Chloroquine treatment induces secretion of autophagy-related proteins and inclusion of Atg8-family proteins in distinct extracellular vesicle populations

Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8...

Full description

Saved in:
Bibliographic Details
Published inAutophagy Vol. 18; no. 11; pp. 2547 - 2560
Main Authors Xu, Jing, Yang, Kevin C, Go, Nancy Erro, Colborne, Shane, Ho, Cally J, Hosseini-Beheshti, Elham, Lystad, Alf H, Simonsen, Anne, Guns, Emma Tomlinson, Morin, Gregg B, Gorski, Sharon M
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 02.11.2022
Landes Bioscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition. Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell
AbstractList Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition.Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell.Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition.Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell.
Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition. Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4’,6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell
Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition. Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell
Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition.
Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition. ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell.
Author Gorski, Sharon M
Xu, Jing
Simonsen, Anne
Ho, Cally J
Lystad, Alf H
Colborne, Shane
Guns, Emma Tomlinson
Morin, Gregg B
Yang, Kevin C
Hosseini-Beheshti, Elham
Go, Nancy Erro
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-0373-5120
  surname: Xu
  fullname: Xu, Jing
  organization: Simon Fraser University
– sequence: 2
  givenname: Kevin C
  orcidid: 0000-0001-6337-6206
  surname: Yang
  fullname: Yang, Kevin C
  organization: Simon Fraser University
– sequence: 3
  givenname: Nancy Erro
  surname: Go
  fullname: Go, Nancy Erro
  organization: Simon Fraser University
– sequence: 4
  givenname: Shane
  surname: Colborne
  fullname: Colborne, Shane
  organization: Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute
– sequence: 5
  givenname: Cally J
  orcidid: 0000-0003-1871-6747
  surname: Ho
  fullname: Ho, Cally J
  organization: Simon Fraser University
– sequence: 6
  givenname: Elham
  surname: Hosseini-Beheshti
  fullname: Hosseini-Beheshti, Elham
  organization: The University of Sydney
– sequence: 7
  givenname: Alf H
  surname: Lystad
  fullname: Lystad, Alf H
  organization: University of Oslo
– sequence: 8
  givenname: Anne
  orcidid: 0000-0003-4711-7057
  surname: Simonsen
  fullname: Simonsen, Anne
  organization: Institute for Cancer Research, Oslo University Hospital
– sequence: 9
  givenname: Emma Tomlinson
  surname: Guns
  fullname: Guns, Emma Tomlinson
  organization: University of British Columbia
– sequence: 10
  givenname: Gregg B
  orcidid: 0000-0001-8949-4374
  surname: Morin
  fullname: Morin, Gregg B
  organization: University of British Columbia
– sequence: 11
  givenname: Sharon M
  orcidid: 0000-0002-3821-8289
  surname: Gorski
  fullname: Gorski, Sharon M
  email: sgorski@bcgsc.ca
  organization: Centre for Cell Biology, Development, and Disease, Simon Fraser University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35220892$$D View this record in MEDLINE/PubMed
BookMark eNqFUsuOFCEUrZgxzkM_QWXppkaKKqgiJmYmHV_JJG50TWi4dGMoKIEa7U_xb6Wmu8fHQjeXC5xzz32dVyc-eKiqpw2-bPCAXzaUdgMj_SXBhBTTctrSB9XZ8l4PrKUn9z7pT6vzlL5g3LKBk0fVaUsJwcU9q36sti7E8HW2HlCOIPMIPiPr9awgoQQqQrbBo2CQnHOYtnKzqyM4mUGjKYYM1ickvS4c5eZ0wF7nzVAbOVq3-4WyHmmbcgFmBN9zlAqcm52M6BaSVQ7QFKZyXwTT4-qhkS7Bk8N5UX1---bT6n198_Hdh9X1Ta0oHXLdrXupGsUwWzPT9x1hQIxs9ID7xuCuIZppLtccEzCtMZx3tOlAMdVzTjHW7UX1eh93mtcjaFXKj9KJKdpRxp0I0oo_f7zdik24FZwRjntaAjzfB1DxrjjhQ5SiDIkSwfnQ9AXx4iCxdBpSFqNNS-3SQ5iTIKwtWXHeswJ99ns292kcJ1YAr45qIaUIRiib7zpWkrOu6C7SxRz2Qyz7IQ77Udj0L_ZR4H-8qz3PehPiKL-F6LTIcleWx0TplU2i_XeIn5s_1ZU
CitedBy_id crossref_primary_10_1038_s41467_024_53398_9
crossref_primary_10_1186_s13578_025_01357_2
crossref_primary_10_1007_s12282_023_01541_7
crossref_primary_10_1038_s41580_023_00585_z
crossref_primary_10_2147_JHC_S376210
crossref_primary_10_1038_s41420_024_02075_3
crossref_primary_10_1002_jgm_70005
crossref_primary_10_1016_j_canlet_2024_216846
crossref_primary_10_1128_jvi_00327_24
crossref_primary_10_1111_acel_13713
crossref_primary_10_1016_j_theriogenology_2023_11_001
crossref_primary_10_1016_j_jhazmat_2024_136307
crossref_primary_10_1128_spectrum_01819_24
crossref_primary_10_1016_j_fct_2023_113954
crossref_primary_10_1038_s41556_023_01197_7
crossref_primary_10_3892_or_2025_8864
crossref_primary_10_1016_j_heliyon_2023_e16735
crossref_primary_10_1080_15548627_2024_2369436
crossref_primary_10_3390_biology12030373
crossref_primary_10_1002_jex2_157
crossref_primary_10_15252_embr_202357289
crossref_primary_10_1007_s11684_024_1079_1
crossref_primary_10_1007_s00203_025_04264_9
crossref_primary_10_1016_j_ejphar_2023_175949
crossref_primary_10_1016_j_ncrna_2024_12_001
crossref_primary_10_2147_JHC_S423043
crossref_primary_10_1038_s41467_023_40680_5
crossref_primary_10_1186_s40164_025_00603_0
crossref_primary_10_1016_j_canlet_2023_216261
crossref_primary_10_1042_BSR20240137
crossref_primary_10_1016_j_ijbiomac_2025_142238
crossref_primary_10_1016_j_jddst_2024_105415
crossref_primary_10_1016_j_cellsig_2023_110940
crossref_primary_10_1097_HC9_0000000000000654
crossref_primary_10_1126_sciadv_adh1134
Cites_doi 10.1016/j.devcel.2017.11.018
10.1074/mcp.M112.021303
10.1016/j.devcel.2010.12.003
10.4161/15548627.2014.984277
10.1038/nrd3978
10.1038/d41573-019-00072-1
10.1073/pnas.1521230113
10.1080/15548627.2016.1207016
10.1016/j.arr.2016.05.001
10.1042/EBC20170021
10.1101/gr.772403
10.1016/j.ceb.2015.04.016
10.1021/acschemneuro.6b00002
10.1038/emboj.2013.233
10.1089/omi.2011.0118
10.1080/15548627.2015.1082025
10.1038/nrc.2017.53
10.1242/jcs.128868
10.1038/onc.2015.99
10.15252/embj.2020104948
10.1111/j.1365-2818.2006.01706.x
10.3402/jev.v4.27066
10.1038/ncb2757
10.1101/2020.10.27.323766
10.3390/ijms18061279
10.1016/j.molcel.2019.09.005
10.1038/s41556-019-0274-9
10.4161/auto.4012
10.1074/jbc.AC119.009977
10.1038/s41419-018-0816-2
10.7554/eLife.11205
10.1038/s41556-019-0450-y
10.15252/msb.20145625
10.1016/j.ccr.2014.06.025
10.4161/auto.8.2.18554
10.1038/ncb2502
10.1038/nature15756
10.1038/nature13148
10.1016/j.molcel.2021.03.020
10.1242/jcs.215210
10.1038/nrm.2017.125
10.4161/auto.7.3.14487
10.1016/j.devcel.2019.03.011
10.1080/15548627.2016.1208887
10.1146/annurev-genet-102808-114910
10.7554/eLife.19276
10.1101/558767
10.1080/15548627.2017.1287653
10.1097/MD.0000000000012912
10.1080/20013078.2019.1596016
10.1080/15548627.2018.1474314
10.1093/nar/gky1106
10.1080/20013078.2018.1535750
10.1038/ncb0910-836
10.1038/nmeth.2089
10.15252/embj.201797840
10.1016/j.cell.2019.02.029
10.1038/nmeth.4185
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
info:eu-repo/semantics/openAccess
2022 Informa UK Limited, trading as Taylor & Francis Group 2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: info:eu-repo/semantics/openAccess
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
3HK
5PM
DOI 10.1080/15548627.2022.2039535
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
NORA - Norwegian Open Research Archives
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate J. XU ET AL
EISSN 1554-8635
EndPage 2560
ExternalDocumentID PMC9629075
10852_99817
35220892
10_1080_15548627_2022_2039535
2039535
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: OBC127216
– fundername: CIHR
  grantid: MOP-78882
GroupedDBID ---
0BK
0R~
23N
30N
4.4
53G
5GY
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
AEISY
AENEX
AEYOC
AGDLA
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AVBZW
AWYRJ
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EMOBN
F5P
GTTXZ
H13
HYE
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
P2P
RIG
RNANH
ROSJB
RPM
RTWRZ
SNACF
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
TUROJ
ZGOLN
AAGDL
AAHIA
AAYXX
ADHGD
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
AAGME
ABFMO
ACDHJ
ACZPZ
ADOPC
AURDB
BFWEY
C1A
CGR
CUY
CVF
CWRZV
ECM
EIF
EJD
NPM
PCLFJ
7X8
3HK
AAAVI
ABBKH
ABJVF
ABQHQ
AEGYZ
AFOLD
AFWLO
AGRBW
AHDLD
AIRXU
FUNRP
FVPDL
SV3
V1K
ZA5
5PM
TASJS
ID FETCH-LOGICAL-c558t-4b7ac1c606b6f77426e2fa1d8071f0412d6d9ab902ef3ff994514ec6c799500d3
ISSN 1554-8627
1554-8635
IngestDate Thu Aug 21 18:38:46 EDT 2025
Sat Apr 29 05:42:13 EDT 2023
Fri Jul 11 10:38:24 EDT 2025
Tue Mar 18 09:46:09 EDT 2025
Thu Apr 24 22:57:55 EDT 2025
Tue Jul 01 02:49:03 EDT 2025
Wed Dec 25 09:05:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords chloroquine
CD63
MAP1LC3B
endosome
autophagy
ATG16L1
SDCBP/syntenin-1
Atg8
extracellular vesicle
lysosome
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c558t-4b7ac1c606b6f77426e2fa1d8071f0412d6d9ab902ef3ff994514ec6c799500d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
NFR/314684
ORCID 0000-0002-0373-5120
0000-0001-8949-4374
0000-0001-6337-6206
0000-0002-3821-8289
0000-0003-1871-6747
0000-0003-4711-7057
OpenAccessLink http://hdl.handle.net/10852/99817
PMID 35220892
PQID 2634519976
PQPubID 23479
PageCount 14
ParticipantIDs pubmed_primary_35220892
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9629075
informaworld_taylorfrancis_310_1080_15548627_2022_2039535
proquest_miscellaneous_2634519976
crossref_citationtrail_10_1080_15548627_2022_2039535
crossref_primary_10_1080_15548627_2022_2039535
cristin_nora_10852_99817
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-02
PublicationDateYYYYMMDD 2022-11-02
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Autophagy
PublicationTitleAlternate Autophagy
PublicationYear 2022
Publisher Taylor & Francis
Landes Bioscience
Publisher_xml – name: Taylor & Francis
– name: Landes Bioscience
References cit0033
cit0034
cit0031
cit0032
cit0030
Agrotis A (cit0028) 2019; 00
cit0039
cit0037
cit0035
cit0036
cit0022
cit0023
cit0020
cit0021
cit0060
cit0061
cit0029
cit0026
cit0027
cit0024
cit0025
cit0011
cit0055
cit0012
cit0053
cit0010
cit0054
cit0051
cit0052
R Core Team (cit0056) 2016
cit0050
cit0019
cit0017
cit0018
cit0015
cit0059
cit0016
Minakaki G (cit0038) 2017; 8627
cit0013
cit0057
cit0014
cit0058
cit0044
cit0001
cit0045
cit0042
cit0043
cit0040
cit0041
cit0008
cit0009
cit0006
cit0007
cit0004
cit0048
cit0005
cit0049
cit0002
cit0046
cit0003
cit0047
References_xml – ident: cit0025
  doi: 10.1016/j.devcel.2017.11.018
– volume: 8627
  start-page: 1
  year: 2017
  ident: cit0038
  publication-title: Autophagy
– ident: cit0030
  doi: 10.1074/mcp.M112.021303
– ident: cit0040
  doi: 10.1016/j.devcel.2010.12.003
– ident: cit0044
  doi: 10.4161/15548627.2014.984277
– ident: cit0010
  doi: 10.1038/nrd3978
– ident: cit0005
  doi: 10.1038/d41573-019-00072-1
– ident: cit0042
  doi: 10.1073/pnas.1521230113
– ident: cit0059
  doi: 10.1080/15548627.2016.1207016
– ident: cit0013
  doi: 10.1016/j.arr.2016.05.001
– ident: cit0036
  doi: 10.1042/EBC20170021
– ident: cit0057
  doi: 10.1101/gr.772403
– ident: cit0003
  doi: 10.1016/j.ceb.2015.04.016
– ident: cit0017
  doi: 10.1021/acschemneuro.6b00002
– ident: cit0047
  doi: 10.1038/emboj.2013.233
– ident: cit0058
  doi: 10.1089/omi.2011.0118
– ident: cit0023
  doi: 10.1080/15548627.2015.1082025
– ident: cit0001
  doi: 10.1038/nrc.2017.53
– ident: cit0031
  doi: 10.1242/jcs.128868
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2016
  ident: cit0056
– ident: cit0004
  doi: 10.1038/onc.2015.99
– ident: cit0037
  doi: 10.15252/embj.2020104948
– ident: cit0054
  doi: 10.1111/j.1365-2818.2006.01706.x
– ident: cit0009
  doi: 10.3402/jev.v4.27066
– ident: cit0035
  doi: 10.1038/ncb2757
– ident: cit0043
  doi: 10.1101/2020.10.27.323766
– ident: cit0006
  doi: 10.3390/ijms18061279
– ident: cit0022
  doi: 10.1016/j.molcel.2019.09.005
– ident: cit0026
  doi: 10.1038/s41556-019-0274-9
– ident: cit0024
  doi: 10.4161/auto.4012
– ident: cit0027
  doi: 10.1074/jbc.AC119.009977
– ident: cit0014
  doi: 10.1038/s41419-018-0816-2
– ident: cit0048
  doi: 10.7554/eLife.11205
– ident: cit0015
  doi: 10.1038/s41556-019-0450-y
– ident: cit0016
  doi: 10.15252/msb.20145625
– ident: cit0007
  doi: 10.1016/j.ccr.2014.06.025
– ident: cit0051
  doi: 10.4161/auto.8.2.18554
– ident: cit0033
  doi: 10.1038/ncb2502
– ident: cit0011
  doi: 10.1038/nature15756
– ident: cit0020
  doi: 10.1038/nature13148
– ident: cit0046
  doi: 10.1016/j.molcel.2021.03.020
– ident: cit0012
  doi: 10.1242/jcs.215210
– ident: cit0008
  doi: 10.1038/nrm.2017.125
– ident: cit0019
  doi: 10.4161/auto.7.3.14487
– ident: cit0039
  doi: 10.1016/j.devcel.2019.03.011
– ident: cit0041
  doi: 10.1080/15548627.2016.1208887
– ident: cit0002
  doi: 10.1146/annurev-genet-102808-114910
– ident: cit0052
  doi: 10.7554/eLife.19276
– volume: 00
  start-page: 1
  year: 2019
  ident: cit0028
  publication-title: Autophagy
– ident: cit0021
  doi: 10.1101/558767
– ident: cit0045
  doi: 10.1080/15548627.2017.1287653
– ident: cit0050
  doi: 10.1097/MD.0000000000012912
– ident: cit0049
  doi: 10.1080/20013078.2019.1596016
– ident: cit0018
  doi: 10.1080/15548627.2018.1474314
– ident: cit0055
  doi: 10.1093/nar/gky1106
– ident: cit0061
  doi: 10.1080/20013078.2018.1535750
– ident: cit0029
  doi: 10.1038/ncb0910-836
– ident: cit0053
  doi: 10.1038/nmeth.2089
– ident: cit0034
  doi: 10.15252/embj.201797840
– ident: cit0032
  doi: 10.1016/j.cell.2019.02.029
– ident: cit0060
  doi: 10.1038/nmeth.4185
SSID ssj0036892
Score 2.5641644
Snippet Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the...
SourceID pubmedcentral
cristin
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2547
SubjectTerms Apoptosis Regulatory Proteins - metabolism
ATG16L1
Atg8
autophagy
Autophagy - physiology
Autophagy-Related Protein 8 Family - metabolism
Autophagy-Related Proteins - metabolism
CD63
chloroquine
Chloroquine - pharmacology
endosome
extracellular vesicle
Extracellular Vesicles - metabolism
gamma-Aminobutyric Acid
lysosome
MAP1LC3B
Research Paper
SDCBP/syntenin-1
Syntenins - metabolism
Title Chloroquine treatment induces secretion of autophagy-related proteins and inclusion of Atg8-family proteins in distinct extracellular vesicle populations
URI https://www.tandfonline.com/doi/abs/10.1080/15548627.2022.2039535
https://www.ncbi.nlm.nih.gov/pubmed/35220892
https://www.proquest.com/docview/2634519976
http://hdl.handle.net/10852/99817
https://pubmed.ncbi.nlm.nih.gov/PMC9629075
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELa2qSr1EvUd-pIr9RaxBcx6zXEVtY36yKWJtDfLGMhGWkG0QKX0X_TYf9sZsL2QbJW2F7SC8YKYz-P5hvEMIW-ZyEWoROAnOi_8WMehnzCYeFxlXIQwJFa4d_jrCT8-iz8tZ8vJ5Ocga6lt0qn-sXNfyf9oFc6BXnGX7D9o1v0pnIDfoF84gobh-Fc6PloB2wbLjp7iNmMcWHaLeVY1eoTWIVQtVhBQ51d-t3slx-oAFXa6rE39Jb1uayO7aM6FbyMfVgqzZtEelLo5BIO-URjy73JYv-c1PtjhpesFVg9d3oW9s9Xtsu2gY9dMNDkmaP0ZVulyG7f9WDn7D_Z6U7nvJdUakNuHYr-tlEkMMKELYL0Yjt0S3S8YJq-x6aZZ7Yd2eBb7QLb6tTgfnuurm9yw_H2qJMrgsCneDg4smfXy40rb11ZAl5eIWzEiCQw0nN8hdyNgHmg6WXBiF3fGRddn2z2f3RQmgnc77w20SnfWuhw5PqOyuLvIzfUc3YHTc_qA7Bu2Qhc99B6SSVk9Ivf6_qVXj8mvAQCpAyA1AKQOgLQq6A0AUgstCgqiDoAoOwDgVuqipBaAdARAagBIBwB8Qs4-vD89OvZNrw9fz2ai8eN0rnSogU6nvABKEvE8KlSYCXCBC6wJl_EsUWkSRHnBiiJJYvD0c801FjQMgow9JXtlVeYHhDIteIaf11WYgrsaKJANCpGBWKqZyjxyYFQiSzCzcqB0j8RWR1KbGvnYqmUtQ1NK1ypZopKlUbJHpm7YZV8k5rYByRAAsumic0XfSkeyW8a-sWiRsBTgu4aJVrW1jDjDYlFAMDzyrEePexzkWQFg1yPzEa6cAJaZH18pL1ZdufmERwkQi-d_fm0vyP3t9H5J9ppNm78CX71JX3ez5zdAFOsc
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgQX3tDwNBIcsyRx4o0PHKpCtaXtnlqpN-P40a5YZasmC1r-CX-Dv8IfYiaPpVuBekA9cI69mp3MZ392Zr4BeM1zl8c6j0JpnA9Tk8ah5Ag8oa3IY5ySaqod3h-L0WH68Sg7WoMffS0MpVXSGdq3QhHNWk3gpsvoPiXuLe2ByMSHeLxLqJiKy4z3iZW7bvEVj23Vu533-I7fJMn2h4OtUdh1FghNluV1mBZDbWKD5L0QHglQIlzidWxz3HA9KVBZYaUuZJQ4z72XMkVe4YwwJJ8WRZbj716D65kUQ8IWj8b96s9F3jRiJhNDsrGvGvqb2ci7TQPncmVnXNFN_RP7vZjEeW5X3L4DP3t_tskwnwfzuhiYbxekJv8vh9-F2x1JZ5stqu7Bmivvw422befiAXzfOpnOyFP4T9gyU59NSos4qVhFTJzinc0803NSbtDHi7CpGnKWNcoYk7Ji6A6cY6bzqhu7WR_nYXvj9HvUpGS2eXGmZriRnmn61EK5w-yLq8g8drrswVY9hMMr8csjWC9npdsAxk0uLH1V1nGBLC3SODbyucVhheHaBrDRBZoqcXUhZdgsUXjajocBpH3kKdNJw1OHkqmKOwXZPgAUBYDqAiCAwXLaaauNctkEeT6sVd1cSvm2g4zil8x91WNA4QpIvtalm80rlQhOGknIqwN43GJiaQ4dLyJEZADDFbQsB5C6-uqTcnLSqKxLkUjk00_-weaXcHN0sL-n9nbGu0_hFj1qyliTZ7Ben83dc-SzdfGiWUAYfLpqAP0Cat-jpw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9RADLZKEYhLedPwHCQ4ZptkktnkwKFqWbUUVhyo1NswmUe7YpVdNUnR8k_4GfwVfhF2Hku3AvWAeuCcceQ49vibxP4M8IqnNg1VGviZts6PdRz6GcfAE8qINESRWFHv8Iex2DuM3x0lR2vwo--FobJKOkO7liii2aspuOfG9RVxW5QCEYgP8XQXUS8VzxLe11Ue2MVXPLWVb_Z38RW_jqLR2087e343WMDXSZJWfpwPlQ41YvdcOMQ_kbCRU6FJMd86IqAywmQqz4LIOu5clsUIK6wWmtjTgsBwvO81uC6osZO6RoJxv_lzkTZzmElFn3Tsm4b-pjbCbt1Ec7GSGFdoU_8Efi_WcJ5LiqPb8LM3Z1sL82VQV_lAf7vANPlf2fsObHQQnW23MXUX1mxxD260QzsX9-H7zsl0RobCB2HLOn02KQxGSclKwuHk7WzmmKqJt0EdL_ymZ8ga1vBiTIqSoTVQRk_rslu7XR2nfvu96feqScFM8950xTCNnir60UKVw-zMlqQemy8nsJUP4PBK7PIQ1otZYTeBcZ0KQ_-UVZgjRgsUrg1canBZrrkyHmx2fiYL3FuIFzaJJJ61w6EHce94UnfE8DSfZCrDjj-2dwBJDiA7B_BgsBSbt8wolwlk571aVs0nKdfOj5H8EtmXfQhI3P_I1qqws7qUkeDEkISo2oNHbUgs1aHDRYAB6cFwJViWC4hbffVKMTlpONYzEWWIph__g84v4ObH3ZF8vz8-eAK36ErTwxo9hfXqtLbPEMxW-fNm-2Dw-arj5xeUZKJL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chloroquine+treatment+induces+secretion+of+autophagy-related+proteins+and+inclusion+of+Atg8-family+proteins+in+distinct+extracellular+vesicle+populations&rft.jtitle=Autophagy&rft.au=Xu%2C+Jing&rft.au=Yang%2C+Kevin+C&rft.au=Go%2C+Nancy+Erro&rft.au=Colborne%2C+Shane&rft.date=2022-11-02&rft.pub=Landes+Bioscience&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.1080%2F15548627.2022.2039535&rft.externalDBID=n%2Fa&rft.externalDocID=10852_99817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon