Machine Learning-Based Routine Laboratory Tests Predict One-Year Cognitive and Functional Decline in a Population Aged 75+ Years
Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able to predict this decline in healthy old-age people. Machine learning (ML) is a subarea of artificial intelligence (AI), which can be used to p...
Saved in:
Published in | Brain sciences Vol. 13; no. 4; p. 690 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.04.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able to predict this decline in healthy old-age people. Machine learning (ML) is a subarea of artificial intelligence (AI), which can be used to predict outcomes Aim: This study aimed to evaluate routine laboratory variables able to predict cognitive and functional impairment, using ML algorithms, in a cohort aged 75+ years, in a one-year follow-up study.
One hundred and thirty-two older adults aged 75+ years were selected through a community-health public program or from long-term-care institutions. Their functional and cognitive performances were evaluated at baseline and one year later using a functional activities questionnaire, Mini-Mental State Examination, and the Brief Cognitive Screening Battery. Routine laboratory tests were performed at baseline. ML algorithms-random forest, support vector machine (SVM), and XGBoost-were applied in order to describe the best model able to predict cognitive and functional decline using routine tests as features.
The random forest model showed better accuracy than other algorithms and included triglycerides, glucose, hematocrit, red cell distribution width (RDW), albumin, hemoglobin, globulin, high-density lipoprotein cholesterol (HDL-c), thyroid-stimulating hormone (TSH), creatinine, lymphocyte, erythrocyte, platelet/leucocyte (PLR), and neutrophil/leucocyte (NLR) ratios, and alanine transaminase (ALT), leukocyte, low-density lipoprotein cholesterol (LDL-c), cortisol, gamma-glutamyl transferase (GGT), and eosinophil as features to predict cognitive decline (accuracy = 0.79). For functional decline, the most important features were platelet, PLR and NLR, hemoglobin, globulin, cortisol, RDW, glucose, basophil, B12 vitamin, creatinine, GGT, ALT, aspartate transferase (AST), eosinophil, hematocrit, erythrocyte, triglycerides, HDL-c, and monocyte (accuracy = 0.92).
Routine laboratory variables could be applied to predict cognitive and functional decline in oldest-old populations using ML algorithms. |
---|---|
AbstractList | Background: Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able to predict this decline in healthy old-age people. Machine learning (ML) is a subarea of artificial intelligence (AI), which can be used to predict outcomes Aim: This study aimed to evaluate routine laboratory variables able to predict cognitive and functional impairment, using ML algorithms, in a cohort aged 75+ years, in a one-year follow-up study. Method: One hundred and thirty-two older adults aged 75+ years were selected through a community-health public program or from long-term-care institutions. Their functional and cognitive performances were evaluated at baseline and one year later using a functional activities questionnaire, Mini-Mental State Examination, and the Brief Cognitive Screening Battery. Routine laboratory tests were performed at baseline. ML algorithms—random forest, support vector machine (SVM), and XGBoost—were applied in order to describe the best model able to predict cognitive and functional decline using routine tests as features. Results: The random forest model showed better accuracy than other algorithms and included triglycerides, glucose, hematocrit, red cell distribution width (RDW), albumin, hemoglobin, globulin, high-density lipoprotein cholesterol (HDL-c), thyroid-stimulating hormone (TSH), creatinine, lymphocyte, erythrocyte, platelet/leucocyte (PLR), and neutrophil/leucocyte (NLR) ratios, and alanine transaminase (ALT), leukocyte, low-density lipoprotein cholesterol (LDL-c), cortisol, gamma-glutamyl transferase (GGT), and eosinophil as features to predict cognitive decline (accuracy = 0.79). For functional decline, the most important features were platelet, PLR and NLR, hemoglobin, globulin, cortisol, RDW, glucose, basophil, B12 vitamin, creatinine, GGT, ALT, aspartate transferase (AST), eosinophil, hematocrit, erythrocyte, triglycerides, HDL-c, and monocyte (accuracy = 0.92). Conclusions: Routine laboratory variables could be applied to predict cognitive and functional decline in oldest-old populations using ML algorithms. Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able to predict this decline in healthy old-age people. Machine learning (ML) is a subarea of artificial intelligence (AI), which can be used to predict outcomes Aim: This study aimed to evaluate routine laboratory variables able to predict cognitive and functional impairment, using ML algorithms, in a cohort aged 75+ years, in a one-year follow-up study. One hundred and thirty-two older adults aged 75+ years were selected through a community-health public program or from long-term-care institutions. Their functional and cognitive performances were evaluated at baseline and one year later using a functional activities questionnaire, Mini-Mental State Examination, and the Brief Cognitive Screening Battery. Routine laboratory tests were performed at baseline. ML algorithms-random forest, support vector machine (SVM), and XGBoost-were applied in order to describe the best model able to predict cognitive and functional decline using routine tests as features. The random forest model showed better accuracy than other algorithms and included triglycerides, glucose, hematocrit, red cell distribution width (RDW), albumin, hemoglobin, globulin, high-density lipoprotein cholesterol (HDL-c), thyroid-stimulating hormone (TSH), creatinine, lymphocyte, erythrocyte, platelet/leucocyte (PLR), and neutrophil/leucocyte (NLR) ratios, and alanine transaminase (ALT), leukocyte, low-density lipoprotein cholesterol (LDL-c), cortisol, gamma-glutamyl transferase (GGT), and eosinophil as features to predict cognitive decline (accuracy = 0.79). For functional decline, the most important features were platelet, PLR and NLR, hemoglobin, globulin, cortisol, RDW, glucose, basophil, B12 vitamin, creatinine, GGT, ALT, aspartate transferase (AST), eosinophil, hematocrit, erythrocyte, triglycerides, HDL-c, and monocyte (accuracy = 0.92). Routine laboratory variables could be applied to predict cognitive and functional decline in oldest-old populations using ML algorithms. BACKGROUNDCognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able to predict this decline in healthy old-age people. Machine learning (ML) is a subarea of artificial intelligence (AI), which can be used to predict outcomes Aim: This study aimed to evaluate routine laboratory variables able to predict cognitive and functional impairment, using ML algorithms, in a cohort aged 75+ years, in a one-year follow-up study. METHODOne hundred and thirty-two older adults aged 75+ years were selected through a community-health public program or from long-term-care institutions. Their functional and cognitive performances were evaluated at baseline and one year later using a functional activities questionnaire, Mini-Mental State Examination, and the Brief Cognitive Screening Battery. Routine laboratory tests were performed at baseline. ML algorithms-random forest, support vector machine (SVM), and XGBoost-were applied in order to describe the best model able to predict cognitive and functional decline using routine tests as features. RESULTSThe random forest model showed better accuracy than other algorithms and included triglycerides, glucose, hematocrit, red cell distribution width (RDW), albumin, hemoglobin, globulin, high-density lipoprotein cholesterol (HDL-c), thyroid-stimulating hormone (TSH), creatinine, lymphocyte, erythrocyte, platelet/leucocyte (PLR), and neutrophil/leucocyte (NLR) ratios, and alanine transaminase (ALT), leukocyte, low-density lipoprotein cholesterol (LDL-c), cortisol, gamma-glutamyl transferase (GGT), and eosinophil as features to predict cognitive decline (accuracy = 0.79). For functional decline, the most important features were platelet, PLR and NLR, hemoglobin, globulin, cortisol, RDW, glucose, basophil, B12 vitamin, creatinine, GGT, ALT, aspartate transferase (AST), eosinophil, hematocrit, erythrocyte, triglycerides, HDL-c, and monocyte (accuracy = 0.92). CONCLUSIONSRoutine laboratory variables could be applied to predict cognitive and functional decline in oldest-old populations using ML algorithms. |
Audience | Academic |
Author | Pereira, Ramon Gonçalves Braga, Alexandre Alberto Caramelli, Paulo Teixeira, Antônio Lúcio Gomes, Karina Braga Guimarães, Henrique Cerqueira Resende, Elisa de Paula França Barbosa, Maira Tonidandel Carvalho, Maria das Graças Junior, Wagner Meira |
AuthorAffiliation | 3 Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil caramelli@ufmg.br (P.C.) 5 Faculdade Santa Casa BH, Belo Horizonte 30110-005, MG, Brazil 1 Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil 4 Hospital das Clínicas (EBSERH), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil 2 Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil |
AuthorAffiliation_xml | – name: 5 Faculdade Santa Casa BH, Belo Horizonte 30110-005, MG, Brazil – name: 4 Hospital das Clínicas (EBSERH), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil – name: 2 Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil – name: 1 Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil – name: 3 Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil caramelli@ufmg.br (P.C.) |
Author_xml | – sequence: 1 givenname: Karina Braga orcidid: 0000-0002-6870-2063 surname: Gomes fullname: Gomes, Karina Braga organization: Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil – sequence: 2 givenname: Ramon Gonçalves orcidid: 0000-0001-7874-3398 surname: Pereira fullname: Pereira, Ramon Gonçalves organization: Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil – sequence: 3 givenname: Alexandre Alberto surname: Braga fullname: Braga, Alexandre Alberto organization: Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil – sequence: 4 givenname: Henrique Cerqueira surname: Guimarães fullname: Guimarães, Henrique Cerqueira organization: Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil – sequence: 5 givenname: Elisa de Paula França surname: Resende fullname: Resende, Elisa de Paula França organization: Hospital das Clínicas (EBSERH), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil – sequence: 6 givenname: Antônio Lúcio orcidid: 0000-0002-9621-5422 surname: Teixeira fullname: Teixeira, Antônio Lúcio organization: Faculdade Santa Casa BH, Belo Horizonte 30110-005, MG, Brazil – sequence: 7 givenname: Maira Tonidandel surname: Barbosa fullname: Barbosa, Maira Tonidandel organization: Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil – sequence: 8 givenname: Wagner Meira surname: Junior fullname: Junior, Wagner Meira organization: Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil – sequence: 9 givenname: Maria das Graças surname: Carvalho fullname: Carvalho, Maria das Graças organization: Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil – sequence: 10 givenname: Paulo orcidid: 0000-0002-4786-6990 surname: Caramelli fullname: Caramelli, Paulo organization: Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37190655$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhiNUREvpnROyxAUJpfgzTk5oWShUWtQKlQMny7EnqausvdhJpd746TjdUu1W2Adb4_d97BnPy-LABw9F8ZrgU8Ya_KGN2vlkHGGY46rBz4ojimVVMk7Fwc7-sDhJ6QbnUWPMBH5RHDJJGlwJcVT8-a7NtfOAVqCjd74vP-kEFv0I03gf1m2IegzxDl1BGhO6jGCdGdGFh_JX9qBl6L0b3S0g7S06m7wZXfB6QJ_BDDPCeaTRZdhMg55P0KLPfCneo9meXhXPOz0kOHlYj4ufZ1-ult_K1cXX8-ViVRoh6rFkUHcNoTY_GrfQEg5VI3FNuaig1bwTNq8EdFUZ28mOG2BESlEJ08i6ZZYdF-dbrg36Rm2iW-t4p4J26j4QYq90HJ0ZQHW0slXNaVvXwK0VTSt1Qzsu6pZTo1lmfdyyNlO7BmvAj1EPe9D9E--uVR9uFcFkLj3NhHcPhBh-T7mwau2SgWHQHsKUFK0JF7TCWGbp2yfSmzDFXOBZlT8xfz3fUfU6Z-B8F_LFZoaqhRSkIZxKnFWn_1HlaWHtTG6vzuX4ngFvDSaGlCJ0j0kSrOYuVE-7MFve7Bbn0fCv59hfbxTaBA |
CitedBy_id | crossref_primary_10_3390_technologies12010003 crossref_primary_10_3389_fpubh_2024_1375379 crossref_primary_10_3389_fpubh_2023_1271595 |
Cites_doi | 10.1111/jgs.15271 10.1159/000341583 10.1590/S0004-282X2011000500002 10.1097/YCO.0000000000000768 10.1212/WNL.0000000000003482 10.1038/s41598-020-75871-3 10.1590/S0004-282X1994000400001 10.1016/j.jneumeth.2017.12.011 10.1038/s41379-021-00919-2 10.1002/syn.21651 10.1016/j.ijmedinf.2021.104484 10.2174/156720510790274392 10.1371/journal.pone.0155705 10.3389/fcomp.2020.00039 10.3390/curroncol28040275 10.1097/MOL.0000000000000257 10.3389/fmed.2023.1050255 10.1212/WNL.0000000000010005 10.1016/j.neuroimage.2015.01.048 10.1007/s40618-014-0101-x 10.1016/j.clinbiochem.2022.02.011 10.3233/JAD-2010-100663 10.1002/gps.1469 10.3233/JAD-220256 10.3390/children4060046 10.1002/jcla.21865 10.1371/journal.pone.0233336 10.3233/JAD-181086 10.1017/CBO9780511804779 10.1210/clinem/dgac189 10.1212/WNL.0000000000009436 10.1080/10245330410001701468 10.1093/geronj/37.3.323 10.1586/ern.09.118 10.3233/JAD-150397 10.1016/S0165-1781(98)00130-9 10.1007/s00401-016-1596-3 10.1111/ggi.12758 10.1212/WNL.0000000000003227 10.1053/j.ajkd.2020.03.015 10.1007/978-981-13-3681-2_5 10.1093/clinchem/hvaa269 10.1016/j.neubiorev.2019.03.018 10.3389/fnagi.2019.00332 10.3109/10408363.2014.992064 10.1016/j.cca.2013.04.013 10.1016/0022-3956(92)90024-I 10.3390/ijms22052761 10.1016/S1474-4422(13)70014-0 10.1111/j.1471-4159.2004.02385.x 10.1111/ggi.13751 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | NPM AAYXX CITATION 3V. 7TK 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/brainsci13040690 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) Biological Sciences ProQuest research library Biological Science Database Research Library (Corporate) ProQuest Publicly Available Content database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Biological Science Collection ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Statistics |
EISSN | 2076-3425 |
ExternalDocumentID | oai_doaj_org_article_f26d6842b88e4dd59b7a92f458b42ca3 A751914270 10_3390_brainsci13040690 37190655 |
Genre | Journal Article |
GeographicLocations | Brazil United States--US |
GeographicLocations_xml | – name: Brazil – name: United States--US |
GrantInformation_xml | – fundername: National Council for Scientific and Technological Development grantid: Not applied – fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) |
GroupedDBID | 3V. 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ ABDBF ABUWG ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E NPM OK1 PGMZT PIMPY PQQKQ PROAC RPM AAYXX AFPKN CITATION 7TK 7XB 8FK MBDVC PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c558t-3e8f912d6550beb14e697082456eba4f5d6eb1ea66cdf7f4ce3177565c978b3d3 |
IEDL.DBID | RPM |
ISSN | 2076-3425 |
IngestDate | Tue Oct 22 15:13:48 EDT 2024 Tue Sep 17 21:31:28 EDT 2024 Fri Oct 25 04:32:36 EDT 2024 Thu Oct 10 17:56:35 EDT 2024 Thu Feb 22 23:34:44 EST 2024 Tue Nov 12 22:39:06 EST 2024 Fri Aug 23 01:58:33 EDT 2024 Wed Oct 16 00:38:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | functional decline cognitive decline machine learning laboratory variables |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-3e8f912d6550beb14e697082456eba4f5d6eb1ea66cdf7f4ce3177565c978b3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9621-5422 0000-0002-4786-6990 0000-0001-7874-3398 0000-0002-6870-2063 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137192/ |
PMID | 37190655 |
PQID | 2806506947 |
PQPubID | 2032423 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f26d6842b88e4dd59b7a92f458b42ca3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10137192 proquest_miscellaneous_2814526007 proquest_journals_2806506947 gale_infotracmisc_A751914270 gale_infotracacademiconefile_A751914270 crossref_primary_10_3390_brainsci13040690 pubmed_primary_37190655 |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Brain sciences |
PublicationTitleAlternate | Brain Sci |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Koch (ref_30) 2016; 2 Chaker (ref_49) 2016; 87 Pfeffer (ref_9) 1982; 3 ref_14 Kim (ref_35) 2020; 18 Llewellyn (ref_33) 2010; 7 Deckers (ref_43) 2017; 351 Shad (ref_22) 2013; 67 ref_51 Lara (ref_31) 2016; 30 Pearlmutter (ref_56) 2020; 10 Veloso (ref_12) 2022; 88 Song (ref_19) 1999; 85 Dodel (ref_38) 2013; 12 Crumpei (ref_57) 2021; 28 Merkin (ref_6) 2022; 35 ref_25 Kuyumcu (ref_24) 2012; 34 Berkahn (ref_18) 2004; 9 Scheppach (ref_45) 2020; 76 Nordestgaard (ref_28) 2021; 8 Kim (ref_34) 2006; 21 Gate (ref_26) 2009; 9 Baxi (ref_59) 2022; 35 Dong (ref_23) 2019; 11 Westerink (ref_54) 2020; 2 Aisa (ref_53) 2010; 22 Salvagno (ref_20) 2015; 52 Fraga (ref_11) 2015; 48 Zlokovic (ref_36) 2004; 89 Lara (ref_52) 2013; 23 Bron (ref_16) 2015; 111 Bernath (ref_29) 2020; 94 Rabbani (ref_58) 2022; 103 Xiang (ref_48) 2023; 10 Gu (ref_27) 2016; 132 Xuan (ref_46) 2021; 151 Nho (ref_41) 2019; 3 Nitrini (ref_10) 1994; 52 Resende (ref_8) 2016; 1 Bucholc (ref_13) 2019; 15 Chen (ref_55) 2022; 25 Bedogni (ref_39) 2014; 37 Shen (ref_42) 2017; 17 Hossain (ref_32) 2020; 110 Stephens (ref_2) 2018; 66 ref_47 Lundberg (ref_15) 2017; 30 Maeda (ref_37) 2019; 19 Amoroso (ref_17) 2018; 15 ref_40 ref_1 Sedaghat (ref_44) 2019; 67 Santhanam (ref_50) 2022; 107 Juan (ref_5) 2019; 91 Dysken (ref_21) 1992; 26 Caramelli (ref_3) 2011; 69 ref_4 ref_7 |
References_xml | – volume: 66 start-page: S1 year: 2018 ident: ref_2 article-title: Challenges in Aging, Dementia, and Mental Health: New Knowledge and Energy to Inform Solutions publication-title: J. Am. Geriatr. Soc. doi: 10.1111/jgs.15271 contributor: fullname: Stephens – volume: 34 start-page: 697410 year: 2012 ident: ref_24 article-title: The evaluation of neutrophil-lymphocyte ratio in Alzheimer’s disease publication-title: Dement. Geriatr. Cogn. Disord. doi: 10.1159/000341583 contributor: fullname: Kuyumcu – volume: 69 start-page: 579 year: 2011 ident: ref_3 article-title: The Pietà study: Epidemiological investigation on successful brain aging in Caeté (MG), Brazil. Methods and baseline cohort characteristics publication-title: Arq. Neuropsiquiatr. doi: 10.1590/S0004-282X2011000500002 contributor: fullname: Caramelli – volume: 35 start-page: 123 year: 2022 ident: ref_6 article-title: Machine learning, artificial intelligence and the prediction of dementia publication-title: Curr. Opin. Psychiatry doi: 10.1097/YCO.0000000000000768 contributor: fullname: Merkin – volume: 3 start-page: e197978 year: 2019 ident: ref_41 article-title: Association of Altered Liver Enzymes with Alzheimer Disease Diagnosis, Cognition, Neuroimaging Measures, and Cerebrospinal Fluid Biomarkers publication-title: JAMA contributor: fullname: Nho – volume: 351 start-page: 198 year: 2017 ident: ref_43 article-title: Dementia risk in renal dysfunction: A systematic review and meta-analysis of prospective studies publication-title: Neurology doi: 10.1212/WNL.0000000000003482 contributor: fullname: Deckers – volume: 10 start-page: 19050 year: 2020 ident: ref_56 article-title: Sweat and saliva cortisol response to stress and nutrition factors publication-title: Sci. Rep. doi: 10.1038/s41598-020-75871-3 contributor: fullname: Pearlmutter – volume: 52 start-page: 457 year: 1994 ident: ref_10 article-title: Testes neuropsicologicos de aplicação simples para o diagnostico de demência [Neuropsychological tests of simple application for the diagnosis of dementia] publication-title: Arq. Neuropsiquiatr. doi: 10.1590/S0004-282X1994000400001 contributor: fullname: Nitrini – volume: 15 start-page: 3 year: 2018 ident: ref_17 article-title: Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.12.011 contributor: fullname: Amoroso – volume: 35 start-page: 23 year: 2022 ident: ref_59 article-title: Digital pathology and artificial intelligence in translational medicine and clinical practice publication-title: Mod. Pathol. doi: 10.1038/s41379-021-00919-2 contributor: fullname: Baxi – volume: 67 start-page: 541 year: 2013 ident: ref_22 article-title: Peripheral markers of Alzheimer’s disease: Surveillance of white blood cells publication-title: Synapse doi: 10.1002/syn.21651 contributor: fullname: Shad – volume: 151 start-page: 104484 year: 2021 ident: ref_46 article-title: Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2021.104484 contributor: fullname: Xuan – ident: ref_1 – volume: 7 start-page: 91 year: 2010 ident: ref_33 article-title: Serum albumin concentration and cognitive impairment publication-title: Curr. Alzheimer Res. doi: 10.2174/156720510790274392 contributor: fullname: Llewellyn – ident: ref_47 doi: 10.1371/journal.pone.0155705 – volume: 30 start-page: 1 year: 2017 ident: ref_15 article-title: A Unified Approach to Interpreting Model Predictions publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Lundberg – volume: 1 start-page: 30 year: 2016 ident: ref_8 article-title: Ischemic cerebrovascular burden evaluated by magnetic resonance imaging in an elderly Brazilian community: The Pietà study publication-title: Neurological. Sci. contributor: fullname: Resende – volume: 2 start-page: 39 year: 2020 ident: ref_54 article-title: Deriving a cortisol-related stress indicator from wearable skin conductance measurements: Quantitative model & experimental validation publication-title: Front. Comput. Sci. doi: 10.3389/fcomp.2020.00039 contributor: fullname: Westerink – volume: 28 start-page: 3150 year: 2021 ident: ref_57 article-title: A Machine Learning Approach to Predict Stress Hormones and Inflammatory Markers Using Illness Perception and Quality of Life in Breast Cancer Patients publication-title: Curr. Oncol. doi: 10.3390/curroncol28040275 contributor: fullname: Crumpei – ident: ref_4 – volume: 2 start-page: 76 year: 2016 ident: ref_30 article-title: HDL-cholesterol and apolipoproteins in relation to dementia publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000257 contributor: fullname: Koch – volume: 10 start-page: 1050255 year: 2023 ident: ref_48 article-title: Machine learning for acute kidney injury: Changing the traditional disease prediction model publication-title: Front. Med. doi: 10.3389/fmed.2023.1050255 contributor: fullname: Xiang – volume: 18 start-page: e815 year: 2020 ident: ref_35 article-title: Serum albumin and beta-amyloid deposition in the human brain publication-title: Neurology doi: 10.1212/WNL.0000000000010005 contributor: fullname: Kim – volume: 111 start-page: 579 year: 2015 ident: ref_16 article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CAD Dementia challenge publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.01.048 contributor: fullname: Bron – volume: 37 start-page: 739 year: 2014 ident: ref_39 article-title: Relationship between glucose metabolism and non-alcoholic fatty liver disease severity in morbidly obese women publication-title: J. Endocrinol. Investig. doi: 10.1007/s40618-014-0101-x contributor: fullname: Bedogni – volume: 103 start-page: 1 year: 2022 ident: ref_58 article-title: Applications of machine learning in routine laboratory medicine: Current state and future directions publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2022.02.011 contributor: fullname: Rabbani – volume: 22 start-page: 829 year: 2010 ident: ref_53 article-title: HPA axis dysregulation associated to apolipoproteína E4 genotype in Alzheimer’s disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2010-100663 contributor: fullname: Aisa – volume: 21 start-page: 344 year: 2006 ident: ref_34 article-title: Decreased plasma antioxidants in patients with Alzheimer’s disease publication-title: Int. J. Geriatr. Psychiatry doi: 10.1002/gps.1469 contributor: fullname: Kim – volume: 88 start-page: 549 year: 2022 ident: ref_12 article-title: A Novel Panel of Plasma Proteins Predicts Progression in Prodromal Alzheimer’s Disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-220256 contributor: fullname: Veloso – ident: ref_40 doi: 10.3390/children4060046 – volume: 30 start-page: 374 year: 2016 ident: ref_31 article-title: Cortisol, HDL-c, VLDL-c, and APOE Polymorphisms as Laboratorial Parameters Associated to Cognitive Impairment No Dementia (CIND) and Dementia publication-title: J. Clin. Lab. Anal. doi: 10.1002/jcla.21865 contributor: fullname: Lara – ident: ref_51 doi: 10.1371/journal.pone.0233336 – volume: 67 start-page: 821 year: 2019 ident: ref_44 article-title: Kidney Function and the Risk of Stroke and Dementia: The Rotterdam Study publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-181086 contributor: fullname: Sedaghat – ident: ref_14 doi: 10.1017/CBO9780511804779 – volume: 107 start-page: 1897 year: 2022 ident: ref_50 article-title: Relationship between TSH Levels and Cognition in the Young Adult: An Analysis of the Human Connectome Project Data publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/clinem/dgac189 contributor: fullname: Santhanam – volume: 94 start-page: e2088 year: 2020 ident: ref_29 article-title: Serum triglycerides in Alzheimer disease: Relation to neuroimaging and CSF biomarkers publication-title: Neurology doi: 10.1212/WNL.0000000000009436 contributor: fullname: Bernath – volume: 25 start-page: 1 year: 2022 ident: ref_55 article-title: Predicting the diagnosis of various mental disorders in a mixed cohort using blood-based multi-protein model: A machine learning approach publication-title: Eur. Arch. Psychiatry Clin. Neurosci. contributor: fullname: Chen – volume: 9 start-page: 159 year: 2004 ident: ref_18 article-title: Hematopoiesis in the elderly publication-title: Hematology doi: 10.1080/10245330410001701468 contributor: fullname: Berkahn – volume: 3 start-page: 323 year: 1982 ident: ref_9 article-title: Measurement of functional activities in older adults in the community publication-title: J. Gerontol. doi: 10.1093/geronj/37.3.323 contributor: fullname: Pfeffer – volume: 9 start-page: 1623 year: 2009 ident: ref_26 article-title: Can peripheral leukocytes be used as Alzheimer’s disease biomarkers? publication-title: Expert Rev. Neurother. doi: 10.1586/ern.09.118 contributor: fullname: Gate – volume: 48 start-page: 1077 year: 2015 ident: ref_11 article-title: TGF-β1 Codon 10 T>C Polymorphism Influences Short-Term Functional and Cognitive Decline in Healthy Oldest-Old Individuals: The Pietà Study publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-150397 contributor: fullname: Fraga – volume: 85 start-page: 71 year: 1999 ident: ref_19 article-title: Alterations in immune functions during normal aging and Alzheimer’s disease publication-title: Psychiatry Res. doi: 10.1016/S0165-1781(98)00130-9 contributor: fullname: Song – volume: 132 start-page: 377 year: 2016 ident: ref_27 article-title: Innate phagocytosis by peripheral blood monocytes is altered in Alzheimer’s disease publication-title: Acta Neuropathol. doi: 10.1007/s00401-016-1596-3 contributor: fullname: Gu – volume: 15 start-page: 57 year: 2019 ident: ref_13 article-title: A practical computerized decision support system for predicting the severity of Alzheimer’s disease of an individual publication-title: Expert Syst. Appl. contributor: fullname: Bucholc – volume: 17 start-page: 529 year: 2017 ident: ref_42 article-title: Chronic kidney disease-related physical frailty and cognitive impairment: A systemic review publication-title: Geriatr. Gerontol. Int. doi: 10.1111/ggi.12758 contributor: fullname: Shen – volume: 87 start-page: 1688 year: 2016 ident: ref_49 article-title: Thyroid function and the risk of dementia: The Rotterdam Study publication-title: Neurology doi: 10.1212/WNL.0000000000003227 contributor: fullname: Chaker – volume: 76 start-page: 775 year: 2020 ident: ref_45 article-title: Albuminuria and estimated GFR as risk factors for dementia in midlife and older age: Findings from the Aric study publication-title: Am. J. Kidney Dis. doi: 10.1053/j.ajkd.2020.03.015 contributor: fullname: Scheppach – volume: 91 start-page: 107 year: 2019 ident: ref_5 article-title: Ageing and Cognition publication-title: Subcell Biochem. doi: 10.1007/978-981-13-3681-2_5 contributor: fullname: Juan – volume: 8 start-page: 245 year: 2021 ident: ref_28 article-title: Triglycerides as a shared risk factor between dementia and atherosclerotic cardiovascular disease: A study of 125 727 individuals publication-title: Clin. Chem. doi: 10.1093/clinchem/hvaa269 contributor: fullname: Nordestgaard – volume: 110 start-page: 100 year: 2020 ident: ref_32 article-title: Glucose signaling in the brain and periphery to memory publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2019.03.018 contributor: fullname: Hossain – volume: 11 start-page: 332 year: 2019 ident: ref_23 article-title: Predictive Value of Routine Peripheral Blood Biomarkers in Alzheimer’s Disease publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2019.00332 contributor: fullname: Dong – ident: ref_25 – volume: 52 start-page: 86 year: 2015 ident: ref_20 article-title: Red blood cell distribution width: A simple parameter with multiple clinical applications publication-title: Crit. Rev. Clin. Lab. Sci. doi: 10.3109/10408363.2014.992064 contributor: fullname: Salvagno – volume: 23 start-page: 18 year: 2013 ident: ref_52 article-title: High cortisol levels are associated with cognitive impairment no-dementia (CIND) and dementia publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2013.04.013 contributor: fullname: Lara – volume: 26 start-page: 213 year: 1992 ident: ref_21 article-title: Distribution of peripheral lymphocytes in Alzheimer patients and controls publication-title: J. Psychiatr. Res. doi: 10.1016/0022-3956(92)90024-I contributor: fullname: Dysken – ident: ref_7 doi: 10.3390/ijms22052761 – volume: 12 start-page: 233 year: 2013 ident: ref_38 article-title: Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: A phase 2, randomised, double-blind, placebo-controlled, dose-finding trial publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70014-0 contributor: fullname: Dodel – volume: 89 start-page: 807 year: 2004 ident: ref_36 article-title: Clearing amyloid through the blood-brain barrier publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2004.02385.x contributor: fullname: Zlokovic – volume: 19 start-page: 967 year: 2019 ident: ref_37 article-title: Serum albumin/globulin ratio is associated with cognitive function in community-dwelling older people: The Septuagenarians, Octogenarians, Nonagenarians Investigation with Centenarians study publication-title: Geriatr. Gerontol. Int. doi: 10.1111/ggi.13751 contributor: fullname: Maeda |
SSID | ssj0000800350 |
Score | 2.2989151 |
Snippet | Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able... Background: Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma... BACKGROUNDCognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 690 |
SubjectTerms | Accuracy Aging Alanine transaminase Algorithms Artificial intelligence Biomarkers Blood tests Cholesterol Cognitive ability cognitive decline Cortisol Creatinine Dementia functional decline Globulins Hematocrit Hemoglobin High density lipoprotein Laboratories laboratory variables Learning algorithms Leukocytes (eosinophilic) Leukocytes (neutrophilic) Long-term care of the sick Low density lipoprotein Low density lipoproteins Lymphocytes Machine learning Monocytes Older people Platelets Software Statistics Support vector machines Thyroid-stimulating hormone Thyrotropin Triglycerides Variables γ-Glutamyltransferase |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BgoyEQAhZTWI7to_bwqpCKvTQSuVk-ZVSJLJod3vojZ_OjJ1dbeDAhdNKsZ21PWPPN_H4G0Jem9r44KRnsvGaCS8a5ngbWMe59HXSXmUmptPP3cmF-HQpL3dSfWFMWKEHLhN32LddxLMir3USMUrjlTNtL6T2og2u8HzWZseZ-j7iIC7rci7Jwa8_9JhxAawK7Nl42bOe2KFM1__3prxjlaYRkzsmaH6f3BuxI52VPj8gd9LwkOzPBvCbf9zSNzRHc-bP5Pvk12mOkkx0JFC9YkdgryLFCKD8uAh_sbyl59CHFT1b4pHNmn4ZEvsKbejxJrCIuiHSOdi_8tmQfkh4nTLR64E6erZNAEZnV_B-Jd9TbL56RC7mH8-PT9iYbYEFKfWa8aR707SxA5_Fww4uUmcUAARAWMk70csIv01yXRdir3oREkAPBXgwgCPqeeSPyd6wGNJTQoNzwgQdpNZBmJp7Dis_yLpJSSUuVUXebebe_iykGhacEZST_VNOFTlC4WzrIR12fgBKYkclsf9Skoq8RdFaXLQgv-DGuwfQXaS_sjMlkeeuVfB3B5OasNjCtHijHHZc7CubD6fxAjEM7NW2GFtiANuQFjdYp8Fk7oDIKvKk6NJ2SFwBKoNpr4ieaNlkzNOS4fpbpgJvkDESQPqz_zFLz8ndFiBciUs6IHvr5U16AZBr7V_m1fUb_moqZg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-GCgPIILchICISQ1SS2Y-eEdktXFVLLCrVSOUV-ZemBpN3dHnrjpzOTeEMDEqdIsZ04mdc39niGkLdlWlpnpGUys5oJKzJmeO5Ywbm0adBWdZmYTk6L43Px5UJexAW3dQyr3OrETlH71uEa-UG3A4inNNWnq2uGVaNwdzWW0LhPdnLwFNIJ2ZkdnS6-DassiIe4TPv9SQ7-_YHFygtgXUB346HPdGSPurT9_yrnO9ZpHDl5xxTNH5GHEUPSaU_0x-ReaJ6Q3WkD_vPPW_qOdlGd3XL5Lvl10kVLBhoTqS7ZDOyWpxgJ1N3umaBd3dIzmMOaLla4dbOhX5vAvsMYergNMKKm8XQOdrBfPqSfAx6rDPSyoYYuhkJgdLqE5yv5keLw9VNyPj86OzxmseoCc1LqDeNB12WW-wJ8FwuaXISiVAAUAGkFa0QtPVyzYIrC-VrVwgWAIApwoQOH1HLPn5FJ0zbhBaHOGFE67aTWTpQptxw0gJNpFoIKXKqEfNj---qqT65RgVOCdKr-plNCZkicoR-mxe5utKtlFaWsqvPC48ai1ToI72VplSnzWkhtRe4MT8h7JG2Fwgv0cyaeQYDpYhqsaqok5rvLFbxuf9QThM6Nm7fMUUWhX1d_WDQhb4ZmHImBbE1ob7BPhkXdAZkl5HnPS8MncQXoDH57QvSIy0bfPG5pLn90KcEzzBwJYP3l_-e1Rx7kANL6yKN9MtmsbsIrAFUb-zpKzm_zkiMQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQe-GCoOURKMhICISQYeNH7BwQ2hZWFVKhh65UTpHtOEur4oXsVmJv_HRmnOzSQC-cIsV2Ettjz_fF8yDkWTkqnbfKMZU7w6STObOCe1YIodwoGKdTJKajT8XhVH48Vad_3KP7AVxcS-0wn9S0vXj988fqHSz4t8g4gbK_cZhMARQGbMfoxwkEfptL4OloyNeD_fMeG4mUspUDeWcCpLU7t7z2IQM9lcL5_7tpX9FaQ4vKKypqcpvc6rElHXfCcIfcCHGH7I4j8OpvK_qcJmvP9Bt9l_w6SlaUgfYBVmdsH_RZTdFCKN3uhGPerugJfMOCHrd4pLOkn2NgX6ANPVgbHlEbazoB_dj9VqTvA7pbBnoWqaXHmwRhdDyD52v1imLzxV0ynXw4OThkfTYG5pUySyaCacqc1wVwGgc7vAxFqQFAAAILzspG1XDNgy0KXze6kT4ANNGAFz0QVSdqcY9sxXkMDwj11srSG6-M8bIcCSdgZ_BqlIegg1A6Iy_XY19974JuVEBWcJ6qv-cpI_s4OZt6GC473Zi3s6pffVXDixoPHJ0xQda1Kp22JW-kMk5yb0VGXuDUVihmMH_e9r4J8LkYHqsaa4Vx8LiG1-0NasJi9MPitXBUa1mu0uE1OhhDx55uirElGrjFML_EOjkmewfElpH7nSxtuiQ0oDYY9oyYgZQN-jwsiWdfU6jwHCNKAoh_-B8j-ojc5IDkOvOkPbK1bC_DY0BeS_ckLajf4kEsEw priority: 102 providerName: Scholars Portal |
Title | Machine Learning-Based Routine Laboratory Tests Predict One-Year Cognitive and Functional Decline in a Population Aged 75+ Years |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37190655 https://www.proquest.com/docview/2806506947 https://search.proquest.com/docview/2814526007 https://pubmed.ncbi.nlm.nih.gov/PMC10137192 https://doaj.org/article/f26d6842b88e4dd59b7a92f458b42ca3 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2ceGCBuNH2aiMhEAIZU1iO3aObVk1IXVUaJPGKbIdpxRRd2q7w2786bznJFUDNy6tFNup3fee3_fsz8-EvMvj3FgtTCQSoyJueBJpltooY0yY2CkjQyam6VV2ecO_3IrbA5K1Z2ECad-axbn_tTz3ix-BW3m3tIOWJzaYTccJ5skDaDI4JIegoXsx-s8GAzER13uSDGL6gcHbFsCjwHyNBz3jjg8Kqfr_nZD3PFKXLbnnfibH5EmDG-mw7t9TcuD8M3Iy9BAzLx_oexqYnGGJ_IT8ngaGpKNN8tR5NAJfVVJk_4THteBX6wd6DX3Y0Nkat2u29Kt30XdoQ8ctqYhqX9IJ-L56yZB-dniU0tGFp5rOdpd_0eEc3i_FJ4rNN8_JzeTienwZNTctRFYItY2YU1WepGUG8YqB2Zu7LJcADgBdOaN5JUr4TpzOMltWsuLWAeyQgAUtBKGGlewFOfIr714RarXmuVVWKGV5HjPDwOqtiBPnpGNC9sjH9r8v7uqEGgUEIiin4m859cgIhbOrh6mww4PVel40ClFUaVbiZqJRyvGyFLmROk8rLpThqdWsRz6gaAs0WJCf1c25A-gupr4qhlJgjrtUws-ddWqCodlucascRWPomyJsTOPhYRjY210xtkTymnere6yT4EXugMZ65GWtS7shoR7DG0SPqI6WdcbcLQGrCGnAWyt4_f9NT8njFEBbzUQ6I0fb9b17AyBra_rk0ejiavatHxYp4HPKVT_Y2R_aHCyo |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,21400,24330,27936,27937,33756,33757,43817,53804,53806,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgO8AFAeMjY4CREAihaElsx84JtWNVgbVUqJPGKfJXyg4kW9sdduNP5z0nLQtInCLFduLkff2e_fweIa-LpDBWCxOL1KiYG57GmmU2zhkTJvHKyJCJaTLNx6f885k46xbcVl1Y5UYnBkXtGotr5IdhBxBPacoPF5cxVo3C3dWuhMZtsoupqsD52h0eT2fftqssiIeYSNr9SQb-_aHBygtgXUB346HPpGePQtr-f5XzDevUj5y8YYpG98m9DkPSQUv0B-SWrx-SvUEN_vPPa_qGhqjOsFy-R35NQrSkp10i1UU8BLvlKEYChdstEzTLazqHOazobIlbN2v6tfbxdxhDjzYBRlTXjo7ADrbLh_Sjx2OVnp7XVNPZthAYHSzg-VK8pzh89Yicjo7nR-O4q7oQWyHUOmZeVUWauRx8FwOanPu8kAAUAGl5o3klHFxTr_PcukpW3HqAIBJwoQWH1DDHHpOduqn9U0Kt1rywygqlLC8SZhhoACuS1HvpmZARebf59-VFm1yjBKcE6VT-TaeIDJE4236YFjvcaJaLspOysspyhxuLRinPnROFkbrIKi6U4ZnVLCJvkbQlCi_Qz-ruDAJMF9NglQMpMN9dJuF1B72eIHS237xhjrIT-lX5h0Uj8mrbjCMxkK32zRX2SbGoOyCziDxpeWn7SUwCOoPfHhHV47LeN_db6vMfISV4ipkjAazv_39eL8md8XxyUp58mn55Ru5mANjaKKQDsrNeXvnnALDW5kUnRb8B7PEmCg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegkxAvCBgfgQFGQiCErCaxHTtPqN1WjY-VCm3SeIpsxyl7IBlt97A3_nTuEjcsIPEUKbYTJ3e--53vfEfIqzzOrTPSMplYzYQVCTM8dSzjXNrYa6vaTEzH8-zoVHw8k2ch_mkdwiq3MrEV1GXjcI983HoA8ZSmGlchLGJxMHt_8ZNhBSn0tIZyGjfJjhIZj0dkZ3o4X3ztd1wQG3EZd75KDrb-2GIVBtA0IMfxAGg80E1tCv9_BfU1TTWMorymlmZ3yZ2AJ-mkY4B75Iav75PdSQ229I8r-pq2EZ7t1vku-XXcRk56GpKqLtkUdFhJMSqovd0xRLO6oicwhzVdrNCNs6Ffas--wRi6vw02oqYu6Qx0YreVSA88HrH09Lymhi76omB0soTnK_mO4vD1A3I6OzzZP2KhAgNzUuoN415XeZKWGdgxFqS68FmuADQA6vLWiEqWcE28yTJXVqoSzgMcUYARHRinlpf8IRnVTe0fE-qMEbnTTmrtRB5zy0EaOBkn3ivPpYrI2-2_Ly66RBsFGChIp-JvOkVkisTp-2GK7PZGs1oWYcUVVZqV6GS0WntRljK3yuRpJaS2InWGR-QNkrbAhQz0cyacR4DpYkqsYqIk5r5LFbxub9ATFqAbNm-ZowgCYF38YdeIvOybcSQGtdW-ucQ-CRZ4B5QWkUcdL_WfxBUgNfjtEdEDLht887ClPv_epgdPMIskAPcn_5_XC3ILFlDx-cP801NyOwXs1gUk7ZHRZnXpnwHW2tjnYRH9Bp7jKjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Routine+Laboratory+Tests+Predict+One-Year+Cognitive+and+Functional+Decline+in+a+Population+Aged+75%2B+Years&rft.jtitle=Brain+sciences&rft.au=Gomes%2C+Karina+Braga&rft.au=Pereira%2C+Ramon+Gon%C3%A7alves&rft.au=Braga%2C+Alexandre+Alberto&rft.au=Guimar%C3%A3es%2C+Henrique+Cerqueira&rft.date=2023-04-01&rft.issn=2076-3425&rft.eissn=2076-3425&rft.volume=13&rft.issue=4&rft.spage=690&rft_id=info:doi/10.3390%2Fbrainsci13040690&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_brainsci13040690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon |