Machine Learning-Based Routine Laboratory Tests Predict One-Year Cognitive and Functional Decline in a Population Aged 75+ Years

Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able to predict this decline in healthy old-age people. Machine learning (ML) is a subarea of artificial intelligence (AI), which can be used to p...

Full description

Saved in:
Bibliographic Details
Published inBrain sciences Vol. 13; no. 4; p. 690
Main Authors Gomes, Karina Braga, Pereira, Ramon Gonçalves, Braga, Alexandre Alberto, Guimarães, Henrique Cerqueira, Resende, Elisa de Paula França, Teixeira, Antônio Lúcio, Barbosa, Maira Tonidandel, Junior, Wagner Meira, Carvalho, Maria das Graças, Caramelli, Paulo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able to predict this decline in healthy old-age people. Machine learning (ML) is a subarea of artificial intelligence (AI), which can be used to predict outcomes Aim: This study aimed to evaluate routine laboratory variables able to predict cognitive and functional impairment, using ML algorithms, in a cohort aged 75+ years, in a one-year follow-up study. One hundred and thirty-two older adults aged 75+ years were selected through a community-health public program or from long-term-care institutions. Their functional and cognitive performances were evaluated at baseline and one year later using a functional activities questionnaire, Mini-Mental State Examination, and the Brief Cognitive Screening Battery. Routine laboratory tests were performed at baseline. ML algorithms-random forest, support vector machine (SVM), and XGBoost-were applied in order to describe the best model able to predict cognitive and functional decline using routine tests as features. The random forest model showed better accuracy than other algorithms and included triglycerides, glucose, hematocrit, red cell distribution width (RDW), albumin, hemoglobin, globulin, high-density lipoprotein cholesterol (HDL-c), thyroid-stimulating hormone (TSH), creatinine, lymphocyte, erythrocyte, platelet/leucocyte (PLR), and neutrophil/leucocyte (NLR) ratios, and alanine transaminase (ALT), leukocyte, low-density lipoprotein cholesterol (LDL-c), cortisol, gamma-glutamyl transferase (GGT), and eosinophil as features to predict cognitive decline (accuracy = 0.79). For functional decline, the most important features were platelet, PLR and NLR, hemoglobin, globulin, cortisol, RDW, glucose, basophil, B12 vitamin, creatinine, GGT, ALT, aspartate transferase (AST), eosinophil, hematocrit, erythrocyte, triglycerides, HDL-c, and monocyte (accuracy = 0.92). Routine laboratory variables could be applied to predict cognitive and functional decline in oldest-old populations using ML algorithms.
AbstractList Background: Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able to predict this decline in healthy old-age people. Machine learning (ML) is a subarea of artificial intelligence (AI), which can be used to predict outcomes Aim: This study aimed to evaluate routine laboratory variables able to predict cognitive and functional impairment, using ML algorithms, in a cohort aged 75+ years, in a one-year follow-up study. Method: One hundred and thirty-two older adults aged 75+ years were selected through a community-health public program or from long-term-care institutions. Their functional and cognitive performances were evaluated at baseline and one year later using a functional activities questionnaire, Mini-Mental State Examination, and the Brief Cognitive Screening Battery. Routine laboratory tests were performed at baseline. ML algorithms—random forest, support vector machine (SVM), and XGBoost—were applied in order to describe the best model able to predict cognitive and functional decline using routine tests as features. Results: The random forest model showed better accuracy than other algorithms and included triglycerides, glucose, hematocrit, red cell distribution width (RDW), albumin, hemoglobin, globulin, high-density lipoprotein cholesterol (HDL-c), thyroid-stimulating hormone (TSH), creatinine, lymphocyte, erythrocyte, platelet/leucocyte (PLR), and neutrophil/leucocyte (NLR) ratios, and alanine transaminase (ALT), leukocyte, low-density lipoprotein cholesterol (LDL-c), cortisol, gamma-glutamyl transferase (GGT), and eosinophil as features to predict cognitive decline (accuracy = 0.79). For functional decline, the most important features were platelet, PLR and NLR, hemoglobin, globulin, cortisol, RDW, glucose, basophil, B12 vitamin, creatinine, GGT, ALT, aspartate transferase (AST), eosinophil, hematocrit, erythrocyte, triglycerides, HDL-c, and monocyte (accuracy = 0.92). Conclusions: Routine laboratory variables could be applied to predict cognitive and functional decline in oldest-old populations using ML algorithms.
Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able to predict this decline in healthy old-age people. Machine learning (ML) is a subarea of artificial intelligence (AI), which can be used to predict outcomes Aim: This study aimed to evaluate routine laboratory variables able to predict cognitive and functional impairment, using ML algorithms, in a cohort aged 75+ years, in a one-year follow-up study. One hundred and thirty-two older adults aged 75+ years were selected through a community-health public program or from long-term-care institutions. Their functional and cognitive performances were evaluated at baseline and one year later using a functional activities questionnaire, Mini-Mental State Examination, and the Brief Cognitive Screening Battery. Routine laboratory tests were performed at baseline. ML algorithms-random forest, support vector machine (SVM), and XGBoost-were applied in order to describe the best model able to predict cognitive and functional decline using routine tests as features. The random forest model showed better accuracy than other algorithms and included triglycerides, glucose, hematocrit, red cell distribution width (RDW), albumin, hemoglobin, globulin, high-density lipoprotein cholesterol (HDL-c), thyroid-stimulating hormone (TSH), creatinine, lymphocyte, erythrocyte, platelet/leucocyte (PLR), and neutrophil/leucocyte (NLR) ratios, and alanine transaminase (ALT), leukocyte, low-density lipoprotein cholesterol (LDL-c), cortisol, gamma-glutamyl transferase (GGT), and eosinophil as features to predict cognitive decline (accuracy = 0.79). For functional decline, the most important features were platelet, PLR and NLR, hemoglobin, globulin, cortisol, RDW, glucose, basophil, B12 vitamin, creatinine, GGT, ALT, aspartate transferase (AST), eosinophil, hematocrit, erythrocyte, triglycerides, HDL-c, and monocyte (accuracy = 0.92). Routine laboratory variables could be applied to predict cognitive and functional decline in oldest-old populations using ML algorithms.
BACKGROUNDCognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able to predict this decline in healthy old-age people. Machine learning (ML) is a subarea of artificial intelligence (AI), which can be used to predict outcomes Aim: This study aimed to evaluate routine laboratory variables able to predict cognitive and functional impairment, using ML algorithms, in a cohort aged 75+ years, in a one-year follow-up study. METHODOne hundred and thirty-two older adults aged 75+ years were selected through a community-health public program or from long-term-care institutions. Their functional and cognitive performances were evaluated at baseline and one year later using a functional activities questionnaire, Mini-Mental State Examination, and the Brief Cognitive Screening Battery. Routine laboratory tests were performed at baseline. ML algorithms-random forest, support vector machine (SVM), and XGBoost-were applied in order to describe the best model able to predict cognitive and functional decline using routine tests as features. RESULTSThe random forest model showed better accuracy than other algorithms and included triglycerides, glucose, hematocrit, red cell distribution width (RDW), albumin, hemoglobin, globulin, high-density lipoprotein cholesterol (HDL-c), thyroid-stimulating hormone (TSH), creatinine, lymphocyte, erythrocyte, platelet/leucocyte (PLR), and neutrophil/leucocyte (NLR) ratios, and alanine transaminase (ALT), leukocyte, low-density lipoprotein cholesterol (LDL-c), cortisol, gamma-glutamyl transferase (GGT), and eosinophil as features to predict cognitive decline (accuracy = 0.79). For functional decline, the most important features were platelet, PLR and NLR, hemoglobin, globulin, cortisol, RDW, glucose, basophil, B12 vitamin, creatinine, GGT, ALT, aspartate transferase (AST), eosinophil, hematocrit, erythrocyte, triglycerides, HDL-c, and monocyte (accuracy = 0.92). CONCLUSIONSRoutine laboratory variables could be applied to predict cognitive and functional decline in oldest-old populations using ML algorithms.
Audience Academic
Author Pereira, Ramon Gonçalves
Braga, Alexandre Alberto
Caramelli, Paulo
Teixeira, Antônio Lúcio
Gomes, Karina Braga
Guimarães, Henrique Cerqueira
Resende, Elisa de Paula França
Barbosa, Maira Tonidandel
Carvalho, Maria das Graças
Junior, Wagner Meira
AuthorAffiliation 3 Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil caramelli@ufmg.br (P.C.)
5 Faculdade Santa Casa BH, Belo Horizonte 30110-005, MG, Brazil
1 Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
4 Hospital das Clínicas (EBSERH), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
2 Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
AuthorAffiliation_xml – name: 5 Faculdade Santa Casa BH, Belo Horizonte 30110-005, MG, Brazil
– name: 4 Hospital das Clínicas (EBSERH), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
– name: 2 Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
– name: 1 Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
– name: 3 Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil caramelli@ufmg.br (P.C.)
Author_xml – sequence: 1
  givenname: Karina Braga
  orcidid: 0000-0002-6870-2063
  surname: Gomes
  fullname: Gomes, Karina Braga
  organization: Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
– sequence: 2
  givenname: Ramon Gonçalves
  orcidid: 0000-0001-7874-3398
  surname: Pereira
  fullname: Pereira, Ramon Gonçalves
  organization: Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
– sequence: 3
  givenname: Alexandre Alberto
  surname: Braga
  fullname: Braga, Alexandre Alberto
  organization: Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
– sequence: 4
  givenname: Henrique Cerqueira
  surname: Guimarães
  fullname: Guimarães, Henrique Cerqueira
  organization: Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
– sequence: 5
  givenname: Elisa de Paula França
  surname: Resende
  fullname: Resende, Elisa de Paula França
  organization: Hospital das Clínicas (EBSERH), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
– sequence: 6
  givenname: Antônio Lúcio
  orcidid: 0000-0002-9621-5422
  surname: Teixeira
  fullname: Teixeira, Antônio Lúcio
  organization: Faculdade Santa Casa BH, Belo Horizonte 30110-005, MG, Brazil
– sequence: 7
  givenname: Maira Tonidandel
  surname: Barbosa
  fullname: Barbosa, Maira Tonidandel
  organization: Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
– sequence: 8
  givenname: Wagner Meira
  surname: Junior
  fullname: Junior, Wagner Meira
  organization: Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
– sequence: 9
  givenname: Maria das Graças
  surname: Carvalho
  fullname: Carvalho, Maria das Graças
  organization: Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
– sequence: 10
  givenname: Paulo
  orcidid: 0000-0002-4786-6990
  surname: Caramelli
  fullname: Caramelli, Paulo
  organization: Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37190655$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNUREvpnROyxAUJpfgzTk5oWShUWtQKlQMny7EnqausvdhJpd746TjdUu1W2Adb4_d97BnPy-LABw9F8ZrgU8Ya_KGN2vlkHGGY46rBz4ojimVVMk7Fwc7-sDhJ6QbnUWPMBH5RHDJJGlwJcVT8-a7NtfOAVqCjd74vP-kEFv0I03gf1m2IegzxDl1BGhO6jGCdGdGFh_JX9qBl6L0b3S0g7S06m7wZXfB6QJ_BDDPCeaTRZdhMg55P0KLPfCneo9meXhXPOz0kOHlYj4ufZ1-ult_K1cXX8-ViVRoh6rFkUHcNoTY_GrfQEg5VI3FNuaig1bwTNq8EdFUZ28mOG2BESlEJ08i6ZZYdF-dbrg36Rm2iW-t4p4J26j4QYq90HJ0ZQHW0slXNaVvXwK0VTSt1Qzsu6pZTo1lmfdyyNlO7BmvAj1EPe9D9E--uVR9uFcFkLj3NhHcPhBh-T7mwau2SgWHQHsKUFK0JF7TCWGbp2yfSmzDFXOBZlT8xfz3fUfU6Z-B8F_LFZoaqhRSkIZxKnFWn_1HlaWHtTG6vzuX4ngFvDSaGlCJ0j0kSrOYuVE-7MFve7Bbn0fCv59hfbxTaBA
CitedBy_id crossref_primary_10_3390_technologies12010003
crossref_primary_10_3389_fpubh_2024_1375379
crossref_primary_10_3389_fpubh_2023_1271595
Cites_doi 10.1111/jgs.15271
10.1159/000341583
10.1590/S0004-282X2011000500002
10.1097/YCO.0000000000000768
10.1212/WNL.0000000000003482
10.1038/s41598-020-75871-3
10.1590/S0004-282X1994000400001
10.1016/j.jneumeth.2017.12.011
10.1038/s41379-021-00919-2
10.1002/syn.21651
10.1016/j.ijmedinf.2021.104484
10.2174/156720510790274392
10.1371/journal.pone.0155705
10.3389/fcomp.2020.00039
10.3390/curroncol28040275
10.1097/MOL.0000000000000257
10.3389/fmed.2023.1050255
10.1212/WNL.0000000000010005
10.1016/j.neuroimage.2015.01.048
10.1007/s40618-014-0101-x
10.1016/j.clinbiochem.2022.02.011
10.3233/JAD-2010-100663
10.1002/gps.1469
10.3233/JAD-220256
10.3390/children4060046
10.1002/jcla.21865
10.1371/journal.pone.0233336
10.3233/JAD-181086
10.1017/CBO9780511804779
10.1210/clinem/dgac189
10.1212/WNL.0000000000009436
10.1080/10245330410001701468
10.1093/geronj/37.3.323
10.1586/ern.09.118
10.3233/JAD-150397
10.1016/S0165-1781(98)00130-9
10.1007/s00401-016-1596-3
10.1111/ggi.12758
10.1212/WNL.0000000000003227
10.1053/j.ajkd.2020.03.015
10.1007/978-981-13-3681-2_5
10.1093/clinchem/hvaa269
10.1016/j.neubiorev.2019.03.018
10.3389/fnagi.2019.00332
10.3109/10408363.2014.992064
10.1016/j.cca.2013.04.013
10.1016/0022-3956(92)90024-I
10.3390/ijms22052761
10.1016/S1474-4422(13)70014-0
10.1111/j.1471-4159.2004.02385.x
10.1111/ggi.13751
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID NPM
AAYXX
CITATION
3V.
7TK
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
LK8
M2O
M7P
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/brainsci13040690
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Biological Sciences
ProQuest research library
Biological Science Database
Research Library (Corporate)
ProQuest Publicly Available Content database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
PubMed

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Statistics
EISSN 2076-3425
ExternalDocumentID oai_doaj_org_article_f26d6842b88e4dd59b7a92f458b42ca3
A751914270
10_3390_brainsci13040690
37190655
Genre Journal Article
GeographicLocations Brazil
United States--US
GeographicLocations_xml – name: Brazil
– name: United States--US
GrantInformation_xml – fundername: National Council for Scientific and Technological Development
  grantid: Not applied
– fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
GroupedDBID 3V.
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
ABDBF
ABUWG
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
NPM
OK1
PGMZT
PIMPY
PQQKQ
PROAC
RPM
AAYXX
AFPKN
CITATION
7TK
7XB
8FK
MBDVC
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c558t-3e8f912d6550beb14e697082456eba4f5d6eb1ea66cdf7f4ce3177565c978b3d3
IEDL.DBID RPM
ISSN 2076-3425
IngestDate Tue Oct 22 15:13:48 EDT 2024
Tue Sep 17 21:31:28 EDT 2024
Fri Oct 25 04:32:36 EDT 2024
Thu Oct 10 17:56:35 EDT 2024
Thu Feb 22 23:34:44 EST 2024
Tue Nov 12 22:39:06 EST 2024
Fri Aug 23 01:58:33 EDT 2024
Wed Oct 16 00:38:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords functional decline
cognitive decline
machine learning
laboratory variables
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-3e8f912d6550beb14e697082456eba4f5d6eb1ea66cdf7f4ce3177565c978b3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9621-5422
0000-0002-4786-6990
0000-0001-7874-3398
0000-0002-6870-2063
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137192/
PMID 37190655
PQID 2806506947
PQPubID 2032423
ParticipantIDs doaj_primary_oai_doaj_org_article_f26d6842b88e4dd59b7a92f458b42ca3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10137192
proquest_miscellaneous_2814526007
proquest_journals_2806506947
gale_infotracmisc_A751914270
gale_infotracacademiconefile_A751914270
crossref_primary_10_3390_brainsci13040690
pubmed_primary_37190655
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Brain sciences
PublicationTitleAlternate Brain Sci
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Koch (ref_30) 2016; 2
Chaker (ref_49) 2016; 87
Pfeffer (ref_9) 1982; 3
ref_14
Kim (ref_35) 2020; 18
Llewellyn (ref_33) 2010; 7
Deckers (ref_43) 2017; 351
Shad (ref_22) 2013; 67
ref_51
Lara (ref_31) 2016; 30
Pearlmutter (ref_56) 2020; 10
Veloso (ref_12) 2022; 88
Song (ref_19) 1999; 85
Dodel (ref_38) 2013; 12
Crumpei (ref_57) 2021; 28
Merkin (ref_6) 2022; 35
ref_25
Kuyumcu (ref_24) 2012; 34
Berkahn (ref_18) 2004; 9
Scheppach (ref_45) 2020; 76
Nordestgaard (ref_28) 2021; 8
Kim (ref_34) 2006; 21
Gate (ref_26) 2009; 9
Baxi (ref_59) 2022; 35
Dong (ref_23) 2019; 11
Westerink (ref_54) 2020; 2
Aisa (ref_53) 2010; 22
Salvagno (ref_20) 2015; 52
Fraga (ref_11) 2015; 48
Zlokovic (ref_36) 2004; 89
Lara (ref_52) 2013; 23
Bron (ref_16) 2015; 111
Bernath (ref_29) 2020; 94
Rabbani (ref_58) 2022; 103
Xiang (ref_48) 2023; 10
Gu (ref_27) 2016; 132
Xuan (ref_46) 2021; 151
Nho (ref_41) 2019; 3
Nitrini (ref_10) 1994; 52
Resende (ref_8) 2016; 1
Bucholc (ref_13) 2019; 15
Chen (ref_55) 2022; 25
Bedogni (ref_39) 2014; 37
Shen (ref_42) 2017; 17
Hossain (ref_32) 2020; 110
Stephens (ref_2) 2018; 66
ref_47
Lundberg (ref_15) 2017; 30
Maeda (ref_37) 2019; 19
Amoroso (ref_17) 2018; 15
ref_40
ref_1
Sedaghat (ref_44) 2019; 67
Santhanam (ref_50) 2022; 107
Juan (ref_5) 2019; 91
Dysken (ref_21) 1992; 26
Caramelli (ref_3) 2011; 69
ref_4
ref_7
References_xml – volume: 66
  start-page: S1
  year: 2018
  ident: ref_2
  article-title: Challenges in Aging, Dementia, and Mental Health: New Knowledge and Energy to Inform Solutions
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/jgs.15271
  contributor:
    fullname: Stephens
– volume: 34
  start-page: 697410
  year: 2012
  ident: ref_24
  article-title: The evaluation of neutrophil-lymphocyte ratio in Alzheimer’s disease
  publication-title: Dement. Geriatr. Cogn. Disord.
  doi: 10.1159/000341583
  contributor:
    fullname: Kuyumcu
– volume: 69
  start-page: 579
  year: 2011
  ident: ref_3
  article-title: The Pietà study: Epidemiological investigation on successful brain aging in Caeté (MG), Brazil. Methods and baseline cohort characteristics
  publication-title: Arq. Neuropsiquiatr.
  doi: 10.1590/S0004-282X2011000500002
  contributor:
    fullname: Caramelli
– volume: 35
  start-page: 123
  year: 2022
  ident: ref_6
  article-title: Machine learning, artificial intelligence and the prediction of dementia
  publication-title: Curr. Opin. Psychiatry
  doi: 10.1097/YCO.0000000000000768
  contributor:
    fullname: Merkin
– volume: 3
  start-page: e197978
  year: 2019
  ident: ref_41
  article-title: Association of Altered Liver Enzymes with Alzheimer Disease Diagnosis, Cognition, Neuroimaging Measures, and Cerebrospinal Fluid Biomarkers
  publication-title: JAMA
  contributor:
    fullname: Nho
– volume: 351
  start-page: 198
  year: 2017
  ident: ref_43
  article-title: Dementia risk in renal dysfunction: A systematic review and meta-analysis of prospective studies
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003482
  contributor:
    fullname: Deckers
– volume: 10
  start-page: 19050
  year: 2020
  ident: ref_56
  article-title: Sweat and saliva cortisol response to stress and nutrition factors
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-75871-3
  contributor:
    fullname: Pearlmutter
– volume: 52
  start-page: 457
  year: 1994
  ident: ref_10
  article-title: Testes neuropsicologicos de aplicação simples para o diagnostico de demência [Neuropsychological tests of simple application for the diagnosis of dementia]
  publication-title: Arq. Neuropsiquiatr.
  doi: 10.1590/S0004-282X1994000400001
  contributor:
    fullname: Nitrini
– volume: 15
  start-page: 3
  year: 2018
  ident: ref_17
  article-title: Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.12.011
  contributor:
    fullname: Amoroso
– volume: 35
  start-page: 23
  year: 2022
  ident: ref_59
  article-title: Digital pathology and artificial intelligence in translational medicine and clinical practice
  publication-title: Mod. Pathol.
  doi: 10.1038/s41379-021-00919-2
  contributor:
    fullname: Baxi
– volume: 67
  start-page: 541
  year: 2013
  ident: ref_22
  article-title: Peripheral markers of Alzheimer’s disease: Surveillance of white blood cells
  publication-title: Synapse
  doi: 10.1002/syn.21651
  contributor:
    fullname: Shad
– volume: 151
  start-page: 104484
  year: 2021
  ident: ref_46
  article-title: Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2021.104484
  contributor:
    fullname: Xuan
– ident: ref_1
– volume: 7
  start-page: 91
  year: 2010
  ident: ref_33
  article-title: Serum albumin concentration and cognitive impairment
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/156720510790274392
  contributor:
    fullname: Llewellyn
– ident: ref_47
  doi: 10.1371/journal.pone.0155705
– volume: 30
  start-page: 1
  year: 2017
  ident: ref_15
  article-title: A Unified Approach to Interpreting Model Predictions
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Lundberg
– volume: 1
  start-page: 30
  year: 2016
  ident: ref_8
  article-title: Ischemic cerebrovascular burden evaluated by magnetic resonance imaging in an elderly Brazilian community: The Pietà study
  publication-title: Neurological. Sci.
  contributor:
    fullname: Resende
– volume: 2
  start-page: 39
  year: 2020
  ident: ref_54
  article-title: Deriving a cortisol-related stress indicator from wearable skin conductance measurements: Quantitative model & experimental validation
  publication-title: Front. Comput. Sci.
  doi: 10.3389/fcomp.2020.00039
  contributor:
    fullname: Westerink
– volume: 28
  start-page: 3150
  year: 2021
  ident: ref_57
  article-title: A Machine Learning Approach to Predict Stress Hormones and Inflammatory Markers Using Illness Perception and Quality of Life in Breast Cancer Patients
  publication-title: Curr. Oncol.
  doi: 10.3390/curroncol28040275
  contributor:
    fullname: Crumpei
– ident: ref_4
– volume: 2
  start-page: 76
  year: 2016
  ident: ref_30
  article-title: HDL-cholesterol and apolipoproteins in relation to dementia
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0000000000000257
  contributor:
    fullname: Koch
– volume: 10
  start-page: 1050255
  year: 2023
  ident: ref_48
  article-title: Machine learning for acute kidney injury: Changing the traditional disease prediction model
  publication-title: Front. Med.
  doi: 10.3389/fmed.2023.1050255
  contributor:
    fullname: Xiang
– volume: 18
  start-page: e815
  year: 2020
  ident: ref_35
  article-title: Serum albumin and beta-amyloid deposition in the human brain
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000010005
  contributor:
    fullname: Kim
– volume: 111
  start-page: 579
  year: 2015
  ident: ref_16
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CAD Dementia challenge
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.01.048
  contributor:
    fullname: Bron
– volume: 37
  start-page: 739
  year: 2014
  ident: ref_39
  article-title: Relationship between glucose metabolism and non-alcoholic fatty liver disease severity in morbidly obese women
  publication-title: J. Endocrinol. Investig.
  doi: 10.1007/s40618-014-0101-x
  contributor:
    fullname: Bedogni
– volume: 103
  start-page: 1
  year: 2022
  ident: ref_58
  article-title: Applications of machine learning in routine laboratory medicine: Current state and future directions
  publication-title: Clin. Biochem.
  doi: 10.1016/j.clinbiochem.2022.02.011
  contributor:
    fullname: Rabbani
– volume: 22
  start-page: 829
  year: 2010
  ident: ref_53
  article-title: HPA axis dysregulation associated to apolipoproteína E4 genotype in Alzheimer’s disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2010-100663
  contributor:
    fullname: Aisa
– volume: 21
  start-page: 344
  year: 2006
  ident: ref_34
  article-title: Decreased plasma antioxidants in patients with Alzheimer’s disease
  publication-title: Int. J. Geriatr. Psychiatry
  doi: 10.1002/gps.1469
  contributor:
    fullname: Kim
– volume: 88
  start-page: 549
  year: 2022
  ident: ref_12
  article-title: A Novel Panel of Plasma Proteins Predicts Progression in Prodromal Alzheimer’s Disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-220256
  contributor:
    fullname: Veloso
– ident: ref_40
  doi: 10.3390/children4060046
– volume: 30
  start-page: 374
  year: 2016
  ident: ref_31
  article-title: Cortisol, HDL-c, VLDL-c, and APOE Polymorphisms as Laboratorial Parameters Associated to Cognitive Impairment No Dementia (CIND) and Dementia
  publication-title: J. Clin. Lab. Anal.
  doi: 10.1002/jcla.21865
  contributor:
    fullname: Lara
– ident: ref_51
  doi: 10.1371/journal.pone.0233336
– volume: 67
  start-page: 821
  year: 2019
  ident: ref_44
  article-title: Kidney Function and the Risk of Stroke and Dementia: The Rotterdam Study
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-181086
  contributor:
    fullname: Sedaghat
– ident: ref_14
  doi: 10.1017/CBO9780511804779
– volume: 107
  start-page: 1897
  year: 2022
  ident: ref_50
  article-title: Relationship between TSH Levels and Cognition in the Young Adult: An Analysis of the Human Connectome Project Data
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/clinem/dgac189
  contributor:
    fullname: Santhanam
– volume: 94
  start-page: e2088
  year: 2020
  ident: ref_29
  article-title: Serum triglycerides in Alzheimer disease: Relation to neuroimaging and CSF biomarkers
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000009436
  contributor:
    fullname: Bernath
– volume: 25
  start-page: 1
  year: 2022
  ident: ref_55
  article-title: Predicting the diagnosis of various mental disorders in a mixed cohort using blood-based multi-protein model: A machine learning approach
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  contributor:
    fullname: Chen
– volume: 9
  start-page: 159
  year: 2004
  ident: ref_18
  article-title: Hematopoiesis in the elderly
  publication-title: Hematology
  doi: 10.1080/10245330410001701468
  contributor:
    fullname: Berkahn
– volume: 3
  start-page: 323
  year: 1982
  ident: ref_9
  article-title: Measurement of functional activities in older adults in the community
  publication-title: J. Gerontol.
  doi: 10.1093/geronj/37.3.323
  contributor:
    fullname: Pfeffer
– volume: 9
  start-page: 1623
  year: 2009
  ident: ref_26
  article-title: Can peripheral leukocytes be used as Alzheimer’s disease biomarkers?
  publication-title: Expert Rev. Neurother.
  doi: 10.1586/ern.09.118
  contributor:
    fullname: Gate
– volume: 48
  start-page: 1077
  year: 2015
  ident: ref_11
  article-title: TGF-β1 Codon 10 T>C Polymorphism Influences Short-Term Functional and Cognitive Decline in Healthy Oldest-Old Individuals: The Pietà Study
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-150397
  contributor:
    fullname: Fraga
– volume: 85
  start-page: 71
  year: 1999
  ident: ref_19
  article-title: Alterations in immune functions during normal aging and Alzheimer’s disease
  publication-title: Psychiatry Res.
  doi: 10.1016/S0165-1781(98)00130-9
  contributor:
    fullname: Song
– volume: 132
  start-page: 377
  year: 2016
  ident: ref_27
  article-title: Innate phagocytosis by peripheral blood monocytes is altered in Alzheimer’s disease
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-016-1596-3
  contributor:
    fullname: Gu
– volume: 15
  start-page: 57
  year: 2019
  ident: ref_13
  article-title: A practical computerized decision support system for predicting the severity of Alzheimer’s disease of an individual
  publication-title: Expert Syst. Appl.
  contributor:
    fullname: Bucholc
– volume: 17
  start-page: 529
  year: 2017
  ident: ref_42
  article-title: Chronic kidney disease-related physical frailty and cognitive impairment: A systemic review
  publication-title: Geriatr. Gerontol. Int.
  doi: 10.1111/ggi.12758
  contributor:
    fullname: Shen
– volume: 87
  start-page: 1688
  year: 2016
  ident: ref_49
  article-title: Thyroid function and the risk of dementia: The Rotterdam Study
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003227
  contributor:
    fullname: Chaker
– volume: 76
  start-page: 775
  year: 2020
  ident: ref_45
  article-title: Albuminuria and estimated GFR as risk factors for dementia in midlife and older age: Findings from the Aric study
  publication-title: Am. J. Kidney Dis.
  doi: 10.1053/j.ajkd.2020.03.015
  contributor:
    fullname: Scheppach
– volume: 91
  start-page: 107
  year: 2019
  ident: ref_5
  article-title: Ageing and Cognition
  publication-title: Subcell Biochem.
  doi: 10.1007/978-981-13-3681-2_5
  contributor:
    fullname: Juan
– volume: 8
  start-page: 245
  year: 2021
  ident: ref_28
  article-title: Triglycerides as a shared risk factor between dementia and atherosclerotic cardiovascular disease: A study of 125 727 individuals
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/hvaa269
  contributor:
    fullname: Nordestgaard
– volume: 110
  start-page: 100
  year: 2020
  ident: ref_32
  article-title: Glucose signaling in the brain and periphery to memory
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2019.03.018
  contributor:
    fullname: Hossain
– volume: 11
  start-page: 332
  year: 2019
  ident: ref_23
  article-title: Predictive Value of Routine Peripheral Blood Biomarkers in Alzheimer’s Disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2019.00332
  contributor:
    fullname: Dong
– ident: ref_25
– volume: 52
  start-page: 86
  year: 2015
  ident: ref_20
  article-title: Red blood cell distribution width: A simple parameter with multiple clinical applications
  publication-title: Crit. Rev. Clin. Lab. Sci.
  doi: 10.3109/10408363.2014.992064
  contributor:
    fullname: Salvagno
– volume: 23
  start-page: 18
  year: 2013
  ident: ref_52
  article-title: High cortisol levels are associated with cognitive impairment no-dementia (CIND) and dementia
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2013.04.013
  contributor:
    fullname: Lara
– volume: 26
  start-page: 213
  year: 1992
  ident: ref_21
  article-title: Distribution of peripheral lymphocytes in Alzheimer patients and controls
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/0022-3956(92)90024-I
  contributor:
    fullname: Dysken
– ident: ref_7
  doi: 10.3390/ijms22052761
– volume: 12
  start-page: 233
  year: 2013
  ident: ref_38
  article-title: Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: A phase 2, randomised, double-blind, placebo-controlled, dose-finding trial
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70014-0
  contributor:
    fullname: Dodel
– volume: 89
  start-page: 807
  year: 2004
  ident: ref_36
  article-title: Clearing amyloid through the blood-brain barrier
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2004.02385.x
  contributor:
    fullname: Zlokovic
– volume: 19
  start-page: 967
  year: 2019
  ident: ref_37
  article-title: Serum albumin/globulin ratio is associated with cognitive function in community-dwelling older people: The Septuagenarians, Octogenarians, Nonagenarians Investigation with Centenarians study
  publication-title: Geriatr. Gerontol. Int.
  doi: 10.1111/ggi.13751
  contributor:
    fullname: Maeda
SSID ssj0000800350
Score 2.2989151
Snippet Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able...
Background: Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma...
BACKGROUNDCognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 690
SubjectTerms Accuracy
Aging
Alanine transaminase
Algorithms
Artificial intelligence
Biomarkers
Blood tests
Cholesterol
Cognitive ability
cognitive decline
Cortisol
Creatinine
Dementia
functional decline
Globulins
Hematocrit
Hemoglobin
High density lipoprotein
Laboratories
laboratory variables
Learning algorithms
Leukocytes (eosinophilic)
Leukocytes (neutrophilic)
Long-term care of the sick
Low density lipoprotein
Low density lipoproteins
Lymphocytes
Machine learning
Monocytes
Older people
Platelets
Software
Statistics
Support vector machines
Thyroid-stimulating hormone
Thyrotropin
Triglycerides
Variables
γ-Glutamyltransferase
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BgoyEQAhZTWI7to_bwqpCKvTQSuVk-ZVSJLJod3vojZ_OjJ1dbeDAhdNKsZ21PWPPN_H4G0Jem9r44KRnsvGaCS8a5ngbWMe59HXSXmUmptPP3cmF-HQpL3dSfWFMWKEHLhN32LddxLMir3USMUrjlTNtL6T2og2u8HzWZseZ-j7iIC7rci7Jwa8_9JhxAawK7Nl42bOe2KFM1__3prxjlaYRkzsmaH6f3BuxI52VPj8gd9LwkOzPBvCbf9zSNzRHc-bP5Pvk12mOkkx0JFC9YkdgryLFCKD8uAh_sbyl59CHFT1b4pHNmn4ZEvsKbejxJrCIuiHSOdi_8tmQfkh4nTLR64E6erZNAEZnV_B-Jd9TbL56RC7mH8-PT9iYbYEFKfWa8aR707SxA5_Fww4uUmcUAARAWMk70csIv01yXRdir3oREkAPBXgwgCPqeeSPyd6wGNJTQoNzwgQdpNZBmJp7Dis_yLpJSSUuVUXebebe_iykGhacEZST_VNOFTlC4WzrIR12fgBKYkclsf9Skoq8RdFaXLQgv-DGuwfQXaS_sjMlkeeuVfB3B5OasNjCtHijHHZc7CubD6fxAjEM7NW2GFtiANuQFjdYp8Fk7oDIKvKk6NJ2SFwBKoNpr4ieaNlkzNOS4fpbpgJvkDESQPqz_zFLz8ndFiBciUs6IHvr5U16AZBr7V_m1fUb_moqZg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-GCgPIILchICISQ1SS2Y-eEdktXFVLLCrVSOUV-ZemBpN3dHnrjpzOTeEMDEqdIsZ04mdc39niGkLdlWlpnpGUys5oJKzJmeO5Ywbm0adBWdZmYTk6L43Px5UJexAW3dQyr3OrETlH71uEa-UG3A4inNNWnq2uGVaNwdzWW0LhPdnLwFNIJ2ZkdnS6-DassiIe4TPv9SQ7-_YHFygtgXUB346HPdGSPurT9_yrnO9ZpHDl5xxTNH5GHEUPSaU_0x-ReaJ6Q3WkD_vPPW_qOdlGd3XL5Lvl10kVLBhoTqS7ZDOyWpxgJ1N3umaBd3dIzmMOaLla4dbOhX5vAvsMYergNMKKm8XQOdrBfPqSfAx6rDPSyoYYuhkJgdLqE5yv5keLw9VNyPj86OzxmseoCc1LqDeNB12WW-wJ8FwuaXISiVAAUAGkFa0QtPVyzYIrC-VrVwgWAIApwoQOH1HLPn5FJ0zbhBaHOGFE67aTWTpQptxw0gJNpFoIKXKqEfNj---qqT65RgVOCdKr-plNCZkicoR-mxe5utKtlFaWsqvPC48ai1ToI72VplSnzWkhtRe4MT8h7JG2Fwgv0cyaeQYDpYhqsaqok5rvLFbxuf9QThM6Nm7fMUUWhX1d_WDQhb4ZmHImBbE1ob7BPhkXdAZkl5HnPS8MncQXoDH57QvSIy0bfPG5pLn90KcEzzBwJYP3l_-e1Rx7kANL6yKN9MtmsbsIrAFUb-zpKzm_zkiMQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQe-GCoOURKMhICISQYeNH7BwQ2hZWFVKhh65UTpHtOEur4oXsVmJv_HRmnOzSQC-cIsV2Ettjz_fF8yDkWTkqnbfKMZU7w6STObOCe1YIodwoGKdTJKajT8XhVH48Vad_3KP7AVxcS-0wn9S0vXj988fqHSz4t8g4gbK_cZhMARQGbMfoxwkEfptL4OloyNeD_fMeG4mUspUDeWcCpLU7t7z2IQM9lcL5_7tpX9FaQ4vKKypqcpvc6rElHXfCcIfcCHGH7I4j8OpvK_qcJmvP9Bt9l_w6SlaUgfYBVmdsH_RZTdFCKN3uhGPerugJfMOCHrd4pLOkn2NgX6ANPVgbHlEbazoB_dj9VqTvA7pbBnoWqaXHmwRhdDyD52v1imLzxV0ynXw4OThkfTYG5pUySyaCacqc1wVwGgc7vAxFqQFAAAILzspG1XDNgy0KXze6kT4ANNGAFz0QVSdqcY9sxXkMDwj11srSG6-M8bIcCSdgZ_BqlIegg1A6Iy_XY19974JuVEBWcJ6qv-cpI_s4OZt6GC473Zi3s6pffVXDixoPHJ0xQda1Kp22JW-kMk5yb0VGXuDUVihmMH_e9r4J8LkYHqsaa4Vx8LiG1-0NasJi9MPitXBUa1mu0uE1OhhDx55uirElGrjFML_EOjkmewfElpH7nSxtuiQ0oDYY9oyYgZQN-jwsiWdfU6jwHCNKAoh_-B8j-ojc5IDkOvOkPbK1bC_DY0BeS_ckLajf4kEsEw
  priority: 102
  providerName: Scholars Portal
Title Machine Learning-Based Routine Laboratory Tests Predict One-Year Cognitive and Functional Decline in a Population Aged 75+ Years
URI https://www.ncbi.nlm.nih.gov/pubmed/37190655
https://www.proquest.com/docview/2806506947
https://search.proquest.com/docview/2814526007
https://pubmed.ncbi.nlm.nih.gov/PMC10137192
https://doaj.org/article/f26d6842b88e4dd59b7a92f458b42ca3
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2ceGCBuNH2aiMhEAIZU1iO3aObVk1IXVUaJPGKbIdpxRRd2q7w2786bznJFUDNy6tFNup3fee3_fsz8-EvMvj3FgtTCQSoyJueBJpltooY0yY2CkjQyam6VV2ecO_3IrbA5K1Z2ECad-axbn_tTz3ix-BW3m3tIOWJzaYTccJ5skDaDI4JIegoXsx-s8GAzER13uSDGL6gcHbFsCjwHyNBz3jjg8Kqfr_nZD3PFKXLbnnfibH5EmDG-mw7t9TcuD8M3Iy9BAzLx_oexqYnGGJ_IT8ngaGpKNN8tR5NAJfVVJk_4THteBX6wd6DX3Y0Nkat2u29Kt30XdoQ8ctqYhqX9IJ-L56yZB-dniU0tGFp5rOdpd_0eEc3i_FJ4rNN8_JzeTienwZNTctRFYItY2YU1WepGUG8YqB2Zu7LJcADgBdOaN5JUr4TpzOMltWsuLWAeyQgAUtBKGGlewFOfIr714RarXmuVVWKGV5HjPDwOqtiBPnpGNC9sjH9r8v7uqEGgUEIiin4m859cgIhbOrh6mww4PVel40ClFUaVbiZqJRyvGyFLmROk8rLpThqdWsRz6gaAs0WJCf1c25A-gupr4qhlJgjrtUws-ddWqCodlucascRWPomyJsTOPhYRjY210xtkTymnere6yT4EXugMZ65GWtS7shoR7DG0SPqI6WdcbcLQGrCGnAWyt4_f9NT8njFEBbzUQ6I0fb9b17AyBra_rk0ejiavatHxYp4HPKVT_Y2R_aHCyo
link.rule.ids 230,315,730,783,787,867,888,2109,2228,21400,24330,27936,27937,33756,33757,43817,53804,53806,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgO8AFAeMjY4CREAihaElsx84JtWNVgbVUqJPGKfJXyg4kW9sdduNP5z0nLQtInCLFduLkff2e_fweIa-LpDBWCxOL1KiYG57GmmU2zhkTJvHKyJCJaTLNx6f885k46xbcVl1Y5UYnBkXtGotr5IdhBxBPacoPF5cxVo3C3dWuhMZtsoupqsD52h0eT2fftqssiIeYSNr9SQb-_aHBygtgXUB346HPpGePQtr-f5XzDevUj5y8YYpG98m9DkPSQUv0B-SWrx-SvUEN_vPPa_qGhqjOsFy-R35NQrSkp10i1UU8BLvlKEYChdstEzTLazqHOazobIlbN2v6tfbxdxhDjzYBRlTXjo7ADrbLh_Sjx2OVnp7XVNPZthAYHSzg-VK8pzh89Yicjo7nR-O4q7oQWyHUOmZeVUWauRx8FwOanPu8kAAUAGl5o3klHFxTr_PcukpW3HqAIBJwoQWH1DDHHpOduqn9U0Kt1rywygqlLC8SZhhoACuS1HvpmZARebf59-VFm1yjBKcE6VT-TaeIDJE4236YFjvcaJaLspOysspyhxuLRinPnROFkbrIKi6U4ZnVLCJvkbQlCi_Qz-ruDAJMF9NglQMpMN9dJuF1B72eIHS237xhjrIT-lX5h0Uj8mrbjCMxkK32zRX2SbGoOyCziDxpeWn7SUwCOoPfHhHV47LeN_db6vMfISV4ipkjAazv_39eL8md8XxyUp58mn55Ru5mANjaKKQDsrNeXvnnALDW5kUnRb8B7PEmCg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegkxAvCBgfgQFGQiCErCaxHTtPqN1WjY-VCm3SeIpsxyl7IBlt97A3_nTuEjcsIPEUKbYTJ3e--53vfEfIqzzOrTPSMplYzYQVCTM8dSzjXNrYa6vaTEzH8-zoVHw8k2ch_mkdwiq3MrEV1GXjcI983HoA8ZSmGlchLGJxMHt_8ZNhBSn0tIZyGjfJjhIZj0dkZ3o4X3ztd1wQG3EZd75KDrb-2GIVBtA0IMfxAGg80E1tCv9_BfU1TTWMorymlmZ3yZ2AJ-mkY4B75Iav75PdSQ229I8r-pq2EZ7t1vku-XXcRk56GpKqLtkUdFhJMSqovd0xRLO6oicwhzVdrNCNs6Ffas--wRi6vw02oqYu6Qx0YreVSA88HrH09Lymhi76omB0soTnK_mO4vD1A3I6OzzZP2KhAgNzUuoN415XeZKWGdgxFqS68FmuADQA6vLWiEqWcE28yTJXVqoSzgMcUYARHRinlpf8IRnVTe0fE-qMEbnTTmrtRB5zy0EaOBkn3ivPpYrI2-2_Ly66RBsFGChIp-JvOkVkisTp-2GK7PZGs1oWYcUVVZqV6GS0WntRljK3yuRpJaS2InWGR-QNkrbAhQz0cyacR4DpYkqsYqIk5r5LFbxub9ATFqAbNm-ZowgCYF38YdeIvOybcSQGtdW-ucQ-CRZ4B5QWkUcdL_WfxBUgNfjtEdEDLht887ClPv_epgdPMIskAPcn_5_XC3ILFlDx-cP801NyOwXs1gUk7ZHRZnXpnwHW2tjnYRH9Bp7jKjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Routine+Laboratory+Tests+Predict+One-Year+Cognitive+and+Functional+Decline+in+a+Population+Aged+75%2B+Years&rft.jtitle=Brain+sciences&rft.au=Gomes%2C+Karina+Braga&rft.au=Pereira%2C+Ramon+Gon%C3%A7alves&rft.au=Braga%2C+Alexandre+Alberto&rft.au=Guimar%C3%A3es%2C+Henrique+Cerqueira&rft.date=2023-04-01&rft.issn=2076-3425&rft.eissn=2076-3425&rft.volume=13&rft.issue=4&rft.spage=690&rft_id=info:doi/10.3390%2Fbrainsci13040690&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_brainsci13040690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon