref_primary_10_1016_j_biopsych_2017_03_005 crossref_primary_10_1016_j_bpsc_2018_08_011 crossref_primary_10_1093_cercor_bhad297 crossref_primary_10_1093_schbul_sbaa116 crossref_primary_10_1371_journal_pone_0058607 crossref_primary_10_1038_s41598_021_99793_w crossref_primary_10_1002_hbm_20792 crossref_primary_10_1016_j_pnpbp_2020_110224 crossref_primary_10_1016_j_psychres_2016_11_030 crossref_primary_10_1016_j_biopsych_2021_03_018 crossref_primary_10_1162_NECO_a_00944 crossref_primary_10_1016_j_schres_2012_07_016 crossref_primary_10_1371_journal_pone_0039955 crossref_primary_10_1038_npp_2016_17 crossref_primary_10_1111_ane_13437 crossref_primary_10_1162_NECO_a_00786 crossref_primary_10_1093_schbul_sbp091 crossref_primary_10_1137_12089274X crossref_primary_10_1152_physrev_00035_2008 crossref_primary_10_1016_j_nicl_2013_06_015 crossref_primary_10_3389_fnins_2014_00168 crossref_primary_10_1016_j_schres_2023_01_011 crossref_primary_10_1016_j_neuroimage_2009_03_085 crossref_primary_10_1073_pnas_0809302105 crossref_primary_10_1016_j_pscychresns_2009_04_017 crossref_primary_10_1093_schizbullopen_sgaa065 crossref_primary_10_1152_jn_91161_2008 crossref_primary_10_1177_2167702614562041 crossref_primary_10_1002_hbm_21309 crossref_primary_10_1016_j_biopsych_2015_07_005 crossref_primary_10_1016_j_schres_2012_05_016 crossref_primary_10_3390_brainsci13121722 crossref_primary_10_3389_fpsyt_2022_833896 crossref_primary_10_1016_j_biopsych_2021_07_024 crossref_primary_10_1016_j_neuroimage_2025_121136 crossref_primary_10_1097_WNP_0b013e3181e0b20a crossref_primary_10_1523_JNEUROSCI_1379_10_2011 crossref_primary_10_1111_pcn_13472 crossref_primary_10_1016_j_euroneuro_2024_02_010 crossref_primary_10_1111_psyp_12635 crossref_primary_10_3109_15622975_2015_1017605 crossref_primary_10_3389_fnhum_2015_00011 crossref_primary_10_1038_s41398_022_02300_6 crossref_primary_10_1016_j_clinph_2009_12_010 crossref_primary_10_1093_schizbullopen_sgaa070 crossref_primary_10_3389_fpsyt_2020_00537 crossref_primary_10_1016_j_cell_2010_07_005 crossref_primary_10_1016_j_seizure_2022_09_016 crossref_primary_10_1093_schbul_sbx078 crossref_primary_10_1016_j_mcn_2022_103733 crossref_primary_10_1038_nrn3137 crossref_primary_10_1016_j_conb_2014_08_009 crossref_primary_10_1002_nbm_5280 crossref_primary_10_1111_j_1469_8986_2011_01327_x crossref_primary_10_1016_j_pscychresns_2010_04_016 crossref_primary_10_1007_s10827_017_0661_9 crossref_primary_10_1016_j_schres_2020_12_042 crossref_primary_10_1016_j_neuroimage_2012_05_054 crossref_primary_10_1523_JNEUROSCI_2029_23_2024 crossref_primary_10_1063_5_0042451 crossref_primary_10_1016_j_biopsych_2023_03_026 crossref_primary_10_1073_pnas_0903641106 crossref_primary_10_1038_nrn2774 crossref_primary_10_1063_1_4856276 crossref_primary_10_1097_HRP_0000000000000110 crossref_primary_10_1016_j_neuroimage_2022_119175 crossref_primary_10_1016_j_schres_2012_01_003 crossref_primary_10_1038_mp_2011_31 crossref_primary_10_1111_j_1460_9568_2012_08071_x crossref_primary_10_1093_cercor_bhu278 crossref_primary_10_1093_cercor_bht341 crossref_primary_10_1016_j_schres_2024_05_008 crossref_primary_10_3390_brainsci11010022 crossref_primary_10_3389_fpsyt_2024_1352641 crossref_primary_10_1016_j_neuroscience_2016_03_006 crossref_primary_10_1038_srep20437 crossref_primary_10_1093_schbul_sbx058 crossref_primary_10_1016_j_neuroscience_2011_10_015 crossref_primary_10_3389_fpsyt_2021_644541 crossref_primary_10_1016_j_conb_2011_10_018 crossref_primary_10_1162_CPSY_a_00015 crossref_primary_10_3389_fncom_2014_00133 crossref_primary_10_1016_j_schres_2015_02_016 |
Cites_doi | 10.1007/s10162-002-3012-z 10.1073/pnas.91.14.6339 10.1001/archpsyc.60.5.443 10.1016/S0167-8760(01)00196-9 10.1016/S0140-6736(05)79575-1 10.1073/pnas.0609440103 10.1016/j.medengphy.2006.03.001 10.1001/archpsyc.57.7.637 10.1177/155005949802900408 10.1111/j.1469-7793.1998.003bo.x 10.1016/0006-3223(92)90064-7 10.1523/JNEUROSCI.0482-07.2007 10.1001/archpsyc.1995.03950160008002 10.1016/0959-4388(95)80012-3 10.1016/S1388-2457(00)00425-9 10.1038/47035 10.1016/0304-3940(94)90432-4 10.1016/S1388-2457(00)00347-3 10.1001/archpsyc.56.11.1001 10.1073/pnas.0402060101 10.1176/appi.ajp.158.9.1411 10.1523/JNEUROSCI.20-06-02086.2000 10.1001/archpsyc.59.4.321 10.1523/JNEUROSCI.13-01-00334.1993 10.1137/0146017 10.1038/sj.mp.4001988 10.1038/373612a0 10.1152/jn.1996.75.4.1573 10.1176/ajp.156.11.1709 10.1196/annals.1300.020 10.1016/S0028-3932(98)00019-0 10.1152/jn.1964.27.2.152 10.1152/jn.2001.85.5.1969 10.1016/j.neuron.2006.09.020 10.1073/pnas.0502366102 10.1016/j.neucom.2004.01.042 10.1073/pnas.97.4.1867 10.1016/S0167-8760(00)00173-2 10.1016/S0920-9964(01)00188-8 10.1016/0306-4522(96)00328-4 10.1016/S0006-3223(96)00030-3 10.1523/JNEUROSCI.23-19-07407.2003 10.1016/j.neuroimage.2005.02.008 10.1016/S0006-3223(98)00138-3 10.1038/659 10.1016/j.neuroscience.2005.10.070 10.1152/jn.1996.75.4.1589 10.1016/S0006-8993(97)01311-5 10.1016/S0306-4522(01)00344-X 10.1523/JNEUROSCI.1400-04.2004 10.1093/cercor/12.8.877 10.1038/385157a0 10.1016/S0920-9964(01)00163-3 10.1038/261717a0 10.1523/JNEUROSCI.2002-06.2006 10.1016/j.biopsych.2006.03.055 10.1073/pnas.0406074101 10.1103/RevModPhys.65.413 10.1523/JNEUROSCI.23-07-02618.2003 10.1001/archpsyc.1991.01810350036005 10.1016/j.tins.2004.02.007 10.1523/JNEUROSCI.17-20-07606.1997 10.1016/S0006-3223(02)01813-9 10.1162/089976603321192059 10.1002/cne.902930406 10.1016/j.schres.2003.12.011 10.1080/713752240 10.1038/nrn1648 10.1016/0006-8993(77)90808-3 10.1080/13546800042000016 10.1017/S0140525X03000025 10.1073/pnas.88.14.6048 10.1016/S1364-6613(00)01568-0 10.1016/S0165-0173(97)00061-1 10.1073/pnas.95.9.5341 10.1523/JNEUROSCI.17-19-07220.1997 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1152/jn.00870.2007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 2671 |
ExternalDocumentID | PMC2679675 18287555 10_1152_jn_00870_2007 jn_99_5_2656 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: K08 MH067966 – fundername: NIMH NIH HHS grantid: K08 MH072771 – fundername: NICHD NIH HHS grantid: R01 HD 040712 – fundername: NCRR NIH HHS grantid: P41 RR014075 – fundername: NIMH NIH HHS grantid: 5K08 MH 067966 – fundername: NICHD NIH HHS grantid: R01 HD040712 – fundername: NCRR NIH HHS grantid: P41 RR 14075 – fundername: NIMH NIH HHS grantid: P50 MH 060450 – fundername: NIMH NIH HHS grantid: P50 MH060450 |
GroupedDBID | - 0VX 29L 2WC 39C 3O- 4.4 41 53G 55 5GY 5VS AALRV ABFLS ABIVO ABPTK ABUFD ABZEH ACGFS ACNCT ADACO ADBBV ADKLL AENEX AETEA AFFNX ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FH7 FRP GX1 H~9 KQ8 L7B NEJ O0- OK1 P2P RAP RHF RHI RPL SJN UHB UPT UQL WH7 WOQ WOW X X7M ZA5 --- -DZ -~X .55 .GJ 18M 1CY 1Z7 41~ 8M5 AAYXX ABCQX ABHWK ABJNI ABKWE ACGFO ADFNX ADHGD ADIYS AFOSN AI. AIZAD BKKCC BTFSW CITATION EMOBN H13 ITBOX MVM OHT RPRKH TR2 VH1 W8F XJT XOL XSW YBH YQT YSK ZGI ZXP ZY4 CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c558t-590d8439d6e76a985dc35f9102ca9a19a838a17b0de9f508d1f8aeb523a2c82b3 |
ISSN | 0022-3077 |
IngestDate | Thu Aug 21 13:22:18 EDT 2025 Fri Jul 11 04:26:06 EDT 2025 Fri Jul 11 08:02:56 EDT 2025 Fri May 30 11:01:17 EDT 2025 Tue Jul 01 01:17:05 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Mon May 06 11:36:24 EDT 2019 Tue Jan 05 17:56:57 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c558t-590d8439d6e76a985dc35f9102ca9a19a838a17b0de9f508d1f8aeb523a2c82b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://doi.org/10.1152/jn.00870.2007 |
PMID | 18287555 |
PQID | 20664553 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | pubmed_primary_18287555 crossref_primary_10_1152_jn_00870_2007 proquest_miscellaneous_70733192 highwire_physiology_jn_99_5_2656 proquest_miscellaneous_20664553 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2679675 crossref_citationtrail_10_1152_jn_00870_2007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-05-01 |
PublicationDateYYYYMMDD | 2008-05-01 |
PublicationDate_xml | – month: 05 year: 2008 text: 2008-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2008 |
Publisher | Am Phys Soc |
Publisher_xml | – name: Am Phys Soc |
References | R61 R60 R63 R62 R21 R65 R20 R64 R23 R67 R22 R66 R25 R69 R24 R68 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R70 R72 R71 R30 R74 R73 R32 R76 R31 R75 R34 R78 R33 R77 R36 R35 R79 R38 R37 R39 R81 R80 R82 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R54 R53 R12 R56 R11 R55 R14 R58 R13 R57 R16 R15 R59 R18 R17 R19 |
References_xml | – ident: R33 doi: 10.1007/s10162-002-3012-z – ident: R39 doi: 10.1073/pnas.91.14.6339 – ident: R15 doi: 10.1001/archpsyc.60.5.443 – ident: R72 doi: 10.1016/S0167-8760(01)00196-9 – ident: R2 doi: 10.1016/S0140-6736(05)79575-1 – ident: R12 doi: 10.1073/pnas.0609440103 – ident: R51 doi: 10.1016/j.medengphy.2006.03.001 – ident: R53 doi: 10.1001/archpsyc.57.7.637 – ident: R77 doi: 10.1177/155005949802900408 – ident: R24 doi: 10.1111/j.1469-7793.1998.003bo.x – ident: R54 doi: 10.1016/0006-3223(92)90064-7 – ident: R40 doi: 10.1523/JNEUROSCI.0482-07.2007 – ident: R1 doi: 10.1001/archpsyc.1995.03950160008002 – ident: R10 doi: 10.1016/0959-4388(95)80012-3 – ident: R41 doi: 10.1016/S1388-2457(00)00425-9 – ident: R26 doi: 10.1038/47035 – ident: R16 doi: 10.1016/0304-3940(94)90432-4 – ident: R29 doi: 10.1016/S1388-2457(00)00347-3 – ident: R45 doi: 10.1001/archpsyc.56.11.1001 – ident: R14 doi: 10.1073/pnas.0402060101 – ident: R47 doi: 10.1176/appi.ajp.158.9.1411 – ident: R74 doi: 10.1523/JNEUROSCI.20-06-02086.2000 – ident: R9 – ident: R52 doi: 10.1001/archpsyc.59.4.321 – ident: R64 doi: 10.1523/JNEUROSCI.13-01-00334.1993 – ident: R22 doi: 10.1137/0146017 – ident: R71 doi: 10.1038/sj.mp.4001988 – ident: R78 doi: 10.1038/373612a0 – ident: R60 doi: 10.1152/jn.1996.75.4.1573 – ident: R57 doi: 10.1176/ajp.156.11.1709 – ident: R13 doi: 10.1196/annals.1300.020 – ident: R36 doi: 10.1016/S0028-3932(98)00019-0 – ident: R23 doi: 10.1152/jn.1964.27.2.152 – ident: R43 – ident: R69 doi: 10.1152/jn.2001.85.5.1969 – ident: R76 doi: 10.1016/j.neuron.2006.09.020 – ident: R7 doi: 10.1073/pnas.0502366102 – ident: R17 doi: 10.1016/j.neucom.2004.01.042 – ident: R44 doi: 10.1073/pnas.97.4.1867 – ident: R79 doi: 10.1016/S0167-8760(00)00173-2 – ident: R19 – ident: R81 doi: 10.1016/S0920-9964(01)00188-8 – ident: R4 doi: 10.1016/0306-4522(96)00328-4 – ident: R34 doi: 10.1016/S0006-3223(96)00030-3 – ident: R67 doi: 10.1523/JNEUROSCI.23-19-07407.2003 – ident: R38 doi: 10.1016/j.neuroimage.2005.02.008 – ident: R5 doi: 10.1016/S0006-3223(98)00138-3 – ident: R70 doi: 10.1038/659 – ident: R42 doi: 10.1016/j.neuroscience.2005.10.070 – ident: R73 – ident: R61 doi: 10.1152/jn.1996.75.4.1589 – ident: R82 doi: 10.1016/S0006-8993(97)01311-5 – ident: R18 doi: 10.1016/S0306-4522(01)00344-X – ident: R6 doi: 10.1523/JNEUROSCI.1400-04.2004 – ident: R37 doi: 10.1093/cercor/12.8.877 – ident: R59 doi: 10.1038/385157a0 – ident: R63 doi: 10.1016/S0920-9964(01)00163-3 – ident: R58 – ident: R62 doi: 10.1038/261717a0 – ident: R75 doi: 10.1523/JNEUROSCI.2002-06.2006 – ident: R31 – ident: R50 doi: 10.1016/j.biopsych.2006.03.055 – ident: R68 doi: 10.1073/pnas.0406074101 – ident: R30 doi: 10.1103/RevModPhys.65.413 – ident: R55 doi: 10.1523/JNEUROSCI.23-07-02618.2003 – ident: R3 doi: 10.1001/archpsyc.1991.01810350036005 – ident: R11 doi: 10.1016/j.tins.2004.02.007 – ident: R32 doi: 10.1523/JNEUROSCI.17-20-07606.1997 – ident: R28 doi: 10.1016/S0006-3223(02)01813-9 – ident: R8 doi: 10.1162/089976603321192059 – ident: R49 doi: 10.1002/cne.902930406 – ident: R35 doi: 10.1016/j.schres.2003.12.011 – ident: R46 doi: 10.1080/713752240 – ident: R48 doi: 10.1038/nrn1648 – ident: R65 doi: 10.1016/0006-8993(77)90808-3 – ident: R27 doi: 10.1080/13546800042000016 – ident: R56 doi: 10.1017/S0140525X03000025 – ident: R20 doi: 10.1073/pnas.88.14.6048 – ident: R21 doi: 10.1016/S1364-6613(00)01568-0 – ident: R66 doi: 10.1016/S0165-0173(97)00061-1 – ident: R80 doi: 10.1073/pnas.95.9.5341 – ident: R25 doi: 10.1523/JNEUROSCI.17-19-07220.1997 |
SSID | ssj0007502 |
Score | 2.3271916 |
Snippet | 1 Department of Mathematics and Statistics, 2 Center for BioDynamics, Boston University, Boston; 3 McLean Hospital, Harvard Medical School, Belmont; and 4... The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2656 |
SubjectTerms | Acoustic Stimulation Adolescent Adult Algorithms Auditory Cortex - physiopathology Auditory Perception - physiology Beta Rhythm Computer Simulation Electroencephalography Evoked Potentials - physiology Excitatory Postsynaptic Potentials - physiology GABA Plasma Membrane Transport Proteins - genetics GABA Plasma Membrane Transport Proteins - metabolism gamma-Aminobutyric Acid - physiology Glutamate Decarboxylase - genetics Glutamate Decarboxylase - metabolism Humans Interneurons - physiology Magnetoencephalography Male Middle Aged Models, Neurological Neural Networks, Computer Psychiatric Status Rating Scales Schizophrenia - genetics Schizophrenia - metabolism Schizophrenia - physiopathology Schizophrenic Psychology |
Title | Modeling GABA Alterations in Schizophrenia: A Link Between Impaired Inhibition and Altered Gamma and Beta Range Auditory Entrainment |
URI | http://jn.physiology.org/cgi/content/abstract/99/5/2656 https://www.ncbi.nlm.nih.gov/pubmed/18287555 https://www.proquest.com/docview/20664553 https://www.proquest.com/docview/70733192 https://pubmed.ncbi.nlm.nih.gov/PMC2679675 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jc9MwFNaEcuHCAGUJqw5ML6khkSNb5pZ20gVKWZowvWlkWW5dEicDzgHO_BR-KO_JO02H5eLJKC8axe_z2_wWQp4HLgfNEwaOHw9CZyiU6wTa0w5oEx16zDAhsHb47bF3MB2-PuWnnc7PRtbSKgtf6O9r60r-h6uwBnzFKtl_4Gy1KSzAZ-AvXIHDcP0rHuMgM1tOvj_awWi77ZBc5oafNNPp8gJ0dDx7O0Vm1iEIggSzzw_T8yRMsjIv2W4Dy_tqPrcFW_gL1fuIVQi9ERZx4Gv5cWqHS1R5M5ftW9sp0wZOWpH7T4ltsHXm7M4UGO6F1FuA7VoFexLzeW6SHEut_OGTbBXHMwBEjuJ8IlulMhbLMsEbNUYrnCHq5MFmeUG_mO1iCqkMa2B3iabYzucqFfDkTRnsca-hz5mXz3i5rCs49p69SLHDrd-3TQlqpVgmAhy_k3vToyM5GZ9OrpHrDJwRlKZvPtQ96cHmqnvSw8HLTq6cvWxt3rZ8ym7U6zyb3xN0GxbP5Ba5WbCSjnLc3SYdk94hm6NUZYv5N7pF31e83SQ_SihShCJtQJEmKW1B8RUdUQQiLYBISyDSGogUYEcLIFILRLuCQKQWiLQEIm0A8S6Z7o0nuwdOMeDD0ZyLzOFBPxJgEUee8T0VCB5pl8dgwDKtAjUIlHCFGvhhPzJBDJ5ENIiFMiFnrmJasNC9RzbSRWoeEBpy7moz5L6JwQdXGhQVaKZB3I91qMCN6JLt8uZLXXS_x-PNpPWCOZMXqbS8wsGsfpdsVeTLvO3LVYTbJSdl_UhJjB9NAEhAHASSS8SkXEZxl9B15LBlRdYlz0pASBD1-P5OpWax-ipx8sIQ_ufVFL4dwRqwLrmfA6g-PA624Bzug9-CVkWAbebb36TJuW03zzDU7POHfzzXI3KjfqIfk43sy8o8AZM9C5_aJ-YXvN7zFw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+GABA+Alterations+in+Schizophrenia%3A+A+Link+Between+Impaired+Inhibition+and+Altered+Gamma+and+Beta+Range+Auditory+Entrainment&rft.jtitle=Journal+of+neurophysiology&rft.au=Vierling-Claassen%2C+Dorea&rft.au=Siekmeier%2C+Peter&rft.au=Stufflebeam%2C+Steven&rft.au=Kopell%2C+Nancy&rft.date=2008-05-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=99&rft.issue=5&rft.spage=2656&rft.epage=2671&rft_id=info:doi/10.1152%2Fjn.00870.2007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |