Evolutionary origin of insect–Wolbachia nutritional mutualism
Obligate insect–bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been d...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 28; pp. 10257 - 10262 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.07.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Obligate insect–bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect– Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius , designated as w Cle, was shown to be essential for host’s growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of w Cle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia . Nutritional and physiological experiments, in which w Cle-infected and w Cle-cured bedbugs of the same genetic background were fed on B-vitamin–manipulated blood meals via an artificial feeding system, demonstrated that w Cle certainly synthesizes biotin, and the w Cle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug– Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage. |
---|---|
AbstractList | Obligate insect-bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect-Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius, designated as wCle, was shown to be essential for host's growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of wCle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia. Nutritional and physiological experiments, in whichwCle-infected and wCle-cured bedbugs of the same genetic background were fed on B-vitamin-manipulated blood meals via an artificial feeding system, demonstrated that wCle certainly synthesizes biotin, and thewCle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug-Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage. How sophisticated mutualism has arisen from less-intimate associations is of general interest. Here we address this evolutionary issue by looking into the bedbug. Wolbachia endosymbionts are generally regarded as facultative/parasitic bacterial associates for their insect hosts, but in the bedbug, exceptionally, Wolbachia supports the host’s growth and survival via provisioning of vitamins. In the bedbug’s Wolbachia genome, we identified a gene cluster encoding the complete synthetic pathway for biotin (vitamin B7), which is not present in other Wolbachia genomes and is presumably acquired via lateral transfer from a coinfecting endosymbiont. The Wolbachia -provisioned biotin contributes to the bedbug’s fitness significantly, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in the endosymbiont lineage. Obligate insect–bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect– Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius , designated as w Cle, was shown to be essential for host’s growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of w Cle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia . Nutritional and physiological experiments, in which w Cle-infected and w Cle-cured bedbugs of the same genetic background were fed on B-vitamin–manipulated blood meals via an artificial feeding system, demonstrated that w Cle certainly synthesizes biotin, and the w Cle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug– Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage. Obligate insect-bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect-Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius, designated as wCle, was shown to be essential for host's growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of wCle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia. Nutritional and physiological experiments, in which wCle-infected and wCle-cured bedbugs of the same genetic background were fed on B-vitamin-manipulated blood meals via an artificial feeding system, demonstrated that wCle certainly synthesizes biotin, and the wCle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug-Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage. Obligate insect–bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect– Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius , designated as w Cle, was shown to be essential for host’s growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of w Cle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia . Nutritional and physiological experiments, in which w Cle-infected and w Cle-cured bedbugs of the same genetic background were fed on B-vitamin–manipulated blood meals via an artificial feeding system, demonstrated that w Cle certainly synthesizes biotin, and the w Cle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug– Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage. Obligate insect-bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect-Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius, designated as wCle, was shown to be essential for host's growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of wCle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia. Nutritional and physiological experiments, in which wCle-infected and wCle-cured bedbugs of the same genetic background were fed on B-vitamin-manipulated blood meals via an artificial feeding system, demonstrated that wCle certainly synthesizes biotin, and the wCle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug-Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage.Obligate insect-bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect-Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius, designated as wCle, was shown to be essential for host's growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of wCle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia. Nutritional and physiological experiments, in which wCle-infected and wCle-cured bedbugs of the same genetic background were fed on B-vitamin-manipulated blood meals via an artificial feeding system, demonstrated that wCle certainly synthesizes biotin, and the wCle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug-Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage. |
Author | Nikoh, Naruo Fukatsu, Takema Moriyama, Minoru Hattori, Masahira Oshima, Kenshiro Hosokawa, Takahiro |
Author_xml | – sequence: 1 givenname: Naruo surname: Nikoh fullname: Nikoh, Naruo – sequence: 2 givenname: Takahiro surname: Hosokawa fullname: Hosokawa, Takahiro – sequence: 3 givenname: Minoru surname: Moriyama fullname: Moriyama, Minoru – sequence: 4 givenname: Kenshiro surname: Oshima fullname: Oshima, Kenshiro – sequence: 5 givenname: Masahira surname: Hattori fullname: Hattori, Masahira – sequence: 6 givenname: Takema surname: Fukatsu fullname: Fukatsu, Takema |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24982177$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1DAUhi1URC-wZgVEYsNm2nMc37IpQlW5SJVYQMXSOpM4U48y8WAnldjxDrwhT4IzM22hEoKVF-f7f__ncsj2-tA7xp4iHCPo8mTdUzpGARU3AhEfsAOECmdKVLDHDgC4nhnBxT47TGkJAJU08Ijtc1EZjlofsNfn16EbBx96it-KEP3C90VoC98nVw8_v__4Ero51Veein4cot-QXbEah5E6n1aP2cOWuuSe7N4jdvn2_PPZ-9nFx3cfzt5czGopzTBDoQQ22JDkjlrTkGg1iDnUpTNzki1xqqjlnJRypDVv6kbBHBXXTjeZL4_Y6dZ3Pc5XrqldP0Tq7Dr6VQ5uA3n7Z6X3V3YRrq1AEBWqbPBqZxDD19Glwa58ql3XUe_CmCwaKDEPSMO_UakAkZfK_AcqpNZKG5nRl_fQZRhjHuaGMlwKtfn7-e993jZ4s7EMyC1Qx5BSdK2t_UDTWnLbvrMIdroMO12GvbuMrDu5p7ux_rui2EWZCrc0ouUmK7icwjzbIss0hHgXtjSQq9N4XmzrLQVLi-iTvfzEARUACskFL38BHE_ZlQ |
CitedBy_id | crossref_primary_10_1016_j_meegid_2016_05_034 crossref_primary_10_1128_msphere_00693_23 crossref_primary_10_1038_s41598_021_98738_7 crossref_primary_10_3389_fmicb_2021_649248 crossref_primary_10_3389_fevo_2021_623561 crossref_primary_10_3390_insects8010008 crossref_primary_10_1016_j_molbiopara_2014_07_004 crossref_primary_10_1038_ncomms6117 crossref_primary_10_3389_fcimb_2022_880813 crossref_primary_10_1093_gbe_evy126 crossref_primary_10_1186_s13071_019_3517_5 crossref_primary_10_1038_ncomms10164 crossref_primary_10_1038_ncomms10165 crossref_primary_10_1134_S1022795420060125 crossref_primary_10_1186_s12866_019_1579_3 crossref_primary_10_1098_rspb_2017_2167 crossref_primary_10_1111_1462_2920_14097 crossref_primary_10_1016_j_chom_2021_03_006 crossref_primary_10_1002_ece3_5056 crossref_primary_10_3389_fgene_2019_00838 crossref_primary_10_1093_femsre_fuw028 crossref_primary_10_2108_zs200163 crossref_primary_10_1134_S2079086416060037 crossref_primary_10_3389_fmicb_2016_01867 crossref_primary_10_1093_aesa_saaa053 crossref_primary_10_1093_g3journal_jkac213 crossref_primary_10_1093_gbe_evad164 crossref_primary_10_1264_jsme2_ME16175 crossref_primary_10_1111_mve_12424 crossref_primary_10_1128_mBio_01768_20 crossref_primary_10_3389_fmicb_2024_1416057 crossref_primary_10_1371_journal_pone_0271444 crossref_primary_10_1093_femsec_fix163 crossref_primary_10_1111_1462_2920_15396 crossref_primary_10_3390_genes8100247 crossref_primary_10_1111_jdv_14721 crossref_primary_10_1016_j_bbamem_2015_05_019 crossref_primary_10_1371_journal_pone_0292229 crossref_primary_10_1038_ismej_2017_144 crossref_primary_10_1093_jee_toad098 crossref_primary_10_1111_mec_13832 crossref_primary_10_1098_rstb_2023_0122 crossref_primary_10_18699_vjgb_25_10 crossref_primary_10_4236_ojas_2019_93027 crossref_primary_10_1098_rsos_230288 crossref_primary_10_1111_1758_2229_70054 crossref_primary_10_3390_insects12020093 crossref_primary_10_1098_rspb_2024_1564 crossref_primary_10_1111_evo_14429 crossref_primary_10_1038_s41598_022_09015_0 crossref_primary_10_3390_insects11060340 crossref_primary_10_1038_s41579_023_00918_x crossref_primary_10_1111_1462_2920_15169 crossref_primary_10_1099_mgen_0_000805 crossref_primary_10_1186_s40168_022_01276_1 crossref_primary_10_1186_s12915_020_00802_7 crossref_primary_10_1038_s41559_023_02058_0 crossref_primary_10_1146_annurev_micro_041020_024616 crossref_primary_10_1186_s40168_023_01462_9 crossref_primary_10_1099_mgen_0_000487 crossref_primary_10_3389_fmicb_2022_962252 crossref_primary_10_1093_jee_toae174 crossref_primary_10_1093_gbe_evv188 crossref_primary_10_1371_journal_pone_0127555 crossref_primary_10_3390_microorganisms12050855 crossref_primary_10_1007_s13744_016_0388_8 crossref_primary_10_1016_j_cub_2021_11_065 crossref_primary_10_1093_ee_nvy189 crossref_primary_10_1093_jme_tjv055 crossref_primary_10_3390_ijms241713245 crossref_primary_10_1093_femsec_fiab117 crossref_primary_10_3389_fmicb_2021_695346 crossref_primary_10_1128_mSystems_00141_17 crossref_primary_10_1017_S0031182018000793 crossref_primary_10_3390_genes14081545 crossref_primary_10_24072_pci_evolbiol_100629 crossref_primary_10_3390_ijms21218064 crossref_primary_10_1111_1462_2920_16180 crossref_primary_10_3390_ijms22115951 crossref_primary_10_1093_femsec_fiy235 crossref_primary_10_1002_ps_4504 crossref_primary_10_1007_s00709_019_01377_z crossref_primary_10_1016_j_cois_2017_07_012 crossref_primary_10_1016_j_ijpara_2024_07_001 crossref_primary_10_1186_s40168_023_01702_y crossref_primary_10_1038_s41598_018_29682_2 crossref_primary_10_3389_fevo_2015_00153 crossref_primary_10_1186_s12915_021_01124_y crossref_primary_10_3390_insects14040392 crossref_primary_10_1155_2024_3476951 crossref_primary_10_1534_g3_117_042184 crossref_primary_10_1093_gbe_evy033 crossref_primary_10_1038_s41598_020_67428_1 crossref_primary_10_1007_s13752_017_0287_1 crossref_primary_10_3390_microorganisms8010008 crossref_primary_10_2147_RRTM_S274684 crossref_primary_10_1371_journal_ppat_1004892 crossref_primary_10_1128_AEM_01487_15 crossref_primary_10_31993_2308_6459_2021_104_1_14945 crossref_primary_10_1016_j_pt_2015_10_011 crossref_primary_10_1038_s41396_019_0559_9 crossref_primary_10_1016_j_pt_2020_07_007 crossref_primary_10_3390_microorganisms9122422 crossref_primary_10_1002_jez_b_22915 crossref_primary_10_1016_j_ttbdis_2021_101746 crossref_primary_10_3389_fmicb_2018_01167 crossref_primary_10_7554_eLife_72747 crossref_primary_10_1007_s00438_020_01662_0 crossref_primary_10_1038_s41437_022_00540_2 crossref_primary_10_1111_joa_13712 crossref_primary_10_1099_jgv_0_001639 crossref_primary_10_3389_fphys_2022_932130 crossref_primary_10_1007_s10530_016_1298_8 crossref_primary_10_3389_fvets_2019_00115 crossref_primary_10_1186_s40168_020_00921_x crossref_primary_10_1098_rspb_2023_0855 crossref_primary_10_1371_journal_pone_0193788 crossref_primary_10_1007_s12600_021_00905_z crossref_primary_10_1089_vbz_2018_2432 crossref_primary_10_1186_s12864_023_09726_2 crossref_primary_10_1017_S0031182018000574 crossref_primary_10_1016_j_pt_2016_05_002 crossref_primary_10_3390_insects14040357 crossref_primary_10_1093_femspd_ftx115 crossref_primary_10_3390_ijms241813915 crossref_primary_10_3389_fmicb_2018_02482 crossref_primary_10_1134_S002626171802011X crossref_primary_10_3390_vaccines9040385 crossref_primary_10_3920_JIFF2020_0097 crossref_primary_10_1093_jme_tjy113 crossref_primary_10_1002_mbo3_390 crossref_primary_10_1111_brv_12663 crossref_primary_10_1038_s43705_022_00153_0 crossref_primary_10_3389_fmicb_2021_694466 crossref_primary_10_1016_j_mib_2016_04_007 crossref_primary_10_1038_s41598_022_14620_0 crossref_primary_10_1186_s12985_021_01685_y crossref_primary_10_1111_1744_7917_12827 crossref_primary_10_1128_AEM_01150_14 crossref_primary_10_1073_pnas_1504031112 crossref_primary_10_1111_1744_7917_12943 crossref_primary_10_1371_journal_pcbi_1010621 crossref_primary_10_1007_s00248_022_01964_3 crossref_primary_10_1128_spectrum_04286_23 crossref_primary_10_1111_mec_16053 crossref_primary_10_1186_s12866_019_1646_9 crossref_primary_10_1098_rsob_150099 crossref_primary_10_1089_gtmb_2021_0088 crossref_primary_10_1371_journal_pone_0284704 crossref_primary_10_3390_microorganisms8091438 crossref_primary_10_1038_srep34955 crossref_primary_10_1038_s41598_022_14505_2 crossref_primary_10_1128_mbio_02990_22 crossref_primary_10_1186_s12866_024_03470_7 crossref_primary_10_1038_s41598_022_20968_0 crossref_primary_10_3389_fcimb_2017_00353 crossref_primary_10_1093_gbe_evv016 crossref_primary_10_3389_fcimb_2017_00236 crossref_primary_10_1016_j_napere_2024_100110 crossref_primary_10_1111_1462_2920_14804 crossref_primary_10_1038_s41579_023_00901_6 crossref_primary_10_1111_1744_7917_13481 crossref_primary_10_1186_s13071_019_3694_2 crossref_primary_10_1038_ismej_2016_32 crossref_primary_10_1111_1462_2920_16544 crossref_primary_10_7717_peerj_1840 crossref_primary_10_3390_ijms25094851 crossref_primary_10_1093_gbe_evy072 crossref_primary_10_1038_nmicrobiol_2016_241 crossref_primary_10_1016_j_isci_2023_107930 crossref_primary_10_1111_1744_7917_12729 crossref_primary_10_1242_bio_023895 crossref_primary_10_1016_j_nmni_2025_101578 crossref_primary_10_1128_msystems_00140_25 crossref_primary_10_1111_mec_14094 crossref_primary_10_3389_fmicb_2022_1044771 crossref_primary_10_3732_ajb_1600154 crossref_primary_10_1128_mBio_01732_15 crossref_primary_10_3389_fmicb_2016_01920 crossref_primary_10_3390_d15020126 crossref_primary_10_3389_fmicb_2022_867392 crossref_primary_10_1016_j_isci_2023_107108 crossref_primary_10_1371_journal_ppat_1009859 crossref_primary_10_1099_mgen_0_001045 crossref_primary_10_1111_eea_12990 crossref_primary_10_1093_gbe_evu262 crossref_primary_10_1007_s10519_018_9937_8 crossref_primary_10_1111_jeb_14216 crossref_primary_10_3389_fmicb_2024_1513314 crossref_primary_10_7717_peerj_4099 crossref_primary_10_1128_mBio_00859_17 crossref_primary_10_3390_microorganisms9020464 crossref_primary_10_1128_AEM_00961_15 crossref_primary_10_1016_j_actatropica_2018_07_005 crossref_primary_10_1038_s41598_017_00814_4 crossref_primary_10_1186_s13071_021_04742_1 crossref_primary_10_1016_j_ttbdis_2020_101434 crossref_primary_10_7717_peerj_6039 crossref_primary_10_1371_journal_pntd_0007678 crossref_primary_10_1016_j_cois_2024_101270 crossref_primary_10_1038_srep35959 crossref_primary_10_1128_JB_00589_19 crossref_primary_10_1016_j_syapm_2015_05_005 crossref_primary_10_1093_femsec_fiy082 crossref_primary_10_1111_mec_14519 crossref_primary_10_1186_s12862_017_0939_6 crossref_primary_10_1038_s41522_024_00539_z crossref_primary_10_1093_gbe_evy173 crossref_primary_10_3389_fmicb_2022_1031535 crossref_primary_10_1016_j_vetpar_2020_109297 crossref_primary_10_24072_pcjournal_362 crossref_primary_10_1111_eea_12768 crossref_primary_10_1093_gbe_evaa032 crossref_primary_10_3389_fmicb_2023_1336919 crossref_primary_10_1016_j_cub_2018_04_038 crossref_primary_10_1093_gbe_evv108 crossref_primary_10_1080_07388551_2024_2449403 crossref_primary_10_1186_s12866_020_01863_y crossref_primary_10_1002_ps_7200 crossref_primary_10_3389_fmicb_2022_905826 crossref_primary_10_1242_jeb_247168 crossref_primary_10_1534_g3_116_028449 crossref_primary_10_1111_nyas_12740 crossref_primary_10_3389_fmicb_2020_00468 crossref_primary_10_1186_s40168_022_01240_z crossref_primary_10_1093_gbe_evv176 crossref_primary_10_1002_mbo3_777 crossref_primary_10_1016_j_jip_2018_09_002 crossref_primary_10_1038_s41598_018_25450_4 crossref_primary_10_1111_mec_16800 crossref_primary_10_1371_journal_pbio_3001972 crossref_primary_10_24072_pcjournal_273 crossref_primary_10_1016_j_jinsphys_2020_104092 crossref_primary_10_1016_j_jtbi_2017_05_016 crossref_primary_10_1093_gbe_evad073 crossref_primary_10_1016_j_actatropica_2023_107086 crossref_primary_10_3390_insects13090788 crossref_primary_10_1002_cm_21891 crossref_primary_10_1242_jeb_220079 crossref_primary_10_24072_pcjournal_278 crossref_primary_10_1099_mgen_0_000943 crossref_primary_10_1002_ps_8272 crossref_primary_10_1016_j_pt_2015_06_014 crossref_primary_10_1186_s40168_024_01841_w crossref_primary_10_1093_gbe_evaa006 crossref_primary_10_1007_s10340_023_01739_w crossref_primary_10_3389_fevo_2017_00174 crossref_primary_10_1242_jeb_095059 crossref_primary_10_3390_ecologies2010004 crossref_primary_10_1111_jen_13056 crossref_primary_10_7717_peerj_10646 crossref_primary_10_1093_molbev_msx073 crossref_primary_10_3390_biology11071039 crossref_primary_10_1111_1462_2920_13887 crossref_primary_10_3389_fmicb_2024_1386458 crossref_primary_10_1038_s41396_020_0704_5 crossref_primary_10_1091_mbc_e17_02_0132 crossref_primary_10_1371_journal_ppat_1010120 crossref_primary_10_1653_024_103_00408 crossref_primary_10_1038_s41598_021_87946_w crossref_primary_10_1002_ece3_1580 crossref_primary_10_1007_s00248_024_02403_1 crossref_primary_10_1051_parasite_2016031 crossref_primary_10_1093_gbe_evv158 crossref_primary_10_1534_genetics_120_303330 crossref_primary_10_1093_gbe_evx217 crossref_primary_10_1038_s41396_020_0717_0 crossref_primary_10_1186_s12864_019_5492_9 crossref_primary_10_1093_femsle_fnz232 crossref_primary_10_1038_s41396_020_00877_8 crossref_primary_10_7554_eLife_39209 crossref_primary_10_3390_genes11091063 crossref_primary_10_1007_s13199_016_0388_9 crossref_primary_10_1186_s12866_019_1638_9 crossref_primary_10_1186_s12862_021_01906_6 crossref_primary_10_1073_pnas_1712857114 crossref_primary_10_1016_j_tim_2019_02_002 crossref_primary_10_1007_s44297_024_00038_9 crossref_primary_10_1016_j_jip_2024_108230 crossref_primary_10_1016_j_meegid_2014_12_019 crossref_primary_10_1111_jeb_13974 crossref_primary_10_1128_AAC_00005_20 crossref_primary_10_3390_d14121064 crossref_primary_10_1007_s10750_019_04175_z crossref_primary_10_1038_s41579_021_00550_7 crossref_primary_10_1016_j_biocontrol_2024_105564 crossref_primary_10_1038_s41598_018_25545_y crossref_primary_10_1111_mec_14391 crossref_primary_10_1186_s40168_018_0536_y crossref_primary_10_3390_insects11080547 crossref_primary_10_1007_s11274_019_2599_8 crossref_primary_10_1007_s10340_024_01783_0 crossref_primary_10_1128_mbio_02225_22 |
Cites_doi | 10.1073/pnas.1003379107 10.1186/1741-7007-6-27 10.1073/pnas.1121190109 10.1073/pnas.0911476107 10.1016/j.tig.2011.01.005 10.1093/nar/gki198 10.1146/annurev.genet.41.110306.130119 10.1038/nrg931 10.1186/1471-2164-13-268 10.1101/gr.4336406 10.1093/molbev/msi011 10.1016/S0966-842X(97)01110-4 10.1111/j.1574-6968.2010.01960.x 10.1016/j.ijpara.2012.09.004 10.1038/35024074 10.1371/journal.pgen.1003012 10.1515/9781400835430 10.1093/bioinformatics/btl446 10.1038/ng986 10.1038/nrmicro1969 10.1056/NEJMoa0900863 10.1007/s00018-005-4539-z 10.1201/9780203009918 10.1093/oxfordjournals.molbev.a004087 10.1128/genomeA.00027-13 10.1128/JB.06244-11 10.1086/586753 10.1098/rsbl.2011.0704 10.1016/j.cell.2013.05.040 10.1111/j.1574-6968.2008.01110.x 10.1007/BF00260226 10.1038/ng.2585 10.1371/journal.pone.0020843 10.1101/gr.138420.112 10.1126/science.1187113 10.1371/journal.pbio.0030121 10.1093/molbev/msj049 10.1128/AEM.72.4.2997-3004.2006 10.1093/bioinformatics/btg180 10.1016/0022-2011(82)90112-4 10.1016/S0022-1910(98)00104-8 10.1038/hdy.2009.106 10.1038/ismej.2011.125 10.1093/gbe/evr064 10.1098/rspb.2000.1110 |
ContentType | Journal Article |
Copyright | copyright © 1993—2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jul 15, 2014 |
Copyright_xml | – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jul 15, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1409284111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef Entomology Abstracts MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Evolution of Wolbachia nutritional mutualism |
EISSN | 1091-6490 |
EndPage | 10262 |
ExternalDocumentID | PMC4104916 3383819351 24982177 10_1073_pnas_1409284111 111_28_10257 23805738 US201600145242 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c558t-14641d1da52eaf8da4f704b0c3e8ba5fa2a9af22a66ea772dcd60b1627e7df8d3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:06:55 EDT 2025 Fri Jul 11 08:20:16 EDT 2025 Fri Jul 11 08:26:27 EDT 2025 Fri Jul 11 02:28:11 EDT 2025 Mon Jun 30 08:28:13 EDT 2025 Thu Apr 03 07:05:57 EDT 2025 Thu Apr 24 22:55:32 EDT 2025 Tue Jul 01 01:53:10 EDT 2025 Wed Nov 11 00:30:17 EST 2020 Thu May 29 08:40:53 EDT 2025 Wed Dec 27 19:25:10 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c558t-14641d1da52eaf8da4f704b0c3e8ba5fa2a9af22a66ea772dcd60b1627e7df8d3 |
Notes | http://dx.doi.org/10.1073/pnas.1409284111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved June 3, 2014 (received for review May 20, 2014) 1N.N., T.H., and M.M. contributed equally to this work. Author contributions: N.N., T.H., M.M., and T.F. designed research; N.N., T.H., M.M., and K.O. performed research; M.H. and T.F. contributed new reagents/analytic tools; N.N., T.H., M.M., K.O., and M.H. analyzed data; and T.F. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/111/28/10257.full.pdf |
PMID | 24982177 |
PQID | 1548254670 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | jstor_primary_23805738 fao_agris_US201600145242 proquest_miscellaneous_1803100970 crossref_citationtrail_10_1073_pnas_1409284111 proquest_miscellaneous_1545776785 proquest_journals_1548254670 pnas_primary_111_28_10257 pubmed_primary_24982177 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4104916 proquest_miscellaneous_1560112368 crossref_primary_10_1073_pnas_1409284111 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-15 |
PublicationDateYYYYMMDD | 2014-07-15 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Wernegreen JJ (e_1_3_4_5_2) 2002; 3 Nakabachi A (e_1_3_4_17_2) 1999; 45 Akman L (e_1_3_4_4_2) 2002; 32 Moran NA (e_1_3_4_6_2) 2008; 42 Usinger RL (e_1_3_4_36_2) 1966 Campillos M (e_1_3_4_16_2) 2006; 16 Ferri E (e_1_3_4_30_2) 2011; 6 Foster J (e_1_3_4_28_2) 2005; 3 Sait M (e_1_3_4_11_2) 2013; 1 Dunning Hotopp JC (e_1_3_4_41_2) 2011; 27 Puchta O (e_1_3_4_19_2) 1955; 17 Moran NA (e_1_3_4_38_2) 2010; 328 Nogge G (e_1_3_4_18_2) 1982; 40 Sjödin A (e_1_3_4_13_2) 2012; 13 Kirkness EF (e_1_3_4_20_2) 2010; 107 Desjardins CA (e_1_3_4_22_2) 2013; 45 Penz T (e_1_3_4_10_2) 2012; 8 Lo N (e_1_3_4_23_2) 2002; 19 Werren JH (e_1_3_4_8_2) 2008; 6 Shigenobu S (e_1_3_4_3_2) 2000; 407 Acuña R (e_1_3_4_40_2) 2012; 109 Ronquist F (e_1_3_4_46_2) 2003; 19 Supali T (e_1_3_4_26_2) 2008; 46 Husnik F (e_1_3_4_42_2) 2013; 153 Duron O (e_1_3_4_24_2) 2008; 6 Hosokawa T (e_1_3_4_32_2) 2012; 6 Stamatakis A (e_1_3_4_45_2) 2006; 22 Tanaka T (e_1_3_4_14_2) 2005; 22 Baldo L (e_1_3_4_25_2) 2006; 23 Salunke BK (e_1_3_4_35_2) 2010; 307 Coulibaly YI (e_1_3_4_29_2) 2009; 361 Dale C (e_1_3_4_33_2) 2006; 72 Bourtzis K (e_1_3_4_2_2) 2003 Hosokawa T (e_1_3_4_9_2) 2010; 107 Zabal-Aguirre M (e_1_3_4_34_2) 2010; 104 Nikoh N (e_1_3_4_43_2) 2011; 3 Andersson JO (e_1_3_4_37_2) 2005; 62 Douglas AE (e_1_3_4_1_2) 2010 Hilgenboecker K (e_1_3_4_7_2) 2008; 281 Katoh K (e_1_3_4_44_2) 2005; 33 Darby AC (e_1_3_4_21_2) 2012; 22 Lefoulon E (e_1_3_4_31_2) 2012; 42 Gillespie JJ (e_1_3_4_12_2) 2012; 194 Altincicek B (e_1_3_4_39_2) 2012; 8 Lawrence JG (e_1_3_4_15_2) 1997; 5 Langworthy NG (e_1_3_4_27_2) 2000; 267 12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4 20402779 - FEMS Microbiol Lett. 2010 Jun;307(1):55-64 21920958 - Biol Lett. 2012 Apr 23;8(2):253-7 16267140 - Mol Biol Evol. 2006 Feb;23(2):437-49 16598007 - Appl Environ Microbiol. 2006 Apr;72(4):2997-3004 21334091 - Trends Genet. 2011 Apr;27(4):157-63 20080750 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):769-74 19738635 - Heredity (Edinb). 2010 Feb;104(2):174-84 15483325 - Mol Biol Evol. 2005 Feb;22(2):243-50 12770389 - J Insect Physiol. 1999 Jan;45(1):1-6 10993077 - Nature. 2000 Sep 7;407(6800):81-6 21737395 - Genome Biol Evol. 2011;3:702-14 22371593 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4197-202 13248062 - Z Parasitenkd. 1955;17(1):1-40 12219091 - Nat Genet. 2002 Nov;32(3):402-7 22727144 - BMC Genomics. 2012;13:268 23791183 - Cell. 2013 Jun 20;153(7):1567-78 18983256 - Annu Rev Genet. 2008;42:165-90 15661851 - Nucleic Acids Res. 2005;33(2):511-8 12415315 - Nat Rev Genet. 2002 Nov;3(11):850-61 22056929 - J Bacteriol. 2012 Jan;194(2):376-94 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90 22919073 - Genome Res. 2012 Dec;22(12):2467-77 19812401 - N Engl J Med. 2009 Oct 8;361(15):1448-58 18312577 - FEMS Microbiol Lett. 2008 Apr;281(2):215-20 20566863 - Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12168-73 10885510 - Proc Biol Sci. 2000 Jun 7;267(1448):1063-9 18419441 - Clin Infect Dis. 2008 May 1;46(9):1385-93 23472224 - Genome Announc. 2013 Jan;1(1):null 11861893 - Mol Biol Evol. 2002 Mar;19(3):341-6 15780005 - PLoS Biol. 2005 Apr;3(4):e121 16449501 - Genome Res. 2006 Mar;16(3):374-82 9294891 - Trends Microbiol. 1997 Sep;5(9):355-9 20431015 - Science. 2010 Apr 30;328(5978):624-7 18577218 - BMC Biol. 2008;6:27 23133394 - PLoS Genet. 2012;8(10):e1003012 15761667 - Cell Mol Life Sci. 2005 Jun;62(11):1182-97 23525074 - Nat Genet. 2013 May;45(5):495-500 21938025 - ISME J. 2012 Mar;6(3):577-87 23041355 - Int J Parasitol. 2012 Oct;42(11):1025-36 21731626 - PLoS One. 2011;6(6):e20843 18794912 - Nat Rev Microbiol. 2008 Oct;6(10):741-51 |
References_xml | – volume: 107 start-page: 12168 year: 2010 ident: e_1_3_4_20_2 article-title: Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1003379107 – volume: 6 start-page: 27 year: 2008 ident: e_1_3_4_24_2 article-title: The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone publication-title: BMC Biol doi: 10.1186/1741-7007-6-27 – volume: 109 start-page: 4197 year: 2012 ident: e_1_3_4_40_2 article-title: Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1121190109 – volume: 107 start-page: 769 year: 2010 ident: e_1_3_4_9_2 article-title: Wolbachia as a bacteriocyte-associated nutritional mutualist publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0911476107 – volume: 27 start-page: 157 year: 2011 ident: e_1_3_4_41_2 article-title: Horizontal gene transfer between bacteria and animals publication-title: Trends Genet doi: 10.1016/j.tig.2011.01.005 – volume: 33 start-page: 511 year: 2005 ident: e_1_3_4_44_2 article-title: MAFFT version 5: Improvement in accuracy of multiple sequence alignment publication-title: Nucleic Acids Res doi: 10.1093/nar/gki198 – volume: 42 start-page: 165 year: 2008 ident: e_1_3_4_6_2 article-title: Genomics and evolution of heritable bacterial symbionts publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.41.110306.130119 – start-page: 585 volume-title: Monograph of Cimicidae year: 1966 ident: e_1_3_4_36_2 – volume: 3 start-page: 850 year: 2002 ident: e_1_3_4_5_2 article-title: Genome evolution in bacterial endosymbionts of insects publication-title: Nat Rev Genet doi: 10.1038/nrg931 – volume: 13 start-page: 268 year: 2012 ident: e_1_3_4_13_2 article-title: Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish publication-title: BMC Genomics doi: 10.1186/1471-2164-13-268 – volume: 16 start-page: 374 year: 2006 ident: e_1_3_4_16_2 article-title: Identification and analysis of evolutionarily cohesive functional modules in protein networks publication-title: Genome Res doi: 10.1101/gr.4336406 – volume: 22 start-page: 243 year: 2005 ident: e_1_3_4_14_2 article-title: Evolution of vitamin B6 (pyridoxine) metabolism by gain and loss of genes publication-title: Mol Biol Evol doi: 10.1093/molbev/msi011 – volume: 5 start-page: 355 year: 1997 ident: e_1_3_4_15_2 article-title: Selfish operons and speciation by gene transfer publication-title: Trends Microbiol doi: 10.1016/S0966-842X(97)01110-4 – volume: 307 start-page: 55 year: 2010 ident: e_1_3_4_35_2 article-title: Diversity of Wolbachia in Odontotermes spp. (Termitidae) and Coptotermes heimi (Rhinotermitidae) using the multigene approach publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2010.01960.x – volume: 42 start-page: 1025 year: 2012 ident: e_1_3_4_31_2 article-title: A new type F Wolbachia from Splendidofilariinae (Onchocercidae) supports the recent emergence of this supergroup publication-title: Int J Parasitol doi: 10.1016/j.ijpara.2012.09.004 – volume: 407 start-page: 81 year: 2000 ident: e_1_3_4_3_2 article-title: Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS publication-title: Nature doi: 10.1038/35024074 – volume: 8 start-page: e1003012 year: 2012 ident: e_1_3_4_10_2 article-title: Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003012 – start-page: 202 volume-title: The Symbiotic Habit year: 2010 ident: e_1_3_4_1_2 doi: 10.1515/9781400835430 – volume: 22 start-page: 2688 year: 2006 ident: e_1_3_4_45_2 article-title: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl446 – volume: 32 start-page: 402 year: 2002 ident: e_1_3_4_4_2 article-title: Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia publication-title: Nat Genet doi: 10.1038/ng986 – volume: 6 start-page: 741 year: 2008 ident: e_1_3_4_8_2 article-title: Wolbachia: Master manipulators of invertebrate biology publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1969 – volume: 361 start-page: 1448 year: 2009 ident: e_1_3_4_29_2 article-title: A randomized trial of doxycycline for Mansonella perstans infection publication-title: N Engl J Med doi: 10.1056/NEJMoa0900863 – volume: 62 start-page: 1182 year: 2005 ident: e_1_3_4_37_2 article-title: Lateral gene transfer in eukaryotes publication-title: Cell Mol Life Sci doi: 10.1007/s00018-005-4539-z – start-page: 347 volume-title: Insect Symbiosis year: 2003 ident: e_1_3_4_2_2 doi: 10.1201/9780203009918 – volume: 19 start-page: 341 year: 2002 ident: e_1_3_4_23_2 article-title: How many Wolbachia supergroups exist? publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a004087 – volume: 1 start-page: e00027 year: 2013 ident: e_1_3_4_11_2 article-title: Genome sequence of Lawsonia intracellularis strain N343, isolated from a sow with hemorrhagic proliferative enteropathy publication-title: Genome Announc doi: 10.1128/genomeA.00027-13 – volume: 194 start-page: 376 year: 2012 ident: e_1_3_4_12_2 article-title: A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle publication-title: J Bacteriol doi: 10.1128/JB.06244-11 – volume: 46 start-page: 1385 year: 2008 ident: e_1_3_4_26_2 article-title: Doxycycline treatment of Brugia malayi-infected persons reduces microfilaremia and adverse reactions after diethylcarbamazine and albendazole treatment publication-title: Clin Infect Dis doi: 10.1086/586753 – volume: 8 start-page: 253 year: 2012 ident: e_1_3_4_39_2 article-title: Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae publication-title: Biol Lett doi: 10.1098/rsbl.2011.0704 – volume: 153 start-page: 1567 year: 2013 ident: e_1_3_4_42_2 article-title: Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis publication-title: Cell doi: 10.1016/j.cell.2013.05.040 – volume: 281 start-page: 215 year: 2008 ident: e_1_3_4_7_2 article-title: How many species are infected with Wolbachia?—A statistical analysis of current data publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2008.01110.x – volume: 17 start-page: 1 year: 1955 ident: e_1_3_4_19_2 article-title: Experimentelle Untersuchungen über die Bedeutung der Symbiose der Kleiderlaus Pediculus vestimenti Burm publication-title: Z Parasitenkunde doi: 10.1007/BF00260226 – volume: 45 start-page: 495 year: 2013 ident: e_1_3_4_22_2 article-title: Genomics of Loa loa, a Wolbachia-free filarial parasite of humans publication-title: Nat Genet doi: 10.1038/ng.2585 – volume: 6 start-page: e20843 year: 2011 ident: e_1_3_4_30_2 article-title: New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species publication-title: PLoS ONE doi: 10.1371/journal.pone.0020843 – volume: 22 start-page: 2467 year: 2012 ident: e_1_3_4_21_2 article-title: Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis publication-title: Genome Res doi: 10.1101/gr.138420.112 – volume: 328 start-page: 624 year: 2010 ident: e_1_3_4_38_2 article-title: Lateral transfer of genes from fungi underlies carotenoid production in aphids publication-title: Science doi: 10.1126/science.1187113 – volume: 3 start-page: e121 year: 2005 ident: e_1_3_4_28_2 article-title: The Wolbachia genome of Brugia malayi: Endosymbiont evolution within a human pathogenic nematode publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030121 – volume: 23 start-page: 437 year: 2006 ident: e_1_3_4_25_2 article-title: Widespread recombination throughout Wolbachia genomes publication-title: Mol Biol Evol doi: 10.1093/molbev/msj049 – volume: 72 start-page: 2997 year: 2006 ident: e_1_3_4_33_2 article-title: Isolation, pure culture, and characterization of “Candidatus Arsenophonus arthropodicus,” an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis publication-title: Appl Environ Microbiol doi: 10.1128/AEM.72.4.2997-3004.2006 – volume: 19 start-page: 1572 year: 2003 ident: e_1_3_4_46_2 article-title: MrBayes 3: Bayesian phylogenetic inference under mixed models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg180 – volume: 40 start-page: 166 year: 1982 ident: e_1_3_4_18_2 article-title: Experiments on the elimination of symbionts from the tsetse fly, Glossina morsitans morsitans (Diptera: Glossinidae), by antibiotics and lysozyme publication-title: J Invertebr Pathol doi: 10.1016/0022-2011(82)90112-4 – volume: 45 start-page: 1 year: 1999 ident: e_1_3_4_17_2 article-title: Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera publication-title: J Insect Physiol doi: 10.1016/S0022-1910(98)00104-8 – volume: 104 start-page: 174 year: 2010 ident: e_1_3_4_34_2 article-title: Distribution of Wolbachia infection in Chorthippus parallelus populations within and beyond a Pyrenean hybrid zone publication-title: Heredity (Edinb) doi: 10.1038/hdy.2009.106 – volume: 6 start-page: 577 year: 2012 ident: e_1_3_4_32_2 article-title: Reductive genome evolution, host-symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies publication-title: ISME J doi: 10.1038/ismej.2011.125 – volume: 3 start-page: 702 year: 2011 ident: e_1_3_4_43_2 article-title: Reductive evolution of bacterial genome in insect gut environment publication-title: Genome Biol Evol doi: 10.1093/gbe/evr064 – volume: 267 start-page: 1063 year: 2000 ident: e_1_3_4_27_2 article-title: Macrofilaricidal activity of tetracycline against the filarial nematode Onchocerca ochengi: Elimination of Wolbachia precedes worm death and suggests a dependent relationship publication-title: Proc Biol Sci doi: 10.1098/rspb.2000.1110 – reference: 18794912 - Nat Rev Microbiol. 2008 Oct;6(10):741-51 – reference: 20080750 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):769-74 – reference: 21731626 - PLoS One. 2011;6(6):e20843 – reference: 20431015 - Science. 2010 Apr 30;328(5978):624-7 – reference: 18312577 - FEMS Microbiol Lett. 2008 Apr;281(2):215-20 – reference: 21334091 - Trends Genet. 2011 Apr;27(4):157-63 – reference: 21920958 - Biol Lett. 2012 Apr 23;8(2):253-7 – reference: 21938025 - ISME J. 2012 Mar;6(3):577-87 – reference: 15483325 - Mol Biol Evol. 2005 Feb;22(2):243-50 – reference: 15761667 - Cell Mol Life Sci. 2005 Jun;62(11):1182-97 – reference: 12415315 - Nat Rev Genet. 2002 Nov;3(11):850-61 – reference: 9294891 - Trends Microbiol. 1997 Sep;5(9):355-9 – reference: 22371593 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4197-202 – reference: 23791183 - Cell. 2013 Jun 20;153(7):1567-78 – reference: 16449501 - Genome Res. 2006 Mar;16(3):374-82 – reference: 20402779 - FEMS Microbiol Lett. 2010 Jun;307(1):55-64 – reference: 10993077 - Nature. 2000 Sep 7;407(6800):81-6 – reference: 18577218 - BMC Biol. 2008;6:27 – reference: 23525074 - Nat Genet. 2013 May;45(5):495-500 – reference: 13248062 - Z Parasitenkd. 1955;17(1):1-40 – reference: 23041355 - Int J Parasitol. 2012 Oct;42(11):1025-36 – reference: 22727144 - BMC Genomics. 2012;13:268 – reference: 11861893 - Mol Biol Evol. 2002 Mar;19(3):341-6 – reference: 18983256 - Annu Rev Genet. 2008;42:165-90 – reference: 10885510 - Proc Biol Sci. 2000 Jun 7;267(1448):1063-9 – reference: 12770389 - J Insect Physiol. 1999 Jan;45(1):1-6 – reference: 12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4 – reference: 19812401 - N Engl J Med. 2009 Oct 8;361(15):1448-58 – reference: 19738635 - Heredity (Edinb). 2010 Feb;104(2):174-84 – reference: 21737395 - Genome Biol Evol. 2011;3:702-14 – reference: 15661851 - Nucleic Acids Res. 2005;33(2):511-8 – reference: 15780005 - PLoS Biol. 2005 Apr;3(4):e121 – reference: 23472224 - Genome Announc. 2013 Jan;1(1):null – reference: 23133394 - PLoS Genet. 2012;8(10):e1003012 – reference: 18419441 - Clin Infect Dis. 2008 May 1;46(9):1385-93 – reference: 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90 – reference: 20566863 - Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12168-73 – reference: 16598007 - Appl Environ Microbiol. 2006 Apr;72(4):2997-3004 – reference: 22056929 - J Bacteriol. 2012 Jan;194(2):376-94 – reference: 16267140 - Mol Biol Evol. 2006 Feb;23(2):437-49 – reference: 22919073 - Genome Res. 2012 Dec;22(12):2467-77 – reference: 12219091 - Nat Genet. 2002 Nov;32(3):402-7 |
SSID | ssj0009580 |
Score | 2.584394 |
Snippet | Obligate insect–bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a... Obligate insect—bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a... How sophisticated mutualism has arisen from less-intimate associations is of general interest. Here we address this evolutionary issue by looking into the... Obligate insect-bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10257 |
SubjectTerms | Animals bacteria Base Sequence Bedbugs - metabolism Bedbugs - microbiology Biological Sciences Biotin Biotin - biosynthesis Biotin - genetics blood meal Cimex lectularius Endosymbionts Evolution Feeding Behavior - physiology Genes, Bacterial - physiology genetic background Genome, Bacterial - physiology Genomes Horizontal gene transfer hosts Insect genetics Insects microsymbionts Molecular Sequence Data multigene family Mutualism Nutrition operon Operons reproduction Rickettsia Symbiosis Symbiosis - physiology Vitamin B Vitamin B Complex - biosynthesis Vitamin B Complex - genetics Vitamins Wolbachia Wolbachia - genetics Wolbachia - metabolism |
Title | Evolutionary origin of insect–Wolbachia nutritional mutualism |
URI | https://www.jstor.org/stable/23805738 http://www.pnas.org/content/111/28/10257.abstract https://www.ncbi.nlm.nih.gov/pubmed/24982177 https://www.proquest.com/docview/1548254670 https://www.proquest.com/docview/1545776785 https://www.proquest.com/docview/1560112368 https://www.proquest.com/docview/1803100970 https://pubmed.ncbi.nlm.nih.gov/PMC4104916 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe68cILYsBYYKAg8TBUpSSOE6dPaEJDE9KqSbRib9ElcWjVkaCmBcETr7zzCfkknOM_TUc3AVIVtc7l4voud2fn7mdCnucBZLTkhVcUCZOg2r4Hvgg94ZeccxFDJGS989koPp2wtxfRRa_3o5O1tFpmg_zb1rqS_5EqtqFcZZXsP0jWMsUG_I7yxSNKGI9_JeOTz5q9TH1TW1wpCIgGzZhJY2Dv68tMpkxCvzLQ-7JkZCUrRwyAoA5Pz607a0zywMisFh6va0-0QWj6Xv98tN7JeDSb11Nlsher2ipM3dRz-NIGqWOYw3S2sOfOsNNf4SOoBP6qXqzsom8znal2dAWNvUavTwRMLnyqCs0uvPfWXnYNM0VnyVQ5tTXM2gwrDdQ15MrOYlikcK2108bfyqj_4RHQhMltjCtoBhLbC72xYbsJs42hi8SGTHbILYozDtra-C5-c6KqmXQ_DUoUD19e4b0R4OyUUJtMVwmfi6TbpjJXM3I7Ic74Lrmj5ybusVK0PdIT1T2yZ4bRPdIQ5S_uk1ddzXOV5rl16SrN-_X9p9U5t6NzrtW5B2Ty5mT8-tTTW3F4eRQlSw_9KQuKoICICiiTAljJfZb5eSiSDKISKAyhpBTiWAAOX5EXsZ8FMeWCF0gf7pPdqq7EAXFDKOIsxE9WUga0AGDAcsCwvSyHLBo6ZGDGL801Tr3cLuUybfMleJjKUUzXA-6QI3vBJwXRcj3pAQokhQ_oQNPJOyrhFeV7dYxTHbLfSsmyMArhEKflYlnjjJkmaauBDjk0sky1XcDbRazdZYL7DnlmT6PVlq_ioBL1qqWJJI5WEt1EE6PzpWGc3ECTSGhffyjv9VCp0PoPsGFCA46d5BvKZQkksvzmmWo2bRHmWeAznDc-um5MHpPb60f9kOwuFyvxBIPzZfa0fWx-A2aN5a4 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+origin+of+insect%E2%80%94Wolbachia+nutritional+mutualism&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Nikoh%2C+Naruo&rft.au=Hosokawa%2C+Takahiro&rft.au=Moriyama%2C+Minoru&rft.au=Oshima%2C+Kenshiro&rft.date=2014-07-15&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=111&rft.issue=28&rft.spage=10257&rft.epage=10262&rft_id=info:doi/10.1073%2Fpnas.1409284111&rft.externalDocID=23805738 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F28.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F28.cover.gif |