Chloroquine treatment induces secretion of autophagy-related proteins and inclusion of Atg8-family proteins in distinct extracellular vesicle populations
Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8...
Saved in:
Published in | Autophagy Vol. 18; no. 11; pp. 2547 - 2560 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
02.11.2022
Landes Bioscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition.
Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell |
---|---|
AbstractList | Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition.Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell.Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition.Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell. Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition. Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4’,6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition. Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition. Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition. ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell. |
Author | Gorski, Sharon M Xu, Jing Simonsen, Anne Ho, Cally J Lystad, Alf H Colborne, Shane Guns, Emma Tomlinson Morin, Gregg B Yang, Kevin C Hosseini-Beheshti, Elham Go, Nancy Erro |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0002-0373-5120 surname: Xu fullname: Xu, Jing organization: Simon Fraser University – sequence: 2 givenname: Kevin C orcidid: 0000-0001-6337-6206 surname: Yang fullname: Yang, Kevin C organization: Simon Fraser University – sequence: 3 givenname: Nancy Erro surname: Go fullname: Go, Nancy Erro organization: Simon Fraser University – sequence: 4 givenname: Shane surname: Colborne fullname: Colborne, Shane organization: Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute – sequence: 5 givenname: Cally J orcidid: 0000-0003-1871-6747 surname: Ho fullname: Ho, Cally J organization: Simon Fraser University – sequence: 6 givenname: Elham surname: Hosseini-Beheshti fullname: Hosseini-Beheshti, Elham organization: The University of Sydney – sequence: 7 givenname: Alf H surname: Lystad fullname: Lystad, Alf H organization: University of Oslo – sequence: 8 givenname: Anne orcidid: 0000-0003-4711-7057 surname: Simonsen fullname: Simonsen, Anne organization: Institute for Cancer Research, Oslo University Hospital – sequence: 9 givenname: Emma Tomlinson surname: Guns fullname: Guns, Emma Tomlinson organization: University of British Columbia – sequence: 10 givenname: Gregg B orcidid: 0000-0001-8949-4374 surname: Morin fullname: Morin, Gregg B organization: University of British Columbia – sequence: 11 givenname: Sharon M orcidid: 0000-0002-3821-8289 surname: Gorski fullname: Gorski, Sharon M email: sgorski@bcgsc.ca organization: Centre for Cell Biology, Development, and Disease, Simon Fraser University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35220892$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUsuOFCEUrZgxzkM_QWXppkaKKqgiJmYmHV_JJG50TWi4dGMoKIEa7U_xb6Wmu8fHQjeXC5xzz32dVyc-eKiqpw2-bPCAXzaUdgMj_SXBhBTTctrSB9XZ8l4PrKUn9z7pT6vzlL5g3LKBk0fVaUsJwcU9q36sti7E8HW2HlCOIPMIPiPr9awgoQQqQrbBo2CQnHOYtnKzqyM4mUGjKYYM1ickvS4c5eZ0wF7nzVAbOVq3-4WyHmmbcgFmBN9zlAqcm52M6BaSVQ7QFKZyXwTT4-qhkS7Bk8N5UX1---bT6n198_Hdh9X1Ta0oHXLdrXupGsUwWzPT9x1hQIxs9ID7xuCuIZppLtccEzCtMZx3tOlAMdVzTjHW7UX1eh93mtcjaFXKj9KJKdpRxp0I0oo_f7zdik24FZwRjntaAjzfB1DxrjjhQ5SiDIkSwfnQ9AXx4iCxdBpSFqNNS-3SQ5iTIKwtWXHeswJ99ns292kcJ1YAr45qIaUIRiib7zpWkrOu6C7SxRz2Qyz7IQ77Udj0L_ZR4H-8qz3PehPiKL-F6LTIcleWx0TplU2i_XeIn5s_1ZU |
CitedBy_id | crossref_primary_10_1038_s41467_024_53398_9 crossref_primary_10_1186_s13578_025_01357_2 crossref_primary_10_1007_s12282_023_01541_7 crossref_primary_10_1038_s41580_023_00585_z crossref_primary_10_2147_JHC_S376210 crossref_primary_10_1038_s41420_024_02075_3 crossref_primary_10_1002_jgm_70005 crossref_primary_10_1016_j_canlet_2024_216846 crossref_primary_10_1128_jvi_00327_24 crossref_primary_10_1111_acel_13713 crossref_primary_10_1016_j_theriogenology_2023_11_001 crossref_primary_10_1016_j_jhazmat_2024_136307 crossref_primary_10_1128_spectrum_01819_24 crossref_primary_10_1016_j_fct_2023_113954 crossref_primary_10_1038_s41556_023_01197_7 crossref_primary_10_3892_or_2025_8864 crossref_primary_10_1016_j_heliyon_2023_e16735 crossref_primary_10_1080_15548627_2024_2369436 crossref_primary_10_3390_biology12030373 crossref_primary_10_1002_jex2_157 crossref_primary_10_15252_embr_202357289 crossref_primary_10_1007_s11684_024_1079_1 crossref_primary_10_1007_s00203_025_04264_9 crossref_primary_10_1016_j_ejphar_2023_175949 crossref_primary_10_1016_j_ncrna_2024_12_001 crossref_primary_10_2147_JHC_S423043 crossref_primary_10_1038_s41467_023_40680_5 crossref_primary_10_1186_s40164_025_00603_0 crossref_primary_10_1016_j_canlet_2023_216261 crossref_primary_10_1042_BSR20240137 crossref_primary_10_1016_j_ijbiomac_2025_142238 crossref_primary_10_1016_j_jddst_2024_105415 crossref_primary_10_1016_j_cellsig_2023_110940 crossref_primary_10_1097_HC9_0000000000000654 crossref_primary_10_1126_sciadv_adh1134 |
Cites_doi | 10.1016/j.devcel.2017.11.018 10.1074/mcp.M112.021303 10.1016/j.devcel.2010.12.003 10.4161/15548627.2014.984277 10.1038/nrd3978 10.1038/d41573-019-00072-1 10.1073/pnas.1521230113 10.1080/15548627.2016.1207016 10.1016/j.arr.2016.05.001 10.1042/EBC20170021 10.1101/gr.772403 10.1016/j.ceb.2015.04.016 10.1021/acschemneuro.6b00002 10.1038/emboj.2013.233 10.1089/omi.2011.0118 10.1080/15548627.2015.1082025 10.1038/nrc.2017.53 10.1242/jcs.128868 10.1038/onc.2015.99 10.15252/embj.2020104948 10.1111/j.1365-2818.2006.01706.x 10.3402/jev.v4.27066 10.1038/ncb2757 10.1101/2020.10.27.323766 10.3390/ijms18061279 10.1016/j.molcel.2019.09.005 10.1038/s41556-019-0274-9 10.4161/auto.4012 10.1074/jbc.AC119.009977 10.1038/s41419-018-0816-2 10.7554/eLife.11205 10.1038/s41556-019-0450-y 10.15252/msb.20145625 10.1016/j.ccr.2014.06.025 10.4161/auto.8.2.18554 10.1038/ncb2502 10.1038/nature15756 10.1038/nature13148 10.1016/j.molcel.2021.03.020 10.1242/jcs.215210 10.1038/nrm.2017.125 10.4161/auto.7.3.14487 10.1016/j.devcel.2019.03.011 10.1080/15548627.2016.1208887 10.1146/annurev-genet-102808-114910 10.7554/eLife.19276 10.1101/558767 10.1080/15548627.2017.1287653 10.1097/MD.0000000000012912 10.1080/20013078.2019.1596016 10.1080/15548627.2018.1474314 10.1093/nar/gky1106 10.1080/20013078.2018.1535750 10.1038/ncb0910-836 10.1038/nmeth.2089 10.15252/embj.201797840 10.1016/j.cell.2019.02.029 10.1038/nmeth.4185 |
ContentType | Journal Article |
Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 info:eu-repo/semantics/openAccess 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: info:eu-repo/semantics/openAccess – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 3HK 5PM |
DOI | 10.1080/15548627.2022.2039535 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic NORA - Norwegian Open Research Archives PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | J. XU ET AL |
EISSN | 1554-8635 |
EndPage | 2560 |
ExternalDocumentID | PMC9629075 10852_99817 35220892 10_1080_15548627_2022_2039535 2039535 |
Genre | Research Article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR grantid: OBC127216 – fundername: CIHR grantid: MOP-78882 |
GroupedDBID | --- 0BK 0R~ 23N 30N 4.4 53G 5GY AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADBBV ADCVX ADGTB AEISY AENEX AEYOC AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AVBZW AWYRJ BAWUL BLEHA CCCUG DGEBU DIK DKSSO E3Z EBS EMOBN F5P GTTXZ H13 HYE IPNFZ KYCEM LJTGL M4Z O9- OK1 P2P RIG RNANH ROSJB RPM RTWRZ SNACF TBQAZ TDBHL TEI TFL TFT TFW TQWBC TR2 TTHFI TUROJ ZGOLN AAGDL AAHIA AAYXX ADHGD ADYSH AFRVT AIYEW AMPGV CITATION AAGME ABFMO ACDHJ ACZPZ ADOPC AURDB BFWEY C1A CGR CUY CVF CWRZV ECM EIF EJD NPM PCLFJ 7X8 3HK AAAVI ABBKH ABJVF ABQHQ AEGYZ AFOLD AFWLO AGRBW AHDLD AIRXU FUNRP FVPDL SV3 V1K ZA5 5PM TASJS |
ID | FETCH-LOGICAL-c558t-4b7ac1c606b6f77426e2fa1d8071f0412d6d9ab902ef3ff994514ec6c799500d3 |
ISSN | 1554-8627 1554-8635 |
IngestDate | Thu Aug 21 18:38:46 EDT 2025 Sat Apr 29 05:42:13 EDT 2023 Fri Jul 11 10:38:24 EDT 2025 Tue Mar 18 09:46:09 EDT 2025 Thu Apr 24 22:57:55 EDT 2025 Tue Jul 01 02:49:03 EDT 2025 Wed Dec 25 09:05:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | chloroquine CD63 MAP1LC3B endosome autophagy ATG16L1 SDCBP/syntenin-1 Atg8 extracellular vesicle lysosome |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c558t-4b7ac1c606b6f77426e2fa1d8071f0412d6d9ab902ef3ff994514ec6c799500d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 NFR/314684 |
ORCID | 0000-0002-0373-5120 0000-0001-8949-4374 0000-0001-6337-6206 0000-0002-3821-8289 0000-0003-1871-6747 0000-0003-4711-7057 |
OpenAccessLink | http://hdl.handle.net/10852/99817 |
PMID | 35220892 |
PQID | 2634519976 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_35220892 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9629075 informaworld_taylorfrancis_310_1080_15548627_2022_2039535 proquest_miscellaneous_2634519976 crossref_citationtrail_10_1080_15548627_2022_2039535 crossref_primary_10_1080_15548627_2022_2039535 cristin_nora_10852_99817 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-02 |
PublicationDateYYYYMMDD | 2022-11-02 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Autophagy |
PublicationTitleAlternate | Autophagy |
PublicationYear | 2022 |
Publisher | Taylor & Francis Landes Bioscience |
Publisher_xml | – name: Taylor & Francis – name: Landes Bioscience |
References | cit0033 cit0034 cit0031 cit0032 cit0030 Agrotis A (cit0028) 2019; 00 cit0039 cit0037 cit0035 cit0036 cit0022 cit0023 cit0020 cit0021 cit0060 cit0061 cit0029 cit0026 cit0027 cit0024 cit0025 cit0011 cit0055 cit0012 cit0053 cit0010 cit0054 cit0051 cit0052 R Core Team (cit0056) 2016 cit0050 cit0019 cit0017 cit0018 cit0015 cit0059 cit0016 Minakaki G (cit0038) 2017; 8627 cit0013 cit0057 cit0014 cit0058 cit0044 cit0001 cit0045 cit0042 cit0043 cit0040 cit0041 cit0008 cit0009 cit0006 cit0007 cit0004 cit0048 cit0005 cit0049 cit0002 cit0046 cit0003 cit0047 |
References_xml | – ident: cit0025 doi: 10.1016/j.devcel.2017.11.018 – volume: 8627 start-page: 1 year: 2017 ident: cit0038 publication-title: Autophagy – ident: cit0030 doi: 10.1074/mcp.M112.021303 – ident: cit0040 doi: 10.1016/j.devcel.2010.12.003 – ident: cit0044 doi: 10.4161/15548627.2014.984277 – ident: cit0010 doi: 10.1038/nrd3978 – ident: cit0005 doi: 10.1038/d41573-019-00072-1 – ident: cit0042 doi: 10.1073/pnas.1521230113 – ident: cit0059 doi: 10.1080/15548627.2016.1207016 – ident: cit0013 doi: 10.1016/j.arr.2016.05.001 – ident: cit0036 doi: 10.1042/EBC20170021 – ident: cit0057 doi: 10.1101/gr.772403 – ident: cit0003 doi: 10.1016/j.ceb.2015.04.016 – ident: cit0017 doi: 10.1021/acschemneuro.6b00002 – ident: cit0047 doi: 10.1038/emboj.2013.233 – ident: cit0058 doi: 10.1089/omi.2011.0118 – ident: cit0023 doi: 10.1080/15548627.2015.1082025 – ident: cit0001 doi: 10.1038/nrc.2017.53 – ident: cit0031 doi: 10.1242/jcs.128868 – volume-title: R: A Language and Environment for Statistical Computing year: 2016 ident: cit0056 – ident: cit0004 doi: 10.1038/onc.2015.99 – ident: cit0037 doi: 10.15252/embj.2020104948 – ident: cit0054 doi: 10.1111/j.1365-2818.2006.01706.x – ident: cit0009 doi: 10.3402/jev.v4.27066 – ident: cit0035 doi: 10.1038/ncb2757 – ident: cit0043 doi: 10.1101/2020.10.27.323766 – ident: cit0006 doi: 10.3390/ijms18061279 – ident: cit0022 doi: 10.1016/j.molcel.2019.09.005 – ident: cit0026 doi: 10.1038/s41556-019-0274-9 – ident: cit0024 doi: 10.4161/auto.4012 – ident: cit0027 doi: 10.1074/jbc.AC119.009977 – ident: cit0014 doi: 10.1038/s41419-018-0816-2 – ident: cit0048 doi: 10.7554/eLife.11205 – ident: cit0015 doi: 10.1038/s41556-019-0450-y – ident: cit0016 doi: 10.15252/msb.20145625 – ident: cit0007 doi: 10.1016/j.ccr.2014.06.025 – ident: cit0051 doi: 10.4161/auto.8.2.18554 – ident: cit0033 doi: 10.1038/ncb2502 – ident: cit0011 doi: 10.1038/nature15756 – ident: cit0020 doi: 10.1038/nature13148 – ident: cit0046 doi: 10.1016/j.molcel.2021.03.020 – ident: cit0012 doi: 10.1242/jcs.215210 – ident: cit0008 doi: 10.1038/nrm.2017.125 – ident: cit0019 doi: 10.4161/auto.7.3.14487 – ident: cit0039 doi: 10.1016/j.devcel.2019.03.011 – ident: cit0041 doi: 10.1080/15548627.2016.1208887 – ident: cit0002 doi: 10.1146/annurev-genet-102808-114910 – ident: cit0052 doi: 10.7554/eLife.19276 – volume: 00 start-page: 1 year: 2019 ident: cit0028 publication-title: Autophagy – ident: cit0021 doi: 10.1101/558767 – ident: cit0045 doi: 10.1080/15548627.2017.1287653 – ident: cit0050 doi: 10.1097/MD.0000000000012912 – ident: cit0049 doi: 10.1080/20013078.2019.1596016 – ident: cit0018 doi: 10.1080/15548627.2018.1474314 – ident: cit0055 doi: 10.1093/nar/gky1106 – ident: cit0061 doi: 10.1080/20013078.2018.1535750 – ident: cit0029 doi: 10.1038/ncb0910-836 – ident: cit0053 doi: 10.1038/nmeth.2089 – ident: cit0034 doi: 10.15252/embj.201797840 – ident: cit0032 doi: 10.1016/j.cell.2019.02.029 – ident: cit0060 doi: 10.1038/nmeth.4185 |
SSID | ssj0036892 |
Score | 2.5641644 |
Snippet | Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the... |
SourceID | pubmedcentral cristin proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2547 |
SubjectTerms | Apoptosis Regulatory Proteins - metabolism ATG16L1 Atg8 autophagy Autophagy - physiology Autophagy-Related Protein 8 Family - metabolism Autophagy-Related Proteins - metabolism CD63 chloroquine Chloroquine - pharmacology endosome extracellular vesicle Extracellular Vesicles - metabolism gamma-Aminobutyric Acid lysosome MAP1LC3B Research Paper SDCBP/syntenin-1 Syntenins - metabolism |
Title | Chloroquine treatment induces secretion of autophagy-related proteins and inclusion of Atg8-family proteins in distinct extracellular vesicle populations |
URI | https://www.tandfonline.com/doi/abs/10.1080/15548627.2022.2039535 https://www.ncbi.nlm.nih.gov/pubmed/35220892 https://www.proquest.com/docview/2634519976 http://hdl.handle.net/10852/99817 https://pubmed.ncbi.nlm.nih.gov/PMC9629075 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELa2qSr1EvUd-pIr9RaxBcx6zXEVtY36yKWJtDfLGMhGWkG0QKX0X_TYf9sZsL2QbJW2F7SC8YKYz-P5hvEMIW-ZyEWoROAnOi_8WMehnzCYeFxlXIQwJFa4d_jrCT8-iz8tZ8vJ5Ocga6lt0qn-sXNfyf9oFc6BXnGX7D9o1v0pnIDfoF84gobh-Fc6PloB2wbLjp7iNmMcWHaLeVY1eoTWIVQtVhBQ51d-t3slx-oAFXa6rE39Jb1uayO7aM6FbyMfVgqzZtEelLo5BIO-URjy73JYv-c1PtjhpesFVg9d3oW9s9Xtsu2gY9dMNDkmaP0ZVulyG7f9WDn7D_Z6U7nvJdUakNuHYr-tlEkMMKELYL0Yjt0S3S8YJq-x6aZZ7Yd2eBb7QLb6tTgfnuurm9yw_H2qJMrgsCneDg4smfXy40rb11ZAl5eIWzEiCQw0nN8hdyNgHmg6WXBiF3fGRddn2z2f3RQmgnc77w20SnfWuhw5PqOyuLvIzfUc3YHTc_qA7Bu2Qhc99B6SSVk9Ivf6_qVXj8mvAQCpAyA1AKQOgLQq6A0AUgstCgqiDoAoOwDgVuqipBaAdARAagBIBwB8Qs4-vD89OvZNrw9fz2ai8eN0rnSogU6nvABKEvE8KlSYCXCBC6wJl_EsUWkSRHnBiiJJYvD0c801FjQMgow9JXtlVeYHhDIteIaf11WYgrsaKJANCpGBWKqZyjxyYFQiSzCzcqB0j8RWR1KbGvnYqmUtQ1NK1ypZopKlUbJHpm7YZV8k5rYByRAAsumic0XfSkeyW8a-sWiRsBTgu4aJVrW1jDjDYlFAMDzyrEePexzkWQFg1yPzEa6cAJaZH18pL1ZdufmERwkQi-d_fm0vyP3t9H5J9ppNm78CX71JX3ez5zdAFOsc |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgQX3tDwNBIcsyRx4o0PHKpCtaXtnlqpN-P40a5YZasmC1r-CX-Dv8IfYiaPpVuBekA9cI69mp3MZ392Zr4BeM1zl8c6j0JpnA9Tk8ah5Ag8oa3IY5ySaqod3h-L0WH68Sg7WoMffS0MpVXSGdq3QhHNWk3gpsvoPiXuLe2ByMSHeLxLqJiKy4z3iZW7bvEVj23Vu533-I7fJMn2h4OtUdh1FghNluV1mBZDbWKD5L0QHglQIlzidWxz3HA9KVBZYaUuZJQ4z72XMkVe4YwwJJ8WRZbj716D65kUQ8IWj8b96s9F3jRiJhNDsrGvGvqb2ci7TQPncmVnXNFN_RP7vZjEeW5X3L4DP3t_tskwnwfzuhiYbxekJv8vh9-F2x1JZ5stqu7Bmivvw422befiAXzfOpnOyFP4T9gyU59NSos4qVhFTJzinc0803NSbtDHi7CpGnKWNcoYk7Ji6A6cY6bzqhu7WR_nYXvj9HvUpGS2eXGmZriRnmn61EK5w-yLq8g8drrswVY9hMMr8csjWC9npdsAxk0uLH1V1nGBLC3SODbyucVhheHaBrDRBZoqcXUhZdgsUXjajocBpH3kKdNJw1OHkqmKOwXZPgAUBYDqAiCAwXLaaauNctkEeT6sVd1cSvm2g4zil8x91WNA4QpIvtalm80rlQhOGknIqwN43GJiaQ4dLyJEZADDFbQsB5C6-uqTcnLSqKxLkUjk00_-weaXcHN0sL-n9nbGu0_hFj1qyliTZ7Ben83dc-SzdfGiWUAYfLpqAP0Cat-jpw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9RADLZKEYhLedPwHCQ4ZptkktnkwKFqWbUUVhyo1NswmUe7YpVdNUnR8k_4GfwVfhF2Hku3AvWAeuCcceQ49vibxP4M8IqnNg1VGviZts6PdRz6GcfAE8qINESRWFHv8Iex2DuM3x0lR2vwo--FobJKOkO7liii2aspuOfG9RVxW5QCEYgP8XQXUS8VzxLe11Ue2MVXPLWVb_Z38RW_jqLR2087e343WMDXSZJWfpwPlQ41YvdcOMQ_kbCRU6FJMd86IqAywmQqz4LIOu5clsUIK6wWmtjTgsBwvO81uC6osZO6RoJxv_lzkTZzmElFn3Tsm4b-pjbCbt1Ec7GSGFdoU_8Efi_WcJ5LiqPb8LM3Z1sL82VQV_lAf7vANPlf2fsObHQQnW23MXUX1mxxD260QzsX9-H7zsl0RobCB2HLOn02KQxGSclKwuHk7WzmmKqJt0EdL_ymZ8ga1vBiTIqSoTVQRk_rslu7XR2nfvu96feqScFM8950xTCNnir60UKVw-zMlqQemy8nsJUP4PBK7PIQ1otZYTeBcZ0KQ_-UVZgjRgsUrg1canBZrrkyHmx2fiYL3FuIFzaJJJ61w6EHce94UnfE8DSfZCrDjj-2dwBJDiA7B_BgsBSbt8wolwlk571aVs0nKdfOj5H8EtmXfQhI3P_I1qqws7qUkeDEkISo2oNHbUgs1aHDRYAB6cFwJViWC4hbffVKMTlpONYzEWWIph__g84v4ObH3ZF8vz8-eAK36ErTwxo9hfXqtLbPEMxW-fNm-2Dw-arj5xeUZKJL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chloroquine+treatment+induces+secretion+of+autophagy-related+proteins+and+inclusion+of+Atg8-family+proteins+in+distinct+extracellular+vesicle+populations&rft.jtitle=Autophagy&rft.au=Xu%2C+Jing&rft.au=Yang%2C+Kevin+C&rft.au=Go%2C+Nancy+Erro&rft.au=Colborne%2C+Shane&rft.date=2022-11-02&rft.pub=Landes+Bioscience&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.1080%2F15548627.2022.2039535&rft.externalDBID=n%2Fa&rft.externalDocID=10852_99817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon |