Modeling GABA Alterations in Schizophrenia: A Link Between Impaired Inhibition and Altered Gamma and Beta Range Auditory Entrainment

1 Department of Mathematics and Statistics, 2 Center for BioDynamics, Boston University, Boston; 3 McLean Hospital, Harvard Medical School, Belmont; and 4 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts Submitted 6 August 2007; accepted...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 99; no. 5; pp. 2656 - 2671
Main Authors Vierling-Claassen, Dorea, Siekmeier, Peter, Stufflebeam, Steven, Kopell, Nancy
Format Journal Article
LanguageEnglish
Published United States Am Phys Soc 01.05.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1 Department of Mathematics and Statistics, 2 Center for BioDynamics, Boston University, Boston; 3 McLean Hospital, Harvard Medical School, Belmont; and 4 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts Submitted 6 August 2007; accepted in final form 20 February 2008 The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15–70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD 67 (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general. Address for reprint requests and other correspondence: D. Vierling-Claassen, Boston University Math Dept. (E-mail: dorea{at}math.bu.edu )
AbstractList 1 Department of Mathematics and Statistics, 2 Center for BioDynamics, Boston University, Boston; 3 McLean Hospital, Harvard Medical School, Belmont; and 4 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts Submitted 6 August 2007; accepted in final form 20 February 2008 The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15–70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD 67 (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general. Address for reprint requests and other correspondence: D. Vierling-Claassen, Boston University Math Dept. (E-mail: dorea{at}math.bu.edu )
The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15-70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD sub(67) (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general.
The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15–70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD 67 (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general.
The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15-70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD(67) (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general.
The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15-70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD(67) (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general.The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and maintenance of cell assemblies during sensory processing and attention. The gamma and beta frequency bands (15-70 Hz) are believed relevant to such processing. This paper addresses the results of an experimental examination of the cortical response of 12 schizophrenia patients and 12 control subjects when presented with auditory click-train stimuli in the gamma/beta frequency band during measurement using magnetoencephalography (MEG), as well as earlier work by Kwon et al. These data indicate that control subjects show an increased 40-Hz response to both 20- and 40-Hz stimulation as compared with patients, whereas schizophrenic subjects show a preference for 20-Hz response to the same driving frequencies. In this work, two computational models of the auditory cortex are constructed based on postmortem studies that indicate cortical interneurons in schizophrenic subjects have decreased GAT-1 (a GABA transporter) and GAD(67) (1 of 2 enzymes responsible for GABA synthesis). The models transition from control to schizophrenic frequency response when an extended inhibitory decay time is introduced; this change captures a possible effect of these GABA alterations. Modeling gamma/beta range auditory entrainment in schizophrenia provides insight into how biophysical mechanisms can impact cognitive function. In addition, the study of dynamics that underlie auditory entrainment in schizophrenia may contribute to the understanding of how gamma and beta rhythms impact cognition in general.
Author Stufflebeam, Steven
Kopell, Nancy
Vierling-Claassen, Dorea
Siekmeier, Peter
AuthorAffiliation 4 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
1 Department of Mathematics and Statistics, Boston University, Boston
2 Center for BioDynamics, Boston University, Boston
3 McLean Hospital, Harvard Medical School, Belmont
AuthorAffiliation_xml – name: 1 Department of Mathematics and Statistics, Boston University, Boston
– name: 3 McLean Hospital, Harvard Medical School, Belmont
– name: 2 Center for BioDynamics, Boston University, Boston
– name: 4 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
Author_xml – sequence: 1
  fullname: Vierling-Claassen, Dorea
– sequence: 2
  fullname: Siekmeier, Peter
– sequence: 3
  fullname: Stufflebeam, Steven
– sequence: 4
  fullname: Kopell, Nancy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18287555$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLeFI1fkE5yyOHYd2xyQ0qpdVlqEBOVsOfFk4yWx03xQljN_ON7dUj4k1JOt8e89P83MCTrywQNCz1MyT1NOX2_8nBApyJwSIh6hWazRJOVKHqEZIfHOiBDH6GQYNiQSnNAn6DiVVArO-Qz9eB8sNM6v8SI_z3HejNCb0QU_YOfxp7J230NX9-CdeYNzvHL-Cz6H8RbA42XbGdeDxUtfu8LtVNh4ezCJ5YVpW7OvRIXBH41fA84n68bQb_GlH3vjfAt-fIoeV6YZ4NndeYo-X11eX7xLVh8Wy4t8lZScyzHhilh5xpTNQGRGSW5LxiuVEloaZVJlJJMmFQWxoCpOpE0raaDglBlaSlqwU_T24NtNRQu2hF2ERne9a02_1cE4_feLd7Veh6-aZkJlgkeDl3cGfbiZYBh164YSmsZ4CNOgBRGMpYo-CFKSZWecswi--DPSfZZfE4pAcgDKPgxDD9VvhOjdBuiN1_sN0LsNiDz7hy_duJ_ort3NQ6rarevbOFTd1dvBhSast_pqappr-DZGjVKax27wTHe2iqpX_1fFD-5p9hPjJtXj
CitedBy_id crossref_primary_10_1016_j_pnpbp_2024_111123
crossref_primary_10_1186_1471_2202_12_S1_O4
crossref_primary_10_1137_080738052
crossref_primary_10_1016_j_neuropharm_2023_109707
crossref_primary_10_1523_JNEUROSCI_0629_15_2015
crossref_primary_10_1007_s10827_017_0666_4
crossref_primary_10_1111_pcn_12998
crossref_primary_10_1111_psyp_13074
crossref_primary_10_3389_fnins_2023_1127040
crossref_primary_10_1016_j_conb_2012_02_009
crossref_primary_10_1038_s41537_022_00255_7
crossref_primary_10_1038_s41598_019_53682_5
crossref_primary_10_1016_j_clinph_2018_08_007
crossref_primary_10_1016_j_neuroimage_2024_120862
crossref_primary_10_1016_j_schres_2008_08_015
crossref_primary_10_1038_npp_2014_19
crossref_primary_10_3389_fncom_2016_00089
crossref_primary_10_1007_s11571_024_10150_9
crossref_primary_10_1016_j_bpsc_2016_07_006
crossref_primary_10_1016_j_nicl_2019_101732
crossref_primary_10_1016_j_pnpbp_2024_111096
crossref_primary_10_1016_j_brs_2014_02_010
crossref_primary_10_1038_s41386_020_00806_5
crossref_primary_10_1016_j_biopsych_2010_11_021
crossref_primary_10_1111_ejn_16298
crossref_primary_10_1371_journal_pcbi_1010364
crossref_primary_10_1016_j_ijpsycho_2013_07_005
crossref_primary_10_1038_s41398_018_0261_0
crossref_primary_10_1016_j_biopsych_2012_03_034
crossref_primary_10_1016_j_schres_2012_04_003
crossref_primary_10_1177_1550059419868872
crossref_primary_10_3389_fpsyt_2025_1473693
crossref_primary_10_1093_schbul_sbv092
crossref_primary_10_1016_j_neuropharm_2011_02_007
crossref_primary_10_1038_s41537_020_00113_4
crossref_primary_10_1093_schbul_sbae090
crossref_primary_10_1371_journal_pone_0134979
crossref_primary_10_1016_j_ijpsycho_2012_04_002
crossref_primary_10_1016_j_neubiorev_2015_09_014
crossref_primary_10_1152_jn_00535_2009
crossref_primary_10_1038_s41598_022_13228_8
crossref_primary_10_1186_1471_2202_16_S1_P305
crossref_primary_10_1016_j_pnpbp_2018_04_016
crossref_primary_10_12688_f1000research_12155_1
crossref_primary_10_1016_j_biopsych_2015_02_005
crossref_primary_10_1063_1_4824320
crossref_primary_10_1111_cns_12081
crossref_primary_10_1080_03080188_2022_2036520
crossref_primary_10_3389_fpsyt_2020_00507
crossref_primary_10_1080_10253890_2019_1583203
crossref_primary_10_1152_jn_00401_2019
crossref_primary_10_3389_fpsyt_2019_00534
crossref_primary_10_1016_j_biopsych_2017_03_005
crossref_primary_10_1016_j_bpsc_2018_08_011
crossref_primary_10_1093_cercor_bhad297
crossref_primary_10_1093_schbul_sbaa116
crossref_primary_10_1371_journal_pone_0058607
crossref_primary_10_1038_s41598_021_99793_w
crossref_primary_10_1002_hbm_20792
crossref_primary_10_1016_j_pnpbp_2020_110224
crossref_primary_10_1016_j_psychres_2016_11_030
crossref_primary_10_1016_j_biopsych_2021_03_018
crossref_primary_10_1162_NECO_a_00944
crossref_primary_10_1016_j_schres_2012_07_016
crossref_primary_10_1371_journal_pone_0039955
crossref_primary_10_1038_npp_2016_17
crossref_primary_10_1111_ane_13437
crossref_primary_10_1162_NECO_a_00786
crossref_primary_10_1093_schbul_sbp091
crossref_primary_10_1137_12089274X
crossref_primary_10_1152_physrev_00035_2008
crossref_primary_10_1016_j_nicl_2013_06_015
crossref_primary_10_3389_fnins_2014_00168
crossref_primary_10_1016_j_schres_2023_01_011
crossref_primary_10_1016_j_neuroimage_2009_03_085
crossref_primary_10_1073_pnas_0809302105
crossref_primary_10_1016_j_pscychresns_2009_04_017
crossref_primary_10_1093_schizbullopen_sgaa065
crossref_primary_10_1152_jn_91161_2008
crossref_primary_10_1177_2167702614562041
crossref_primary_10_1002_hbm_21309
crossref_primary_10_1016_j_biopsych_2015_07_005
crossref_primary_10_1016_j_schres_2012_05_016
crossref_primary_10_3390_brainsci13121722
crossref_primary_10_3389_fpsyt_2022_833896
crossref_primary_10_1016_j_biopsych_2021_07_024
crossref_primary_10_1016_j_neuroimage_2025_121136
crossref_primary_10_1097_WNP_0b013e3181e0b20a
crossref_primary_10_1523_JNEUROSCI_1379_10_2011
crossref_primary_10_1111_pcn_13472
crossref_primary_10_1016_j_euroneuro_2024_02_010
crossref_primary_10_1111_psyp_12635
crossref_primary_10_3109_15622975_2015_1017605
crossref_primary_10_3389_fnhum_2015_00011
crossref_primary_10_1038_s41398_022_02300_6
crossref_primary_10_1016_j_clinph_2009_12_010
crossref_primary_10_1093_schizbullopen_sgaa070
crossref_primary_10_3389_fpsyt_2020_00537
crossref_primary_10_1016_j_cell_2010_07_005
crossref_primary_10_1016_j_seizure_2022_09_016
crossref_primary_10_1093_schbul_sbx078
crossref_primary_10_1016_j_mcn_2022_103733
crossref_primary_10_1038_nrn3137
crossref_primary_10_1016_j_conb_2014_08_009
crossref_primary_10_1002_nbm_5280
crossref_primary_10_1111_j_1469_8986_2011_01327_x
crossref_primary_10_1016_j_pscychresns_2010_04_016
crossref_primary_10_1007_s10827_017_0661_9
crossref_primary_10_1016_j_schres_2020_12_042
crossref_primary_10_1016_j_neuroimage_2012_05_054
crossref_primary_10_1523_JNEUROSCI_2029_23_2024
crossref_primary_10_1063_5_0042451
crossref_primary_10_1016_j_biopsych_2023_03_026
crossref_primary_10_1073_pnas_0903641106
crossref_primary_10_1038_nrn2774
crossref_primary_10_1063_1_4856276
crossref_primary_10_1097_HRP_0000000000000110
crossref_primary_10_1016_j_neuroimage_2022_119175
crossref_primary_10_1016_j_schres_2012_01_003
crossref_primary_10_1038_mp_2011_31
crossref_primary_10_1111_j_1460_9568_2012_08071_x
crossref_primary_10_1093_cercor_bhu278
crossref_primary_10_1093_cercor_bht341
crossref_primary_10_1016_j_schres_2024_05_008
crossref_primary_10_3390_brainsci11010022
crossref_primary_10_3389_fpsyt_2024_1352641
crossref_primary_10_1016_j_neuroscience_2016_03_006
crossref_primary_10_1038_srep20437
crossref_primary_10_1093_schbul_sbx058
crossref_primary_10_1016_j_neuroscience_2011_10_015
crossref_primary_10_3389_fpsyt_2021_644541
crossref_primary_10_1016_j_conb_2011_10_018
crossref_primary_10_1162_CPSY_a_00015
crossref_primary_10_3389_fncom_2014_00133
crossref_primary_10_1016_j_schres_2015_02_016
Cites_doi 10.1007/s10162-002-3012-z
10.1073/pnas.91.14.6339
10.1001/archpsyc.60.5.443
10.1016/S0167-8760(01)00196-9
10.1016/S0140-6736(05)79575-1
10.1073/pnas.0609440103
10.1016/j.medengphy.2006.03.001
10.1001/archpsyc.57.7.637
10.1177/155005949802900408
10.1111/j.1469-7793.1998.003bo.x
10.1016/0006-3223(92)90064-7
10.1523/JNEUROSCI.0482-07.2007
10.1001/archpsyc.1995.03950160008002
10.1016/0959-4388(95)80012-3
10.1016/S1388-2457(00)00425-9
10.1038/47035
10.1016/0304-3940(94)90432-4
10.1016/S1388-2457(00)00347-3
10.1001/archpsyc.56.11.1001
10.1073/pnas.0402060101
10.1176/appi.ajp.158.9.1411
10.1523/JNEUROSCI.20-06-02086.2000
10.1001/archpsyc.59.4.321
10.1523/JNEUROSCI.13-01-00334.1993
10.1137/0146017
10.1038/sj.mp.4001988
10.1038/373612a0
10.1152/jn.1996.75.4.1573
10.1176/ajp.156.11.1709
10.1196/annals.1300.020
10.1016/S0028-3932(98)00019-0
10.1152/jn.1964.27.2.152
10.1152/jn.2001.85.5.1969
10.1016/j.neuron.2006.09.020
10.1073/pnas.0502366102
10.1016/j.neucom.2004.01.042
10.1073/pnas.97.4.1867
10.1016/S0167-8760(00)00173-2
10.1016/S0920-9964(01)00188-8
10.1016/0306-4522(96)00328-4
10.1016/S0006-3223(96)00030-3
10.1523/JNEUROSCI.23-19-07407.2003
10.1016/j.neuroimage.2005.02.008
10.1016/S0006-3223(98)00138-3
10.1038/659
10.1016/j.neuroscience.2005.10.070
10.1152/jn.1996.75.4.1589
10.1016/S0006-8993(97)01311-5
10.1016/S0306-4522(01)00344-X
10.1523/JNEUROSCI.1400-04.2004
10.1093/cercor/12.8.877
10.1038/385157a0
10.1016/S0920-9964(01)00163-3
10.1038/261717a0
10.1523/JNEUROSCI.2002-06.2006
10.1016/j.biopsych.2006.03.055
10.1073/pnas.0406074101
10.1103/RevModPhys.65.413
10.1523/JNEUROSCI.23-07-02618.2003
10.1001/archpsyc.1991.01810350036005
10.1016/j.tins.2004.02.007
10.1523/JNEUROSCI.17-20-07606.1997
10.1016/S0006-3223(02)01813-9
10.1162/089976603321192059
10.1002/cne.902930406
10.1016/j.schres.2003.12.011
10.1080/713752240
10.1038/nrn1648
10.1016/0006-8993(77)90808-3
10.1080/13546800042000016
10.1017/S0140525X03000025
10.1073/pnas.88.14.6048
10.1016/S1364-6613(00)01568-0
10.1016/S0165-0173(97)00061-1
10.1073/pnas.95.9.5341
10.1523/JNEUROSCI.17-19-07220.1997
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1152/jn.00870.2007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts

CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 2671
ExternalDocumentID PMC2679675
18287555
10_1152_jn_00870_2007
jn_99_5_2656
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: K08 MH067966
– fundername: NIMH NIH HHS
  grantid: K08 MH072771
– fundername: NICHD NIH HHS
  grantid: R01 HD 040712
– fundername: NCRR NIH HHS
  grantid: P41 RR014075
– fundername: NIMH NIH HHS
  grantid: 5K08 MH 067966
– fundername: NICHD NIH HHS
  grantid: R01 HD040712
– fundername: NCRR NIH HHS
  grantid: P41 RR 14075
– fundername: NIMH NIH HHS
  grantid: P50 MH 060450
– fundername: NIMH NIH HHS
  grantid: P50 MH060450
GroupedDBID -
0VX
29L
2WC
39C
3O-
4.4
41
53G
55
5GY
5VS
AALRV
ABFLS
ABIVO
ABPTK
ABUFD
ABZEH
ACGFS
ACNCT
ADACO
ADBBV
ADKLL
AENEX
AETEA
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FH7
FRP
GX1
H~9
KQ8
L7B
NEJ
O0-
OK1
P2P
RAP
RHF
RHI
RPL
SJN
UHB
UPT
UQL
WH7
WOQ
WOW
X
X7M
ZA5
---
-DZ
-~X
.55
.GJ
18M
1CY
1Z7
41~
8M5
AAYXX
ABCQX
ABHWK
ABJNI
ABKWE
ACGFO
ADFNX
ADHGD
ADIYS
AFOSN
AI.
AIZAD
BKKCC
BTFSW
CITATION
EMOBN
H13
ITBOX
MVM
OHT
RPRKH
TR2
VH1
W8F
XJT
XOL
XSW
YBH
YQT
YSK
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c558t-590d8439d6e76a985dc35f9102ca9a19a838a17b0de9f508d1f8aeb523a2c82b3
ISSN 0022-3077
IngestDate Thu Aug 21 13:22:18 EDT 2025
Fri Jul 11 04:26:06 EDT 2025
Fri Jul 11 08:02:56 EDT 2025
Fri May 30 11:01:17 EDT 2025
Tue Jul 01 01:17:05 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Mon May 06 11:36:24 EDT 2019
Tue Jan 05 17:56:57 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c558t-590d8439d6e76a985dc35f9102ca9a19a838a17b0de9f508d1f8aeb523a2c82b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://doi.org/10.1152/jn.00870.2007
PMID 18287555
PQID 20664553
PQPubID 23462
PageCount 16
ParticipantIDs pubmed_primary_18287555
crossref_primary_10_1152_jn_00870_2007
proquest_miscellaneous_70733192
highwire_physiology_jn_99_5_2656
proquest_miscellaneous_20664553
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2679675
crossref_citationtrail_10_1152_jn_00870_2007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-05-01
PublicationDateYYYYMMDD 2008-05-01
PublicationDate_xml – month: 05
  year: 2008
  text: 2008-05-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2008
Publisher Am Phys Soc
Publisher_xml – name: Am Phys Soc
References R61
R60
R63
R62
R21
R65
R20
R64
R23
R67
R22
R66
R25
R69
R24
R68
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R70
R72
R71
R30
R74
R73
R32
R76
R31
R75
R34
R78
R33
R77
R36
R35
R79
R38
R37
R39
R81
R80
R82
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R58
R13
R57
R16
R15
R59
R18
R17
R19
References_xml – ident: R33
  doi: 10.1007/s10162-002-3012-z
– ident: R39
  doi: 10.1073/pnas.91.14.6339
– ident: R15
  doi: 10.1001/archpsyc.60.5.443
– ident: R72
  doi: 10.1016/S0167-8760(01)00196-9
– ident: R2
  doi: 10.1016/S0140-6736(05)79575-1
– ident: R12
  doi: 10.1073/pnas.0609440103
– ident: R51
  doi: 10.1016/j.medengphy.2006.03.001
– ident: R53
  doi: 10.1001/archpsyc.57.7.637
– ident: R77
  doi: 10.1177/155005949802900408
– ident: R24
  doi: 10.1111/j.1469-7793.1998.003bo.x
– ident: R54
  doi: 10.1016/0006-3223(92)90064-7
– ident: R40
  doi: 10.1523/JNEUROSCI.0482-07.2007
– ident: R1
  doi: 10.1001/archpsyc.1995.03950160008002
– ident: R10
  doi: 10.1016/0959-4388(95)80012-3
– ident: R41
  doi: 10.1016/S1388-2457(00)00425-9
– ident: R26
  doi: 10.1038/47035
– ident: R16
  doi: 10.1016/0304-3940(94)90432-4
– ident: R29
  doi: 10.1016/S1388-2457(00)00347-3
– ident: R45
  doi: 10.1001/archpsyc.56.11.1001
– ident: R14
  doi: 10.1073/pnas.0402060101
– ident: R47
  doi: 10.1176/appi.ajp.158.9.1411
– ident: R74
  doi: 10.1523/JNEUROSCI.20-06-02086.2000
– ident: R9
– ident: R52
  doi: 10.1001/archpsyc.59.4.321
– ident: R64
  doi: 10.1523/JNEUROSCI.13-01-00334.1993
– ident: R22
  doi: 10.1137/0146017
– ident: R71
  doi: 10.1038/sj.mp.4001988
– ident: R78
  doi: 10.1038/373612a0
– ident: R60
  doi: 10.1152/jn.1996.75.4.1573
– ident: R57
  doi: 10.1176/ajp.156.11.1709
– ident: R13
  doi: 10.1196/annals.1300.020
– ident: R36
  doi: 10.1016/S0028-3932(98)00019-0
– ident: R23
  doi: 10.1152/jn.1964.27.2.152
– ident: R43
– ident: R69
  doi: 10.1152/jn.2001.85.5.1969
– ident: R76
  doi: 10.1016/j.neuron.2006.09.020
– ident: R7
  doi: 10.1073/pnas.0502366102
– ident: R17
  doi: 10.1016/j.neucom.2004.01.042
– ident: R44
  doi: 10.1073/pnas.97.4.1867
– ident: R79
  doi: 10.1016/S0167-8760(00)00173-2
– ident: R19
– ident: R81
  doi: 10.1016/S0920-9964(01)00188-8
– ident: R4
  doi: 10.1016/0306-4522(96)00328-4
– ident: R34
  doi: 10.1016/S0006-3223(96)00030-3
– ident: R67
  doi: 10.1523/JNEUROSCI.23-19-07407.2003
– ident: R38
  doi: 10.1016/j.neuroimage.2005.02.008
– ident: R5
  doi: 10.1016/S0006-3223(98)00138-3
– ident: R70
  doi: 10.1038/659
– ident: R42
  doi: 10.1016/j.neuroscience.2005.10.070
– ident: R73
– ident: R61
  doi: 10.1152/jn.1996.75.4.1589
– ident: R82
  doi: 10.1016/S0006-8993(97)01311-5
– ident: R18
  doi: 10.1016/S0306-4522(01)00344-X
– ident: R6
  doi: 10.1523/JNEUROSCI.1400-04.2004
– ident: R37
  doi: 10.1093/cercor/12.8.877
– ident: R59
  doi: 10.1038/385157a0
– ident: R63
  doi: 10.1016/S0920-9964(01)00163-3
– ident: R58
– ident: R62
  doi: 10.1038/261717a0
– ident: R75
  doi: 10.1523/JNEUROSCI.2002-06.2006
– ident: R31
– ident: R50
  doi: 10.1016/j.biopsych.2006.03.055
– ident: R68
  doi: 10.1073/pnas.0406074101
– ident: R30
  doi: 10.1103/RevModPhys.65.413
– ident: R55
  doi: 10.1523/JNEUROSCI.23-07-02618.2003
– ident: R3
  doi: 10.1001/archpsyc.1991.01810350036005
– ident: R11
  doi: 10.1016/j.tins.2004.02.007
– ident: R32
  doi: 10.1523/JNEUROSCI.17-20-07606.1997
– ident: R28
  doi: 10.1016/S0006-3223(02)01813-9
– ident: R8
  doi: 10.1162/089976603321192059
– ident: R49
  doi: 10.1002/cne.902930406
– ident: R35
  doi: 10.1016/j.schres.2003.12.011
– ident: R46
  doi: 10.1080/713752240
– ident: R48
  doi: 10.1038/nrn1648
– ident: R65
  doi: 10.1016/0006-8993(77)90808-3
– ident: R27
  doi: 10.1080/13546800042000016
– ident: R56
  doi: 10.1017/S0140525X03000025
– ident: R20
  doi: 10.1073/pnas.88.14.6048
– ident: R21
  doi: 10.1016/S1364-6613(00)01568-0
– ident: R66
  doi: 10.1016/S0165-0173(97)00061-1
– ident: R80
  doi: 10.1073/pnas.95.9.5341
– ident: R25
  doi: 10.1523/JNEUROSCI.17-19-07220.1997
SSID ssj0007502
Score 2.3271916
Snippet 1 Department of Mathematics and Statistics, 2 Center for BioDynamics, Boston University, Boston; 3 McLean Hospital, Harvard Medical School, Belmont; and 4...
The disorganized symptoms of schizophrenia, including severely disordered thought patterns, may be indicative of a problem with the construction and...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2656
SubjectTerms Acoustic Stimulation
Adolescent
Adult
Algorithms
Auditory Cortex - physiopathology
Auditory Perception - physiology
Beta Rhythm
Computer Simulation
Electroencephalography
Evoked Potentials - physiology
Excitatory Postsynaptic Potentials - physiology
GABA Plasma Membrane Transport Proteins - genetics
GABA Plasma Membrane Transport Proteins - metabolism
gamma-Aminobutyric Acid - physiology
Glutamate Decarboxylase - genetics
Glutamate Decarboxylase - metabolism
Humans
Interneurons - physiology
Magnetoencephalography
Male
Middle Aged
Models, Neurological
Neural Networks, Computer
Psychiatric Status Rating Scales
Schizophrenia - genetics
Schizophrenia - metabolism
Schizophrenia - physiopathology
Schizophrenic Psychology
Title Modeling GABA Alterations in Schizophrenia: A Link Between Impaired Inhibition and Altered Gamma and Beta Range Auditory Entrainment
URI http://jn.physiology.org/cgi/content/abstract/99/5/2656
https://www.ncbi.nlm.nih.gov/pubmed/18287555
https://www.proquest.com/docview/20664553
https://www.proquest.com/docview/70733192
https://pubmed.ncbi.nlm.nih.gov/PMC2679675
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jc9MwFNaEcuHCAGUJqw5ML6khkSNb5pZ20gVKWZowvWlkWW5dEicDzgHO_BR-KO_JO02H5eLJKC8axe_z2_wWQp4HLgfNEwaOHw9CZyiU6wTa0w5oEx16zDAhsHb47bF3MB2-PuWnnc7PRtbSKgtf6O9r60r-h6uwBnzFKtl_4Gy1KSzAZ-AvXIHDcP0rHuMgM1tOvj_awWi77ZBc5oafNNPp8gJ0dDx7O0Vm1iEIggSzzw_T8yRMsjIv2W4Dy_tqPrcFW_gL1fuIVQi9ERZx4Gv5cWqHS1R5M5ftW9sp0wZOWpH7T4ltsHXm7M4UGO6F1FuA7VoFexLzeW6SHEut_OGTbBXHMwBEjuJ8IlulMhbLMsEbNUYrnCHq5MFmeUG_mO1iCqkMa2B3iabYzucqFfDkTRnsca-hz5mXz3i5rCs49p69SLHDrd-3TQlqpVgmAhy_k3vToyM5GZ9OrpHrDJwRlKZvPtQ96cHmqnvSw8HLTq6cvWxt3rZ8ym7U6zyb3xN0GxbP5Ba5WbCSjnLc3SYdk94hm6NUZYv5N7pF31e83SQ_SihShCJtQJEmKW1B8RUdUQQiLYBISyDSGogUYEcLIFILRLuCQKQWiLQEIm0A8S6Z7o0nuwdOMeDD0ZyLzOFBPxJgEUee8T0VCB5pl8dgwDKtAjUIlHCFGvhhPzJBDJ5ENIiFMiFnrmJasNC9RzbSRWoeEBpy7moz5L6JwQdXGhQVaKZB3I91qMCN6JLt8uZLXXS_x-PNpPWCOZMXqbS8wsGsfpdsVeTLvO3LVYTbJSdl_UhJjB9NAEhAHASSS8SkXEZxl9B15LBlRdYlz0pASBD1-P5OpWax-ipx8sIQ_ufVFL4dwRqwLrmfA6g-PA624Bzug9-CVkWAbebb36TJuW03zzDU7POHfzzXI3KjfqIfk43sy8o8AZM9C5_aJ-YXvN7zFw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+GABA+Alterations+in+Schizophrenia%3A+A+Link+Between+Impaired+Inhibition+and+Altered+Gamma+and+Beta+Range+Auditory+Entrainment&rft.jtitle=Journal+of+neurophysiology&rft.au=Vierling-Claassen%2C+Dorea&rft.au=Siekmeier%2C+Peter&rft.au=Stufflebeam%2C+Steven&rft.au=Kopell%2C+Nancy&rft.date=2008-05-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=99&rft.issue=5&rft.spage=2656&rft.epage=2671&rft_id=info:doi/10.1152%2Fjn.00870.2007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon