Bayesian hierarchical multi-subject multiscale analysis of functional MRI data
We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression c...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 63; no. 3; pp. 1519 - 1531 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.11.2012
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression coefficient maps through a discrete wavelet transformation to obtain a sparse representation in the wavelet space. Subsequently, we assign to the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise. In this mixture prior for the wavelet coefficients, the mixture probabilities are related to the pattern of brain activity across different resolutions. To incorporate this information, we assume that the mixture probabilities for wavelet coefficients at the same location and level are common across subjects. Furthermore, we assign for the mixture probabilities a prior that depends on a few hyperparameters. We develop an empirical Bayes methodology to estimate the hyperparameters and, as these hyperparameters are shared by all subjects, we obtain precise estimated values. Then we carry out inference in the wavelet space and obtain smoothed images of the regression coefficients by applying the inverse wavelet transform to the posterior means of the wavelet coefficients. An application to computer simulated synthetic data has shown that, when compared to single-subject analysis, our multi-subject methodology performs better in terms of mean squared error. Finally, we illustrate the utility and flexibility of our multi-subject methodology with an application to an event-related fMRI dataset generated by Postle (2005) through a multi-subject fMRI study of working memory related brain activation.
► Spatially adaptive methodology that borrows information across subjects ► Compared with MCMC-based methodology, our methodology is computationally fast. ► Methodology provides smaller MSE and better ROC curves than single subject analysis. ► Methodology preserves the shape and discontinuities of activation regions. ► Methodology implicitly links the same anatomical regions across subjects. |
---|---|
AbstractList | We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression coefficient maps through a discrete wavelet transformation to obtain a sparse representation in the wavelet space. Subsequently, we assign to the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise. In this mixture prior for the wavelet coefficients, the mixture probabilities are related to the pattern of brain activity across different resolutions. To incorporate this information, we assume that the mixture probabilities for wavelet coefficients at the same location and level are common across subjects. Furthermore, we assign for the mixture probabilities a prior that depends on a few hyperparameters. We develop an empirical Bayes methodology to estimate the hyperparameters and, as these hyperparameters are shared by all subjects, we obtain precise estimated values. Then we carry out inference in the wavelet space and obtain smoothed images of the regression coefficients by applying the inverse wavelet transform to the posterior means of the wavelet coefficients. An application to computer simulated synthetic data has shown that, when compared to single-subject analysis, our multi-subject methodology performs better in terms of mean squared error. Finally, we illustrate the utility and flexibility of our multi-subject methodology with an application to an event-related fMRI dataset generated by Postle (2005) through a multi-subject fMRI study of working memory related brain activation.We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression coefficient maps through a discrete wavelet transformation to obtain a sparse representation in the wavelet space. Subsequently, we assign to the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise. In this mixture prior for the wavelet coefficients, the mixture probabilities are related to the pattern of brain activity across different resolutions. To incorporate this information, we assume that the mixture probabilities for wavelet coefficients at the same location and level are common across subjects. Furthermore, we assign for the mixture probabilities a prior that depends on a few hyperparameters. We develop an empirical Bayes methodology to estimate the hyperparameters and, as these hyperparameters are shared by all subjects, we obtain precise estimated values. Then we carry out inference in the wavelet space and obtain smoothed images of the regression coefficients by applying the inverse wavelet transform to the posterior means of the wavelet coefficients. An application to computer simulated synthetic data has shown that, when compared to single-subject analysis, our multi-subject methodology performs better in terms of mean squared error. Finally, we illustrate the utility and flexibility of our multi-subject methodology with an application to an event-related fMRI dataset generated by Postle (2005) through a multi-subject fMRI study of working memory related brain activation. We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression coefficient maps through a discrete wavelet transformation to obtain a sparse representation in the wavelet space. Subsequently, we assign to the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise. In this mixture prior for the wavelet coefficients, the mixture probabilities are related to the pattern of brain activity across different resolutions. To incorporate this information, we assume that the mixture probabilities for wavelet coefficients at the same location and level are common across subjects. Furthermore, we assign for the mixture probabilities a prior that depends on a few hyperparameters. We develop an empirical Bayes methodology to estimate the hyperparameters and, as these hyperparameters are shared by all subjects, we obtain precise estimated values. Then we carry out inference in the wavelet space and obtain smoothed images of the regression coefficients by applying the inverse wavelet transform to the posterior means of the wavelet coefficients. An application to computer simulated synthetic data has shown that, when compared to single-subject analysis, our multi-subject methodology performs better in terms of mean squared error. Finally, we illustrate the utility and flexibility of our multi-subject methodology with an application to an event-related fMRI dataset generated by Postle (2005) through a multi-subject fMRI study of working memory related brain activation. We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression coefficient maps through a discrete wavelet transformation to obtain a sparse representation in the wavelet space. Subsequently, we assign to the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise. In this mixture prior for the wavelet coefficients, the mixture probabilities are related to the pattern of brain activity across different resolutions. To incorporate this information, we assume that the mixture probabilities for wavelet coefficients at the same location and level are common across subjects. Furthermore, we assign for the mixture probabilities a prior that depends on a few hyperparameters. We develop an empirical Bayes methodology to estimate the hyperparameters and, as these hyperparameters are shared by all subjects, we obtain precise estimated values. Then we carry out inference in the wavelet space and obtain smoothed images of the regression coefficients by applying the inverse wavelet transform to the posterior means of the wavelet coefficients. An application to computer simulated synthetic data has shown that, when compared to single-subject analysis, our multi-subject methodology performs better in terms of mean squared error. Finally, we illustrate the utility and flexibility of our multi-subject methodology with an application to an event-related fMRI dataset generated by Postle (2005) through a multi-subject fMRI study of working memory related brain activation. ► Spatially adaptive methodology that borrows information across subjects ► Compared with MCMC-based methodology, our methodology is computationally fast. ► Methodology provides smaller MSE and better ROC curves than single subject analysis. ► Methodology preserves the shape and discontinuities of activation regions. ► Methodology implicitly links the same anatomical regions across subjects. |
Author | Sanyal, Nilotpal Ferreira, Marco A.R. |
Author_xml | – sequence: 1 givenname: Nilotpal surname: Sanyal fullname: Sanyal, Nilotpal email: ns5x2@mail.missouri.edu – sequence: 2 givenname: Marco A.R. surname: Ferreira fullname: Ferreira, Marco A.R. email: ferreiram@missouri.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22951257$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk2P1SAUhokZ43zoXzBN3LhpPVAodGN0Jn5MMmpidE24cOpQe2GE1uT-e6l3JiZ3410BJ-954Lwv5-QkxICEVBQaCrR7NTYBlxT91vzAhgFlDagGOH1Ezij0ou6FZCfrXrS1orQ_Jec5jwDQU66ekFPGekGZkGfk86XZYfYmVLcek0n21lszVdtlmn2dl82Idt6fcqljZYKZdtnnKg7VsAQ7-1gq1aev15Uzs3lKHg9myvjsfr0g39-_-3b1sb758uH66u1NbYVQc83VpuUoLQd0XKCwdoDOGTSKK7BmsKh63hrJARzlvXAUjHLUdkNrWdtt2gvycs-9S_HXgnnW2_JAnCYTMC5ZUwEgZRmR_V9KKWvbvu94kb44kI5xSWW-v0DJQCoqi-r5vWrZbNHpu1RySDv9YGoRvN4LbIo5Jxy09bNZnZqT8ZOmoNcU9aj_pajXFDUoXVIsAHUAeLjjiNbLfSsW93-XSHW2HoNF51OJUrvoj4G8OYDYyYf1Y_zE3XGIPwQG0tc |
CitedBy_id | crossref_primary_10_1080_01621459_2015_1129968 crossref_primary_10_1177_1094428117708857 crossref_primary_10_1007_s12561_017_9205_0 crossref_primary_10_1158_1078_0432_CCR_18_3908 crossref_primary_10_1002_wics_1509 crossref_primary_10_1162_NECO_a_00690 crossref_primary_10_1016_j_neuroimage_2014_03_024 crossref_primary_10_1214_16_AOAS926 crossref_primary_10_1002_hbm_26490 crossref_primary_10_1007_s11336_020_09727_0 crossref_primary_10_1016_j_neuroimage_2018_06_073 crossref_primary_10_3758_s13423_017_1420_7 crossref_primary_10_1007_s13571_016_0129_3 crossref_primary_10_1002_wics_1339 crossref_primary_10_1214_19_AOAS1316 crossref_primary_10_1016_j_neuroimage_2014_04_052 crossref_primary_10_1016_j_neuroimage_2015_06_010 crossref_primary_10_1109_TIP_2015_2470601 crossref_primary_10_1214_14_BA871 crossref_primary_10_3758_s13428_024_02568_0 |
Cites_doi | 10.1111/1467-9868.00151 10.1016/j.neuroimage.2008.02.017 10.1016/j.jneumeth.2008.08.019 10.1016/j.neuroimage.2009.12.085 10.1109/TSP.2005.853098 10.1198/016214506000001031 10.1016/j.neuroimage.2008.02.005 10.1214/10-AOAS407 10.1016/j.mri.2008.09.001 10.1111/j.0006-341X.2001.00554.x 10.1016/j.neuroimage.2007.06.003 10.1080/01621459.2000.10474253 10.1016/j.neuroimage.2004.08.034 10.1016/j.neuroimage.2008.12.027 10.1109/MEMB.2006.1607671 10.1016/j.neuroimage.2004.07.012 10.1016/j.neuroimage.2007.08.012 10.1109/TMI.2003.809597 10.1016/j.neuroimage.2009.07.047 10.1016/S0730-725X(99)00100-9 10.1016/j.neuroimage.2011.12.060 10.1006/cbmr.1996.0014 10.1109/TMI.2010.2042064 10.1109/TMI.2003.823065 10.1016/j.neuroimage.2004.04.017 10.1109/TMI.2003.809587 10.1093/biomet/85.2.391 10.1016/j.neuroimage.2006.03.002 10.1109/42.700727 10.1016/S1053-8119(03)00071-5 10.1016/j.neuroimage.2004.07.056 10.1162/089892905774589208 10.1109/TMI.2004.824234 10.1006/nimg.2001.0955 10.1111/j.1467-9868.2011.00774.x 10.1109/TMI.2004.836545 10.1002/hbm.460020402 10.1111/1467-9868.00214 10.1109/TBME.2008.918563 10.1016/j.neuroimage.2006.10.005 10.1016/S1053-8119(03)00360-4 10.1016/j.neuroimage.2009.12.042 10.1016/S0730-725X(00)00197-1 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. Copyright © 2012 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Nov 15, 2012 |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Nov 15, 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2012.08.041 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 1531 |
ExternalDocumentID | 3245975621 22951257 10_1016_j_neuroimage_2012_08_041 S1053811912008415 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c558t-48b34e7c40ed45e5ccf06daea8480cafce8943a7400d1495d10a8d1c6f3c236b3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 01:42:24 EDT 2025 Thu Jul 10 22:44:29 EDT 2025 Wed Aug 13 04:42:42 EDT 2025 Mon Jul 21 05:59:45 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Tue Jul 01 02:14:48 EDT 2025 Fri Feb 23 02:24:27 EST 2024 Tue Aug 26 16:31:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Image smoothing Wavelet modeling Bayesian inference Multiple subjects Spatiotemporal analysis Mixture prior |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-48b34e7c40ed45e5ccf06daea8480cafce8943a7400d1495d10a8d1c6f3c236b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 22951257 |
PQID | 1507207817 |
PQPubID | 2031077 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1500771252 proquest_miscellaneous_1112339964 proquest_journals_1507207817 pubmed_primary_22951257 crossref_citationtrail_10_1016_j_neuroimage_2012_08_041 crossref_primary_10_1016_j_neuroimage_2012_08_041 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_08_041 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_08_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-15 |
PublicationDateYYYYMMDD | 2012-11-15 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Van De Ville, Blu, Unser (bb0240) 2006; vol. 5 R Development Core Team (bb0185) 2010 Chen, Saad, Nath, Beauchamp, Cox (bb0035) 2012; 60 Turkheimer, Aston, Banati, Riddell, Cunningham (bb0225) 2003; 22 Smith, Fahrmeir (bb0205) 2007; 102 Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bb0075) 1994; 2 Flandin, Penny (bb0070) 2007; 34 Badillo, Vincent, Ciuciu (bb0015) 2011 Smith, Pütz, Auer, Fahrmeir (bb0210) 2003; 20 Hastie, Tibshirani, Friedman (bb0105) 2009 Postle (bb0165) 2005; 17 Press, Teukolsky, Vetterling, Flannery (bb0170) 1992 Alexander, Baumgartner, Windischberger, Moser, Somorjai (bb0010) 2000; 18 Vidakovic (bb0250) 1999 Zaroubi, Goelman (bb0280) 2000; 18 Quirós, Diez, Gamerman (bb0175) 2010; 49 Van De Ville, Blu, Unser (bb0235) 2006; 25 Luo, Puthusserypady (bb0115) 2008; 55 Wongsawat (bb0265) 2009; vol. 25 Bullmore, Fadili, Maxim, Sendur, Whitcher, Suckling, Brammer, Breakspear (bb0025) 2004; 23 Harrison, Green (bb0095) 2010; 50 Harrison, Penny, Daunizeau, Friston (bb0100) 2008; 41 Ng, Abugharbieh, Hamarneh (bb0140) 2010 Turkheimer, Aston, Asselin, Hinz (bb0220) 2006; 32 Cox (bb0050) 1996; 29 Ferreira, Lee (bb0060) 2007 Clyde, Parmigiani, Vidakovic (bb0040) 1998; 85 Bowman, Caffo, Bassett, Kilts (bb0020) 2008; 39 Genovese (bb0080) 2000; 95 Penny, Trujillo-Barreto, Friston (bb0155) 2005; 24 Rajapakse, Zhou (bb0190) 2007; 37 Sendur, Maxim, Whitcher, Bullmore (bb0200) 2005; 53 Nason (bb0135) 2010 Fadili, Bullmore (bb0055) 2002; 15 Vincent, Risser, Ciuciu (bb0255) 2010; 29 Costafreda, Barker, Brammer (bb0045) 2009; 27 Penny, Kiebel, Friston (bb0150) 2003; 19 Soleymani, Hossein-Zadeh, Soltanian-Zadeh (bb0215) 2009; 176 Meyer (bb0125) 2003; 22 Morris, Baladandayuthapani, Herrick, Sanna, Gutstein (bb0130) 2011; 5 Groves, Chappell, Woolrich (bb0090) 2009; 45 Makni, Idier, Vincent, Thirion, Dehaene-Lambertz, Ciuciu (bb0120) 2008; 41 Quirós, Diez, Wilson (bb0180) 2010; 52 Woolrich, Jenkinson, Brady, Smith (bb0275) 2004; 23 Ng, Hamarneh, Abugharbieh (bb0145) 2010 Woolrich, Behrens, Beckmann, Smith (bb0270) 2005; 24 Vannucci, Corradi (bb0245) 1999; 61 Ruttimann, Unser, Rawlings, Rio, Ramsey, Mattay, Hommer, Frank, Weinberger (bb0195) 1998; 17 Wink, Roerdink (bb0260) 2004; 23 Carlin, Louis (bb0030) 2008 Ferreira, Holan, Bertolde (bb0065) 2011; 73 Van De Ville, Blu, Unser (bb0230) 2004; 23 Gössl, Auer, Fahrmeir (bb0085) 2001; 57 Polzehl, Tabelow (bb0160) 2007; 7 Abramovich, Sapatinas, Silverman (bb0005) 1998; 60 Long, Brown, Manoach, Solo (bb0110) 2004; 23 Soleymani (10.1016/j.neuroimage.2012.08.041_bb0215) 2009; 176 Fadili (10.1016/j.neuroimage.2012.08.041_bb0055) 2002; 15 Smith (10.1016/j.neuroimage.2012.08.041_bb0210) 2003; 20 Turkheimer (10.1016/j.neuroimage.2012.08.041_bb0220) 2006; 32 Vidakovic (10.1016/j.neuroimage.2012.08.041_bb0250) 1999 Meyer (10.1016/j.neuroimage.2012.08.041_bb0125) 2003; 22 Ng (10.1016/j.neuroimage.2012.08.041_bb0145) 2010 Morris (10.1016/j.neuroimage.2012.08.041_bb0130) 2011; 5 Rajapakse (10.1016/j.neuroimage.2012.08.041_bb0190) 2007; 37 Ruttimann (10.1016/j.neuroimage.2012.08.041_bb0195) 1998; 17 Abramovich (10.1016/j.neuroimage.2012.08.041_bb0005) 1998; 60 Harrison (10.1016/j.neuroimage.2012.08.041_bb0100) 2008; 41 Makni (10.1016/j.neuroimage.2012.08.041_bb0120) 2008; 41 Alexander (10.1016/j.neuroimage.2012.08.041_bb0010) 2000; 18 Badillo (10.1016/j.neuroimage.2012.08.041_bb0015) 2011 Luo (10.1016/j.neuroimage.2012.08.041_bb0115) 2008; 55 Costafreda (10.1016/j.neuroimage.2012.08.041_bb0045) 2009; 27 Press (10.1016/j.neuroimage.2012.08.041_bb0170) 1992 Van De Ville (10.1016/j.neuroimage.2012.08.041_bb0240) 2006; vol. 5 Woolrich (10.1016/j.neuroimage.2012.08.041_bb0270) 2005; 24 Chen (10.1016/j.neuroimage.2012.08.041_bb0035) 2012; 60 Turkheimer (10.1016/j.neuroimage.2012.08.041_bb0225) 2003; 22 Carlin (10.1016/j.neuroimage.2012.08.041_bb0030) 2008 Harrison (10.1016/j.neuroimage.2012.08.041_bb0095) 2010; 50 Sendur (10.1016/j.neuroimage.2012.08.041_bb0200) 2005; 53 Penny (10.1016/j.neuroimage.2012.08.041_bb0155) 2005; 24 Quirós (10.1016/j.neuroimage.2012.08.041_bb0175) 2010; 49 Smith (10.1016/j.neuroimage.2012.08.041_bb0205) 2007; 102 Bullmore (10.1016/j.neuroimage.2012.08.041_bb0025) 2004; 23 Cox (10.1016/j.neuroimage.2012.08.041_bb0050) 1996; 29 Long (10.1016/j.neuroimage.2012.08.041_bb0110) 2004; 23 Hastie (10.1016/j.neuroimage.2012.08.041_bb0105) 2009 Penny (10.1016/j.neuroimage.2012.08.041_bb0150) 2003; 19 Quirós (10.1016/j.neuroimage.2012.08.041_bb0180) 2010; 52 Vannucci (10.1016/j.neuroimage.2012.08.041_bb0245) 1999; 61 Genovese (10.1016/j.neuroimage.2012.08.041_bb0080) 2000; 95 Clyde (10.1016/j.neuroimage.2012.08.041_bb0040) 1998; 85 Wink (10.1016/j.neuroimage.2012.08.041_bb0260) 2004; 23 Gössl (10.1016/j.neuroimage.2012.08.041_bb0085) 2001; 57 Ng (10.1016/j.neuroimage.2012.08.041_bb0140) 2010 Flandin (10.1016/j.neuroimage.2012.08.041_bb0070) 2007; 34 Vincent (10.1016/j.neuroimage.2012.08.041_bb0255) 2010; 29 Groves (10.1016/j.neuroimage.2012.08.041_bb0090) 2009; 45 Wongsawat (10.1016/j.neuroimage.2012.08.041_bb0265) 2009; vol. 25 Van De Ville (10.1016/j.neuroimage.2012.08.041_bb0230) 2004; 23 Polzehl (10.1016/j.neuroimage.2012.08.041_bb0160) 2007; 7 Postle (10.1016/j.neuroimage.2012.08.041_bb0165) 2005; 17 Van De Ville (10.1016/j.neuroimage.2012.08.041_bb0235) 2006; 25 Bowman (10.1016/j.neuroimage.2012.08.041_bb0020) 2008; 39 Nason (10.1016/j.neuroimage.2012.08.041_bb0135) Ferreira (10.1016/j.neuroimage.2012.08.041_bb0060) 2007 Woolrich (10.1016/j.neuroimage.2012.08.041_bb0275) 2004; 23 Friston (10.1016/j.neuroimage.2012.08.041_bb0075) 1994; 2 Ferreira (10.1016/j.neuroimage.2012.08.041_bb0065) 2011; 73 Zaroubi (10.1016/j.neuroimage.2012.08.041_bb0280) 2000; 18 R Development Core Team (10.1016/j.neuroimage.2012.08.041_bb0185) 2010 |
References_xml | – volume: 17 start-page: 1679 year: 2005 end-page: 1690 ident: bb0165 article-title: Delay-period activity in the prefrontal cortex: one function is sensory gating publication-title: J. Cogn. Neurosci. – volume: 45 start-page: 795 year: 2009 end-page: 809 ident: bb0090 article-title: Combined spatial and non-spatial prior for inference on MRI time-series publication-title: Neuroimage – volume: 102 start-page: 417 year: 2007 end-page: 431 ident: bb0205 article-title: Spatial Bayesian variable selection with application to functional magnetic resonance imaging publication-title: J. Am. Stat. Assoc. – volume: 2 start-page: 189 year: 1994 end-page: 210 ident: bb0075 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. – volume: 18 start-page: 1129 year: 2000 end-page: 1134 ident: bb0010 article-title: Wavelet domain de-noising of time-courses in MR image sequences publication-title: Magn. Reson. Imaging – year: 2010 ident: bb0185 article-title: R: A Language and Environment for Statistical Computing – volume: 15 start-page: 217 year: 2002 end-page: 232 ident: bb0055 article-title: Wavelet-generalized least squares: a new BLU estimator of linear regression models with 1/f errors publication-title: Neuroimage – volume: 23 start-page: 374 year: 2004 end-page: 387 ident: bb0260 article-title: Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing publication-title: IEEE Trans. Med. Imaging – year: 2007 ident: bb0060 article-title: Multiscale modeling: a Bayesian perspective publication-title: Springer Series in Statistics – volume: vol. 25 start-page: 1242 year: 2009 end-page: 1245 ident: bb0265 article-title: Trends on wavelet-based functional MRI for activation detection publication-title: IFMBE Proceedings – volume: 52 start-page: 995 year: 2010 end-page: 1004 ident: bb0180 article-title: Bayesian spatiotemporal model of fMRI data using transfer functions publication-title: Neuroimage – volume: 55 start-page: 1504 year: 2008 end-page: 1511 ident: bb0115 article-title: Analysis of fMRI data with drift: modified general linear model and Bayesian estimator publication-title: IEEE Trans. Biomed. Eng. – volume: 18 start-page: 59 year: 2000 end-page: 68 ident: bb0280 article-title: Complex denoising of MR data via wavelet analysis: application for functional MRI publication-title: Magn. Reson. Imaging – volume: 25 start-page: 65 year: 2006 end-page: 78 ident: bb0235 article-title: Surfing the brain — An overview of wavelet-based techniques for fMRI data analysis publication-title: IEEE Eng. Med. Biol. Mag. – volume: 19 start-page: 727 year: 2003 end-page: 741 ident: bb0150 article-title: Variational Bayesian inference for fMRI time series publication-title: Neuroimage – volume: 5 start-page: 894 year: 2011 end-page: 923 ident: bb0130 article-title: Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomic data publication-title: Ann. Appl. Stat. – start-page: 376 year: 2011 end-page: 380 ident: bb0015 article-title: Impact of the joint detection-estimation approach on random effects group studies in FMRI publication-title: Proceedings - International Symposium on Biomedical Imaging – volume: 17 start-page: 142 year: 1998 end-page: 154 ident: bb0195 article-title: Statistical analysis of functional MRI data in the wavelet domain publication-title: IEEE Trans. Med. Imaging – volume: 61 start-page: 971 year: 1999 end-page: 986 ident: bb0245 article-title: Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective publication-title: J. R. Stat. Soc. B Methodol. – volume: 27 start-page: 460 year: 2009 end-page: 469 ident: bb0045 article-title: Bayesian wavelet-based analysis of functional magnetic resonance time series publication-title: Magn. Reson. Imaging – year: 2009 ident: bb0105 article-title: The elements of statistical learning: data mining, inference, and prediction publication-title: Springer Series in Statistics – volume: 22 start-page: 289 year: 2003 end-page: 301 ident: bb0225 article-title: A linear wavelet filter for parametric imaging with dynamic PET publication-title: IEEE Trans. Med. Imaging – volume: 34 start-page: 1108 year: 2007 end-page: 1125 ident: bb0070 article-title: Bayesian fMRI data analysis with sparse spatial basis function priors publication-title: Neuroimage – volume: 95 start-page: 691 year: 2000 end-page: 703 ident: bb0080 article-title: A Bayesian time-course model for functional magnetic resonance imaging data publication-title: J. Am. Stat. Assoc. – volume: 29 start-page: 162 year: 1996 end-page: 173 ident: bb0050 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. – volume: 73 start-page: 663 year: 2011 end-page: 688 ident: bb0065 article-title: Dynamic multiscale spatio-temporal models for Gaussian areal data publication-title: J. R. Stat. Soc. B – volume: 7 start-page: 13 year: 2007 end-page: 17 ident: bb0160 article-title: fmri: a package for analyzing fmri data publication-title: RNews – volume: 49 start-page: 442 year: 2010 end-page: 456 ident: bb0175 article-title: Bayesian spatiotemporal model of fMRI data publication-title: Neuroimage – year: 1999 ident: bb0250 article-title: Statistical modeling by wavelets publication-title: Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics – volume: 22 start-page: 315 year: 2003 end-page: 322 ident: bb0125 article-title: Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series publication-title: IEEE Trans. Med. Imaging – year: 2010 ident: bb0135 article-title: wavethresh: Wavelets Statistics and Transforms – volume: vol. 5 start-page: V1101 year: 2006 end-page: V1104 ident: bb0240 article-title: WSPM or how to obtain statistical parametric maps using shift-invariant wavelet processing publication-title: IEEE International Conference on Acoustics, Speech, and Signal Processing – volume: 23 start-page: S234 year: 2004 end-page: S249 ident: bb0025 article-title: Wavelets and functional magnetic resonance imaging of the human brain publication-title: Neuroimage – year: 2008 ident: bb0030 article-title: Bayesian Methods for Data Analysis – start-page: 2887 year: 2010 end-page: 2894 ident: bb0140 article-title: Group MRF for fMRI activation detection publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 39 start-page: 146 year: 2008 end-page: 156 ident: bb0020 article-title: A Bayesian hierarchical framework for spatial modeling of fMRI data publication-title: Neuroimage – volume: 85 start-page: 391 year: 1998 end-page: 401 ident: bb0040 article-title: Multiple shrinkage and subset selection in wavelets publication-title: Biometrika – volume: 53 start-page: 3413 year: 2005 end-page: 3426 ident: bb0200 article-title: Multiple hypothesis mapping of functional MRI data in orthogonal and complex wavelet domains publication-title: IEEE Trans. Signal Process. – volume: 37 start-page: 749 year: 2007 end-page: 760 ident: bb0190 article-title: Learning effective brain connectivity with dynamic Bayesian networks publication-title: Neuroimage – volume: 20 start-page: 802 year: 2003 end-page: 815 ident: bb0210 article-title: Assessing brain activity through spatial Bayesian variable selection publication-title: Neuroimage – volume: 23 start-page: 213 year: 2004 end-page: 231 ident: bb0275 article-title: Fully Bayesian spatio–temporal modeling of FMRI data publication-title: IEEE Trans. Med. Imaging – volume: 60 start-page: 725 year: 1998 end-page: 749 ident: bb0005 article-title: Wavelet thresholding via a Bayesian approach publication-title: J. R. Stat. Soc. B Methodol. – volume: 60 start-page: 747 year: 2012 end-page: 765 ident: bb0035 article-title: FMRI group analysis combining effect estimates and their variances publication-title: Neuroimage – volume: 57 start-page: 554 year: 2001 end-page: 562 ident: bb0085 article-title: Bayesian spatiotemporal inference in functional magnetic resonance imaging publication-title: Biometrics – volume: 41 start-page: 408 year: 2008 end-page: 423 ident: bb0100 article-title: Diffusion-based spatial priors for functional magnetic resonance images publication-title: Neuroimage – volume: 29 start-page: 1059 year: 2010 end-page: 1074 ident: bb0255 article-title: Spatially adaptive mixture modeling for analysis of fMRI time series publication-title: IEEE Trans. Med. Imaging – volume: 50 start-page: 1126 year: 2010 end-page: 1141 ident: bb0095 article-title: A Bayesian spatiotemporal model for very large data sets publication-title: Neuroimage – volume: 24 start-page: 350 year: 2005 end-page: 362 ident: bb0155 article-title: Bayesian fMRI time series analysis with spatial priors publication-title: Neuroimage – volume: 176 start-page: 237 year: 2009 end-page: 245 ident: bb0215 article-title: Fixed and random effect analysis of multi-subject fMRI data using wavelet transform publication-title: J. Neurosci. Methods – volume: 23 start-page: 500 year: 2004 end-page: 516 ident: bb0110 article-title: Spatiotemporal wavelet analysis for functional MRI publication-title: Neuroimage – year: 1992 ident: bb0170 article-title: Numerical Recipes in C – volume: 24 start-page: 1 year: 2005 end-page: 11 ident: bb0270 article-title: Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data publication-title: IEEE Trans. Med. Imaging – volume: 32 start-page: 111 year: 2006 end-page: 121 ident: bb0220 article-title: Multi-resolution Bayesian regression in PET dynamic studies using wavelets publication-title: Neuroimage – volume: 23 start-page: 1472 year: 2004 end-page: 1485 ident: bb0230 article-title: Integrated wavelet processing and spatial statistical testing of fMRI data publication-title: Neuroimage – start-page: 331 year: 2010 end-page: 338 ident: bb0145 article-title: Detecting brain activation in fMRI using group random walker publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010 , vol. 6362 of Lecture Notes in Computer Science – volume: 41 start-page: 941 year: 2008 end-page: 969 ident: bb0120 article-title: A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI publication-title: Neuroimage – volume: 60 start-page: 725 issue: 4 year: 1998 ident: 10.1016/j.neuroimage.2012.08.041_bb0005 article-title: Wavelet thresholding via a Bayesian approach publication-title: J. R. Stat. Soc. B Methodol. doi: 10.1111/1467-9868.00151 – volume: 41 start-page: 941 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2012.08.041_bb0120 article-title: A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.017 – year: 2009 ident: 10.1016/j.neuroimage.2012.08.041_bb0105 article-title: The elements of statistical learning: data mining, inference, and prediction – volume: 176 start-page: 237 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2012.08.041_bb0215 article-title: Fixed and random effect analysis of multi-subject fMRI data using wavelet transform publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2008.08.019 – volume: 52 start-page: 995 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2012.08.041_bb0180 article-title: Bayesian spatiotemporal model of fMRI data using transfer functions publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.085 – volume: 53 start-page: 3413 issue: 9 year: 2005 ident: 10.1016/j.neuroimage.2012.08.041_bb0200 article-title: Multiple hypothesis mapping of functional MRI data in orthogonal and complex wavelet domains publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.853098 – volume: 102 start-page: 417 issue: 478 year: 2007 ident: 10.1016/j.neuroimage.2012.08.041_bb0205 article-title: Spatial Bayesian variable selection with application to functional magnetic resonance imaging publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000001031 – volume: 41 start-page: 408 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2012.08.041_bb0100 article-title: Diffusion-based spatial priors for functional magnetic resonance images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.005 – volume: 5 start-page: 894 year: 2011 ident: 10.1016/j.neuroimage.2012.08.041_bb0130 article-title: Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomic data publication-title: Ann. Appl. Stat. doi: 10.1214/10-AOAS407 – volume: 7 start-page: 13 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2012.08.041_bb0160 article-title: fmri: a package for analyzing fmri data publication-title: RNews – volume: 27 start-page: 460 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2012.08.041_bb0045 article-title: Bayesian wavelet-based analysis of functional magnetic resonance time series publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2008.09.001 – volume: 57 start-page: 554 issue: 2 year: 2001 ident: 10.1016/j.neuroimage.2012.08.041_bb0085 article-title: Bayesian spatiotemporal inference in functional magnetic resonance imaging publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.00554.x – volume: 37 start-page: 749 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2012.08.041_bb0190 article-title: Learning effective brain connectivity with dynamic Bayesian networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.06.003 – year: 2010 ident: 10.1016/j.neuroimage.2012.08.041_bb0185 – volume: 95 start-page: 691 issue: 451 year: 2000 ident: 10.1016/j.neuroimage.2012.08.041_bb0080 article-title: A Bayesian time-course model for functional magnetic resonance imaging data publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2000.10474253 – volume: 24 start-page: 350 issue: 2 year: 2005 ident: 10.1016/j.neuroimage.2012.08.041_bb0155 article-title: Bayesian fMRI time series analysis with spatial priors publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.08.034 – volume: 45 start-page: 795 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2012.08.041_bb0090 article-title: Combined spatial and non-spatial prior for inference on MRI time-series publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.12.027 – volume: 25 start-page: 65 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2012.08.041_bb0235 article-title: Surfing the brain — An overview of wavelet-based techniques for fMRI data analysis publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/MEMB.2006.1607671 – volume: vol. 25 start-page: 1242 year: 2009 ident: 10.1016/j.neuroimage.2012.08.041_bb0265 article-title: Trends on wavelet-based functional MRI for activation detection – volume: 23 start-page: S234 issue: Suppl. 1 year: 2004 ident: 10.1016/j.neuroimage.2012.08.041_bb0025 article-title: Wavelets and functional magnetic resonance imaging of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.012 – ident: 10.1016/j.neuroimage.2012.08.041_bb0135 – volume: 39 start-page: 146 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2012.08.041_bb0020 article-title: A Bayesian hierarchical framework for spatial modeling of fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.08.012 – start-page: 376 year: 2011 ident: 10.1016/j.neuroimage.2012.08.041_bb0015 article-title: Impact of the joint detection-estimation approach on random effects group studies in FMRI – volume: 22 start-page: 289 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2012.08.041_bb0225 article-title: A linear wavelet filter for parametric imaging with dynamic PET publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.809597 – volume: 49 start-page: 442 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2012.08.041_bb0175 article-title: Bayesian spatiotemporal model of fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.07.047 – volume: 18 start-page: 59 issue: 1 year: 2000 ident: 10.1016/j.neuroimage.2012.08.041_bb0280 article-title: Complex denoising of MR data via wavelet analysis: application for functional MRI publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(99)00100-9 – volume: 60 start-page: 747 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2012.08.041_bb0035 article-title: FMRI group analysis combining effect estimates and their variances publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.060 – volume: 29 start-page: 162 issue: 3 year: 1996 ident: 10.1016/j.neuroimage.2012.08.041_bb0050 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1996.0014 – volume: 29 start-page: 1059 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2012.08.041_bb0255 article-title: Spatially adaptive mixture modeling for analysis of fMRI time series publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2042064 – volume: 23 start-page: 213 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2012.08.041_bb0275 article-title: Fully Bayesian spatio–temporal modeling of FMRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.823065 – volume: 23 start-page: 500 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2012.08.041_bb0110 article-title: Spatiotemporal wavelet analysis for functional MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.04.017 – volume: 22 start-page: 315 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2012.08.041_bb0125 article-title: Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.809587 – volume: 85 start-page: 391 issue: 2 year: 1998 ident: 10.1016/j.neuroimage.2012.08.041_bb0040 article-title: Multiple shrinkage and subset selection in wavelets publication-title: Biometrika doi: 10.1093/biomet/85.2.391 – volume: 32 start-page: 111 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2012.08.041_bb0220 article-title: Multi-resolution Bayesian regression in PET dynamic studies using wavelets publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.03.002 – volume: 17 start-page: 142 issue: 2 year: 1998 ident: 10.1016/j.neuroimage.2012.08.041_bb0195 article-title: Statistical analysis of functional MRI data in the wavelet domain publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.700727 – year: 2007 ident: 10.1016/j.neuroimage.2012.08.041_bb0060 article-title: Multiscale modeling: a Bayesian perspective – year: 1992 ident: 10.1016/j.neuroimage.2012.08.041_bb0170 – volume: 19 start-page: 727 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2012.08.041_bb0150 article-title: Variational Bayesian inference for fMRI time series publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00071-5 – start-page: 2887 year: 2010 ident: 10.1016/j.neuroimage.2012.08.041_bb0140 article-title: Group MRF for fMRI activation detection – volume: 23 start-page: 1472 issue: 4 year: 2004 ident: 10.1016/j.neuroimage.2012.08.041_bb0230 article-title: Integrated wavelet processing and spatial statistical testing of fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.056 – volume: 17 start-page: 1679 issue: 11 year: 2005 ident: 10.1016/j.neuroimage.2012.08.041_bb0165 article-title: Delay-period activity in the prefrontal cortex: one function is sensory gating publication-title: J. Cogn. Neurosci. doi: 10.1162/089892905774589208 – start-page: 331 year: 2010 ident: 10.1016/j.neuroimage.2012.08.041_bb0145 article-title: Detecting brain activation in fMRI using group random walker – volume: vol. 5 start-page: V1101 year: 2006 ident: 10.1016/j.neuroimage.2012.08.041_bb0240 article-title: WSPM or how to obtain statistical parametric maps using shift-invariant wavelet processing – volume: 23 start-page: 374 issue: 3 year: 2004 ident: 10.1016/j.neuroimage.2012.08.041_bb0260 article-title: Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.824234 – volume: 15 start-page: 217 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2012.08.041_bb0055 article-title: Wavelet-generalized least squares: a new BLU estimator of linear regression models with 1/f errors publication-title: Neuroimage doi: 10.1006/nimg.2001.0955 – volume: 73 start-page: 663 year: 2011 ident: 10.1016/j.neuroimage.2012.08.041_bb0065 article-title: Dynamic multiscale spatio-temporal models for Gaussian areal data publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2011.00774.x – volume: 24 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2012.08.041_bb0270 article-title: Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.836545 – year: 1999 ident: 10.1016/j.neuroimage.2012.08.041_bb0250 article-title: Statistical modeling by wavelets – volume: 2 start-page: 189 issue: 4 year: 1994 ident: 10.1016/j.neuroimage.2012.08.041_bb0075 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020402 – volume: 61 start-page: 971 year: 1999 ident: 10.1016/j.neuroimage.2012.08.041_bb0245 article-title: Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective publication-title: J. R. Stat. Soc. B Methodol. doi: 10.1111/1467-9868.00214 – volume: 55 start-page: 1504 issue: 5 year: 2008 ident: 10.1016/j.neuroimage.2012.08.041_bb0115 article-title: Analysis of fMRI data with drift: modified general linear model and Bayesian estimator publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.918563 – volume: 34 start-page: 1108 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2012.08.041_bb0070 article-title: Bayesian fMRI data analysis with sparse spatial basis function priors publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.10.005 – volume: 20 start-page: 802 issue: 2 year: 2003 ident: 10.1016/j.neuroimage.2012.08.041_bb0210 article-title: Assessing brain activity through spatial Bayesian variable selection publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00360-4 – year: 2008 ident: 10.1016/j.neuroimage.2012.08.041_bb0030 – volume: 50 start-page: 1126 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2012.08.041_bb0095 article-title: A Bayesian spatiotemporal model for very large data sets publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.042 – volume: 18 start-page: 1129 issue: 9 year: 2000 ident: 10.1016/j.neuroimage.2012.08.041_bb0010 article-title: Wavelet domain de-noising of time-courses in MR image sequences publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(00)00197-1 |
SSID | ssj0009148 |
Score | 2.1984622 |
Snippet | We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1519 |
SubjectTerms | Algorithms Bayes Theorem Bayesian analysis Bayesian inference Brain - physiology Brain Mapping - methods Colleges & universities Humans Image Interpretation, Computer-Assisted - methods Image smoothing Integrals Magnetic Resonance Imaging Mixture prior Models, Neurological Models, Theoretical Multiple subjects Sparsity Spatiotemporal analysis Wavelet modeling Wavelet transforms |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NS8MwNAwP4kX8djqlgte6tE3aDk86HFPYDupgt5CmCUy0G3Y7ePG3-16TbniYDDw2ySvhJe8r74uQaw1ihGea-kaxEAwUpnwZ8cjPMq5i1qGGUswdHgzj_og9jfm4Qbp1LgyGVTreb3l6xa3dSNthsz2bTNovoBmAuAF7A134NtGcsQRv-c33KsyjEzCbDgcbwNUumsfGeFU1IycfQLkY5BVWxTxZsE5ErVNBK1HU2yO7Tof07uw290lDFwdke-C85IdkeC-_NCZHetjounIVwEl4VeygXy4yfHqxXyWMa0-6wiTe1Hgo5-zzoDd4fvQwgPSIjHoPr92-7_om-IrzdO6zNIuYThSjOmdcc6UMjXOpZcpSqqRRGouuywTIN0cDKQ-oTPNAxSZSYRRn0THZKqaFPgVUmbST0ywOAwW_i40Eay7MEy1NqiPN0iZJalQJ5YqKY2-Ld1FHj72JFZIFIllg20sWNEmwhJzZwhobwHTq0xB14iiwOgHcfwPY2yXsrwu2IXSrPnzhiLwUqEuHWCwpaZKr5TSQJ_pcZKGnixINrDACJTBmf6zhWFQJNM2wSU7sxVqiBLutw0xy9q_tn5Md_MIcyoC3yNb8c6EvQJmaZ5cVtfwA4vwecQ priority: 102 providerName: Elsevier |
Title | Bayesian hierarchical multi-subject multiscale analysis of functional MRI data |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912008415 https://dx.doi.org/10.1016/j.neuroimage.2012.08.041 https://www.ncbi.nlm.nih.gov/pubmed/22951257 https://www.proquest.com/docview/1507207817 https://www.proquest.com/docview/1112339964 https://www.proquest.com/docview/1500771252 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8NkBAvaIyPlUEVJF4DdmInrvYwtROobGqFEEh9sxzHlpi2tpD2YS_723eXOO0TqE9RYl9i3eXss-_udwCXDpcRWTgWeysS3KAIG5tUpnFRSJuJHvOMUe7waJwNn8SPiZyEA7cqhFW2c2I9UZczS2fk12S4JIRMk3-bv8RUNYq8q6GExhbsEHQZhXTlk3wNustFkwqHH1fYIUTyNPFdNV7k8x_UWgrwSmogT8HfWp7eMj_rZej2I-wH-zHqNwI_gA9u-gl2R8FDfgjjgfnrKDEyoiLXtZsApRDVcYNxtSzo2KW5q_C5i0wAJYlmPqI1rjkajEYPdxEFjx7B0-3N4_dhHGomxFZKtYiFKlLhciuYK4V00lrPstI4o4Ri1njrCHDd5Ki6JW2OSs6MKrnNfGqTNCvSY9iezqbuM7LKq17JiizhFl-XeYM7uaTMnfHKpU6oDuQtq7QNgOJU1-K3biPHfuk1kzUxWVPJS8E7wFeU8wZUYwOaXisN3SaN4jSncebfgPbrijYYFo3BsCH1WSt8HRS80uvfsQMXq2ZUTfK3mKmbLSvaXCUpGoCZeKePJEAltDKTDpw0P9aKJVRpHVvy0_cH8AX2aLSUIMnlGWwvXpfuHC2lRdGFrat_vFsrRRd2-nc_h2O8Dm7G9w__AfYJFzg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NToK9IL7pNsBI8BgRO3biakKIwaaWrRWaNmlvxnEcCTTasbRC-6f4G7mLnfZpU1_2mDhnOWf7Puy73wG886hGVOnTpHZSoIMiXWIzlSVlqVwuB2mdppQ7PJ7kwzP57Vydb8C_LheGwio7mdgK6mrm6Iz8AxkugpBpik-XfxKqGkW3q10JjbAsjvz1X3TZmo-jrzi_74U4PDj9MkxiVYHEKaXnidRlJn3hZOorqbxyrk7zynqrpU6drZ0nSHJb4OKuyH2oeGp1xV1eZ05keZlhv_dgU2boyvRgc_9g8v1kBfPLZUi-w9_VnA9i7FCIKGsRKn_-RjlBIWWihQ6V_CaFeJPB2yq-w0fwMFqs7HNYYo9hw0-fwP1xvJN_CpN9e-0pFZNRWe32YgLnnbWRikmzKOmgJzw1-N4zG2FQ2KxmpFXDYSQbn4wYhas-g7M74edz6E1nU_8SWVXrQZWWueAOu8tri76jqApva-0zL3Ufio5VxkUIc6qkcWG6WLVfZsVkQ0w2VGRT8j7wJeVlgPFYg2bQzYbp0lRRsBrUNWvQ7i1poykTTJQ1qXe7yTdRpDRmtQH68HbZjMKAbnjs1M8WDblzIkOTM5e3fKMIwgntWtGHF2FhLVlCtd2xpdi-fQBv4MHwdHxsjkeTox3YopFTeiZXu9CbXy38K7TT5uXruDkY_Ljr_fgfbZBSJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeJr4pDDASPEaLv2JXCCFgVCujFUJM6ptxHFsCsXaQVmj_Gn8dd7HTPm3qyx6T9KL0fJ_23e8IeRnAjag6lEX0kkOCIn3hhBJFXStfyWEZyxJ7hyfT6vhUfpqp2Q751_fCYFllbxM7Q90sPO6RH2LgwhGZRh_GXBbx5Wj09vx3gROk8KS1H6eRROQkXPyF9K19Mz6CtX7F-ejjtw_HRZ4wUHilzLKQphYyaC_L0EgVlPexrBoXnJGm9C76gPDkToOgN5hKNKx0pmG-isJzUdUC3nuD3NRCMdQxPdMbwF8mUxse_HHD2DBXEaXasg6r8scZWAwsLuMdiKhkl7nGy0LfzgWObpP9HLvSd0nY7pCdML9L9ib5dP4emb53FwGbMikO2O6OKEACaFezWLSrGrd80lUL9wN1GRCFLiJF_5q2Jenk65hi4ep9cnot3HxAdueLeXgErIpm2JR1xZmH11XRQRbJGx1cNEEEaQZE96yyPoOZ40yNX7avWvtpN0y2yGSL4zYlGxC2pjxPgB5b0Az71bB9wyqYWAteZwva12vaHNSkYGVL6oN-8W02Lq3dqMKAvFg_BrOAZz1uHharFhM7LiD4rOQVv1EI5gQRLh-Qh0mw1izBKe_wRD---gOekz3QQvt5PD15Qm7hh2OfJlMHZHf5ZxWeQsC2rJ91mkHJ9-tWxf9PrFT3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+hierarchical+multi-subject+multiscale+analysis+of+functional+MRI+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sanyal%2C+Nilotpal&rft.au=Ferreira%2C+Marco+AR&rft.date=2012-11-15&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=63&rft.issue=3&rft.spage=1519&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.08.041&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3245975621 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |