Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion

In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosp...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 29; pp. 10684 - 10689
Main Authors Zhang, Ping, Tu, Bo, Wang, Hua, Cao, Ziyang, Tang, Ming, Zhang, Chaohua, Gu, Bo, Li, Zhiming, Wang, Lina, Yang, Yang, Zhao, Ying, Wang, Haiying, Luo, Jianyuan, Deng, Chu-Xia, Gao, Bin, Roeder, Robert G., Zhu, Wei-Guo
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 22.07.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), which encode rate-limiting enzymes in gluconeogenesis. Cell-based assays demonstrate the p53-dependent nuclear exclusion of forkhead box protein O1 (FoxO1), a key transcription factor that mediates activation of PCK1 and G6PC , with consequent alleviation of FoxO1-dependent gluconeogenesis. Further mechanistic studies show that p53 directly activates expression of the NAD ⁺-dependent histone deacetylase sirtuin 6 (SIRT6), whose interaction with FoxO1 leads to FoxO1 deacetylation and export to the cytoplasm. In support of these observations, p53-mediated FoxO1 nuclear exclusion, down-regulation of PCK1 and G6PC expression, and regulation of glucose levels were confirmed in C57BL/J6 mice and in liver-specific Sirt6 conditional knockout mice. Our results provide insights into mechanisms of metabolism-related p53 functions that may be relevant to tumor suppression.
AbstractList In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), which encode rate-limiting enzymes in gluconeogenesis. Cell-based assays demonstrate the p53-dependent nuclear exclusion of forkhead box protein O1 (FoxO1), a key transcription factor that mediates activation of PCK1 and G6PC, with consequent alleviation of FoxO1-dependent gluconeogenesis. Further mechanistic studies show that p53 directly activates expression of the NAD(+)-dependent histone deacetylase sirtuin 6 (SIRT6), whose interaction with FoxO1 leads to FoxO1 deacetylation and export to the cytoplasm. In support of these observations, p53-mediated FoxO1 nuclear exclusion, down-regulation of PCK1 and G6PC expression, and regulation of glucose levels were confirmed in C57BL/J6 mice and in liver-specific Sirt6 conditional knockout mice. Our results provide insights into mechanisms of metabolism-related p53 functions that may be relevant to tumor suppression.In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), which encode rate-limiting enzymes in gluconeogenesis. Cell-based assays demonstrate the p53-dependent nuclear exclusion of forkhead box protein O1 (FoxO1), a key transcription factor that mediates activation of PCK1 and G6PC, with consequent alleviation of FoxO1-dependent gluconeogenesis. Further mechanistic studies show that p53 directly activates expression of the NAD(+)-dependent histone deacetylase sirtuin 6 (SIRT6), whose interaction with FoxO1 leads to FoxO1 deacetylation and export to the cytoplasm. In support of these observations, p53-mediated FoxO1 nuclear exclusion, down-regulation of PCK1 and G6PC expression, and regulation of glucose levels were confirmed in C57BL/J6 mice and in liver-specific Sirt6 conditional knockout mice. Our results provide insights into mechanisms of metabolism-related p53 functions that may be relevant to tumor suppression.
In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), which encode rate-limiting enzymes in gluconeogenesis. Cell-based assays demonstrate the p53-dependent nuclear exclusion of forkhead box protein O1 (FoxO1), a key transcription factor that mediates activation of PCK1 and G6PC, with consequent alleviation of FoxO1-dependent gluconeogenesis. Further mechanistic studies show that p53 directly activates expression of the NAD(+)-dependent histone deacetylase sirtuin 6 (SIRT6), whose interaction with FoxO1 leads to FoxO1 deacetylation and export to the cytoplasm. In support of these observations, p53-mediated FoxO1 nuclear exclusion, down-regulation of PCK1 and G6PC expression, and regulation of glucose levels were confirmed in C57BL/J6 mice and in liver-specific Sirt6 conditional knockout mice. Our results provide insights into mechanisms of metabolism-related p53 functions that may be relevant to tumor suppression.
Beyond its canonical functions in processes such as cell-cycle arrest, apoptosis, and senescence, the tumor suppressor p53 has been increasingly implicated in metabolism. Here, in vitro and in vivo studies establish a role for p53 in gluconeogenesis through a previously unidentified mechanism involving ( i ) direct activation of the gene encoding the NAD-dependent deacetylase sirtuin 6 (SIRT6), ( ii ) SIRT6-dependent deacetylation and nuclear exclusion of forkhead box protein O1 (FoxO1), and ( iii ) down-regulation of FoxO1-activated genes (G6PC and PCK1) that are rate-limiting for gluconeogenesis. These results have implications for proposed tumor-suppressor functions of p53 through regulation of metabolic pathways. In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosphoenolpyruvate carboxykinase ( PCK1 ) and glucose-6-phosphatase ( G6PC ), which encode rate-limiting enzymes in gluconeogenesis. Cell-based assays demonstrate the p53-dependent nuclear exclusion of forkhead box protein O1 (FoxO1), a key transcription factor that mediates activation of PCK1 and G6PC , with consequent alleviation of FoxO1-dependent gluconeogenesis. Further mechanistic studies show that p53 directly activates expression of the NAD + -dependent histone deacetylase sirtuin 6 (SIRT6), whose interaction with FoxO1 leads to FoxO1 deacetylation and export to the cytoplasm. In support of these observations, p53-mediated FoxO1 nuclear exclusion, down-regulation of PCK1 and G6PC expression, and regulation of glucose levels were confirmed in C57BL/J6 mice and in liver-specific Sirt6 conditional knockout mice. Our results provide insights into mechanisms of metabolism-related p53 functions that may be relevant to tumor suppression.
In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), which encode rate-limiting enzymes in gluconeogenesis. Cell-based assays demonstrate the p53-dependent nuclear exclusion of forkhead box protein O1 (FoxO1), a key transcription factor that mediates activation of PCK1 and G6PC , with consequent alleviation of FoxO1-dependent gluconeogenesis. Further mechanistic studies show that p53 directly activates expression of the NAD ⁺-dependent histone deacetylase sirtuin 6 (SIRT6), whose interaction with FoxO1 leads to FoxO1 deacetylation and export to the cytoplasm. In support of these observations, p53-mediated FoxO1 nuclear exclusion, down-regulation of PCK1 and G6PC expression, and regulation of glucose levels were confirmed in C57BL/J6 mice and in liver-specific Sirt6 conditional knockout mice. Our results provide insights into mechanisms of metabolism-related p53 functions that may be relevant to tumor suppression.
Author Zhang, Chaohua
Gu, Bo
Roeder, Robert G.
Wang, Lina
Tang, Ming
Gao, Bin
Yang, Yang
Li, Zhiming
Luo, Jianyuan
Wang, Haiying
Deng, Chu-Xia
Wang, Hua
Zhang, Ping
Tu, Bo
Zhu, Wei-Guo
Cao, Ziyang
Zhao, Ying
Author_xml – sequence: 1
  givenname: Ping
  surname: Zhang
  fullname: Zhang, Ping
– sequence: 2
  givenname: Bo
  surname: Tu
  fullname: Tu, Bo
– sequence: 3
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
– sequence: 4
  givenname: Ziyang
  surname: Cao
  fullname: Cao, Ziyang
– sequence: 5
  givenname: Ming
  surname: Tang
  fullname: Tang, Ming
– sequence: 6
  givenname: Chaohua
  surname: Zhang
  fullname: Zhang, Chaohua
– sequence: 7
  givenname: Bo
  surname: Gu
  fullname: Gu, Bo
– sequence: 8
  givenname: Zhiming
  surname: Li
  fullname: Li, Zhiming
– sequence: 9
  givenname: Lina
  surname: Wang
  fullname: Wang, Lina
– sequence: 10
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
– sequence: 11
  givenname: Ying
  surname: Zhao
  fullname: Zhao, Ying
– sequence: 12
  givenname: Haiying
  surname: Wang
  fullname: Wang, Haiying
– sequence: 13
  givenname: Jianyuan
  surname: Luo
  fullname: Luo, Jianyuan
– sequence: 14
  givenname: Chu-Xia
  surname: Deng
  fullname: Deng, Chu-Xia
– sequence: 15
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
– sequence: 16
  givenname: Robert G.
  surname: Roeder
  fullname: Roeder, Robert G.
– sequence: 17
  givenname: Wei-Guo
  surname: Zhu
  fullname: Zhu, Wei-Guo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25009184$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFMyfAEhcuaT3-SOxLJVRRqFSpEl3OltdxUi_ZONgJtP8eh922UAnBySPPM6P3nZkDtNeH3iH0EsgRkIodD71JR8ABCC0B4AlaAFFQlFyRPbQghFaF5JTvo4OU1oQQJSR5hvapyCFIvkBfl9MmRJymYYgupRwOgmEbwuCiGV3CP_x4ja_OPy9LPAYcXTt1-R-33WSzlNC63iWf8OoWDzFswuj7Fp-Fm0vA_WQ7ZyJ2N7abkg_9c_S0MV1yL3bvIVqefViefiouLj-en76_KKwQcizAScHKmlCnBK84Z46DbAAUbWpwla3qGigHw7msrG3kCiq5UrxuHFChSnaITrZth2m1cbV1_RhNp4foNybe6mC8_jPT-2vdhu86j1GIam7wbtcghm-TS6Pe-GRd15lseEoaJGFE8Tzzf6OiLGWWL-E_UC6zR8JmAW8foeswxT7PbKaUEhVhVaZe_-7z3uDdcjMgtoCNIaXoGm39aMa8iWzbdxqIno9Iz0ekH44o1x0_qrtr_fcKvJMyJ-5pAE1Vrih_iXm1RdZpDPFBLMvDLNXs5s0235igTRt90l-uKIGSEOCMVor9BG375hA
CitedBy_id crossref_primary_10_14336_AD_2022_0413
crossref_primary_10_3389_fimmu_2024_1448535
crossref_primary_10_3390_cancers11091298
crossref_primary_10_1016_j_jrras_2023_100614
crossref_primary_10_1016_j_molmet_2019_10_002
crossref_primary_10_1021_cr500457h
crossref_primary_10_1038_s41420_024_02240_8
crossref_primary_10_1093_nar_gkaa006
crossref_primary_10_1186_s13578_020_00402_6
crossref_primary_10_3389_fendo_2023_1244705
crossref_primary_10_1038_s41698_021_00158_3
crossref_primary_10_1152_physrev_00030_2018
crossref_primary_10_1155_2018_6256052
crossref_primary_10_3390_ijms19092622
crossref_primary_10_1016_j_ebiom_2018_11_005
crossref_primary_10_1038_srep44597
crossref_primary_10_1002_jcp_26434
crossref_primary_10_1016_j_exger_2022_111765
crossref_primary_10_1002_cbic_202400719
crossref_primary_10_1007_s00125_015_3778_2
crossref_primary_10_1042_BSR20211847
crossref_primary_10_3390_cells11132045
crossref_primary_10_3389_fonc_2022_895112
crossref_primary_10_1002_adbi_202400469
crossref_primary_10_1093_jmcb_mjx011
crossref_primary_10_1016_j_canlet_2016_08_025
crossref_primary_10_1038_s41392_022_01257_8
crossref_primary_10_1002_ctm2_70145
crossref_primary_10_1016_j_pneurobio_2018_05_001
crossref_primary_10_3390_cancers12041031
crossref_primary_10_1002_jbmr_2704
crossref_primary_10_1038_srep18982
crossref_primary_10_1007_s12272_017_0989_8
crossref_primary_10_1016_j_molcel_2022_09_018
crossref_primary_10_1016_j_csbj_2016_05_005
crossref_primary_10_1186_s13148_024_01692_0
crossref_primary_10_1016_j_jbc_2022_102287
crossref_primary_10_2337_db14_1633
crossref_primary_10_7554_eLife_32127
crossref_primary_10_1002_stem_2424
crossref_primary_10_1038_srep29662
crossref_primary_10_3390_cells13010048
crossref_primary_10_2337_db14_1676
crossref_primary_10_1002_med_21695
crossref_primary_10_1016_j_bbrc_2017_11_104
crossref_primary_10_1016_j_jcmgh_2020_04_005
crossref_primary_10_1016_j_phrs_2019_01_021
crossref_primary_10_1155_2017_9270549
crossref_primary_10_1530_JOE_16_0090
crossref_primary_10_3389_fendo_2018_00748
crossref_primary_10_1038_s41575_018_0089_3
crossref_primary_10_1038_s41598_017_18064_9
crossref_primary_10_1038_srep25628
crossref_primary_10_1016_j_cub_2015_05_012
crossref_primary_10_1016_j_apsb_2020_11_002
crossref_primary_10_1002_mgg3_234
crossref_primary_10_1530_ERC_18_0241
crossref_primary_10_1016_j_bbrc_2016_02_020
crossref_primary_10_3390_md15060190
crossref_primary_10_1002_sim_9202
crossref_primary_10_1016_j_trecan_2018_11_003
crossref_primary_10_3389_fcell_2020_576946
crossref_primary_10_1016_j_lfs_2021_119803
crossref_primary_10_1111_joor_13067
crossref_primary_10_1038_ncomms14420
crossref_primary_10_1002_jcp_29886
crossref_primary_10_1016_j_metabol_2021_154771
crossref_primary_10_1038_s41598_017_10323_z
crossref_primary_10_18632_oncotarget_12157
crossref_primary_10_1016_j_molimm_2018_07_009
crossref_primary_10_1016_j_celrep_2019_11_067
crossref_primary_10_1080_01635581_2017_1359309
crossref_primary_10_1371_journal_pone_0159002
crossref_primary_10_2174_0929867324666170921101947
crossref_primary_10_1089_hum_2017_218
crossref_primary_10_3390_jcm10143011
crossref_primary_10_3390_ijms23158141
crossref_primary_10_3389_fonc_2016_00202
crossref_primary_10_1038_s41420_022_00903_y
crossref_primary_10_1093_hmg_ddv262
crossref_primary_10_3389_fonc_2019_01175
crossref_primary_10_1186_s13072_024_00536_8
crossref_primary_10_1002_brb3_2805
crossref_primary_10_1016_j_molmet_2019_01_014
crossref_primary_10_3389_fphar_2020_598326
crossref_primary_10_1073_pnas_1416664111
crossref_primary_10_3892_ol_2018_9676
crossref_primary_10_1016_j_brainresbull_2018_12_010
crossref_primary_10_3389_fmolb_2022_944955
crossref_primary_10_1186_s43042_020_00089_x
crossref_primary_10_1074_jbc_REV120_011438
crossref_primary_10_1016_j_plantsci_2016_04_004
crossref_primary_10_1002_1873_3468_13314
crossref_primary_10_3389_fgene_2021_768996
crossref_primary_10_1016_j_bbagrm_2019_04_001
crossref_primary_10_1016_j_dnarep_2021_103206
crossref_primary_10_1038_s41467_021_25390_0
crossref_primary_10_3389_fphys_2018_00135
crossref_primary_10_3892_mmr_2017_7463
crossref_primary_10_1038_s41467_021_23545_7
crossref_primary_10_1186_s13046_016_0461_5
crossref_primary_10_4103_bc_bc_27_22
crossref_primary_10_1002_jgm_70007
crossref_primary_10_1111_nyas_13435
crossref_primary_10_1002_jcp_29235
crossref_primary_10_1002_med_21753
crossref_primary_10_1016_j_intimp_2024_113932
crossref_primary_10_1021_acs_jmedchem_1c00601
crossref_primary_10_3389_fendo_2018_00724
crossref_primary_10_1155_2022_4614665
crossref_primary_10_1016_j_bbadis_2020_165756
crossref_primary_10_2174_1566524019666190404155801
crossref_primary_10_1158_1541_7786_MCR_15_0127
crossref_primary_10_1186_s13046_019_1246_4
crossref_primary_10_1038_s41419_018_0984_0
crossref_primary_10_3389_fmolb_2022_857875
crossref_primary_10_1186_s40902_021_00326_2
crossref_primary_10_1016_j_abb_2017_12_009
crossref_primary_10_1093_carcin_bgv167
crossref_primary_10_1016_j_bbrc_2018_07_057
crossref_primary_10_1080_15592294_2020_1780081
crossref_primary_10_1016_j_semcancer_2017_11_007
crossref_primary_10_1016_j_bone_2021_116232
crossref_primary_10_1016_j_cmet_2018_02_011
crossref_primary_10_1038_srep30321
crossref_primary_10_1016_j_arr_2016_10_008
crossref_primary_10_1016_j_molimm_2023_04_011
crossref_primary_10_3892_or_2024_8786
crossref_primary_10_1016_j_pharep_2015_03_021
crossref_primary_10_3390_ijms22084180
crossref_primary_10_1016_j_ecoenv_2020_110223
crossref_primary_10_2337_db19_0699
crossref_primary_10_18632_oncotarget_11594
crossref_primary_10_1038_s41467_018_07258_y
crossref_primary_10_1242_dmm_016287
crossref_primary_10_3390_cells9071586
crossref_primary_10_1016_j_semcancer_2021_03_010
crossref_primary_10_1016_j_apsb_2020_06_016
crossref_primary_10_1016_j_gendis_2019_04_004
crossref_primary_10_1016_j_bbcan_2018_06_001
crossref_primary_10_3390_ijms19030921
crossref_primary_10_1016_j_bcp_2014_08_034
crossref_primary_10_1016_j_jhep_2019_06_019
crossref_primary_10_1021_acs_jmedchem_4c01223
crossref_primary_10_1038_s41598_018_26429_x
crossref_primary_10_1038_srep19617
crossref_primary_10_1042_BSR20181881
crossref_primary_10_18632_oncotarget_17408
crossref_primary_10_3390_ijerph17165866
crossref_primary_10_1074_jbc_M117_780130
crossref_primary_10_1038_nature14028
crossref_primary_10_3892_ijmm_2016_2522
crossref_primary_10_1186_s12935_023_02894_x
crossref_primary_10_1002_jcp_30791
crossref_primary_10_1038_nrm4007
crossref_primary_10_1089_ars_2017_7178
crossref_primary_10_1111_odi_13913
crossref_primary_10_1073_pnas_1415680111
crossref_primary_10_1016_j_apsb_2017_06_007
crossref_primary_10_1111_jcmm_14579
crossref_primary_10_1186_s12967_023_04440_9
crossref_primary_10_1016_j_tem_2015_09_005
crossref_primary_10_3389_fgene_2021_634116
crossref_primary_10_3390_cells12040663
crossref_primary_10_1016_j_tem_2016_10_002
crossref_primary_10_1007_s12012_024_09858_1
crossref_primary_10_1016_j_jaci_2021_05_012
crossref_primary_10_1016_j_bbcan_2019_05_006
crossref_primary_10_1007_s11064_016_2110_y
crossref_primary_10_1002_2211_5463_12265
crossref_primary_10_1016_j_celrep_2016_02_037
Cites_doi 10.1371/journal.pgen.1002948
10.1016/j.cmet.2005.08.004
10.1016/j.cell.2009.12.041
10.1172/JCI200112876
10.1016/j.cell.2009.04.037
10.1158/0008-5472.177.65.1
10.1038/ncb1724
10.1016/S0092-8674(04)00126-6
10.1093/jmcb/mjr013
10.1016/j.cell.2011.03.043
10.1016/j.cmet.2007.08.006
10.1016/j.cmet.2010.06.009
10.1074/jbc.M110.168039
10.1016/j.molcel.2008.09.013
10.1126/science.1094637
10.1016/j.cell.2005.11.044
10.1091/mbc.e05-01-0033
10.1016/j.molcel.2012.09.030
10.1158/0008-5472.CAN-03-0846
10.1038/nature10815
10.1038/nature05288
10.1038/sj.emboj.7600570
10.4161/cc.23597
10.1038/nrc1478
10.1073/pnas.0400593101
10.1038/35042675
10.1126/science.1192049
10.1186/2049-3002-1-9
10.1038/ncb2069
10.1126/science.1202723
10.1016/j.cmet.2011.06.003
10.1038/nature07349
10.1126/science.2047879
10.1016/j.cell.2006.05.036
10.1038/ncb2172
10.1038/19328
10.1038/nature09787
ContentType Journal Article
Copyright copyright © 1993—2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jul 22, 2014
Copyright_xml – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jul 22, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1411026111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



CrossRef
AGRICOLA
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate p53 activates SIRT6 to regulate gluconeogenesis
EISSN 1091-6490
EndPage 10689
ExternalDocumentID PMC4115576
3388936981
25009184
10_1073_pnas_1411026111
111_29_10684
23803697
US201600143279
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA129325
– fundername: NCI NIH HHS
  grantid: CA129325
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c558t-1e8536d02e9547443e418f1192fd1e7c7dd1241a4487ccf8b178b94dfe125963
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:26:20 EDT 2025
Fri Jul 11 10:01:35 EDT 2025
Fri Jul 11 15:16:03 EDT 2025
Fri Jul 11 04:41:57 EDT 2025
Mon Jun 30 08:23:30 EDT 2025
Mon Jul 21 05:26:28 EDT 2025
Tue Jul 01 01:53:11 EDT 2025
Thu Apr 24 23:12:40 EDT 2025
Wed Nov 11 00:30:16 EST 2020
Thu May 29 08:40:51 EDT 2025
Thu Apr 03 09:45:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c558t-1e8536d02e9547443e418f1192fd1e7c7dd1241a4487ccf8b178b94dfe125963
Notes http://dx.doi.org/10.1073/pnas.1411026111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
1P.Z. and B.T. contributed equally to this paper.
Contributed by Robert G. Roeder, June 17, 2014 (sent for review May 9, 2014)
Author contributions: R.G.R. and W.-G.Z. designed research; P.Z., B.T., Hua Wang, Z.C., M.T., C.Z., B. Gu, Z.L., L.W., Y.Y., Y.Z., Haiying Wang, J.L., C.-X.D., and B. Gao performed research; R.G.R. and W.-G.Z. contributed new reagents/analytic tools; R.G.R. and W.-G.Z. analyzed data; and P.Z., R.G.R., and W.-G.Z. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/111/29/10684.full.pdf
PMID 25009184
PQID 1549957037
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4115576
crossref_primary_10_1073_pnas_1411026111
jstor_primary_23803697
pnas_primary_111_29_10684
proquest_journals_1549957037
proquest_miscellaneous_1566841881
pubmed_primary_25009184
crossref_citationtrail_10_1073_pnas_1411026111
proquest_miscellaneous_1803094102
fao_agris_US201600143279
proquest_miscellaneous_1548192036
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-22
PublicationDateYYYYMMDD 2014-07-22
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
McCord RA (e_1_3_3_20_2) 2009; 1
Kondoh H (e_1_3_3_37_2) 2005; 65
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
2047879 - Science. 1991 Jun 21;252(5013):1708-11
21669942 - J Mol Cell Biol. 2011 Oct;3(5):276-82
19410540 - Cell. 2009 May 1;137(3):413-31
16439206 - Cell. 2006 Jan 27;124(2):315-29
18849969 - Nature. 2008 Nov 13;456(7219):269-73
18951090 - Mol Cell. 2008 Oct 24;32(2):221-31
20543840 - Nat Cell Biol. 2010 Jul;12(7):665-75
20847051 - J Biol Chem. 2010 Nov 19;285(47):36776-84
23142079 - Mol Cell. 2012 Dec 28;48(6):900-13
21565617 - Cell. 2011 May 13;145(4):607-21
17767907 - Cell Metab. 2007 Sep;6(3):208-16
11099028 - Nature. 2000 Nov 16;408(6810):307-10
16154098 - Cell Metab. 2005 Sep;2(3):153-63
15059920 - Cancer Res. 2004 Apr 1;64(7):2627-33
25261555 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4394
20157594 - Aging (Albany NY). 2009 Jan;1(1):109-21
15516961 - Nat Rev Cancer. 2004 Nov;4(11):891-9
14976264 - Science. 2004 Mar 26;303(5666):2011-5
23343762 - Cell Cycle. 2013 Mar 1;12(5):753-61
18391940 - Nat Cell Biol. 2008 May;10(5):611-8
10217147 - Nature. 1999 Apr 15;398(6728):630-4
25261554 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4395
20816089 - Cell Metab. 2010 Sep 8;12(3):224-36
15220471 - Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10042-7
21307849 - Nature. 2011 Feb 17;470(7334):359-65
24280180 - Cancer Metab. 2013 Feb 04;1(1):9
14980222 - Cell. 2004 Feb 20;116(4):551-63
20829486 - Science. 2010 Sep 10;329(5997):1348-53
21723500 - Cell Metab. 2011 Jul 6;14(1):9-19
15665293 - Cancer Res. 2005 Jan 1;65(1):177-85
23028355 - PLoS Genet. 2012 Sep;8(9):e1002948
21336310 - Nat Cell Biol. 2011 Mar;13(3):310-6
20141841 - Cell. 2010 Jan 22;140(2):280-93
16839880 - Cell. 2006 Jul 14;126(1):107-20
11696581 - J Clin Invest. 2001 Nov;108(9):1359-67
22367546 - Nature. 2012 Mar 8;483(7388):218-21
21680843 - Science. 2011 Jun 17;332(6036):1443-6
17024043 - Nature. 2006 Oct 5;443(7111):E10-1
15692560 - EMBO J. 2005 Mar 9;24(5):1021-32
16079181 - Mol Biol Cell. 2005 Oct;16(10):4623-35
References_xml – ident: e_1_3_3_35_2
  doi: 10.1371/journal.pgen.1002948
– ident: e_1_3_3_16_2
  doi: 10.1016/j.cmet.2005.08.004
– ident: e_1_3_3_23_2
  doi: 10.1016/j.cell.2009.12.041
– ident: e_1_3_3_11_2
  doi: 10.1172/JCI200112876
– ident: e_1_3_3_2_2
  doi: 10.1016/j.cell.2009.04.037
– volume: 65
  start-page: 177
  year: 2005
  ident: e_1_3_3_37_2
  article-title: Glycolytic enzymes can modulate cellular life span
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.177.65.1
– ident: e_1_3_3_38_2
  doi: 10.1038/ncb1724
– ident: e_1_3_3_18_2
  doi: 10.1016/S0092-8674(04)00126-6
– ident: e_1_3_3_29_2
  doi: 10.1093/jmcb/mjr013
– ident: e_1_3_3_30_2
  doi: 10.1016/j.cell.2011.03.043
– ident: e_1_3_3_12_2
  doi: 10.1016/j.cmet.2007.08.006
– ident: e_1_3_3_34_2
  doi: 10.1016/j.cmet.2010.06.009
– ident: e_1_3_3_33_2
  doi: 10.1074/jbc.M110.168039
– ident: e_1_3_3_14_2
  doi: 10.1016/j.molcel.2008.09.013
– ident: e_1_3_3_15_2
  doi: 10.1126/science.1094637
– ident: e_1_3_3_25_2
  doi: 10.1016/j.cell.2005.11.044
– ident: e_1_3_3_19_2
  doi: 10.1091/mbc.e05-01-0033
– ident: e_1_3_3_26_2
  doi: 10.1016/j.molcel.2012.09.030
– ident: e_1_3_3_4_2
  doi: 10.1158/0008-5472.CAN-03-0846
– ident: e_1_3_3_24_2
  doi: 10.1038/nature10815
– ident: e_1_3_3_10_2
  doi: 10.1038/nature05288
– ident: e_1_3_3_31_2
  doi: 10.1038/sj.emboj.7600570
– ident: e_1_3_3_8_2
  doi: 10.4161/cc.23597
– ident: e_1_3_3_36_2
  doi: 10.1038/nrc1478
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.0400593101
– ident: e_1_3_3_1_2
  doi: 10.1038/35042675
– ident: e_1_3_3_22_2
  doi: 10.1126/science.1192049
– ident: e_1_3_3_7_2
  doi: 10.1186/2049-3002-1-9
– volume: 1
  start-page: 109
  year: 2009
  ident: e_1_3_3_20_2
  article-title: SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair
  publication-title: Aging (Albany, NY Online)
– ident: e_1_3_3_13_2
  doi: 10.1038/ncb2069
– ident: e_1_3_3_21_2
  doi: 10.1126/science.1202723
– ident: e_1_3_3_9_2
  doi: 10.1016/j.cmet.2011.06.003
– ident: e_1_3_3_32_2
  doi: 10.1038/nature07349
– ident: e_1_3_3_27_2
  doi: 10.1126/science.2047879
– ident: e_1_3_3_3_2
  doi: 10.1016/j.cell.2006.05.036
– ident: e_1_3_3_5_2
  doi: 10.1038/ncb2172
– ident: e_1_3_3_28_2
  doi: 10.1038/19328
– ident: e_1_3_3_6_2
  doi: 10.1038/nature09787
– reference: 15059920 - Cancer Res. 2004 Apr 1;64(7):2627-33
– reference: 10217147 - Nature. 1999 Apr 15;398(6728):630-4
– reference: 11696581 - J Clin Invest. 2001 Nov;108(9):1359-67
– reference: 15692560 - EMBO J. 2005 Mar 9;24(5):1021-32
– reference: 23028355 - PLoS Genet. 2012 Sep;8(9):e1002948
– reference: 16439206 - Cell. 2006 Jan 27;124(2):315-29
– reference: 20816089 - Cell Metab. 2010 Sep 8;12(3):224-36
– reference: 15516961 - Nat Rev Cancer. 2004 Nov;4(11):891-9
– reference: 20157594 - Aging (Albany NY). 2009 Jan;1(1):109-21
– reference: 11099028 - Nature. 2000 Nov 16;408(6810):307-10
– reference: 21680843 - Science. 2011 Jun 17;332(6036):1443-6
– reference: 16154098 - Cell Metab. 2005 Sep;2(3):153-63
– reference: 25261554 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4395
– reference: 21336310 - Nat Cell Biol. 2011 Mar;13(3):310-6
– reference: 21307849 - Nature. 2011 Feb 17;470(7334):359-65
– reference: 15220471 - Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10042-7
– reference: 14976264 - Science. 2004 Mar 26;303(5666):2011-5
– reference: 21565617 - Cell. 2011 May 13;145(4):607-21
– reference: 17024043 - Nature. 2006 Oct 5;443(7111):E10-1
– reference: 21723500 - Cell Metab. 2011 Jul 6;14(1):9-19
– reference: 17767907 - Cell Metab. 2007 Sep;6(3):208-16
– reference: 16079181 - Mol Biol Cell. 2005 Oct;16(10):4623-35
– reference: 22367546 - Nature. 2012 Mar 8;483(7388):218-21
– reference: 2047879 - Science. 1991 Jun 21;252(5013):1708-11
– reference: 18951090 - Mol Cell. 2008 Oct 24;32(2):221-31
– reference: 18391940 - Nat Cell Biol. 2008 May;10(5):611-8
– reference: 20829486 - Science. 2010 Sep 10;329(5997):1348-53
– reference: 20847051 - J Biol Chem. 2010 Nov 19;285(47):36776-84
– reference: 14980222 - Cell. 2004 Feb 20;116(4):551-63
– reference: 18849969 - Nature. 2008 Nov 13;456(7219):269-73
– reference: 23142079 - Mol Cell. 2012 Dec 28;48(6):900-13
– reference: 16839880 - Cell. 2006 Jul 14;126(1):107-20
– reference: 24280180 - Cancer Metab. 2013 Feb 04;1(1):9
– reference: 19410540 - Cell. 2009 May 1;137(3):413-31
– reference: 25261555 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4394
– reference: 23343762 - Cell Cycle. 2013 Mar 1;12(5):753-61
– reference: 15665293 - Cancer Res. 2005 Jan 1;65(1):177-85
– reference: 21669942 - J Mol Cell Biol. 2011 Oct;3(5):276-82
– reference: 20543840 - Nat Cell Biol. 2010 Jul;12(7):665-75
– reference: 20141841 - Cell. 2010 Jan 22;140(2):280-93
SSID ssj0009580
Score 2.5437522
Snippet In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but...
Beyond its canonical functions in processes such as cell-cycle arrest, apoptosis, and senescence, the tumor suppressor p53 has been increasingly implicated in...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10684
SubjectTerms Acetylation
Animals
Antibodies
Biological Sciences
Blood Glucose - metabolism
Cell lines
Cell nucleus
Cell Nucleus - metabolism
Cellular immunity
Cytoplasm
Down regulation
Down-Regulation - genetics
Enzymes
Forkhead Box Protein O1
Forkhead Transcription Factors - metabolism
Gene expression regulation
Gluconeogenesis
Gluconeogenesis - genetics
Glucose
glucose-6-phosphatase
Glucose-6-Phosphatase - genetics
Glucose-6-Phosphatase - metabolism
glycolysis
HCT116 Cells
Hep G2 cells
histone deacetylase
Humans
knockout mutants
Mice
Mice, Inbred C57BL
Mice, Knockout
Models, Biological
NAD (coenzyme)
oxidative phosphorylation
Phosphoenolpyruvate Carboxykinase (ATP) - genetics
Phosphoenolpyruvate Carboxykinase (ATP) - metabolism
Phosphorylation
Plasmids
Protein Binding
Protein expression
Protein Transport
Sirtuins - genetics
Sirtuins - metabolism
transcription factors
Transcription, Genetic
Tumor Suppressor Protein p53 - metabolism
Tumors
Title Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion
URI https://www.jstor.org/stable/23803697
http://www.pnas.org/content/111/29/10684.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25009184
https://www.proquest.com/docview/1549957037
https://www.proquest.com/docview/1548192036
https://www.proquest.com/docview/1566841881
https://www.proquest.com/docview/1803094102
https://pubmed.ncbi.nlm.nih.gov/PMC4115576
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5RAFJ9s68WLsWotWs2YeKgh1B0YGDg2ps1q6nZj2WTjhQAL240VyLIk1qN_ue8Nw8eutaleJhsYZoD32_fFm98Q8hYDrijG1e0pjyBAEcKIrGGIjRklzBxySbHxeeyMpvzTzJ4NBr96VUvVOjqOf966ruR_pArHQK64SvYfJNsOCgfgN8gXWpAwtPeTcfU9X-llVchqVvhZ2JYe53mBTMmJWrh2-fGL76CLuaq3nU90WaaeJfkC9dyyRA-0qKvysoUO5uiC6RnSHIcrPfkRX1dlIzvlxE5ao1c2JQbjJqd40q1QUWqj1A19Mu72O25T1JPGasryDgm0vMvv131GVVdJFMqs7tflTaiuU8kKxjELavbzlxAFGy6vl023Clip2xpppqcXxxCoutzA1utpV3m0Z6rb83_YAVBcuHlxFpZgCsDDgThRTbLBuD2-CM6m5-eBfzrzd8gDE0INWRw66hM3u_UyJnXjDT2UsN5vDb_h2eykYd6UuCJvLnS9LYbZLsXt-Tb-Y_JIBSX0pEbYHhkk2ROy18iPHilu8ndPyTcJOdpBjgLkaAc5ipCjEnJ0ndMGcnQLcjS6oS3kqIQcVZCjLeSeEf_s1P8wMtR-HUZs2-7aYAn4fs58aCaezQXnVsKZmzKIIdI5S0Qs5nPwJlnIIUiO49SNmHAjj89T0Ak2GIJ9spvBrRwQ6nAX3P7Esofg77uxHYUsjBzkQQKHfW7ZGjluXnUQKy573FLlOpA1FcIK8IUHnWw0ctReUNQ0Ln_vegCyC8IFGNlgemkiBSOSYJrC08i-FGg7BPi74AF6QiOaHKUdGqJq0wskXjVy2Ig9ULoDpsO0DJLfwaVv2tOg2fFzXQjiqGQfZCuECe7q48AUzHXZHX1c_IzK4fE08rxGW_cANiCc4U2KDRy2HZB9fvNMtrySLPTwwmxbOC_uMe9L8rBTBodkd72qklfgy6-j1_LP9htGy-8W
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+suppressor+p53+cooperates+with+SIRT6+to+regulate+gluconeogenesis+by+promoting+FoxO1+nuclear+exclusion&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhang%2C+Ping&rft.au=Tu%2C+Bo&rft.au=Wang%2C+Hua&rft.au=Cao%2C+Ziyang&rft.date=2014-07-22&rft.issn=0027-8424&rft.volume=111&rft.issue=29+p.10684-10689&rft.spage=10684&rft.epage=10689&rft_id=info:doi/10.1073%2Fpnas.1411026111&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F29.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F29.cover.gif