Evolutionary origin of insect–Wolbachia nutritional mutualism

Obligate insect–bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been d...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 28; pp. 10257 - 10262
Main Authors Nikoh, Naruo, Hosokawa, Takahiro, Moriyama, Minoru, Oshima, Kenshiro, Hattori, Masahira, Fukatsu, Takema
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.07.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Obligate insect–bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect– Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius , designated as w Cle, was shown to be essential for host’s growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of w Cle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia . Nutritional and physiological experiments, in which w Cle-infected and w Cle-cured bedbugs of the same genetic background were fed on B-vitamin–manipulated blood meals via an artificial feeding system, demonstrated that w Cle certainly synthesizes biotin, and the w Cle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug– Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage.
AbstractList Obligate insect-bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect-Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius, designated as wCle, was shown to be essential for host's growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of wCle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia. Nutritional and physiological experiments, in whichwCle-infected and wCle-cured bedbugs of the same genetic background were fed on B-vitamin-manipulated blood meals via an artificial feeding system, demonstrated that wCle certainly synthesizes biotin, and thewCle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug-Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage.
How sophisticated mutualism has arisen from less-intimate associations is of general interest. Here we address this evolutionary issue by looking into the bedbug. Wolbachia endosymbionts are generally regarded as facultative/parasitic bacterial associates for their insect hosts, but in the bedbug, exceptionally, Wolbachia supports the host’s growth and survival via provisioning of vitamins. In the bedbug’s Wolbachia genome, we identified a gene cluster encoding the complete synthetic pathway for biotin (vitamin B7), which is not present in other Wolbachia genomes and is presumably acquired via lateral transfer from a coinfecting endosymbiont. The Wolbachia -provisioned biotin contributes to the bedbug’s fitness significantly, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in the endosymbiont lineage. Obligate insect–bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect– Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius , designated as w Cle, was shown to be essential for host’s growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of w Cle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia . Nutritional and physiological experiments, in which w Cle-infected and w Cle-cured bedbugs of the same genetic background were fed on B-vitamin–manipulated blood meals via an artificial feeding system, demonstrated that w Cle certainly synthesizes biotin, and the w Cle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug– Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage.
Obligate insect-bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect-Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius, designated as wCle, was shown to be essential for host's growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of wCle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia. Nutritional and physiological experiments, in which wCle-infected and wCle-cured bedbugs of the same genetic background were fed on B-vitamin-manipulated blood meals via an artificial feeding system, demonstrated that wCle certainly synthesizes biotin, and the wCle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug-Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage.
Obligate insect–bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect– Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius , designated as w Cle, was shown to be essential for host’s growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of w Cle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia . Nutritional and physiological experiments, in which w Cle-infected and w Cle-cured bedbugs of the same genetic background were fed on B-vitamin–manipulated blood meals via an artificial feeding system, demonstrated that w Cle certainly synthesizes biotin, and the w Cle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug– Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage.
Obligate insect-bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect-Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius, designated as wCle, was shown to be essential for host's growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of wCle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia. Nutritional and physiological experiments, in which wCle-infected and wCle-cured bedbugs of the same genetic background were fed on B-vitamin-manipulated blood meals via an artificial feeding system, demonstrated that wCle certainly synthesizes biotin, and the wCle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug-Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage.Obligate insect-bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect-Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius, designated as wCle, was shown to be essential for host's growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of wCle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia. Nutritional and physiological experiments, in which wCle-infected and wCle-cured bedbugs of the same genetic background were fed on B-vitamin-manipulated blood meals via an artificial feeding system, demonstrated that wCle certainly synthesizes biotin, and the wCle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug-Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage.
Author Nikoh, Naruo
Fukatsu, Takema
Moriyama, Minoru
Hattori, Masahira
Oshima, Kenshiro
Hosokawa, Takahiro
Author_xml – sequence: 1
  givenname: Naruo
  surname: Nikoh
  fullname: Nikoh, Naruo
– sequence: 2
  givenname: Takahiro
  surname: Hosokawa
  fullname: Hosokawa, Takahiro
– sequence: 3
  givenname: Minoru
  surname: Moriyama
  fullname: Moriyama, Minoru
– sequence: 4
  givenname: Kenshiro
  surname: Oshima
  fullname: Oshima, Kenshiro
– sequence: 5
  givenname: Masahira
  surname: Hattori
  fullname: Hattori, Masahira
– sequence: 6
  givenname: Takema
  surname: Fukatsu
  fullname: Fukatsu, Takema
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24982177$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhi1URC-wZgVEYsNm2nMc37IpQlW5SJVYQMXSOpM4U48y8WAnldjxDrwhT4IzM22hEoKVF-f7f__ncsj2-tA7xp4iHCPo8mTdUzpGARU3AhEfsAOECmdKVLDHDgC4nhnBxT47TGkJAJU08Ijtc1EZjlofsNfn16EbBx96it-KEP3C90VoC98nVw8_v__4Ero51Veein4cot-QXbEah5E6n1aP2cOWuuSe7N4jdvn2_PPZ-9nFx3cfzt5czGopzTBDoQQ22JDkjlrTkGg1iDnUpTNzki1xqqjlnJRypDVv6kbBHBXXTjeZL4_Y6dZ3Pc5XrqldP0Tq7Dr6VQ5uA3n7Z6X3V3YRrq1AEBWqbPBqZxDD19Glwa58ql3XUe_CmCwaKDEPSMO_UakAkZfK_AcqpNZKG5nRl_fQZRhjHuaGMlwKtfn7-e993jZ4s7EMyC1Qx5BSdK2t_UDTWnLbvrMIdroMO12GvbuMrDu5p7ux_rui2EWZCrc0ouUmK7icwjzbIss0hHgXtjSQq9N4XmzrLQVLi-iTvfzEARUACskFL38BHE_ZlQ
CitedBy_id crossref_primary_10_1016_j_meegid_2016_05_034
crossref_primary_10_1128_msphere_00693_23
crossref_primary_10_1038_s41598_021_98738_7
crossref_primary_10_3389_fmicb_2021_649248
crossref_primary_10_3389_fevo_2021_623561
crossref_primary_10_3390_insects8010008
crossref_primary_10_1016_j_molbiopara_2014_07_004
crossref_primary_10_1038_ncomms6117
crossref_primary_10_3389_fcimb_2022_880813
crossref_primary_10_1093_gbe_evy126
crossref_primary_10_1186_s13071_019_3517_5
crossref_primary_10_1038_ncomms10164
crossref_primary_10_1038_ncomms10165
crossref_primary_10_1134_S1022795420060125
crossref_primary_10_1186_s12866_019_1579_3
crossref_primary_10_1098_rspb_2017_2167
crossref_primary_10_1111_1462_2920_14097
crossref_primary_10_1016_j_chom_2021_03_006
crossref_primary_10_1002_ece3_5056
crossref_primary_10_3389_fgene_2019_00838
crossref_primary_10_1093_femsre_fuw028
crossref_primary_10_2108_zs200163
crossref_primary_10_1134_S2079086416060037
crossref_primary_10_3389_fmicb_2016_01867
crossref_primary_10_1093_aesa_saaa053
crossref_primary_10_1093_g3journal_jkac213
crossref_primary_10_1093_gbe_evad164
crossref_primary_10_1264_jsme2_ME16175
crossref_primary_10_1111_mve_12424
crossref_primary_10_1128_mBio_01768_20
crossref_primary_10_3389_fmicb_2024_1416057
crossref_primary_10_1371_journal_pone_0271444
crossref_primary_10_1093_femsec_fix163
crossref_primary_10_1111_1462_2920_15396
crossref_primary_10_3390_genes8100247
crossref_primary_10_1111_jdv_14721
crossref_primary_10_1016_j_bbamem_2015_05_019
crossref_primary_10_1371_journal_pone_0292229
crossref_primary_10_1038_ismej_2017_144
crossref_primary_10_1093_jee_toad098
crossref_primary_10_1111_mec_13832
crossref_primary_10_1098_rstb_2023_0122
crossref_primary_10_18699_vjgb_25_10
crossref_primary_10_4236_ojas_2019_93027
crossref_primary_10_1098_rsos_230288
crossref_primary_10_1111_1758_2229_70054
crossref_primary_10_3390_insects12020093
crossref_primary_10_1098_rspb_2024_1564
crossref_primary_10_1111_evo_14429
crossref_primary_10_1038_s41598_022_09015_0
crossref_primary_10_3390_insects11060340
crossref_primary_10_1038_s41579_023_00918_x
crossref_primary_10_1111_1462_2920_15169
crossref_primary_10_1099_mgen_0_000805
crossref_primary_10_1186_s40168_022_01276_1
crossref_primary_10_1186_s12915_020_00802_7
crossref_primary_10_1038_s41559_023_02058_0
crossref_primary_10_1146_annurev_micro_041020_024616
crossref_primary_10_1186_s40168_023_01462_9
crossref_primary_10_1099_mgen_0_000487
crossref_primary_10_3389_fmicb_2022_962252
crossref_primary_10_1093_jee_toae174
crossref_primary_10_1093_gbe_evv188
crossref_primary_10_1371_journal_pone_0127555
crossref_primary_10_3390_microorganisms12050855
crossref_primary_10_1007_s13744_016_0388_8
crossref_primary_10_1016_j_cub_2021_11_065
crossref_primary_10_1093_ee_nvy189
crossref_primary_10_1093_jme_tjv055
crossref_primary_10_3390_ijms241713245
crossref_primary_10_1093_femsec_fiab117
crossref_primary_10_3389_fmicb_2021_695346
crossref_primary_10_1128_mSystems_00141_17
crossref_primary_10_1017_S0031182018000793
crossref_primary_10_3390_genes14081545
crossref_primary_10_24072_pci_evolbiol_100629
crossref_primary_10_3390_ijms21218064
crossref_primary_10_1111_1462_2920_16180
crossref_primary_10_3390_ijms22115951
crossref_primary_10_1093_femsec_fiy235
crossref_primary_10_1002_ps_4504
crossref_primary_10_1007_s00709_019_01377_z
crossref_primary_10_1016_j_cois_2017_07_012
crossref_primary_10_1016_j_ijpara_2024_07_001
crossref_primary_10_1186_s40168_023_01702_y
crossref_primary_10_1038_s41598_018_29682_2
crossref_primary_10_3389_fevo_2015_00153
crossref_primary_10_1186_s12915_021_01124_y
crossref_primary_10_3390_insects14040392
crossref_primary_10_1155_2024_3476951
crossref_primary_10_1534_g3_117_042184
crossref_primary_10_1093_gbe_evy033
crossref_primary_10_1038_s41598_020_67428_1
crossref_primary_10_1007_s13752_017_0287_1
crossref_primary_10_3390_microorganisms8010008
crossref_primary_10_2147_RRTM_S274684
crossref_primary_10_1371_journal_ppat_1004892
crossref_primary_10_1128_AEM_01487_15
crossref_primary_10_31993_2308_6459_2021_104_1_14945
crossref_primary_10_1016_j_pt_2015_10_011
crossref_primary_10_1038_s41396_019_0559_9
crossref_primary_10_1016_j_pt_2020_07_007
crossref_primary_10_3390_microorganisms9122422
crossref_primary_10_1002_jez_b_22915
crossref_primary_10_1016_j_ttbdis_2021_101746
crossref_primary_10_3389_fmicb_2018_01167
crossref_primary_10_7554_eLife_72747
crossref_primary_10_1007_s00438_020_01662_0
crossref_primary_10_1038_s41437_022_00540_2
crossref_primary_10_1111_joa_13712
crossref_primary_10_1099_jgv_0_001639
crossref_primary_10_3389_fphys_2022_932130
crossref_primary_10_1007_s10530_016_1298_8
crossref_primary_10_3389_fvets_2019_00115
crossref_primary_10_1186_s40168_020_00921_x
crossref_primary_10_1098_rspb_2023_0855
crossref_primary_10_1371_journal_pone_0193788
crossref_primary_10_1007_s12600_021_00905_z
crossref_primary_10_1089_vbz_2018_2432
crossref_primary_10_1186_s12864_023_09726_2
crossref_primary_10_1017_S0031182018000574
crossref_primary_10_1016_j_pt_2016_05_002
crossref_primary_10_3390_insects14040357
crossref_primary_10_1093_femspd_ftx115
crossref_primary_10_3390_ijms241813915
crossref_primary_10_3389_fmicb_2018_02482
crossref_primary_10_1134_S002626171802011X
crossref_primary_10_3390_vaccines9040385
crossref_primary_10_3920_JIFF2020_0097
crossref_primary_10_1093_jme_tjy113
crossref_primary_10_1002_mbo3_390
crossref_primary_10_1111_brv_12663
crossref_primary_10_1038_s43705_022_00153_0
crossref_primary_10_3389_fmicb_2021_694466
crossref_primary_10_1016_j_mib_2016_04_007
crossref_primary_10_1038_s41598_022_14620_0
crossref_primary_10_1186_s12985_021_01685_y
crossref_primary_10_1111_1744_7917_12827
crossref_primary_10_1128_AEM_01150_14
crossref_primary_10_1073_pnas_1504031112
crossref_primary_10_1111_1744_7917_12943
crossref_primary_10_1371_journal_pcbi_1010621
crossref_primary_10_1007_s00248_022_01964_3
crossref_primary_10_1128_spectrum_04286_23
crossref_primary_10_1111_mec_16053
crossref_primary_10_1186_s12866_019_1646_9
crossref_primary_10_1098_rsob_150099
crossref_primary_10_1089_gtmb_2021_0088
crossref_primary_10_1371_journal_pone_0284704
crossref_primary_10_3390_microorganisms8091438
crossref_primary_10_1038_srep34955
crossref_primary_10_1038_s41598_022_14505_2
crossref_primary_10_1128_mbio_02990_22
crossref_primary_10_1186_s12866_024_03470_7
crossref_primary_10_1038_s41598_022_20968_0
crossref_primary_10_3389_fcimb_2017_00353
crossref_primary_10_1093_gbe_evv016
crossref_primary_10_3389_fcimb_2017_00236
crossref_primary_10_1016_j_napere_2024_100110
crossref_primary_10_1111_1462_2920_14804
crossref_primary_10_1038_s41579_023_00901_6
crossref_primary_10_1111_1744_7917_13481
crossref_primary_10_1186_s13071_019_3694_2
crossref_primary_10_1038_ismej_2016_32
crossref_primary_10_1111_1462_2920_16544
crossref_primary_10_7717_peerj_1840
crossref_primary_10_3390_ijms25094851
crossref_primary_10_1093_gbe_evy072
crossref_primary_10_1038_nmicrobiol_2016_241
crossref_primary_10_1016_j_isci_2023_107930
crossref_primary_10_1111_1744_7917_12729
crossref_primary_10_1242_bio_023895
crossref_primary_10_1016_j_nmni_2025_101578
crossref_primary_10_1128_msystems_00140_25
crossref_primary_10_1111_mec_14094
crossref_primary_10_3389_fmicb_2022_1044771
crossref_primary_10_3732_ajb_1600154
crossref_primary_10_1128_mBio_01732_15
crossref_primary_10_3389_fmicb_2016_01920
crossref_primary_10_3390_d15020126
crossref_primary_10_3389_fmicb_2022_867392
crossref_primary_10_1016_j_isci_2023_107108
crossref_primary_10_1371_journal_ppat_1009859
crossref_primary_10_1099_mgen_0_001045
crossref_primary_10_1111_eea_12990
crossref_primary_10_1093_gbe_evu262
crossref_primary_10_1007_s10519_018_9937_8
crossref_primary_10_1111_jeb_14216
crossref_primary_10_3389_fmicb_2024_1513314
crossref_primary_10_7717_peerj_4099
crossref_primary_10_1128_mBio_00859_17
crossref_primary_10_3390_microorganisms9020464
crossref_primary_10_1128_AEM_00961_15
crossref_primary_10_1016_j_actatropica_2018_07_005
crossref_primary_10_1038_s41598_017_00814_4
crossref_primary_10_1186_s13071_021_04742_1
crossref_primary_10_1016_j_ttbdis_2020_101434
crossref_primary_10_7717_peerj_6039
crossref_primary_10_1371_journal_pntd_0007678
crossref_primary_10_1016_j_cois_2024_101270
crossref_primary_10_1038_srep35959
crossref_primary_10_1128_JB_00589_19
crossref_primary_10_1016_j_syapm_2015_05_005
crossref_primary_10_1093_femsec_fiy082
crossref_primary_10_1111_mec_14519
crossref_primary_10_1186_s12862_017_0939_6
crossref_primary_10_1038_s41522_024_00539_z
crossref_primary_10_1093_gbe_evy173
crossref_primary_10_3389_fmicb_2022_1031535
crossref_primary_10_1016_j_vetpar_2020_109297
crossref_primary_10_24072_pcjournal_362
crossref_primary_10_1111_eea_12768
crossref_primary_10_1093_gbe_evaa032
crossref_primary_10_3389_fmicb_2023_1336919
crossref_primary_10_1016_j_cub_2018_04_038
crossref_primary_10_1093_gbe_evv108
crossref_primary_10_1080_07388551_2024_2449403
crossref_primary_10_1186_s12866_020_01863_y
crossref_primary_10_1002_ps_7200
crossref_primary_10_3389_fmicb_2022_905826
crossref_primary_10_1242_jeb_247168
crossref_primary_10_1534_g3_116_028449
crossref_primary_10_1111_nyas_12740
crossref_primary_10_3389_fmicb_2020_00468
crossref_primary_10_1186_s40168_022_01240_z
crossref_primary_10_1093_gbe_evv176
crossref_primary_10_1002_mbo3_777
crossref_primary_10_1016_j_jip_2018_09_002
crossref_primary_10_1038_s41598_018_25450_4
crossref_primary_10_1111_mec_16800
crossref_primary_10_1371_journal_pbio_3001972
crossref_primary_10_24072_pcjournal_273
crossref_primary_10_1016_j_jinsphys_2020_104092
crossref_primary_10_1016_j_jtbi_2017_05_016
crossref_primary_10_1093_gbe_evad073
crossref_primary_10_1016_j_actatropica_2023_107086
crossref_primary_10_3390_insects13090788
crossref_primary_10_1002_cm_21891
crossref_primary_10_1242_jeb_220079
crossref_primary_10_24072_pcjournal_278
crossref_primary_10_1099_mgen_0_000943
crossref_primary_10_1002_ps_8272
crossref_primary_10_1016_j_pt_2015_06_014
crossref_primary_10_1186_s40168_024_01841_w
crossref_primary_10_1093_gbe_evaa006
crossref_primary_10_1007_s10340_023_01739_w
crossref_primary_10_3389_fevo_2017_00174
crossref_primary_10_1242_jeb_095059
crossref_primary_10_3390_ecologies2010004
crossref_primary_10_1111_jen_13056
crossref_primary_10_7717_peerj_10646
crossref_primary_10_1093_molbev_msx073
crossref_primary_10_3390_biology11071039
crossref_primary_10_1111_1462_2920_13887
crossref_primary_10_3389_fmicb_2024_1386458
crossref_primary_10_1038_s41396_020_0704_5
crossref_primary_10_1091_mbc_e17_02_0132
crossref_primary_10_1371_journal_ppat_1010120
crossref_primary_10_1653_024_103_00408
crossref_primary_10_1038_s41598_021_87946_w
crossref_primary_10_1002_ece3_1580
crossref_primary_10_1007_s00248_024_02403_1
crossref_primary_10_1051_parasite_2016031
crossref_primary_10_1093_gbe_evv158
crossref_primary_10_1534_genetics_120_303330
crossref_primary_10_1093_gbe_evx217
crossref_primary_10_1038_s41396_020_0717_0
crossref_primary_10_1186_s12864_019_5492_9
crossref_primary_10_1093_femsle_fnz232
crossref_primary_10_1038_s41396_020_00877_8
crossref_primary_10_7554_eLife_39209
crossref_primary_10_3390_genes11091063
crossref_primary_10_1007_s13199_016_0388_9
crossref_primary_10_1186_s12866_019_1638_9
crossref_primary_10_1186_s12862_021_01906_6
crossref_primary_10_1073_pnas_1712857114
crossref_primary_10_1016_j_tim_2019_02_002
crossref_primary_10_1007_s44297_024_00038_9
crossref_primary_10_1016_j_jip_2024_108230
crossref_primary_10_1016_j_meegid_2014_12_019
crossref_primary_10_1111_jeb_13974
crossref_primary_10_1128_AAC_00005_20
crossref_primary_10_3390_d14121064
crossref_primary_10_1007_s10750_019_04175_z
crossref_primary_10_1038_s41579_021_00550_7
crossref_primary_10_1016_j_biocontrol_2024_105564
crossref_primary_10_1038_s41598_018_25545_y
crossref_primary_10_1111_mec_14391
crossref_primary_10_1186_s40168_018_0536_y
crossref_primary_10_3390_insects11080547
crossref_primary_10_1007_s11274_019_2599_8
crossref_primary_10_1007_s10340_024_01783_0
crossref_primary_10_1128_mbio_02225_22
Cites_doi 10.1073/pnas.1003379107
10.1186/1741-7007-6-27
10.1073/pnas.1121190109
10.1073/pnas.0911476107
10.1016/j.tig.2011.01.005
10.1093/nar/gki198
10.1146/annurev.genet.41.110306.130119
10.1038/nrg931
10.1186/1471-2164-13-268
10.1101/gr.4336406
10.1093/molbev/msi011
10.1016/S0966-842X(97)01110-4
10.1111/j.1574-6968.2010.01960.x
10.1016/j.ijpara.2012.09.004
10.1038/35024074
10.1371/journal.pgen.1003012
10.1515/9781400835430
10.1093/bioinformatics/btl446
10.1038/ng986
10.1038/nrmicro1969
10.1056/NEJMoa0900863
10.1007/s00018-005-4539-z
10.1201/9780203009918
10.1093/oxfordjournals.molbev.a004087
10.1128/genomeA.00027-13
10.1128/JB.06244-11
10.1086/586753
10.1098/rsbl.2011.0704
10.1016/j.cell.2013.05.040
10.1111/j.1574-6968.2008.01110.x
10.1007/BF00260226
10.1038/ng.2585
10.1371/journal.pone.0020843
10.1101/gr.138420.112
10.1126/science.1187113
10.1371/journal.pbio.0030121
10.1093/molbev/msj049
10.1128/AEM.72.4.2997-3004.2006
10.1093/bioinformatics/btg180
10.1016/0022-2011(82)90112-4
10.1016/S0022-1910(98)00104-8
10.1038/hdy.2009.106
10.1038/ismej.2011.125
10.1093/gbe/evr064
10.1098/rspb.2000.1110
ContentType Journal Article
Copyright copyright © 1993—2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jul 15, 2014
Copyright_xml – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jul 15, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1409284111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Virology and AIDS Abstracts
CrossRef
Entomology Abstracts
MEDLINE


AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Evolution of Wolbachia nutritional mutualism
EISSN 1091-6490
EndPage 10262
ExternalDocumentID PMC4104916
3383819351
24982177
10_1073_pnas_1409284111
111_28_10257
23805738
US201600145242
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c558t-14641d1da52eaf8da4f704b0c3e8ba5fa2a9af22a66ea772dcd60b1627e7df8d3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:06:55 EDT 2025
Fri Jul 11 08:20:16 EDT 2025
Fri Jul 11 08:26:27 EDT 2025
Fri Jul 11 02:28:11 EDT 2025
Mon Jun 30 08:28:13 EDT 2025
Thu Apr 03 07:05:57 EDT 2025
Thu Apr 24 22:55:32 EDT 2025
Tue Jul 01 01:53:10 EDT 2025
Wed Nov 11 00:30:17 EST 2020
Thu May 29 08:40:53 EDT 2025
Wed Dec 27 19:25:10 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c558t-14641d1da52eaf8da4f704b0c3e8ba5fa2a9af22a66ea772dcd60b1627e7df8d3
Notes http://dx.doi.org/10.1073/pnas.1409284111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved June 3, 2014 (received for review May 20, 2014)
1N.N., T.H., and M.M. contributed equally to this work.
Author contributions: N.N., T.H., M.M., and T.F. designed research; N.N., T.H., M.M., and K.O. performed research; M.H. and T.F. contributed new reagents/analytic tools; N.N., T.H., M.M., K.O., and M.H. analyzed data; and T.F. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/111/28/10257.full.pdf
PMID 24982177
PQID 1548254670
PQPubID 42026
PageCount 6
ParticipantIDs jstor_primary_23805738
fao_agris_US201600145242
proquest_miscellaneous_1803100970
crossref_citationtrail_10_1073_pnas_1409284111
proquest_miscellaneous_1545776785
proquest_journals_1548254670
pnas_primary_111_28_10257
pubmed_primary_24982177
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4104916
proquest_miscellaneous_1560112368
crossref_primary_10_1073_pnas_1409284111
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-15
PublicationDateYYYYMMDD 2014-07-15
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Wernegreen JJ (e_1_3_4_5_2) 2002; 3
Nakabachi A (e_1_3_4_17_2) 1999; 45
Akman L (e_1_3_4_4_2) 2002; 32
Moran NA (e_1_3_4_6_2) 2008; 42
Usinger RL (e_1_3_4_36_2) 1966
Campillos M (e_1_3_4_16_2) 2006; 16
Ferri E (e_1_3_4_30_2) 2011; 6
Foster J (e_1_3_4_28_2) 2005; 3
Sait M (e_1_3_4_11_2) 2013; 1
Dunning Hotopp JC (e_1_3_4_41_2) 2011; 27
Puchta O (e_1_3_4_19_2) 1955; 17
Moran NA (e_1_3_4_38_2) 2010; 328
Nogge G (e_1_3_4_18_2) 1982; 40
Sjödin A (e_1_3_4_13_2) 2012; 13
Kirkness EF (e_1_3_4_20_2) 2010; 107
Desjardins CA (e_1_3_4_22_2) 2013; 45
Penz T (e_1_3_4_10_2) 2012; 8
Lo N (e_1_3_4_23_2) 2002; 19
Werren JH (e_1_3_4_8_2) 2008; 6
Shigenobu S (e_1_3_4_3_2) 2000; 407
Acuña R (e_1_3_4_40_2) 2012; 109
Ronquist F (e_1_3_4_46_2) 2003; 19
Supali T (e_1_3_4_26_2) 2008; 46
Husnik F (e_1_3_4_42_2) 2013; 153
Duron O (e_1_3_4_24_2) 2008; 6
Hosokawa T (e_1_3_4_32_2) 2012; 6
Stamatakis A (e_1_3_4_45_2) 2006; 22
Tanaka T (e_1_3_4_14_2) 2005; 22
Baldo L (e_1_3_4_25_2) 2006; 23
Salunke BK (e_1_3_4_35_2) 2010; 307
Coulibaly YI (e_1_3_4_29_2) 2009; 361
Dale C (e_1_3_4_33_2) 2006; 72
Bourtzis K (e_1_3_4_2_2) 2003
Hosokawa T (e_1_3_4_9_2) 2010; 107
Zabal-Aguirre M (e_1_3_4_34_2) 2010; 104
Nikoh N (e_1_3_4_43_2) 2011; 3
Andersson JO (e_1_3_4_37_2) 2005; 62
Douglas AE (e_1_3_4_1_2) 2010
Hilgenboecker K (e_1_3_4_7_2) 2008; 281
Katoh K (e_1_3_4_44_2) 2005; 33
Darby AC (e_1_3_4_21_2) 2012; 22
Lefoulon E (e_1_3_4_31_2) 2012; 42
Gillespie JJ (e_1_3_4_12_2) 2012; 194
Altincicek B (e_1_3_4_39_2) 2012; 8
Lawrence JG (e_1_3_4_15_2) 1997; 5
Langworthy NG (e_1_3_4_27_2) 2000; 267
12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4
20402779 - FEMS Microbiol Lett. 2010 Jun;307(1):55-64
21920958 - Biol Lett. 2012 Apr 23;8(2):253-7
16267140 - Mol Biol Evol. 2006 Feb;23(2):437-49
16598007 - Appl Environ Microbiol. 2006 Apr;72(4):2997-3004
21334091 - Trends Genet. 2011 Apr;27(4):157-63
20080750 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):769-74
19738635 - Heredity (Edinb). 2010 Feb;104(2):174-84
15483325 - Mol Biol Evol. 2005 Feb;22(2):243-50
12770389 - J Insect Physiol. 1999 Jan;45(1):1-6
10993077 - Nature. 2000 Sep 7;407(6800):81-6
21737395 - Genome Biol Evol. 2011;3:702-14
22371593 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4197-202
13248062 - Z Parasitenkd. 1955;17(1):1-40
12219091 - Nat Genet. 2002 Nov;32(3):402-7
22727144 - BMC Genomics. 2012;13:268
23791183 - Cell. 2013 Jun 20;153(7):1567-78
18983256 - Annu Rev Genet. 2008;42:165-90
15661851 - Nucleic Acids Res. 2005;33(2):511-8
12415315 - Nat Rev Genet. 2002 Nov;3(11):850-61
22056929 - J Bacteriol. 2012 Jan;194(2):376-94
16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90
22919073 - Genome Res. 2012 Dec;22(12):2467-77
19812401 - N Engl J Med. 2009 Oct 8;361(15):1448-58
18312577 - FEMS Microbiol Lett. 2008 Apr;281(2):215-20
20566863 - Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12168-73
10885510 - Proc Biol Sci. 2000 Jun 7;267(1448):1063-9
18419441 - Clin Infect Dis. 2008 May 1;46(9):1385-93
23472224 - Genome Announc. 2013 Jan;1(1):null
11861893 - Mol Biol Evol. 2002 Mar;19(3):341-6
15780005 - PLoS Biol. 2005 Apr;3(4):e121
16449501 - Genome Res. 2006 Mar;16(3):374-82
9294891 - Trends Microbiol. 1997 Sep;5(9):355-9
20431015 - Science. 2010 Apr 30;328(5978):624-7
18577218 - BMC Biol. 2008;6:27
23133394 - PLoS Genet. 2012;8(10):e1003012
15761667 - Cell Mol Life Sci. 2005 Jun;62(11):1182-97
23525074 - Nat Genet. 2013 May;45(5):495-500
21938025 - ISME J. 2012 Mar;6(3):577-87
23041355 - Int J Parasitol. 2012 Oct;42(11):1025-36
21731626 - PLoS One. 2011;6(6):e20843
18794912 - Nat Rev Microbiol. 2008 Oct;6(10):741-51
References_xml – volume: 107
  start-page: 12168
  year: 2010
  ident: e_1_3_4_20_2
  article-title: Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1003379107
– volume: 6
  start-page: 27
  year: 2008
  ident: e_1_3_4_24_2
  article-title: The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-6-27
– volume: 109
  start-page: 4197
  year: 2012
  ident: e_1_3_4_40_2
  article-title: Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1121190109
– volume: 107
  start-page: 769
  year: 2010
  ident: e_1_3_4_9_2
  article-title: Wolbachia as a bacteriocyte-associated nutritional mutualist
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0911476107
– volume: 27
  start-page: 157
  year: 2011
  ident: e_1_3_4_41_2
  article-title: Horizontal gene transfer between bacteria and animals
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2011.01.005
– volume: 33
  start-page: 511
  year: 2005
  ident: e_1_3_4_44_2
  article-title: MAFFT version 5: Improvement in accuracy of multiple sequence alignment
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki198
– volume: 42
  start-page: 165
  year: 2008
  ident: e_1_3_4_6_2
  article-title: Genomics and evolution of heritable bacterial symbionts
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.41.110306.130119
– start-page: 585
  volume-title: Monograph of Cimicidae
  year: 1966
  ident: e_1_3_4_36_2
– volume: 3
  start-page: 850
  year: 2002
  ident: e_1_3_4_5_2
  article-title: Genome evolution in bacterial endosymbionts of insects
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg931
– volume: 13
  start-page: 268
  year: 2012
  ident: e_1_3_4_13_2
  article-title: Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-268
– volume: 16
  start-page: 374
  year: 2006
  ident: e_1_3_4_16_2
  article-title: Identification and analysis of evolutionarily cohesive functional modules in protein networks
  publication-title: Genome Res
  doi: 10.1101/gr.4336406
– volume: 22
  start-page: 243
  year: 2005
  ident: e_1_3_4_14_2
  article-title: Evolution of vitamin B6 (pyridoxine) metabolism by gain and loss of genes
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msi011
– volume: 5
  start-page: 355
  year: 1997
  ident: e_1_3_4_15_2
  article-title: Selfish operons and speciation by gene transfer
  publication-title: Trends Microbiol
  doi: 10.1016/S0966-842X(97)01110-4
– volume: 307
  start-page: 55
  year: 2010
  ident: e_1_3_4_35_2
  article-title: Diversity of Wolbachia in Odontotermes spp. (Termitidae) and Coptotermes heimi (Rhinotermitidae) using the multigene approach
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2010.01960.x
– volume: 42
  start-page: 1025
  year: 2012
  ident: e_1_3_4_31_2
  article-title: A new type F Wolbachia from Splendidofilariinae (Onchocercidae) supports the recent emergence of this supergroup
  publication-title: Int J Parasitol
  doi: 10.1016/j.ijpara.2012.09.004
– volume: 407
  start-page: 81
  year: 2000
  ident: e_1_3_4_3_2
  article-title: Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS
  publication-title: Nature
  doi: 10.1038/35024074
– volume: 8
  start-page: e1003012
  year: 2012
  ident: e_1_3_4_10_2
  article-title: Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003012
– start-page: 202
  volume-title: The Symbiotic Habit
  year: 2010
  ident: e_1_3_4_1_2
  doi: 10.1515/9781400835430
– volume: 22
  start-page: 2688
  year: 2006
  ident: e_1_3_4_45_2
  article-title: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl446
– volume: 32
  start-page: 402
  year: 2002
  ident: e_1_3_4_4_2
  article-title: Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia
  publication-title: Nat Genet
  doi: 10.1038/ng986
– volume: 6
  start-page: 741
  year: 2008
  ident: e_1_3_4_8_2
  article-title: Wolbachia: Master manipulators of invertebrate biology
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1969
– volume: 361
  start-page: 1448
  year: 2009
  ident: e_1_3_4_29_2
  article-title: A randomized trial of doxycycline for Mansonella perstans infection
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0900863
– volume: 62
  start-page: 1182
  year: 2005
  ident: e_1_3_4_37_2
  article-title: Lateral gene transfer in eukaryotes
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-005-4539-z
– start-page: 347
  volume-title: Insect Symbiosis
  year: 2003
  ident: e_1_3_4_2_2
  doi: 10.1201/9780203009918
– volume: 19
  start-page: 341
  year: 2002
  ident: e_1_3_4_23_2
  article-title: How many Wolbachia supergroups exist?
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a004087
– volume: 1
  start-page: e00027
  year: 2013
  ident: e_1_3_4_11_2
  article-title: Genome sequence of Lawsonia intracellularis strain N343, isolated from a sow with hemorrhagic proliferative enteropathy
  publication-title: Genome Announc
  doi: 10.1128/genomeA.00027-13
– volume: 194
  start-page: 376
  year: 2012
  ident: e_1_3_4_12_2
  article-title: A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle
  publication-title: J Bacteriol
  doi: 10.1128/JB.06244-11
– volume: 46
  start-page: 1385
  year: 2008
  ident: e_1_3_4_26_2
  article-title: Doxycycline treatment of Brugia malayi-infected persons reduces microfilaremia and adverse reactions after diethylcarbamazine and albendazole treatment
  publication-title: Clin Infect Dis
  doi: 10.1086/586753
– volume: 8
  start-page: 253
  year: 2012
  ident: e_1_3_4_39_2
  article-title: Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae
  publication-title: Biol Lett
  doi: 10.1098/rsbl.2011.0704
– volume: 153
  start-page: 1567
  year: 2013
  ident: e_1_3_4_42_2
  article-title: Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.040
– volume: 281
  start-page: 215
  year: 2008
  ident: e_1_3_4_7_2
  article-title: How many species are infected with Wolbachia?—A statistical analysis of current data
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2008.01110.x
– volume: 17
  start-page: 1
  year: 1955
  ident: e_1_3_4_19_2
  article-title: Experimentelle Untersuchungen über die Bedeutung der Symbiose der Kleiderlaus Pediculus vestimenti Burm
  publication-title: Z Parasitenkunde
  doi: 10.1007/BF00260226
– volume: 45
  start-page: 495
  year: 2013
  ident: e_1_3_4_22_2
  article-title: Genomics of Loa loa, a Wolbachia-free filarial parasite of humans
  publication-title: Nat Genet
  doi: 10.1038/ng.2585
– volume: 6
  start-page: e20843
  year: 2011
  ident: e_1_3_4_30_2
  article-title: New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020843
– volume: 22
  start-page: 2467
  year: 2012
  ident: e_1_3_4_21_2
  article-title: Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis
  publication-title: Genome Res
  doi: 10.1101/gr.138420.112
– volume: 328
  start-page: 624
  year: 2010
  ident: e_1_3_4_38_2
  article-title: Lateral transfer of genes from fungi underlies carotenoid production in aphids
  publication-title: Science
  doi: 10.1126/science.1187113
– volume: 3
  start-page: e121
  year: 2005
  ident: e_1_3_4_28_2
  article-title: The Wolbachia genome of Brugia malayi: Endosymbiont evolution within a human pathogenic nematode
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0030121
– volume: 23
  start-page: 437
  year: 2006
  ident: e_1_3_4_25_2
  article-title: Widespread recombination throughout Wolbachia genomes
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msj049
– volume: 72
  start-page: 2997
  year: 2006
  ident: e_1_3_4_33_2
  article-title: Isolation, pure culture, and characterization of “Candidatus Arsenophonus arthropodicus,” an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.72.4.2997-3004.2006
– volume: 19
  start-page: 1572
  year: 2003
  ident: e_1_3_4_46_2
  article-title: MrBayes 3: Bayesian phylogenetic inference under mixed models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg180
– volume: 40
  start-page: 166
  year: 1982
  ident: e_1_3_4_18_2
  article-title: Experiments on the elimination of symbionts from the tsetse fly, Glossina morsitans morsitans (Diptera: Glossinidae), by antibiotics and lysozyme
  publication-title: J Invertebr Pathol
  doi: 10.1016/0022-2011(82)90112-4
– volume: 45
  start-page: 1
  year: 1999
  ident: e_1_3_4_17_2
  article-title: Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera
  publication-title: J Insect Physiol
  doi: 10.1016/S0022-1910(98)00104-8
– volume: 104
  start-page: 174
  year: 2010
  ident: e_1_3_4_34_2
  article-title: Distribution of Wolbachia infection in Chorthippus parallelus populations within and beyond a Pyrenean hybrid zone
  publication-title: Heredity (Edinb)
  doi: 10.1038/hdy.2009.106
– volume: 6
  start-page: 577
  year: 2012
  ident: e_1_3_4_32_2
  article-title: Reductive genome evolution, host-symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies
  publication-title: ISME J
  doi: 10.1038/ismej.2011.125
– volume: 3
  start-page: 702
  year: 2011
  ident: e_1_3_4_43_2
  article-title: Reductive evolution of bacterial genome in insect gut environment
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evr064
– volume: 267
  start-page: 1063
  year: 2000
  ident: e_1_3_4_27_2
  article-title: Macrofilaricidal activity of tetracycline against the filarial nematode Onchocerca ochengi: Elimination of Wolbachia precedes worm death and suggests a dependent relationship
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2000.1110
– reference: 18794912 - Nat Rev Microbiol. 2008 Oct;6(10):741-51
– reference: 20080750 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):769-74
– reference: 21731626 - PLoS One. 2011;6(6):e20843
– reference: 20431015 - Science. 2010 Apr 30;328(5978):624-7
– reference: 18312577 - FEMS Microbiol Lett. 2008 Apr;281(2):215-20
– reference: 21334091 - Trends Genet. 2011 Apr;27(4):157-63
– reference: 21920958 - Biol Lett. 2012 Apr 23;8(2):253-7
– reference: 21938025 - ISME J. 2012 Mar;6(3):577-87
– reference: 15483325 - Mol Biol Evol. 2005 Feb;22(2):243-50
– reference: 15761667 - Cell Mol Life Sci. 2005 Jun;62(11):1182-97
– reference: 12415315 - Nat Rev Genet. 2002 Nov;3(11):850-61
– reference: 9294891 - Trends Microbiol. 1997 Sep;5(9):355-9
– reference: 22371593 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4197-202
– reference: 23791183 - Cell. 2013 Jun 20;153(7):1567-78
– reference: 16449501 - Genome Res. 2006 Mar;16(3):374-82
– reference: 20402779 - FEMS Microbiol Lett. 2010 Jun;307(1):55-64
– reference: 10993077 - Nature. 2000 Sep 7;407(6800):81-6
– reference: 18577218 - BMC Biol. 2008;6:27
– reference: 23525074 - Nat Genet. 2013 May;45(5):495-500
– reference: 13248062 - Z Parasitenkd. 1955;17(1):1-40
– reference: 23041355 - Int J Parasitol. 2012 Oct;42(11):1025-36
– reference: 22727144 - BMC Genomics. 2012;13:268
– reference: 11861893 - Mol Biol Evol. 2002 Mar;19(3):341-6
– reference: 18983256 - Annu Rev Genet. 2008;42:165-90
– reference: 10885510 - Proc Biol Sci. 2000 Jun 7;267(1448):1063-9
– reference: 12770389 - J Insect Physiol. 1999 Jan;45(1):1-6
– reference: 12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4
– reference: 19812401 - N Engl J Med. 2009 Oct 8;361(15):1448-58
– reference: 19738635 - Heredity (Edinb). 2010 Feb;104(2):174-84
– reference: 21737395 - Genome Biol Evol. 2011;3:702-14
– reference: 15661851 - Nucleic Acids Res. 2005;33(2):511-8
– reference: 15780005 - PLoS Biol. 2005 Apr;3(4):e121
– reference: 23472224 - Genome Announc. 2013 Jan;1(1):null
– reference: 23133394 - PLoS Genet. 2012;8(10):e1003012
– reference: 18419441 - Clin Infect Dis. 2008 May 1;46(9):1385-93
– reference: 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90
– reference: 20566863 - Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12168-73
– reference: 16598007 - Appl Environ Microbiol. 2006 Apr;72(4):2997-3004
– reference: 22056929 - J Bacteriol. 2012 Jan;194(2):376-94
– reference: 16267140 - Mol Biol Evol. 2006 Feb;23(2):437-49
– reference: 22919073 - Genome Res. 2012 Dec;22(12):2467-77
– reference: 12219091 - Nat Genet. 2002 Nov;32(3):402-7
SSID ssj0009580
Score 2.584394
Snippet Obligate insect–bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a...
Obligate insect—bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a...
How sophisticated mutualism has arisen from less-intimate associations is of general interest. Here we address this evolutionary issue by looking into the...
Obligate insect-bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10257
SubjectTerms Animals
bacteria
Base Sequence
Bedbugs - metabolism
Bedbugs - microbiology
Biological Sciences
Biotin
Biotin - biosynthesis
Biotin - genetics
blood meal
Cimex lectularius
Endosymbionts
Evolution
Feeding Behavior - physiology
Genes, Bacterial - physiology
genetic background
Genome, Bacterial - physiology
Genomes
Horizontal gene transfer
hosts
Insect genetics
Insects
microsymbionts
Molecular Sequence Data
multigene family
Mutualism
Nutrition
operon
Operons
reproduction
Rickettsia
Symbiosis
Symbiosis - physiology
Vitamin B
Vitamin B Complex - biosynthesis
Vitamin B Complex - genetics
Vitamins
Wolbachia
Wolbachia - genetics
Wolbachia - metabolism
Title Evolutionary origin of insect–Wolbachia nutritional mutualism
URI https://www.jstor.org/stable/23805738
http://www.pnas.org/content/111/28/10257.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24982177
https://www.proquest.com/docview/1548254670
https://www.proquest.com/docview/1545776785
https://www.proquest.com/docview/1560112368
https://www.proquest.com/docview/1803100970
https://pubmed.ncbi.nlm.nih.gov/PMC4104916
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe68cILYsBYYKAg8TBUpSSOE6dPaEJDE9KqSbRib9ElcWjVkaCmBcETr7zzCfkknOM_TUc3AVIVtc7l4voud2fn7mdCnucBZLTkhVcUCZOg2r4Hvgg94ZeccxFDJGS989koPp2wtxfRRa_3o5O1tFpmg_zb1rqS_5EqtqFcZZXsP0jWMsUG_I7yxSNKGI9_JeOTz5q9TH1TW1wpCIgGzZhJY2Dv68tMpkxCvzLQ-7JkZCUrRwyAoA5Pz607a0zywMisFh6va0-0QWj6Xv98tN7JeDSb11Nlsher2ipM3dRz-NIGqWOYw3S2sOfOsNNf4SOoBP6qXqzsom8znal2dAWNvUavTwRMLnyqCs0uvPfWXnYNM0VnyVQ5tTXM2gwrDdQ15MrOYlikcK2108bfyqj_4RHQhMltjCtoBhLbC72xYbsJs42hi8SGTHbILYozDtra-C5-c6KqmXQ_DUoUD19e4b0R4OyUUJtMVwmfi6TbpjJXM3I7Ic74Lrmj5ybusVK0PdIT1T2yZ4bRPdIQ5S_uk1ddzXOV5rl16SrN-_X9p9U5t6NzrtW5B2Ty5mT8-tTTW3F4eRQlSw_9KQuKoICICiiTAljJfZb5eSiSDKISKAyhpBTiWAAOX5EXsZ8FMeWCF0gf7pPdqq7EAXFDKOIsxE9WUga0AGDAcsCwvSyHLBo6ZGDGL801Tr3cLuUybfMleJjKUUzXA-6QI3vBJwXRcj3pAQokhQ_oQNPJOyrhFeV7dYxTHbLfSsmyMArhEKflYlnjjJkmaauBDjk0sky1XcDbRazdZYL7DnlmT6PVlq_ioBL1qqWJJI5WEt1EE6PzpWGc3ECTSGhffyjv9VCp0PoPsGFCA46d5BvKZQkksvzmmWo2bRHmWeAznDc-um5MHpPb60f9kOwuFyvxBIPzZfa0fWx-A2aN5a4
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+origin+of+insect%E2%80%94Wolbachia+nutritional+mutualism&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Nikoh%2C+Naruo&rft.au=Hosokawa%2C+Takahiro&rft.au=Moriyama%2C+Minoru&rft.au=Oshima%2C+Kenshiro&rft.date=2014-07-15&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=111&rft.issue=28&rft.spage=10257&rft.epage=10262&rft_id=info:doi/10.1073%2Fpnas.1409284111&rft.externalDocID=23805738
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F28.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F28.cover.gif