Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion
In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosp...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 29; pp. 10684 - 10689 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
22.07.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), which encode rate-limiting enzymes in gluconeogenesis. Cell-based assays demonstrate the p53-dependent nuclear exclusion of forkhead box protein O1 (FoxO1), a key transcription factor that mediates activation of PCK1 and G6PC , with consequent alleviation of FoxO1-dependent gluconeogenesis. Further mechanistic studies show that p53 directly activates expression of the NAD ⁺-dependent histone deacetylase sirtuin 6 (SIRT6), whose interaction with FoxO1 leads to FoxO1 deacetylation and export to the cytoplasm. In support of these observations, p53-mediated FoxO1 nuclear exclusion, down-regulation of PCK1 and G6PC expression, and regulation of glucose levels were confirmed in C57BL/J6 mice and in liver-specific Sirt6 conditional knockout mice. Our results provide insights into mechanisms of metabolism-related p53 functions that may be relevant to tumor suppression. |
---|---|
AbstractList | In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), which encode rate-limiting enzymes in gluconeogenesis. Cell-based assays demonstrate the p53-dependent nuclear exclusion of forkhead box protein O1 (FoxO1), a key transcription factor that mediates activation of PCK1 and G6PC, with consequent alleviation of FoxO1-dependent gluconeogenesis. Further mechanistic studies show that p53 directly activates expression of the NAD(+)-dependent histone deacetylase sirtuin 6 (SIRT6), whose interaction with FoxO1 leads to FoxO1 deacetylation and export to the cytoplasm. In support of these observations, p53-mediated FoxO1 nuclear exclusion, down-regulation of PCK1 and G6PC expression, and regulation of glucose levels were confirmed in C57BL/J6 mice and in liver-specific Sirt6 conditional knockout mice. Our results provide insights into mechanisms of metabolism-related p53 functions that may be relevant to tumor suppression.In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), which encode rate-limiting enzymes in gluconeogenesis. Cell-based assays demonstrate the p53-dependent nuclear exclusion of forkhead box protein O1 (FoxO1), a key transcription factor that mediates activation of PCK1 and G6PC, with consequent alleviation of FoxO1-dependent gluconeogenesis. Further mechanistic studies show that p53 directly activates expression of the NAD(+)-dependent histone deacetylase sirtuin 6 (SIRT6), whose interaction with FoxO1 leads to FoxO1 deacetylation and export to the cytoplasm. In support of these observations, p53-mediated FoxO1 nuclear exclusion, down-regulation of PCK1 and G6PC expression, and regulation of glucose levels were confirmed in C57BL/J6 mice and in liver-specific Sirt6 conditional knockout mice. Our results provide insights into mechanisms of metabolism-related p53 functions that may be relevant to tumor suppression. In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), which encode rate-limiting enzymes in gluconeogenesis. Cell-based assays demonstrate the p53-dependent nuclear exclusion of forkhead box protein O1 (FoxO1), a key transcription factor that mediates activation of PCK1 and G6PC, with consequent alleviation of FoxO1-dependent gluconeogenesis. Further mechanistic studies show that p53 directly activates expression of the NAD(+)-dependent histone deacetylase sirtuin 6 (SIRT6), whose interaction with FoxO1 leads to FoxO1 deacetylation and export to the cytoplasm. In support of these observations, p53-mediated FoxO1 nuclear exclusion, down-regulation of PCK1 and G6PC expression, and regulation of glucose levels were confirmed in C57BL/J6 mice and in liver-specific Sirt6 conditional knockout mice. Our results provide insights into mechanisms of metabolism-related p53 functions that may be relevant to tumor suppression. Beyond its canonical functions in processes such as cell-cycle arrest, apoptosis, and senescence, the tumor suppressor p53 has been increasingly implicated in metabolism. Here, in vitro and in vivo studies establish a role for p53 in gluconeogenesis through a previously unidentified mechanism involving ( i ) direct activation of the gene encoding the NAD-dependent deacetylase sirtuin 6 (SIRT6), ( ii ) SIRT6-dependent deacetylation and nuclear exclusion of forkhead box protein O1 (FoxO1), and ( iii ) down-regulation of FoxO1-activated genes (G6PC and PCK1) that are rate-limiting for gluconeogenesis. These results have implications for proposed tumor-suppressor functions of p53 through regulation of metabolic pathways. In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosphoenolpyruvate carboxykinase ( PCK1 ) and glucose-6-phosphatase ( G6PC ), which encode rate-limiting enzymes in gluconeogenesis. Cell-based assays demonstrate the p53-dependent nuclear exclusion of forkhead box protein O1 (FoxO1), a key transcription factor that mediates activation of PCK1 and G6PC , with consequent alleviation of FoxO1-dependent gluconeogenesis. Further mechanistic studies show that p53 directly activates expression of the NAD + -dependent histone deacetylase sirtuin 6 (SIRT6), whose interaction with FoxO1 leads to FoxO1 deacetylation and export to the cytoplasm. In support of these observations, p53-mediated FoxO1 nuclear exclusion, down-regulation of PCK1 and G6PC expression, and regulation of glucose levels were confirmed in C57BL/J6 mice and in liver-specific Sirt6 conditional knockout mice. Our results provide insights into mechanisms of metabolism-related p53 functions that may be relevant to tumor suppression. In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), which encode rate-limiting enzymes in gluconeogenesis. Cell-based assays demonstrate the p53-dependent nuclear exclusion of forkhead box protein O1 (FoxO1), a key transcription factor that mediates activation of PCK1 and G6PC , with consequent alleviation of FoxO1-dependent gluconeogenesis. Further mechanistic studies show that p53 directly activates expression of the NAD ⁺-dependent histone deacetylase sirtuin 6 (SIRT6), whose interaction with FoxO1 leads to FoxO1 deacetylation and export to the cytoplasm. In support of these observations, p53-mediated FoxO1 nuclear exclusion, down-regulation of PCK1 and G6PC expression, and regulation of glucose levels were confirmed in C57BL/J6 mice and in liver-specific Sirt6 conditional knockout mice. Our results provide insights into mechanisms of metabolism-related p53 functions that may be relevant to tumor suppression. |
Author | Zhang, Chaohua Gu, Bo Roeder, Robert G. Wang, Lina Tang, Ming Gao, Bin Yang, Yang Li, Zhiming Luo, Jianyuan Wang, Haiying Deng, Chu-Xia Wang, Hua Zhang, Ping Tu, Bo Zhu, Wei-Guo Cao, Ziyang Zhao, Ying |
Author_xml | – sequence: 1 givenname: Ping surname: Zhang fullname: Zhang, Ping – sequence: 2 givenname: Bo surname: Tu fullname: Tu, Bo – sequence: 3 givenname: Hua surname: Wang fullname: Wang, Hua – sequence: 4 givenname: Ziyang surname: Cao fullname: Cao, Ziyang – sequence: 5 givenname: Ming surname: Tang fullname: Tang, Ming – sequence: 6 givenname: Chaohua surname: Zhang fullname: Zhang, Chaohua – sequence: 7 givenname: Bo surname: Gu fullname: Gu, Bo – sequence: 8 givenname: Zhiming surname: Li fullname: Li, Zhiming – sequence: 9 givenname: Lina surname: Wang fullname: Wang, Lina – sequence: 10 givenname: Yang surname: Yang fullname: Yang, Yang – sequence: 11 givenname: Ying surname: Zhao fullname: Zhao, Ying – sequence: 12 givenname: Haiying surname: Wang fullname: Wang, Haiying – sequence: 13 givenname: Jianyuan surname: Luo fullname: Luo, Jianyuan – sequence: 14 givenname: Chu-Xia surname: Deng fullname: Deng, Chu-Xia – sequence: 15 givenname: Bin surname: Gao fullname: Gao, Bin – sequence: 16 givenname: Robert G. surname: Roeder fullname: Roeder, Robert G. – sequence: 17 givenname: Wei-Guo surname: Zhu fullname: Zhu, Wei-Guo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25009184$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFMyfAEhcuaT3-SOxLJVRRqFSpEl3OltdxUi_ZONgJtP8eh922UAnBySPPM6P3nZkDtNeH3iH0EsgRkIodD71JR8ABCC0B4AlaAFFQlFyRPbQghFaF5JTvo4OU1oQQJSR5hvapyCFIvkBfl9MmRJymYYgupRwOgmEbwuCiGV3CP_x4ja_OPy9LPAYcXTt1-R-33WSzlNC63iWf8OoWDzFswuj7Fp-Fm0vA_WQ7ZyJ2N7abkg_9c_S0MV1yL3bvIVqefViefiouLj-en76_KKwQcizAScHKmlCnBK84Z46DbAAUbWpwla3qGigHw7msrG3kCiq5UrxuHFChSnaITrZth2m1cbV1_RhNp4foNybe6mC8_jPT-2vdhu86j1GIam7wbtcghm-TS6Pe-GRd15lseEoaJGFE8Tzzf6OiLGWWL-E_UC6zR8JmAW8foeswxT7PbKaUEhVhVaZe_-7z3uDdcjMgtoCNIaXoGm39aMa8iWzbdxqIno9Iz0ekH44o1x0_qrtr_fcKvJMyJ-5pAE1Vrih_iXm1RdZpDPFBLMvDLNXs5s0235igTRt90l-uKIGSEOCMVor9BG375hA |
CitedBy_id | crossref_primary_10_14336_AD_2022_0413 crossref_primary_10_3389_fimmu_2024_1448535 crossref_primary_10_3390_cancers11091298 crossref_primary_10_1016_j_jrras_2023_100614 crossref_primary_10_1016_j_molmet_2019_10_002 crossref_primary_10_1021_cr500457h crossref_primary_10_1038_s41420_024_02240_8 crossref_primary_10_1093_nar_gkaa006 crossref_primary_10_1186_s13578_020_00402_6 crossref_primary_10_3389_fendo_2023_1244705 crossref_primary_10_1038_s41698_021_00158_3 crossref_primary_10_1152_physrev_00030_2018 crossref_primary_10_1155_2018_6256052 crossref_primary_10_3390_ijms19092622 crossref_primary_10_1016_j_ebiom_2018_11_005 crossref_primary_10_1038_srep44597 crossref_primary_10_1002_jcp_26434 crossref_primary_10_1016_j_exger_2022_111765 crossref_primary_10_1002_cbic_202400719 crossref_primary_10_1007_s00125_015_3778_2 crossref_primary_10_1042_BSR20211847 crossref_primary_10_3390_cells11132045 crossref_primary_10_3389_fonc_2022_895112 crossref_primary_10_1002_adbi_202400469 crossref_primary_10_1093_jmcb_mjx011 crossref_primary_10_1016_j_canlet_2016_08_025 crossref_primary_10_1038_s41392_022_01257_8 crossref_primary_10_1002_ctm2_70145 crossref_primary_10_1016_j_pneurobio_2018_05_001 crossref_primary_10_3390_cancers12041031 crossref_primary_10_1002_jbmr_2704 crossref_primary_10_1038_srep18982 crossref_primary_10_1007_s12272_017_0989_8 crossref_primary_10_1016_j_molcel_2022_09_018 crossref_primary_10_1016_j_csbj_2016_05_005 crossref_primary_10_1186_s13148_024_01692_0 crossref_primary_10_1016_j_jbc_2022_102287 crossref_primary_10_2337_db14_1633 crossref_primary_10_7554_eLife_32127 crossref_primary_10_1002_stem_2424 crossref_primary_10_1038_srep29662 crossref_primary_10_3390_cells13010048 crossref_primary_10_2337_db14_1676 crossref_primary_10_1002_med_21695 crossref_primary_10_1016_j_bbrc_2017_11_104 crossref_primary_10_1016_j_jcmgh_2020_04_005 crossref_primary_10_1016_j_phrs_2019_01_021 crossref_primary_10_1155_2017_9270549 crossref_primary_10_1530_JOE_16_0090 crossref_primary_10_3389_fendo_2018_00748 crossref_primary_10_1038_s41575_018_0089_3 crossref_primary_10_1038_s41598_017_18064_9 crossref_primary_10_1038_srep25628 crossref_primary_10_1016_j_cub_2015_05_012 crossref_primary_10_1016_j_apsb_2020_11_002 crossref_primary_10_1002_mgg3_234 crossref_primary_10_1530_ERC_18_0241 crossref_primary_10_1016_j_bbrc_2016_02_020 crossref_primary_10_3390_md15060190 crossref_primary_10_1002_sim_9202 crossref_primary_10_1016_j_trecan_2018_11_003 crossref_primary_10_3389_fcell_2020_576946 crossref_primary_10_1016_j_lfs_2021_119803 crossref_primary_10_1111_joor_13067 crossref_primary_10_1038_ncomms14420 crossref_primary_10_1002_jcp_29886 crossref_primary_10_1016_j_metabol_2021_154771 crossref_primary_10_1038_s41598_017_10323_z crossref_primary_10_18632_oncotarget_12157 crossref_primary_10_1016_j_molimm_2018_07_009 crossref_primary_10_1016_j_celrep_2019_11_067 crossref_primary_10_1080_01635581_2017_1359309 crossref_primary_10_1371_journal_pone_0159002 crossref_primary_10_2174_0929867324666170921101947 crossref_primary_10_1089_hum_2017_218 crossref_primary_10_3390_jcm10143011 crossref_primary_10_3390_ijms23158141 crossref_primary_10_3389_fonc_2016_00202 crossref_primary_10_1038_s41420_022_00903_y crossref_primary_10_1093_hmg_ddv262 crossref_primary_10_3389_fonc_2019_01175 crossref_primary_10_1186_s13072_024_00536_8 crossref_primary_10_1002_brb3_2805 crossref_primary_10_1016_j_molmet_2019_01_014 crossref_primary_10_3389_fphar_2020_598326 crossref_primary_10_1073_pnas_1416664111 crossref_primary_10_3892_ol_2018_9676 crossref_primary_10_1016_j_brainresbull_2018_12_010 crossref_primary_10_3389_fmolb_2022_944955 crossref_primary_10_1186_s43042_020_00089_x crossref_primary_10_1074_jbc_REV120_011438 crossref_primary_10_1016_j_plantsci_2016_04_004 crossref_primary_10_1002_1873_3468_13314 crossref_primary_10_3389_fgene_2021_768996 crossref_primary_10_1016_j_bbagrm_2019_04_001 crossref_primary_10_1016_j_dnarep_2021_103206 crossref_primary_10_1038_s41467_021_25390_0 crossref_primary_10_3389_fphys_2018_00135 crossref_primary_10_3892_mmr_2017_7463 crossref_primary_10_1038_s41467_021_23545_7 crossref_primary_10_1186_s13046_016_0461_5 crossref_primary_10_4103_bc_bc_27_22 crossref_primary_10_1002_jgm_70007 crossref_primary_10_1111_nyas_13435 crossref_primary_10_1002_jcp_29235 crossref_primary_10_1002_med_21753 crossref_primary_10_1016_j_intimp_2024_113932 crossref_primary_10_1021_acs_jmedchem_1c00601 crossref_primary_10_3389_fendo_2018_00724 crossref_primary_10_1155_2022_4614665 crossref_primary_10_1016_j_bbadis_2020_165756 crossref_primary_10_2174_1566524019666190404155801 crossref_primary_10_1158_1541_7786_MCR_15_0127 crossref_primary_10_1186_s13046_019_1246_4 crossref_primary_10_1038_s41419_018_0984_0 crossref_primary_10_3389_fmolb_2022_857875 crossref_primary_10_1186_s40902_021_00326_2 crossref_primary_10_1016_j_abb_2017_12_009 crossref_primary_10_1093_carcin_bgv167 crossref_primary_10_1016_j_bbrc_2018_07_057 crossref_primary_10_1080_15592294_2020_1780081 crossref_primary_10_1016_j_semcancer_2017_11_007 crossref_primary_10_1016_j_bone_2021_116232 crossref_primary_10_1016_j_cmet_2018_02_011 crossref_primary_10_1038_srep30321 crossref_primary_10_1016_j_arr_2016_10_008 crossref_primary_10_1016_j_molimm_2023_04_011 crossref_primary_10_3892_or_2024_8786 crossref_primary_10_1016_j_pharep_2015_03_021 crossref_primary_10_3390_ijms22084180 crossref_primary_10_1016_j_ecoenv_2020_110223 crossref_primary_10_2337_db19_0699 crossref_primary_10_18632_oncotarget_11594 crossref_primary_10_1038_s41467_018_07258_y crossref_primary_10_1242_dmm_016287 crossref_primary_10_3390_cells9071586 crossref_primary_10_1016_j_semcancer_2021_03_010 crossref_primary_10_1016_j_apsb_2020_06_016 crossref_primary_10_1016_j_gendis_2019_04_004 crossref_primary_10_1016_j_bbcan_2018_06_001 crossref_primary_10_3390_ijms19030921 crossref_primary_10_1016_j_bcp_2014_08_034 crossref_primary_10_1016_j_jhep_2019_06_019 crossref_primary_10_1021_acs_jmedchem_4c01223 crossref_primary_10_1038_s41598_018_26429_x crossref_primary_10_1038_srep19617 crossref_primary_10_1042_BSR20181881 crossref_primary_10_18632_oncotarget_17408 crossref_primary_10_3390_ijerph17165866 crossref_primary_10_1074_jbc_M117_780130 crossref_primary_10_1038_nature14028 crossref_primary_10_3892_ijmm_2016_2522 crossref_primary_10_1186_s12935_023_02894_x crossref_primary_10_1002_jcp_30791 crossref_primary_10_1038_nrm4007 crossref_primary_10_1089_ars_2017_7178 crossref_primary_10_1111_odi_13913 crossref_primary_10_1073_pnas_1415680111 crossref_primary_10_1016_j_apsb_2017_06_007 crossref_primary_10_1111_jcmm_14579 crossref_primary_10_1186_s12967_023_04440_9 crossref_primary_10_1016_j_tem_2015_09_005 crossref_primary_10_3389_fgene_2021_634116 crossref_primary_10_3390_cells12040663 crossref_primary_10_1016_j_tem_2016_10_002 crossref_primary_10_1007_s12012_024_09858_1 crossref_primary_10_1016_j_jaci_2021_05_012 crossref_primary_10_1016_j_bbcan_2019_05_006 crossref_primary_10_1007_s11064_016_2110_y crossref_primary_10_1002_2211_5463_12265 crossref_primary_10_1016_j_celrep_2016_02_037 |
Cites_doi | 10.1371/journal.pgen.1002948 10.1016/j.cmet.2005.08.004 10.1016/j.cell.2009.12.041 10.1172/JCI200112876 10.1016/j.cell.2009.04.037 10.1158/0008-5472.177.65.1 10.1038/ncb1724 10.1016/S0092-8674(04)00126-6 10.1093/jmcb/mjr013 10.1016/j.cell.2011.03.043 10.1016/j.cmet.2007.08.006 10.1016/j.cmet.2010.06.009 10.1074/jbc.M110.168039 10.1016/j.molcel.2008.09.013 10.1126/science.1094637 10.1016/j.cell.2005.11.044 10.1091/mbc.e05-01-0033 10.1016/j.molcel.2012.09.030 10.1158/0008-5472.CAN-03-0846 10.1038/nature10815 10.1038/nature05288 10.1038/sj.emboj.7600570 10.4161/cc.23597 10.1038/nrc1478 10.1073/pnas.0400593101 10.1038/35042675 10.1126/science.1192049 10.1186/2049-3002-1-9 10.1038/ncb2069 10.1126/science.1202723 10.1016/j.cmet.2011.06.003 10.1038/nature07349 10.1126/science.2047879 10.1016/j.cell.2006.05.036 10.1038/ncb2172 10.1038/19328 10.1038/nature09787 |
ContentType | Journal Article |
Copyright | copyright © 1993—2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jul 22, 2014 |
Copyright_xml | – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jul 22, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1411026111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef AGRICOLA Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | p53 activates SIRT6 to regulate gluconeogenesis |
EISSN | 1091-6490 |
EndPage | 10689 |
ExternalDocumentID | PMC4115576 3388936981 25009184 10_1073_pnas_1411026111 111_29_10684 23803697 US201600143279 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA129325 – fundername: NCI NIH HHS grantid: CA129325 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c558t-1e8536d02e9547443e418f1192fd1e7c7dd1241a4487ccf8b178b94dfe125963 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:26:20 EDT 2025 Fri Jul 11 10:01:35 EDT 2025 Fri Jul 11 15:16:03 EDT 2025 Fri Jul 11 04:41:57 EDT 2025 Mon Jun 30 08:23:30 EDT 2025 Mon Jul 21 05:26:28 EDT 2025 Tue Jul 01 01:53:11 EDT 2025 Thu Apr 24 23:12:40 EDT 2025 Wed Nov 11 00:30:16 EST 2020 Thu May 29 08:40:51 EDT 2025 Thu Apr 03 09:45:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c558t-1e8536d02e9547443e418f1192fd1e7c7dd1241a4487ccf8b178b94dfe125963 |
Notes | http://dx.doi.org/10.1073/pnas.1411026111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 1P.Z. and B.T. contributed equally to this paper. Contributed by Robert G. Roeder, June 17, 2014 (sent for review May 9, 2014) Author contributions: R.G.R. and W.-G.Z. designed research; P.Z., B.T., Hua Wang, Z.C., M.T., C.Z., B. Gu, Z.L., L.W., Y.Y., Y.Z., Haiying Wang, J.L., C.-X.D., and B. Gao performed research; R.G.R. and W.-G.Z. contributed new reagents/analytic tools; R.G.R. and W.-G.Z. analyzed data; and P.Z., R.G.R., and W.-G.Z. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/111/29/10684.full.pdf |
PMID | 25009184 |
PQID | 1549957037 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4115576 crossref_primary_10_1073_pnas_1411026111 jstor_primary_23803697 pnas_primary_111_29_10684 proquest_journals_1549957037 proquest_miscellaneous_1566841881 pubmed_primary_25009184 crossref_citationtrail_10_1073_pnas_1411026111 proquest_miscellaneous_1803094102 fao_agris_US201600143279 proquest_miscellaneous_1548192036 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-22 |
PublicationDateYYYYMMDD | 2014-07-22 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 McCord RA (e_1_3_3_20_2) 2009; 1 Kondoh H (e_1_3_3_37_2) 2005; 65 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 2047879 - Science. 1991 Jun 21;252(5013):1708-11 21669942 - J Mol Cell Biol. 2011 Oct;3(5):276-82 19410540 - Cell. 2009 May 1;137(3):413-31 16439206 - Cell. 2006 Jan 27;124(2):315-29 18849969 - Nature. 2008 Nov 13;456(7219):269-73 18951090 - Mol Cell. 2008 Oct 24;32(2):221-31 20543840 - Nat Cell Biol. 2010 Jul;12(7):665-75 20847051 - J Biol Chem. 2010 Nov 19;285(47):36776-84 23142079 - Mol Cell. 2012 Dec 28;48(6):900-13 21565617 - Cell. 2011 May 13;145(4):607-21 17767907 - Cell Metab. 2007 Sep;6(3):208-16 11099028 - Nature. 2000 Nov 16;408(6810):307-10 16154098 - Cell Metab. 2005 Sep;2(3):153-63 15059920 - Cancer Res. 2004 Apr 1;64(7):2627-33 25261555 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4394 20157594 - Aging (Albany NY). 2009 Jan;1(1):109-21 15516961 - Nat Rev Cancer. 2004 Nov;4(11):891-9 14976264 - Science. 2004 Mar 26;303(5666):2011-5 23343762 - Cell Cycle. 2013 Mar 1;12(5):753-61 18391940 - Nat Cell Biol. 2008 May;10(5):611-8 10217147 - Nature. 1999 Apr 15;398(6728):630-4 25261554 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4395 20816089 - Cell Metab. 2010 Sep 8;12(3):224-36 15220471 - Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10042-7 21307849 - Nature. 2011 Feb 17;470(7334):359-65 24280180 - Cancer Metab. 2013 Feb 04;1(1):9 14980222 - Cell. 2004 Feb 20;116(4):551-63 20829486 - Science. 2010 Sep 10;329(5997):1348-53 21723500 - Cell Metab. 2011 Jul 6;14(1):9-19 15665293 - Cancer Res. 2005 Jan 1;65(1):177-85 23028355 - PLoS Genet. 2012 Sep;8(9):e1002948 21336310 - Nat Cell Biol. 2011 Mar;13(3):310-6 20141841 - Cell. 2010 Jan 22;140(2):280-93 16839880 - Cell. 2006 Jul 14;126(1):107-20 11696581 - J Clin Invest. 2001 Nov;108(9):1359-67 22367546 - Nature. 2012 Mar 8;483(7388):218-21 21680843 - Science. 2011 Jun 17;332(6036):1443-6 17024043 - Nature. 2006 Oct 5;443(7111):E10-1 15692560 - EMBO J. 2005 Mar 9;24(5):1021-32 16079181 - Mol Biol Cell. 2005 Oct;16(10):4623-35 |
References_xml | – ident: e_1_3_3_35_2 doi: 10.1371/journal.pgen.1002948 – ident: e_1_3_3_16_2 doi: 10.1016/j.cmet.2005.08.004 – ident: e_1_3_3_23_2 doi: 10.1016/j.cell.2009.12.041 – ident: e_1_3_3_11_2 doi: 10.1172/JCI200112876 – ident: e_1_3_3_2_2 doi: 10.1016/j.cell.2009.04.037 – volume: 65 start-page: 177 year: 2005 ident: e_1_3_3_37_2 article-title: Glycolytic enzymes can modulate cellular life span publication-title: Cancer Res doi: 10.1158/0008-5472.177.65.1 – ident: e_1_3_3_38_2 doi: 10.1038/ncb1724 – ident: e_1_3_3_18_2 doi: 10.1016/S0092-8674(04)00126-6 – ident: e_1_3_3_29_2 doi: 10.1093/jmcb/mjr013 – ident: e_1_3_3_30_2 doi: 10.1016/j.cell.2011.03.043 – ident: e_1_3_3_12_2 doi: 10.1016/j.cmet.2007.08.006 – ident: e_1_3_3_34_2 doi: 10.1016/j.cmet.2010.06.009 – ident: e_1_3_3_33_2 doi: 10.1074/jbc.M110.168039 – ident: e_1_3_3_14_2 doi: 10.1016/j.molcel.2008.09.013 – ident: e_1_3_3_15_2 doi: 10.1126/science.1094637 – ident: e_1_3_3_25_2 doi: 10.1016/j.cell.2005.11.044 – ident: e_1_3_3_19_2 doi: 10.1091/mbc.e05-01-0033 – ident: e_1_3_3_26_2 doi: 10.1016/j.molcel.2012.09.030 – ident: e_1_3_3_4_2 doi: 10.1158/0008-5472.CAN-03-0846 – ident: e_1_3_3_24_2 doi: 10.1038/nature10815 – ident: e_1_3_3_10_2 doi: 10.1038/nature05288 – ident: e_1_3_3_31_2 doi: 10.1038/sj.emboj.7600570 – ident: e_1_3_3_8_2 doi: 10.4161/cc.23597 – ident: e_1_3_3_36_2 doi: 10.1038/nrc1478 – ident: e_1_3_3_17_2 doi: 10.1073/pnas.0400593101 – ident: e_1_3_3_1_2 doi: 10.1038/35042675 – ident: e_1_3_3_22_2 doi: 10.1126/science.1192049 – ident: e_1_3_3_7_2 doi: 10.1186/2049-3002-1-9 – volume: 1 start-page: 109 year: 2009 ident: e_1_3_3_20_2 article-title: SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair publication-title: Aging (Albany, NY Online) – ident: e_1_3_3_13_2 doi: 10.1038/ncb2069 – ident: e_1_3_3_21_2 doi: 10.1126/science.1202723 – ident: e_1_3_3_9_2 doi: 10.1016/j.cmet.2011.06.003 – ident: e_1_3_3_32_2 doi: 10.1038/nature07349 – ident: e_1_3_3_27_2 doi: 10.1126/science.2047879 – ident: e_1_3_3_3_2 doi: 10.1016/j.cell.2006.05.036 – ident: e_1_3_3_5_2 doi: 10.1038/ncb2172 – ident: e_1_3_3_28_2 doi: 10.1038/19328 – ident: e_1_3_3_6_2 doi: 10.1038/nature09787 – reference: 15059920 - Cancer Res. 2004 Apr 1;64(7):2627-33 – reference: 10217147 - Nature. 1999 Apr 15;398(6728):630-4 – reference: 11696581 - J Clin Invest. 2001 Nov;108(9):1359-67 – reference: 15692560 - EMBO J. 2005 Mar 9;24(5):1021-32 – reference: 23028355 - PLoS Genet. 2012 Sep;8(9):e1002948 – reference: 16439206 - Cell. 2006 Jan 27;124(2):315-29 – reference: 20816089 - Cell Metab. 2010 Sep 8;12(3):224-36 – reference: 15516961 - Nat Rev Cancer. 2004 Nov;4(11):891-9 – reference: 20157594 - Aging (Albany NY). 2009 Jan;1(1):109-21 – reference: 11099028 - Nature. 2000 Nov 16;408(6810):307-10 – reference: 21680843 - Science. 2011 Jun 17;332(6036):1443-6 – reference: 16154098 - Cell Metab. 2005 Sep;2(3):153-63 – reference: 25261554 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4395 – reference: 21336310 - Nat Cell Biol. 2011 Mar;13(3):310-6 – reference: 21307849 - Nature. 2011 Feb 17;470(7334):359-65 – reference: 15220471 - Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10042-7 – reference: 14976264 - Science. 2004 Mar 26;303(5666):2011-5 – reference: 21565617 - Cell. 2011 May 13;145(4):607-21 – reference: 17024043 - Nature. 2006 Oct 5;443(7111):E10-1 – reference: 21723500 - Cell Metab. 2011 Jul 6;14(1):9-19 – reference: 17767907 - Cell Metab. 2007 Sep;6(3):208-16 – reference: 16079181 - Mol Biol Cell. 2005 Oct;16(10):4623-35 – reference: 22367546 - Nature. 2012 Mar 8;483(7388):218-21 – reference: 2047879 - Science. 1991 Jun 21;252(5013):1708-11 – reference: 18951090 - Mol Cell. 2008 Oct 24;32(2):221-31 – reference: 18391940 - Nat Cell Biol. 2008 May;10(5):611-8 – reference: 20829486 - Science. 2010 Sep 10;329(5997):1348-53 – reference: 20847051 - J Biol Chem. 2010 Nov 19;285(47):36776-84 – reference: 14980222 - Cell. 2004 Feb 20;116(4):551-63 – reference: 18849969 - Nature. 2008 Nov 13;456(7219):269-73 – reference: 23142079 - Mol Cell. 2012 Dec 28;48(6):900-13 – reference: 16839880 - Cell. 2006 Jul 14;126(1):107-20 – reference: 24280180 - Cancer Metab. 2013 Feb 04;1(1):9 – reference: 19410540 - Cell. 2009 May 1;137(3):413-31 – reference: 25261555 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4394 – reference: 23343762 - Cell Cycle. 2013 Mar 1;12(5):753-61 – reference: 15665293 - Cancer Res. 2005 Jan 1;65(1):177-85 – reference: 21669942 - J Mol Cell Biol. 2011 Oct;3(5):276-82 – reference: 20543840 - Nat Cell Biol. 2010 Jul;12(7):665-75 – reference: 20141841 - Cell. 2010 Jan 22;140(2):280-93 |
SSID | ssj0009580 |
Score | 2.5437522 |
Snippet | In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but... Beyond its canonical functions in processes such as cell-cycle arrest, apoptosis, and senescence, the tumor suppressor p53 has been increasingly implicated in... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10684 |
SubjectTerms | Acetylation Animals Antibodies Biological Sciences Blood Glucose - metabolism Cell lines Cell nucleus Cell Nucleus - metabolism Cellular immunity Cytoplasm Down regulation Down-Regulation - genetics Enzymes Forkhead Box Protein O1 Forkhead Transcription Factors - metabolism Gene expression regulation Gluconeogenesis Gluconeogenesis - genetics Glucose glucose-6-phosphatase Glucose-6-Phosphatase - genetics Glucose-6-Phosphatase - metabolism glycolysis HCT116 Cells Hep G2 cells histone deacetylase Humans knockout mutants Mice Mice, Inbred C57BL Mice, Knockout Models, Biological NAD (coenzyme) oxidative phosphorylation Phosphoenolpyruvate Carboxykinase (ATP) - genetics Phosphoenolpyruvate Carboxykinase (ATP) - metabolism Phosphorylation Plasmids Protein Binding Protein expression Protein Transport Sirtuins - genetics Sirtuins - metabolism transcription factors Transcription, Genetic Tumor Suppressor Protein p53 - metabolism Tumors |
Title | Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion |
URI | https://www.jstor.org/stable/23803697 http://www.pnas.org/content/111/29/10684.abstract https://www.ncbi.nlm.nih.gov/pubmed/25009184 https://www.proquest.com/docview/1549957037 https://www.proquest.com/docview/1548192036 https://www.proquest.com/docview/1566841881 https://www.proquest.com/docview/1803094102 https://pubmed.ncbi.nlm.nih.gov/PMC4115576 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5RAFJ9s68WLsWotWs2YeKgh1B0YGDg2ps1q6nZj2WTjhQAL240VyLIk1qN_ue8Nw8eutaleJhsYZoD32_fFm98Q8hYDrijG1e0pjyBAEcKIrGGIjRklzBxySbHxeeyMpvzTzJ4NBr96VUvVOjqOf966ruR_pArHQK64SvYfJNsOCgfgN8gXWpAwtPeTcfU9X-llVchqVvhZ2JYe53mBTMmJWrh2-fGL76CLuaq3nU90WaaeJfkC9dyyRA-0qKvysoUO5uiC6RnSHIcrPfkRX1dlIzvlxE5ao1c2JQbjJqd40q1QUWqj1A19Mu72O25T1JPGasryDgm0vMvv131GVVdJFMqs7tflTaiuU8kKxjELavbzlxAFGy6vl023Clip2xpppqcXxxCoutzA1utpV3m0Z6rb83_YAVBcuHlxFpZgCsDDgThRTbLBuD2-CM6m5-eBfzrzd8gDE0INWRw66hM3u_UyJnXjDT2UsN5vDb_h2eykYd6UuCJvLnS9LYbZLsXt-Tb-Y_JIBSX0pEbYHhkk2ROy18iPHilu8ndPyTcJOdpBjgLkaAc5ipCjEnJ0ndMGcnQLcjS6oS3kqIQcVZCjLeSeEf_s1P8wMtR-HUZs2-7aYAn4fs58aCaezQXnVsKZmzKIIdI5S0Qs5nPwJlnIIUiO49SNmHAjj89T0Ak2GIJ9spvBrRwQ6nAX3P7Esofg77uxHYUsjBzkQQKHfW7ZGjluXnUQKy573FLlOpA1FcIK8IUHnWw0ctReUNQ0Ln_vegCyC8IFGNlgemkiBSOSYJrC08i-FGg7BPi74AF6QiOaHKUdGqJq0wskXjVy2Ig9ULoDpsO0DJLfwaVv2tOg2fFzXQjiqGQfZCuECe7q48AUzHXZHX1c_IzK4fE08rxGW_cANiCc4U2KDRy2HZB9fvNMtrySLPTwwmxbOC_uMe9L8rBTBodkd72qklfgy6-j1_LP9htGy-8W |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+suppressor+p53+cooperates+with+SIRT6+to+regulate+gluconeogenesis+by+promoting+FoxO1+nuclear+exclusion&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhang%2C+Ping&rft.au=Tu%2C+Bo&rft.au=Wang%2C+Hua&rft.au=Cao%2C+Ziyang&rft.date=2014-07-22&rft.issn=0027-8424&rft.volume=111&rft.issue=29+p.10684-10689&rft.spage=10684&rft.epage=10689&rft_id=info:doi/10.1073%2Fpnas.1411026111&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F29.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F29.cover.gif |