Bayesian hierarchical multi-subject multiscale analysis of functional MRI data

We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression c...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 63; no. 3; pp. 1519 - 1531
Main Authors Sanyal, Nilotpal, Ferreira, Marco A.R.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.11.2012
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression coefficient maps through a discrete wavelet transformation to obtain a sparse representation in the wavelet space. Subsequently, we assign to the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise. In this mixture prior for the wavelet coefficients, the mixture probabilities are related to the pattern of brain activity across different resolutions. To incorporate this information, we assume that the mixture probabilities for wavelet coefficients at the same location and level are common across subjects. Furthermore, we assign for the mixture probabilities a prior that depends on a few hyperparameters. We develop an empirical Bayes methodology to estimate the hyperparameters and, as these hyperparameters are shared by all subjects, we obtain precise estimated values. Then we carry out inference in the wavelet space and obtain smoothed images of the regression coefficients by applying the inverse wavelet transform to the posterior means of the wavelet coefficients. An application to computer simulated synthetic data has shown that, when compared to single-subject analysis, our multi-subject methodology performs better in terms of mean squared error. Finally, we illustrate the utility and flexibility of our multi-subject methodology with an application to an event-related fMRI dataset generated by Postle (2005) through a multi-subject fMRI study of working memory related brain activation. ► Spatially adaptive methodology that borrows information across subjects ► Compared with MCMC-based methodology, our methodology is computationally fast. ► Methodology provides smaller MSE and better ROC curves than single subject analysis. ► Methodology preserves the shape and discontinuities of activation regions. ► Methodology implicitly links the same anatomical regions across subjects.
AbstractList We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression coefficient maps through a discrete wavelet transformation to obtain a sparse representation in the wavelet space. Subsequently, we assign to the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise. In this mixture prior for the wavelet coefficients, the mixture probabilities are related to the pattern of brain activity across different resolutions. To incorporate this information, we assume that the mixture probabilities for wavelet coefficients at the same location and level are common across subjects. Furthermore, we assign for the mixture probabilities a prior that depends on a few hyperparameters. We develop an empirical Bayes methodology to estimate the hyperparameters and, as these hyperparameters are shared by all subjects, we obtain precise estimated values. Then we carry out inference in the wavelet space and obtain smoothed images of the regression coefficients by applying the inverse wavelet transform to the posterior means of the wavelet coefficients. An application to computer simulated synthetic data has shown that, when compared to single-subject analysis, our multi-subject methodology performs better in terms of mean squared error. Finally, we illustrate the utility and flexibility of our multi-subject methodology with an application to an event-related fMRI dataset generated by Postle (2005) through a multi-subject fMRI study of working memory related brain activation.We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression coefficient maps through a discrete wavelet transformation to obtain a sparse representation in the wavelet space. Subsequently, we assign to the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise. In this mixture prior for the wavelet coefficients, the mixture probabilities are related to the pattern of brain activity across different resolutions. To incorporate this information, we assume that the mixture probabilities for wavelet coefficients at the same location and level are common across subjects. Furthermore, we assign for the mixture probabilities a prior that depends on a few hyperparameters. We develop an empirical Bayes methodology to estimate the hyperparameters and, as these hyperparameters are shared by all subjects, we obtain precise estimated values. Then we carry out inference in the wavelet space and obtain smoothed images of the regression coefficients by applying the inverse wavelet transform to the posterior means of the wavelet coefficients. An application to computer simulated synthetic data has shown that, when compared to single-subject analysis, our multi-subject methodology performs better in terms of mean squared error. Finally, we illustrate the utility and flexibility of our multi-subject methodology with an application to an event-related fMRI dataset generated by Postle (2005) through a multi-subject fMRI study of working memory related brain activation.
We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression coefficient maps through a discrete wavelet transformation to obtain a sparse representation in the wavelet space. Subsequently, we assign to the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise. In this mixture prior for the wavelet coefficients, the mixture probabilities are related to the pattern of brain activity across different resolutions. To incorporate this information, we assume that the mixture probabilities for wavelet coefficients at the same location and level are common across subjects. Furthermore, we assign for the mixture probabilities a prior that depends on a few hyperparameters. We develop an empirical Bayes methodology to estimate the hyperparameters and, as these hyperparameters are shared by all subjects, we obtain precise estimated values. Then we carry out inference in the wavelet space and obtain smoothed images of the regression coefficients by applying the inverse wavelet transform to the posterior means of the wavelet coefficients. An application to computer simulated synthetic data has shown that, when compared to single-subject analysis, our multi-subject methodology performs better in terms of mean squared error. Finally, we illustrate the utility and flexibility of our multi-subject methodology with an application to an event-related fMRI dataset generated by Postle (2005) through a multi-subject fMRI study of working memory related brain activation.
We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression coefficient maps through a discrete wavelet transformation to obtain a sparse representation in the wavelet space. Subsequently, we assign to the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise. In this mixture prior for the wavelet coefficients, the mixture probabilities are related to the pattern of brain activity across different resolutions. To incorporate this information, we assume that the mixture probabilities for wavelet coefficients at the same location and level are common across subjects. Furthermore, we assign for the mixture probabilities a prior that depends on a few hyperparameters. We develop an empirical Bayes methodology to estimate the hyperparameters and, as these hyperparameters are shared by all subjects, we obtain precise estimated values. Then we carry out inference in the wavelet space and obtain smoothed images of the regression coefficients by applying the inverse wavelet transform to the posterior means of the wavelet coefficients. An application to computer simulated synthetic data has shown that, when compared to single-subject analysis, our multi-subject methodology performs better in terms of mean squared error. Finally, we illustrate the utility and flexibility of our multi-subject methodology with an application to an event-related fMRI dataset generated by Postle (2005) through a multi-subject fMRI study of working memory related brain activation. ► Spatially adaptive methodology that borrows information across subjects ► Compared with MCMC-based methodology, our methodology is computationally fast. ► Methodology provides smaller MSE and better ROC curves than single subject analysis. ► Methodology preserves the shape and discontinuities of activation regions. ► Methodology implicitly links the same anatomical regions across subjects.
Author Sanyal, Nilotpal
Ferreira, Marco A.R.
Author_xml – sequence: 1
  givenname: Nilotpal
  surname: Sanyal
  fullname: Sanyal, Nilotpal
  email: ns5x2@mail.missouri.edu
– sequence: 2
  givenname: Marco A.R.
  surname: Ferreira
  fullname: Ferreira, Marco A.R.
  email: ferreiram@missouri.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22951257$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2P1SAUhokZ43zoXzBN3LhpPVAodGN0Jn5MMmpidE24cOpQe2GE1uT-e6l3JiZ3410BJ-954Lwv5-QkxICEVBQaCrR7NTYBlxT91vzAhgFlDagGOH1Ezij0ou6FZCfrXrS1orQ_Jec5jwDQU66ekFPGekGZkGfk86XZYfYmVLcek0n21lszVdtlmn2dl82Idt6fcqljZYKZdtnnKg7VsAQ7-1gq1aev15Uzs3lKHg9myvjsfr0g39-_-3b1sb758uH66u1NbYVQc83VpuUoLQd0XKCwdoDOGTSKK7BmsKh63hrJARzlvXAUjHLUdkNrWdtt2gvycs-9S_HXgnnW2_JAnCYTMC5ZUwEgZRmR_V9KKWvbvu94kb44kI5xSWW-v0DJQCoqi-r5vWrZbNHpu1RySDv9YGoRvN4LbIo5Jxy09bNZnZqT8ZOmoNcU9aj_pajXFDUoXVIsAHUAeLjjiNbLfSsW93-XSHW2HoNF51OJUrvoj4G8OYDYyYf1Y_zE3XGIPwQG0tc
CitedBy_id crossref_primary_10_1080_01621459_2015_1129968
crossref_primary_10_1177_1094428117708857
crossref_primary_10_1007_s12561_017_9205_0
crossref_primary_10_1158_1078_0432_CCR_18_3908
crossref_primary_10_1002_wics_1509
crossref_primary_10_1162_NECO_a_00690
crossref_primary_10_1016_j_neuroimage_2014_03_024
crossref_primary_10_1214_16_AOAS926
crossref_primary_10_1002_hbm_26490
crossref_primary_10_1007_s11336_020_09727_0
crossref_primary_10_1016_j_neuroimage_2018_06_073
crossref_primary_10_3758_s13423_017_1420_7
crossref_primary_10_1007_s13571_016_0129_3
crossref_primary_10_1002_wics_1339
crossref_primary_10_1214_19_AOAS1316
crossref_primary_10_1016_j_neuroimage_2014_04_052
crossref_primary_10_1016_j_neuroimage_2015_06_010
crossref_primary_10_1109_TIP_2015_2470601
crossref_primary_10_1214_14_BA871
crossref_primary_10_3758_s13428_024_02568_0
Cites_doi 10.1111/1467-9868.00151
10.1016/j.neuroimage.2008.02.017
10.1016/j.jneumeth.2008.08.019
10.1016/j.neuroimage.2009.12.085
10.1109/TSP.2005.853098
10.1198/016214506000001031
10.1016/j.neuroimage.2008.02.005
10.1214/10-AOAS407
10.1016/j.mri.2008.09.001
10.1111/j.0006-341X.2001.00554.x
10.1016/j.neuroimage.2007.06.003
10.1080/01621459.2000.10474253
10.1016/j.neuroimage.2004.08.034
10.1016/j.neuroimage.2008.12.027
10.1109/MEMB.2006.1607671
10.1016/j.neuroimage.2004.07.012
10.1016/j.neuroimage.2007.08.012
10.1109/TMI.2003.809597
10.1016/j.neuroimage.2009.07.047
10.1016/S0730-725X(99)00100-9
10.1016/j.neuroimage.2011.12.060
10.1006/cbmr.1996.0014
10.1109/TMI.2010.2042064
10.1109/TMI.2003.823065
10.1016/j.neuroimage.2004.04.017
10.1109/TMI.2003.809587
10.1093/biomet/85.2.391
10.1016/j.neuroimage.2006.03.002
10.1109/42.700727
10.1016/S1053-8119(03)00071-5
10.1016/j.neuroimage.2004.07.056
10.1162/089892905774589208
10.1109/TMI.2004.824234
10.1006/nimg.2001.0955
10.1111/j.1467-9868.2011.00774.x
10.1109/TMI.2004.836545
10.1002/hbm.460020402
10.1111/1467-9868.00214
10.1109/TBME.2008.918563
10.1016/j.neuroimage.2006.10.005
10.1016/S1053-8119(03)00360-4
10.1016/j.neuroimage.2009.12.042
10.1016/S0730-725X(00)00197-1
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Nov 15, 2012
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Nov 15, 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2012.08.041
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic
MEDLINE

ProQuest One Psychology
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1531
ExternalDocumentID 3245975621
22951257
10_1016_j_neuroimage_2012_08_041
S1053811912008415
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c558t-48b34e7c40ed45e5ccf06daea8480cafce8943a7400d1495d10a8d1c6f3c236b3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 11 01:42:24 EDT 2025
Thu Jul 10 22:44:29 EDT 2025
Wed Aug 13 04:42:42 EDT 2025
Mon Jul 21 05:59:45 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Tue Jul 01 02:14:48 EDT 2025
Fri Feb 23 02:24:27 EST 2024
Tue Aug 26 16:31:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Image smoothing
Wavelet modeling
Bayesian inference
Multiple subjects
Spatiotemporal analysis
Mixture prior
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-48b34e7c40ed45e5ccf06daea8480cafce8943a7400d1495d10a8d1c6f3c236b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 22951257
PQID 1507207817
PQPubID 2031077
PageCount 13
ParticipantIDs proquest_miscellaneous_1500771252
proquest_miscellaneous_1112339964
proquest_journals_1507207817
pubmed_primary_22951257
crossref_citationtrail_10_1016_j_neuroimage_2012_08_041
crossref_primary_10_1016_j_neuroimage_2012_08_041
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_08_041
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_08_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-15
PublicationDateYYYYMMDD 2012-11-15
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Van De Ville, Blu, Unser (bb0240) 2006; vol. 5
R Development Core Team (bb0185) 2010
Chen, Saad, Nath, Beauchamp, Cox (bb0035) 2012; 60
Turkheimer, Aston, Banati, Riddell, Cunningham (bb0225) 2003; 22
Smith, Fahrmeir (bb0205) 2007; 102
Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bb0075) 1994; 2
Flandin, Penny (bb0070) 2007; 34
Badillo, Vincent, Ciuciu (bb0015) 2011
Smith, Pütz, Auer, Fahrmeir (bb0210) 2003; 20
Hastie, Tibshirani, Friedman (bb0105) 2009
Postle (bb0165) 2005; 17
Press, Teukolsky, Vetterling, Flannery (bb0170) 1992
Alexander, Baumgartner, Windischberger, Moser, Somorjai (bb0010) 2000; 18
Vidakovic (bb0250) 1999
Zaroubi, Goelman (bb0280) 2000; 18
Quirós, Diez, Gamerman (bb0175) 2010; 49
Van De Ville, Blu, Unser (bb0235) 2006; 25
Luo, Puthusserypady (bb0115) 2008; 55
Wongsawat (bb0265) 2009; vol. 25
Bullmore, Fadili, Maxim, Sendur, Whitcher, Suckling, Brammer, Breakspear (bb0025) 2004; 23
Harrison, Green (bb0095) 2010; 50
Harrison, Penny, Daunizeau, Friston (bb0100) 2008; 41
Ng, Abugharbieh, Hamarneh (bb0140) 2010
Turkheimer, Aston, Asselin, Hinz (bb0220) 2006; 32
Cox (bb0050) 1996; 29
Ferreira, Lee (bb0060) 2007
Clyde, Parmigiani, Vidakovic (bb0040) 1998; 85
Bowman, Caffo, Bassett, Kilts (bb0020) 2008; 39
Genovese (bb0080) 2000; 95
Penny, Trujillo-Barreto, Friston (bb0155) 2005; 24
Rajapakse, Zhou (bb0190) 2007; 37
Sendur, Maxim, Whitcher, Bullmore (bb0200) 2005; 53
Nason (bb0135) 2010
Fadili, Bullmore (bb0055) 2002; 15
Vincent, Risser, Ciuciu (bb0255) 2010; 29
Costafreda, Barker, Brammer (bb0045) 2009; 27
Penny, Kiebel, Friston (bb0150) 2003; 19
Soleymani, Hossein-Zadeh, Soltanian-Zadeh (bb0215) 2009; 176
Meyer (bb0125) 2003; 22
Morris, Baladandayuthapani, Herrick, Sanna, Gutstein (bb0130) 2011; 5
Groves, Chappell, Woolrich (bb0090) 2009; 45
Makni, Idier, Vincent, Thirion, Dehaene-Lambertz, Ciuciu (bb0120) 2008; 41
Quirós, Diez, Wilson (bb0180) 2010; 52
Woolrich, Jenkinson, Brady, Smith (bb0275) 2004; 23
Ng, Hamarneh, Abugharbieh (bb0145) 2010
Woolrich, Behrens, Beckmann, Smith (bb0270) 2005; 24
Vannucci, Corradi (bb0245) 1999; 61
Ruttimann, Unser, Rawlings, Rio, Ramsey, Mattay, Hommer, Frank, Weinberger (bb0195) 1998; 17
Wink, Roerdink (bb0260) 2004; 23
Carlin, Louis (bb0030) 2008
Ferreira, Holan, Bertolde (bb0065) 2011; 73
Van De Ville, Blu, Unser (bb0230) 2004; 23
Gössl, Auer, Fahrmeir (bb0085) 2001; 57
Polzehl, Tabelow (bb0160) 2007; 7
Abramovich, Sapatinas, Silverman (bb0005) 1998; 60
Long, Brown, Manoach, Solo (bb0110) 2004; 23
Soleymani (10.1016/j.neuroimage.2012.08.041_bb0215) 2009; 176
Fadili (10.1016/j.neuroimage.2012.08.041_bb0055) 2002; 15
Smith (10.1016/j.neuroimage.2012.08.041_bb0210) 2003; 20
Turkheimer (10.1016/j.neuroimage.2012.08.041_bb0220) 2006; 32
Vidakovic (10.1016/j.neuroimage.2012.08.041_bb0250) 1999
Meyer (10.1016/j.neuroimage.2012.08.041_bb0125) 2003; 22
Ng (10.1016/j.neuroimage.2012.08.041_bb0145) 2010
Morris (10.1016/j.neuroimage.2012.08.041_bb0130) 2011; 5
Rajapakse (10.1016/j.neuroimage.2012.08.041_bb0190) 2007; 37
Ruttimann (10.1016/j.neuroimage.2012.08.041_bb0195) 1998; 17
Abramovich (10.1016/j.neuroimage.2012.08.041_bb0005) 1998; 60
Harrison (10.1016/j.neuroimage.2012.08.041_bb0100) 2008; 41
Makni (10.1016/j.neuroimage.2012.08.041_bb0120) 2008; 41
Alexander (10.1016/j.neuroimage.2012.08.041_bb0010) 2000; 18
Badillo (10.1016/j.neuroimage.2012.08.041_bb0015) 2011
Luo (10.1016/j.neuroimage.2012.08.041_bb0115) 2008; 55
Costafreda (10.1016/j.neuroimage.2012.08.041_bb0045) 2009; 27
Press (10.1016/j.neuroimage.2012.08.041_bb0170) 1992
Van De Ville (10.1016/j.neuroimage.2012.08.041_bb0240) 2006; vol. 5
Woolrich (10.1016/j.neuroimage.2012.08.041_bb0270) 2005; 24
Chen (10.1016/j.neuroimage.2012.08.041_bb0035) 2012; 60
Turkheimer (10.1016/j.neuroimage.2012.08.041_bb0225) 2003; 22
Carlin (10.1016/j.neuroimage.2012.08.041_bb0030) 2008
Harrison (10.1016/j.neuroimage.2012.08.041_bb0095) 2010; 50
Sendur (10.1016/j.neuroimage.2012.08.041_bb0200) 2005; 53
Penny (10.1016/j.neuroimage.2012.08.041_bb0155) 2005; 24
Quirós (10.1016/j.neuroimage.2012.08.041_bb0175) 2010; 49
Smith (10.1016/j.neuroimage.2012.08.041_bb0205) 2007; 102
Bullmore (10.1016/j.neuroimage.2012.08.041_bb0025) 2004; 23
Cox (10.1016/j.neuroimage.2012.08.041_bb0050) 1996; 29
Long (10.1016/j.neuroimage.2012.08.041_bb0110) 2004; 23
Hastie (10.1016/j.neuroimage.2012.08.041_bb0105) 2009
Penny (10.1016/j.neuroimage.2012.08.041_bb0150) 2003; 19
Quirós (10.1016/j.neuroimage.2012.08.041_bb0180) 2010; 52
Vannucci (10.1016/j.neuroimage.2012.08.041_bb0245) 1999; 61
Genovese (10.1016/j.neuroimage.2012.08.041_bb0080) 2000; 95
Clyde (10.1016/j.neuroimage.2012.08.041_bb0040) 1998; 85
Wink (10.1016/j.neuroimage.2012.08.041_bb0260) 2004; 23
Gössl (10.1016/j.neuroimage.2012.08.041_bb0085) 2001; 57
Ng (10.1016/j.neuroimage.2012.08.041_bb0140) 2010
Flandin (10.1016/j.neuroimage.2012.08.041_bb0070) 2007; 34
Vincent (10.1016/j.neuroimage.2012.08.041_bb0255) 2010; 29
Groves (10.1016/j.neuroimage.2012.08.041_bb0090) 2009; 45
Wongsawat (10.1016/j.neuroimage.2012.08.041_bb0265) 2009; vol. 25
Van De Ville (10.1016/j.neuroimage.2012.08.041_bb0230) 2004; 23
Polzehl (10.1016/j.neuroimage.2012.08.041_bb0160) 2007; 7
Postle (10.1016/j.neuroimage.2012.08.041_bb0165) 2005; 17
Van De Ville (10.1016/j.neuroimage.2012.08.041_bb0235) 2006; 25
Bowman (10.1016/j.neuroimage.2012.08.041_bb0020) 2008; 39
Nason (10.1016/j.neuroimage.2012.08.041_bb0135)
Ferreira (10.1016/j.neuroimage.2012.08.041_bb0060) 2007
Woolrich (10.1016/j.neuroimage.2012.08.041_bb0275) 2004; 23
Friston (10.1016/j.neuroimage.2012.08.041_bb0075) 1994; 2
Ferreira (10.1016/j.neuroimage.2012.08.041_bb0065) 2011; 73
Zaroubi (10.1016/j.neuroimage.2012.08.041_bb0280) 2000; 18
R Development Core Team (10.1016/j.neuroimage.2012.08.041_bb0185) 2010
References_xml – volume: 17
  start-page: 1679
  year: 2005
  end-page: 1690
  ident: bb0165
  article-title: Delay-period activity in the prefrontal cortex: one function is sensory gating
  publication-title: J. Cogn. Neurosci.
– volume: 45
  start-page: 795
  year: 2009
  end-page: 809
  ident: bb0090
  article-title: Combined spatial and non-spatial prior for inference on MRI time-series
  publication-title: Neuroimage
– volume: 102
  start-page: 417
  year: 2007
  end-page: 431
  ident: bb0205
  article-title: Spatial Bayesian variable selection with application to functional magnetic resonance imaging
  publication-title: J. Am. Stat. Assoc.
– volume: 2
  start-page: 189
  year: 1994
  end-page: 210
  ident: bb0075
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
– volume: 18
  start-page: 1129
  year: 2000
  end-page: 1134
  ident: bb0010
  article-title: Wavelet domain de-noising of time-courses in MR image sequences
  publication-title: Magn. Reson. Imaging
– year: 2010
  ident: bb0185
  article-title: R: A Language and Environment for Statistical Computing
– volume: 15
  start-page: 217
  year: 2002
  end-page: 232
  ident: bb0055
  article-title: Wavelet-generalized least squares: a new BLU estimator of linear regression models with 1/f errors
  publication-title: Neuroimage
– volume: 23
  start-page: 374
  year: 2004
  end-page: 387
  ident: bb0260
  article-title: Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing
  publication-title: IEEE Trans. Med. Imaging
– year: 2007
  ident: bb0060
  article-title: Multiscale modeling: a Bayesian perspective
  publication-title: Springer Series in Statistics
– volume: vol. 25
  start-page: 1242
  year: 2009
  end-page: 1245
  ident: bb0265
  article-title: Trends on wavelet-based functional MRI for activation detection
  publication-title: IFMBE Proceedings
– volume: 52
  start-page: 995
  year: 2010
  end-page: 1004
  ident: bb0180
  article-title: Bayesian spatiotemporal model of fMRI data using transfer functions
  publication-title: Neuroimage
– volume: 55
  start-page: 1504
  year: 2008
  end-page: 1511
  ident: bb0115
  article-title: Analysis of fMRI data with drift: modified general linear model and Bayesian estimator
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 18
  start-page: 59
  year: 2000
  end-page: 68
  ident: bb0280
  article-title: Complex denoising of MR data via wavelet analysis: application for functional MRI
  publication-title: Magn. Reson. Imaging
– volume: 25
  start-page: 65
  year: 2006
  end-page: 78
  ident: bb0235
  article-title: Surfing the brain — An overview of wavelet-based techniques for fMRI data analysis
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 19
  start-page: 727
  year: 2003
  end-page: 741
  ident: bb0150
  article-title: Variational Bayesian inference for fMRI time series
  publication-title: Neuroimage
– volume: 5
  start-page: 894
  year: 2011
  end-page: 923
  ident: bb0130
  article-title: Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomic data
  publication-title: Ann. Appl. Stat.
– start-page: 376
  year: 2011
  end-page: 380
  ident: bb0015
  article-title: Impact of the joint detection-estimation approach on random effects group studies in FMRI
  publication-title: Proceedings - International Symposium on Biomedical Imaging
– volume: 17
  start-page: 142
  year: 1998
  end-page: 154
  ident: bb0195
  article-title: Statistical analysis of functional MRI data in the wavelet domain
  publication-title: IEEE Trans. Med. Imaging
– volume: 61
  start-page: 971
  year: 1999
  end-page: 986
  ident: bb0245
  article-title: Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective
  publication-title: J. R. Stat. Soc. B Methodol.
– volume: 27
  start-page: 460
  year: 2009
  end-page: 469
  ident: bb0045
  article-title: Bayesian wavelet-based analysis of functional magnetic resonance time series
  publication-title: Magn. Reson. Imaging
– year: 2009
  ident: bb0105
  article-title: The elements of statistical learning: data mining, inference, and prediction
  publication-title: Springer Series in Statistics
– volume: 22
  start-page: 289
  year: 2003
  end-page: 301
  ident: bb0225
  article-title: A linear wavelet filter for parametric imaging with dynamic PET
  publication-title: IEEE Trans. Med. Imaging
– volume: 34
  start-page: 1108
  year: 2007
  end-page: 1125
  ident: bb0070
  article-title: Bayesian fMRI data analysis with sparse spatial basis function priors
  publication-title: Neuroimage
– volume: 95
  start-page: 691
  year: 2000
  end-page: 703
  ident: bb0080
  article-title: A Bayesian time-course model for functional magnetic resonance imaging data
  publication-title: J. Am. Stat. Assoc.
– volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  ident: bb0050
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
– volume: 73
  start-page: 663
  year: 2011
  end-page: 688
  ident: bb0065
  article-title: Dynamic multiscale spatio-temporal models for Gaussian areal data
  publication-title: J. R. Stat. Soc. B
– volume: 7
  start-page: 13
  year: 2007
  end-page: 17
  ident: bb0160
  article-title: fmri: a package for analyzing fmri data
  publication-title: RNews
– volume: 49
  start-page: 442
  year: 2010
  end-page: 456
  ident: bb0175
  article-title: Bayesian spatiotemporal model of fMRI data
  publication-title: Neuroimage
– year: 1999
  ident: bb0250
  article-title: Statistical modeling by wavelets
  publication-title: Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics
– volume: 22
  start-page: 315
  year: 2003
  end-page: 322
  ident: bb0125
  article-title: Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series
  publication-title: IEEE Trans. Med. Imaging
– year: 2010
  ident: bb0135
  article-title: wavethresh: Wavelets Statistics and Transforms
– volume: vol. 5
  start-page: V1101
  year: 2006
  end-page: V1104
  ident: bb0240
  article-title: WSPM or how to obtain statistical parametric maps using shift-invariant wavelet processing
  publication-title: IEEE International Conference on Acoustics, Speech, and Signal Processing
– volume: 23
  start-page: S234
  year: 2004
  end-page: S249
  ident: bb0025
  article-title: Wavelets and functional magnetic resonance imaging of the human brain
  publication-title: Neuroimage
– year: 2008
  ident: bb0030
  article-title: Bayesian Methods for Data Analysis
– start-page: 2887
  year: 2010
  end-page: 2894
  ident: bb0140
  article-title: Group MRF for fMRI activation detection
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 39
  start-page: 146
  year: 2008
  end-page: 156
  ident: bb0020
  article-title: A Bayesian hierarchical framework for spatial modeling of fMRI data
  publication-title: Neuroimage
– volume: 85
  start-page: 391
  year: 1998
  end-page: 401
  ident: bb0040
  article-title: Multiple shrinkage and subset selection in wavelets
  publication-title: Biometrika
– volume: 53
  start-page: 3413
  year: 2005
  end-page: 3426
  ident: bb0200
  article-title: Multiple hypothesis mapping of functional MRI data in orthogonal and complex wavelet domains
  publication-title: IEEE Trans. Signal Process.
– volume: 37
  start-page: 749
  year: 2007
  end-page: 760
  ident: bb0190
  article-title: Learning effective brain connectivity with dynamic Bayesian networks
  publication-title: Neuroimage
– volume: 20
  start-page: 802
  year: 2003
  end-page: 815
  ident: bb0210
  article-title: Assessing brain activity through spatial Bayesian variable selection
  publication-title: Neuroimage
– volume: 23
  start-page: 213
  year: 2004
  end-page: 231
  ident: bb0275
  article-title: Fully Bayesian spatio–temporal modeling of FMRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 60
  start-page: 725
  year: 1998
  end-page: 749
  ident: bb0005
  article-title: Wavelet thresholding via a Bayesian approach
  publication-title: J. R. Stat. Soc. B Methodol.
– volume: 60
  start-page: 747
  year: 2012
  end-page: 765
  ident: bb0035
  article-title: FMRI group analysis combining effect estimates and their variances
  publication-title: Neuroimage
– volume: 57
  start-page: 554
  year: 2001
  end-page: 562
  ident: bb0085
  article-title: Bayesian spatiotemporal inference in functional magnetic resonance imaging
  publication-title: Biometrics
– volume: 41
  start-page: 408
  year: 2008
  end-page: 423
  ident: bb0100
  article-title: Diffusion-based spatial priors for functional magnetic resonance images
  publication-title: Neuroimage
– volume: 29
  start-page: 1059
  year: 2010
  end-page: 1074
  ident: bb0255
  article-title: Spatially adaptive mixture modeling for analysis of fMRI time series
  publication-title: IEEE Trans. Med. Imaging
– volume: 50
  start-page: 1126
  year: 2010
  end-page: 1141
  ident: bb0095
  article-title: A Bayesian spatiotemporal model for very large data sets
  publication-title: Neuroimage
– volume: 24
  start-page: 350
  year: 2005
  end-page: 362
  ident: bb0155
  article-title: Bayesian fMRI time series analysis with spatial priors
  publication-title: Neuroimage
– volume: 176
  start-page: 237
  year: 2009
  end-page: 245
  ident: bb0215
  article-title: Fixed and random effect analysis of multi-subject fMRI data using wavelet transform
  publication-title: J. Neurosci. Methods
– volume: 23
  start-page: 500
  year: 2004
  end-page: 516
  ident: bb0110
  article-title: Spatiotemporal wavelet analysis for functional MRI
  publication-title: Neuroimage
– year: 1992
  ident: bb0170
  article-title: Numerical Recipes in C
– volume: 24
  start-page: 1
  year: 2005
  end-page: 11
  ident: bb0270
  article-title: Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 32
  start-page: 111
  year: 2006
  end-page: 121
  ident: bb0220
  article-title: Multi-resolution Bayesian regression in PET dynamic studies using wavelets
  publication-title: Neuroimage
– volume: 23
  start-page: 1472
  year: 2004
  end-page: 1485
  ident: bb0230
  article-title: Integrated wavelet processing and spatial statistical testing of fMRI data
  publication-title: Neuroimage
– start-page: 331
  year: 2010
  end-page: 338
  ident: bb0145
  article-title: Detecting brain activation in fMRI using group random walker
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010 , vol. 6362 of Lecture Notes in Computer Science
– volume: 41
  start-page: 941
  year: 2008
  end-page: 969
  ident: bb0120
  article-title: A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI
  publication-title: Neuroimage
– volume: 60
  start-page: 725
  issue: 4
  year: 1998
  ident: 10.1016/j.neuroimage.2012.08.041_bb0005
  article-title: Wavelet thresholding via a Bayesian approach
  publication-title: J. R. Stat. Soc. B Methodol.
  doi: 10.1111/1467-9868.00151
– volume: 41
  start-page: 941
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2012.08.041_bb0120
  article-title: A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.017
– year: 2009
  ident: 10.1016/j.neuroimage.2012.08.041_bb0105
  article-title: The elements of statistical learning: data mining, inference, and prediction
– volume: 176
  start-page: 237
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2012.08.041_bb0215
  article-title: Fixed and random effect analysis of multi-subject fMRI data using wavelet transform
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.08.019
– volume: 52
  start-page: 995
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2012.08.041_bb0180
  article-title: Bayesian spatiotemporal model of fMRI data using transfer functions
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.085
– volume: 53
  start-page: 3413
  issue: 9
  year: 2005
  ident: 10.1016/j.neuroimage.2012.08.041_bb0200
  article-title: Multiple hypothesis mapping of functional MRI data in orthogonal and complex wavelet domains
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.853098
– volume: 102
  start-page: 417
  issue: 478
  year: 2007
  ident: 10.1016/j.neuroimage.2012.08.041_bb0205
  article-title: Spatial Bayesian variable selection with application to functional magnetic resonance imaging
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000001031
– volume: 41
  start-page: 408
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2012.08.041_bb0100
  article-title: Diffusion-based spatial priors for functional magnetic resonance images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.005
– volume: 5
  start-page: 894
  year: 2011
  ident: 10.1016/j.neuroimage.2012.08.041_bb0130
  article-title: Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomic data
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/10-AOAS407
– volume: 7
  start-page: 13
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2012.08.041_bb0160
  article-title: fmri: a package for analyzing fmri data
  publication-title: RNews
– volume: 27
  start-page: 460
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2012.08.041_bb0045
  article-title: Bayesian wavelet-based analysis of functional magnetic resonance time series
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2008.09.001
– volume: 57
  start-page: 554
  issue: 2
  year: 2001
  ident: 10.1016/j.neuroimage.2012.08.041_bb0085
  article-title: Bayesian spatiotemporal inference in functional magnetic resonance imaging
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.00554.x
– volume: 37
  start-page: 749
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2012.08.041_bb0190
  article-title: Learning effective brain connectivity with dynamic Bayesian networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.06.003
– year: 2010
  ident: 10.1016/j.neuroimage.2012.08.041_bb0185
– volume: 95
  start-page: 691
  issue: 451
  year: 2000
  ident: 10.1016/j.neuroimage.2012.08.041_bb0080
  article-title: A Bayesian time-course model for functional magnetic resonance imaging data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2000.10474253
– volume: 24
  start-page: 350
  issue: 2
  year: 2005
  ident: 10.1016/j.neuroimage.2012.08.041_bb0155
  article-title: Bayesian fMRI time series analysis with spatial priors
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.08.034
– volume: 45
  start-page: 795
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2012.08.041_bb0090
  article-title: Combined spatial and non-spatial prior for inference on MRI time-series
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.027
– volume: 25
  start-page: 65
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2012.08.041_bb0235
  article-title: Surfing the brain — An overview of wavelet-based techniques for fMRI data analysis
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/MEMB.2006.1607671
– volume: vol. 25
  start-page: 1242
  year: 2009
  ident: 10.1016/j.neuroimage.2012.08.041_bb0265
  article-title: Trends on wavelet-based functional MRI for activation detection
– volume: 23
  start-page: S234
  issue: Suppl. 1
  year: 2004
  ident: 10.1016/j.neuroimage.2012.08.041_bb0025
  article-title: Wavelets and functional magnetic resonance imaging of the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.012
– ident: 10.1016/j.neuroimage.2012.08.041_bb0135
– volume: 39
  start-page: 146
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2012.08.041_bb0020
  article-title: A Bayesian hierarchical framework for spatial modeling of fMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.08.012
– start-page: 376
  year: 2011
  ident: 10.1016/j.neuroimage.2012.08.041_bb0015
  article-title: Impact of the joint detection-estimation approach on random effects group studies in FMRI
– volume: 22
  start-page: 289
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2012.08.041_bb0225
  article-title: A linear wavelet filter for parametric imaging with dynamic PET
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.809597
– volume: 49
  start-page: 442
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2012.08.041_bb0175
  article-title: Bayesian spatiotemporal model of fMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.07.047
– volume: 18
  start-page: 59
  issue: 1
  year: 2000
  ident: 10.1016/j.neuroimage.2012.08.041_bb0280
  article-title: Complex denoising of MR data via wavelet analysis: application for functional MRI
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(99)00100-9
– volume: 60
  start-page: 747
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2012.08.041_bb0035
  article-title: FMRI group analysis combining effect estimates and their variances
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.060
– volume: 29
  start-page: 162
  issue: 3
  year: 1996
  ident: 10.1016/j.neuroimage.2012.08.041_bb0050
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1996.0014
– volume: 29
  start-page: 1059
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2012.08.041_bb0255
  article-title: Spatially adaptive mixture modeling for analysis of fMRI time series
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2042064
– volume: 23
  start-page: 213
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2012.08.041_bb0275
  article-title: Fully Bayesian spatio–temporal modeling of FMRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.823065
– volume: 23
  start-page: 500
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2012.08.041_bb0110
  article-title: Spatiotemporal wavelet analysis for functional MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.04.017
– volume: 22
  start-page: 315
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2012.08.041_bb0125
  article-title: Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.809587
– volume: 85
  start-page: 391
  issue: 2
  year: 1998
  ident: 10.1016/j.neuroimage.2012.08.041_bb0040
  article-title: Multiple shrinkage and subset selection in wavelets
  publication-title: Biometrika
  doi: 10.1093/biomet/85.2.391
– volume: 32
  start-page: 111
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2012.08.041_bb0220
  article-title: Multi-resolution Bayesian regression in PET dynamic studies using wavelets
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.03.002
– volume: 17
  start-page: 142
  issue: 2
  year: 1998
  ident: 10.1016/j.neuroimage.2012.08.041_bb0195
  article-title: Statistical analysis of functional MRI data in the wavelet domain
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.700727
– year: 2007
  ident: 10.1016/j.neuroimage.2012.08.041_bb0060
  article-title: Multiscale modeling: a Bayesian perspective
– year: 1992
  ident: 10.1016/j.neuroimage.2012.08.041_bb0170
– volume: 19
  start-page: 727
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2012.08.041_bb0150
  article-title: Variational Bayesian inference for fMRI time series
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00071-5
– start-page: 2887
  year: 2010
  ident: 10.1016/j.neuroimage.2012.08.041_bb0140
  article-title: Group MRF for fMRI activation detection
– volume: 23
  start-page: 1472
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2012.08.041_bb0230
  article-title: Integrated wavelet processing and spatial statistical testing of fMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.056
– volume: 17
  start-page: 1679
  issue: 11
  year: 2005
  ident: 10.1016/j.neuroimage.2012.08.041_bb0165
  article-title: Delay-period activity in the prefrontal cortex: one function is sensory gating
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/089892905774589208
– start-page: 331
  year: 2010
  ident: 10.1016/j.neuroimage.2012.08.041_bb0145
  article-title: Detecting brain activation in fMRI using group random walker
– volume: vol. 5
  start-page: V1101
  year: 2006
  ident: 10.1016/j.neuroimage.2012.08.041_bb0240
  article-title: WSPM or how to obtain statistical parametric maps using shift-invariant wavelet processing
– volume: 23
  start-page: 374
  issue: 3
  year: 2004
  ident: 10.1016/j.neuroimage.2012.08.041_bb0260
  article-title: Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.824234
– volume: 15
  start-page: 217
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2012.08.041_bb0055
  article-title: Wavelet-generalized least squares: a new BLU estimator of linear regression models with 1/f errors
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0955
– volume: 73
  start-page: 663
  year: 2011
  ident: 10.1016/j.neuroimage.2012.08.041_bb0065
  article-title: Dynamic multiscale spatio-temporal models for Gaussian areal data
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2011.00774.x
– volume: 24
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2012.08.041_bb0270
  article-title: Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.836545
– year: 1999
  ident: 10.1016/j.neuroimage.2012.08.041_bb0250
  article-title: Statistical modeling by wavelets
– volume: 2
  start-page: 189
  issue: 4
  year: 1994
  ident: 10.1016/j.neuroimage.2012.08.041_bb0075
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020402
– volume: 61
  start-page: 971
  year: 1999
  ident: 10.1016/j.neuroimage.2012.08.041_bb0245
  article-title: Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective
  publication-title: J. R. Stat. Soc. B Methodol.
  doi: 10.1111/1467-9868.00214
– volume: 55
  start-page: 1504
  issue: 5
  year: 2008
  ident: 10.1016/j.neuroimage.2012.08.041_bb0115
  article-title: Analysis of fMRI data with drift: modified general linear model and Bayesian estimator
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.918563
– volume: 34
  start-page: 1108
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2012.08.041_bb0070
  article-title: Bayesian fMRI data analysis with sparse spatial basis function priors
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.10.005
– volume: 20
  start-page: 802
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2012.08.041_bb0210
  article-title: Assessing brain activity through spatial Bayesian variable selection
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00360-4
– year: 2008
  ident: 10.1016/j.neuroimage.2012.08.041_bb0030
– volume: 50
  start-page: 1126
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2012.08.041_bb0095
  article-title: A Bayesian spatiotemporal model for very large data sets
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.042
– volume: 18
  start-page: 1129
  issue: 9
  year: 2000
  ident: 10.1016/j.neuroimage.2012.08.041_bb0010
  article-title: Wavelet domain de-noising of time-courses in MR image sequences
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(00)00197-1
SSID ssj0009148
Score 2.1984622
Snippet We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1519
SubjectTerms Algorithms
Bayes Theorem
Bayesian analysis
Bayesian inference
Brain - physiology
Brain Mapping - methods
Colleges & universities
Humans
Image Interpretation, Computer-Assisted - methods
Image smoothing
Integrals
Magnetic Resonance Imaging
Mixture prior
Models, Neurological
Models, Theoretical
Multiple subjects
Sparsity
Spatiotemporal analysis
Wavelet modeling
Wavelet transforms
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NS8MwNAwP4kX8djqlgte6tE3aDk86HFPYDupgt5CmCUy0G3Y7ePG3-16TbniYDDw2ySvhJe8r74uQaw1ihGea-kaxEAwUpnwZ8cjPMq5i1qGGUswdHgzj_og9jfm4Qbp1LgyGVTreb3l6xa3dSNthsz2bTNovoBmAuAF7A134NtGcsQRv-c33KsyjEzCbDgcbwNUumsfGeFU1IycfQLkY5BVWxTxZsE5ErVNBK1HU2yO7Tof07uw290lDFwdke-C85IdkeC-_NCZHetjounIVwEl4VeygXy4yfHqxXyWMa0-6wiTe1Hgo5-zzoDd4fvQwgPSIjHoPr92-7_om-IrzdO6zNIuYThSjOmdcc6UMjXOpZcpSqqRRGouuywTIN0cDKQ-oTPNAxSZSYRRn0THZKqaFPgVUmbST0ywOAwW_i40Eay7MEy1NqiPN0iZJalQJ5YqKY2-Ld1FHj72JFZIFIllg20sWNEmwhJzZwhobwHTq0xB14iiwOgHcfwPY2yXsrwu2IXSrPnzhiLwUqEuHWCwpaZKr5TSQJ_pcZKGnixINrDACJTBmf6zhWFQJNM2wSU7sxVqiBLutw0xy9q_tn5Md_MIcyoC3yNb8c6EvQJmaZ5cVtfwA4vwecQ
  priority: 102
  providerName: Elsevier
Title Bayesian hierarchical multi-subject multiscale analysis of functional MRI data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912008415
https://dx.doi.org/10.1016/j.neuroimage.2012.08.041
https://www.ncbi.nlm.nih.gov/pubmed/22951257
https://www.proquest.com/docview/1507207817
https://www.proquest.com/docview/1112339964
https://www.proquest.com/docview/1500771252
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8NkBAvaIyPlUEVJF4DdmInrvYwtROobGqFEEh9sxzHlpi2tpD2YS_723eXOO0TqE9RYl9i3eXss-_udwCXDpcRWTgWeysS3KAIG5tUpnFRSJuJHvOMUe7waJwNn8SPiZyEA7cqhFW2c2I9UZczS2fk12S4JIRMk3-bv8RUNYq8q6GExhbsEHQZhXTlk3wNustFkwqHH1fYIUTyNPFdNV7k8x_UWgrwSmogT8HfWp7eMj_rZej2I-wH-zHqNwI_gA9u-gl2R8FDfgjjgfnrKDEyoiLXtZsApRDVcYNxtSzo2KW5q_C5i0wAJYlmPqI1rjkajEYPdxEFjx7B0-3N4_dhHGomxFZKtYiFKlLhciuYK4V00lrPstI4o4Ri1njrCHDd5Ki6JW2OSs6MKrnNfGqTNCvSY9iezqbuM7LKq17JiizhFl-XeYM7uaTMnfHKpU6oDuQtq7QNgOJU1-K3biPHfuk1kzUxWVPJS8E7wFeU8wZUYwOaXisN3SaN4jSncebfgPbrijYYFo3BsCH1WSt8HRS80uvfsQMXq2ZUTfK3mKmbLSvaXCUpGoCZeKePJEAltDKTDpw0P9aKJVRpHVvy0_cH8AX2aLSUIMnlGWwvXpfuHC2lRdGFrat_vFsrRRd2-nc_h2O8Dm7G9w__AfYJFzg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NToK9IL7pNsBI8BgRO3biakKIwaaWrRWaNmlvxnEcCTTasbRC-6f4G7mLnfZpU1_2mDhnOWf7Puy73wG886hGVOnTpHZSoIMiXWIzlSVlqVwuB2mdppQ7PJ7kwzP57Vydb8C_LheGwio7mdgK6mrm6Iz8AxkugpBpik-XfxKqGkW3q10JjbAsjvz1X3TZmo-jrzi_74U4PDj9MkxiVYHEKaXnidRlJn3hZOorqbxyrk7zynqrpU6drZ0nSHJb4OKuyH2oeGp1xV1eZ05keZlhv_dgU2boyvRgc_9g8v1kBfPLZUi-w9_VnA9i7FCIKGsRKn_-RjlBIWWihQ6V_CaFeJPB2yq-w0fwMFqs7HNYYo9hw0-fwP1xvJN_CpN9e-0pFZNRWe32YgLnnbWRikmzKOmgJzw1-N4zG2FQ2KxmpFXDYSQbn4wYhas-g7M74edz6E1nU_8SWVXrQZWWueAOu8tri76jqApva-0zL3Ufio5VxkUIc6qkcWG6WLVfZsVkQ0w2VGRT8j7wJeVlgPFYg2bQzYbp0lRRsBrUNWvQ7i1poykTTJQ1qXe7yTdRpDRmtQH68HbZjMKAbnjs1M8WDblzIkOTM5e3fKMIwgntWtGHF2FhLVlCtd2xpdi-fQBv4MHwdHxsjkeTox3YopFTeiZXu9CbXy38K7TT5uXruDkY_Ljr_fgfbZBSJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeJr4pDDASPEaLv2JXCCFgVCujFUJM6ptxHFsCsXaQVmj_Gn8dd7HTPm3qyx6T9KL0fJ_23e8IeRnAjag6lEX0kkOCIn3hhBJFXStfyWEZyxJ7hyfT6vhUfpqp2Q751_fCYFllbxM7Q90sPO6RH2LgwhGZRh_GXBbx5Wj09vx3gROk8KS1H6eRROQkXPyF9K19Mz6CtX7F-ejjtw_HRZ4wUHilzLKQphYyaC_L0EgVlPexrBoXnJGm9C76gPDkToOgN5hKNKx0pmG-isJzUdUC3nuD3NRCMdQxPdMbwF8mUxse_HHD2DBXEaXasg6r8scZWAwsLuMdiKhkl7nGy0LfzgWObpP9HLvSd0nY7pCdML9L9ib5dP4emb53FwGbMikO2O6OKEACaFezWLSrGrd80lUL9wN1GRCFLiJF_5q2Jenk65hi4ep9cnot3HxAdueLeXgErIpm2JR1xZmH11XRQRbJGx1cNEEEaQZE96yyPoOZ40yNX7avWvtpN0y2yGSL4zYlGxC2pjxPgB5b0Az71bB9wyqYWAteZwva12vaHNSkYGVL6oN-8W02Lq3dqMKAvFg_BrOAZz1uHharFhM7LiD4rOQVv1EI5gQRLh-Qh0mw1izBKe_wRD---gOekz3QQvt5PD15Qm7hh2OfJlMHZHf5ZxWeQsC2rJ91mkHJ9-tWxf9PrFT3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+hierarchical+multi-subject+multiscale+analysis+of+functional+MRI+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sanyal%2C+Nilotpal&rft.au=Ferreira%2C+Marco+AR&rft.date=2012-11-15&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=63&rft.issue=3&rft.spage=1519&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.08.041&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3245975621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon