Acetohydroxyacid synthase: A new enzyme for chiral synthesis of R-phenylacetylcarbinol

We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (≥98% enantiomeric excess) synthesis of (R)‐phenylacetylcarbinol (R‐PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)‐acetohydroxyacids from...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 83; no. 7; pp. 833 - 840
Main Authors Engel, Stanislav, Vyazmensky, Maria, Geresh, Shimona, Barak, Ze'ev, Chipman, David M.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 30.09.2003
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (≥98% enantiomeric excess) synthesis of (R)‐phenylacetylcarbinol (R‐PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)‐acetohydroxyacids from pyruvate and a second ketoacid. (R)‐phenylacetylcarbinol is the precursor of important drugs having α and β adrenergic properties, such as L‐ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole‐cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 833–840, 2003.
AbstractList We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (≥98% enantiomeric excess) synthesis of (R)‐phenylacetylcarbinol (R‐PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)‐acetohydroxyacids from pyruvate and a second ketoacid. (R)‐phenylacetylcarbinol is the precursor of important drugs having α and β adrenergic properties, such as L‐ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole‐cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 833–840, 2003.
We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (=>98% enantiomeric excess) synthesis of (R)- phenylacetylcarbinol (R-PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)-acetohydroxyacids from pyruvate and a second ketoacid. (R)-phenylacetylcarbinol is the precursor of important drugs having alpha and beta adrenergic properties, such as L-ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole-cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used.
We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (> or =98% enantiomeric excess) synthesis of (R)-phenylacetylcarbinol (R-PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)-acetohydroxyacids from pyruvate and a second ketoacid. (R)-phenylacetylcarbinol is the precursor of important drugs having alpha and beta adrenergic properties, such as L-ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole-cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used.We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (> or =98% enantiomeric excess) synthesis of (R)-phenylacetylcarbinol (R-PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)-acetohydroxyacids from pyruvate and a second ketoacid. (R)-phenylacetylcarbinol is the precursor of important drugs having alpha and beta adrenergic properties, such as L-ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole-cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used.
We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (≥98% enantiomeric excess) synthesis of ( R )‐phenylacetylcarbinol (R‐PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of ( S )‐acetohydroxyacids from pyruvate and a second ketoacid. ( R )‐phenylacetylcarbinol is the precursor of important drugs having α and β adrenergic properties, such as L ‐ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole‐cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 833–840, 2003.
We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (> or =98% enantiomeric excess) synthesis of (R)-phenylacetylcarbinol (R-PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)-acetohydroxyacids from pyruvate and a second ketoacid. (R)-phenylacetylcarbinol is the precursor of important drugs having alpha and beta adrenergic properties, such as L-ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole-cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used.
Author Vyazmensky, Maria
Barak, Ze'ev
Chipman, David M.
Geresh, Shimona
Engel, Stanislav
Author_xml – sequence: 1
  givenname: Stanislav
  surname: Engel
  fullname: Engel, Stanislav
  organization: Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
– sequence: 2
  givenname: Maria
  surname: Vyazmensky
  fullname: Vyazmensky, Maria
  organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; telephone: + 972 8 6472646; fax: + 972 8 6479178
– sequence: 3
  givenname: Shimona
  surname: Geresh
  fullname: Geresh, Shimona
  organization: Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
– sequence: 4
  givenname: Ze'ev
  surname: Barak
  fullname: Barak, Ze'ev
  organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; telephone: + 972 8 6472646; fax: + 972 8 6479178
– sequence: 5
  givenname: David M.
  surname: Chipman
  fullname: Chipman, David M.
  email: chipman@bgumail.bgu.ac.il
  organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; telephone: + 972 8 6472646; fax: + 972 8 6479178
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15058107$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12889023$$D View this record in MEDLINE/PubMed
BookMark eNqF0U9rFDEYBvAgFbutHvwCMhcFD2OTyeaft23VWigValXwEjKZN2w0m6zJLO346Y3utoIonpLA73kOeQ7QXkwREHpM8AuCcXfU-7FeRCfvoRnBSrS4U3gPzTDGvKVMdfvooJQv9Skk5w_QPumkVLijM_RxYWFMy2nI6WYy1g9NmeK4NAVeNosmwnUD8fu0gsal3NilzyZsBRRfmuSay3a9hDgFU3umYE3ufUzhIbrvTCjwaHceog9vXl-dvG3P352enSzOW8uYlK2j1Co-CCod5_VBlGQSYC4w5wTA9mbOOBlUj4VzBnMmLed0AMM7apjk9BA92_auc_q2gTLqlS8WQjAR0qZoQRlR3Vz8FxIpMZNYVfhkBzf9Cga9zn5l8qRvv6yCpztgijXBZROtL78dqz11jOqOts7mVEoGp60fzehTHLPxQROsf46n63j613g18fyPxF3pX-yu_doHmP4N9fHZ1W2i3SZ8GeHmLmHyV80FFUx_ujjV_D27vDj-zPUr-gOxbbcV
CODEN BIBIAU
CitedBy_id crossref_primary_10_1002_cctc_201300950
crossref_primary_10_1016_j_biochi_2021_02_008
crossref_primary_10_1007_s00253_007_1071_0
crossref_primary_10_1016_j_molcatb_2009_03_015
crossref_primary_10_1016_j_jbiosc_2015_05_010
crossref_primary_10_1016_j_jbiotec_2019_11_008
crossref_primary_10_1016_j_mcat_2024_114639
crossref_primary_10_1111_febs_12496
crossref_primary_10_1021_acscatal_9b01081
crossref_primary_10_1073_pnas_0408210101
crossref_primary_10_1074_jbc_M401667200
crossref_primary_10_1016_j_abb_2024_109962
crossref_primary_10_1016_j_ab_2005_03_049
crossref_primary_10_1038_s41598_020_72416_6
crossref_primary_10_1002_ange_200906181
crossref_primary_10_1021_ci400721y
crossref_primary_10_1016_j_abb_2021_108807
crossref_primary_10_1002_ange_201300718
crossref_primary_10_1021_acs_jcim_9b00863
crossref_primary_10_1021_bi102051h
crossref_primary_10_1002_bit_20392
crossref_primary_10_1016_j_cbpa_2005_07_002
crossref_primary_10_1002_bit_20275
crossref_primary_10_1007_s00726_005_0297_3
crossref_primary_10_1016_j_bbapap_2006_02_011
crossref_primary_10_1039_C4CC07277D
crossref_primary_10_1002_clen_200720003
crossref_primary_10_1002_ejoc_201600228
crossref_primary_10_1002_jcc_21356
crossref_primary_10_1002_anie_200906181
crossref_primary_10_1016_j_abb_2021_108849
crossref_primary_10_1016_j_tibs_2005_03_006
crossref_primary_10_1016_j_mcat_2023_113286
crossref_primary_10_1039_C8NJ00485D
crossref_primary_10_1016_j_copbio_2004_10_006
crossref_primary_10_1590_S1415_47572011000400017
crossref_primary_10_1021_bi300893v
crossref_primary_10_1016_j_bbrep_2016_07_008
crossref_primary_10_1007_s00253_016_7809_9
crossref_primary_10_1007_s13213_015_1190_2
crossref_primary_10_1016_j_cplett_2017_03_066
crossref_primary_10_1007_s11244_013_0237_5
crossref_primary_10_1111_j_1742_4658_2012_08505_x
crossref_primary_10_1016_j_cplett_2018_12_039
crossref_primary_10_1002_anie_201300718
crossref_primary_10_1002_adsc_200606055
crossref_primary_10_1371_journal_pone_0119701
crossref_primary_10_1002_jcc_23523
crossref_primary_10_1039_C7RA04641C
crossref_primary_10_34133_bdr_0048
crossref_primary_10_1016_j_procbio_2018_08_009
crossref_primary_10_1021_acs_analchem_9b02739
crossref_primary_10_1016_j_bbagen_2005_10_008
crossref_primary_10_1016_j_phytochem_2012_05_018
crossref_primary_10_1002_prot_22693
crossref_primary_10_1111_j_1742_4658_2012_08577_x
crossref_primary_10_3390_reactions3010011
Cites_doi 10.1016/0003-2697(90)90393-N
10.1007/s00216-002-1579-1
10.1016/S0167-4838(98)00076-4
10.1007/BFb0103029
10.1021/bi961588i
10.1039/c39930000341
10.1016/S0167-4838(98)00083-1
10.1021/bi0104524
10.1111/j.1432-1033.1995.650_b.x
10.1016/S1381-1177(00)00029-1
10.1016/S0076-6879(00)24222-5
10.1039/p19960000425
10.1039/p19900001367
10.1023/A:1008903817990
10.1016/0003-2697(76)90527-3
10.1016/S0167-4838(98)00071-5
10.1016/S0958-1669(00)00139-7
10.1055/s-1977-24413
10.1007/BF00632526
10.1007/BFb0103301
10.1016/S0040-4039(00)80529-8
ContentType Journal Article
Copyright Copyright © 2003 Wiley Periodicals, Inc.
2003 INIST-CNRS
Copyright 2003 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2003 Wiley Periodicals, Inc.
– notice: 2003 INIST-CNRS
– notice: Copyright 2003 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1002/bit.10728
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 840
ExternalDocumentID 12889023
15058107
10_1002_bit_10728
BIT10728
ark_67375_WNG_6S5RNBZ6_D
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fund for Applied Research
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RNS
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
.GJ
3EH
ABEML
ACSCC
AGHNM
AI.
BLYAC
EBD
EMOBN
HF~
IQODW
LH6
NDZJH
PALCI
RIWAO
RJQFR
RYL
SAMSI
SV3
VH1
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
7X8
ID FETCH-LOGICAL-c5588-f33c96d738f66f3319858ee470661eecba4561d9b07ffa0658c663dea623a5863
IEDL.DBID DR2
ISSN 0006-3592
IngestDate Fri Jul 11 02:27:14 EDT 2025
Fri Jul 11 10:24:08 EDT 2025
Wed Feb 19 01:34:03 EST 2025
Wed Apr 02 07:29:32 EDT 2025
Tue Jul 01 00:39:14 EDT 2025
Thu Apr 24 23:08:37 EDT 2025
Wed Jan 22 16:42:26 EST 2025
Wed Oct 30 09:51:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords chiral
Enzyme
thiamin diphosphate
Benzaldehyde
Lyases
enantiomeric excess
pyruvate
biocatalysis
Biocatalyst
Oxo-acid-lyases
Carbon-carbon lyases
Carboxy-lyases
Chirality
Acetolactate synthase
Stereospecificity
hydroxyketone
Pyruvate decarboxylase
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright 2003 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5588-f33c96d738f66f3319858ee470661eecba4561d9b07ffa0658c663dea623a5863
Notes Fund for Applied Research
istex:72AAF1D6C121EA75B95BFA1E69D58D7DFB35FCA0
ark:/67375/WNG-6S5RNBZ6-D
ArticleID:BIT10728
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bit.10728
PMID 12889023
PQID 18805809
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_73519247
proquest_miscellaneous_18805809
pubmed_primary_12889023
pascalfrancis_primary_15058107
crossref_citationtrail_10_1002_bit_10728
crossref_primary_10_1002_bit_10728
wiley_primary_10_1002_bit_10728_BIT10728
istex_primary_ark_67375_WNG_6S5RNBZ6_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 September 2003
PublicationDateYYYYMMDD 2003-09-30
PublicationDate_xml – month: 09
  year: 2003
  text: 30 September 2003
  day: 30
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2003
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Breuer M, Pohl M, Hauere B, Lingen B. 2002. High-throughput assay of (R)-phenylacetylcarbinol synthesized by pyruvate decarboxylase. Anal Bioanal Chem 374:1069-1073.
Rogers PL, Shin HS, Wang B. 1997. Biotransformation for L-ephedrine production. Adv Biochem Eng Biotechnol 56:33-59.
Crout DHG, Lee ER, Rathbone DL. 1990. Absolute configuration of the product of the acetolactate synthase reaction by a novel method of analysis using acetolactate decarboxylase. J Chem Soc-Perkin Trans 1 1:1367-1370.
Epelbaum S, Chipman DM, Barak Z. 1990. Determination of products of acetohydroxy acid synthase by the colorimetric method, revisited. Anal Biochem 191:96-99.
Brusee J, Roos EC, Der Gen AV. 1988. Bio-organic synthesis of optically active cyanohydrins and acyloins. Tetrahedron Lett 29:4485-4488.
Ibdah M, Bar-Ilan A, Livnah O, Schloss JV, Barak Z, Chipman DM. 1996. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry 35:16282-16291.
Bar-Ilan A, Balan V, Tittmann K, Golbik R, Vyazmensky M, Hubner G, Barak Z, Chipman DM. 2001. Binding and activation of thiamin diphosphate in acetohydroxyacid synthase. Biochemistry 40:11946-11954.
Bornemann S, Crout DHG, Dalton H, Kren V, Lobell M, Dean G, Thomson N, Turner MM. 1996. Stereospecific formation of R-aromatic acyloins by Zymomonas mobilis pyruvate decarboxylase. J Chem Soc-Perkin Trans 1 5:425-430.
Hanc O, Karac B. 1956. Yeast carboxylase and the formation of phenylacetylcarbinol. Naturwissenschaften 43:498-501.
Iding H, Siegert P, Mesch K, Pohl M. 1998. Application of α-keto acid decarboxylases in biotransformations. Biochim Biophys Acta 1385:307-322.
Krampitz LO. 1948. Preparation and determination of 2-acetolactic acid. Arch Biochem 17:81.
Bradford M. 1976. A rapid and sensitive method of quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248.
Kren V, Crout DHG, Dalton H, Hutchinson DW, Konig W, Turner MM, Dean G, Thomson N. 1993. Pyruvate decarboxylase-A new enzyme for the production of acyloins by biotransformation. J Chem Soc-Chem Commun 341-343.
Chipman D, Barak Z, Schloss JV. 1988. Biosynthesis of 2-aceto-2-hydroxy acids: Acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385:401-419.
Stetter H, Dambkes G. 1977. Uber die praparative Nutzung der Thiazoliumsalz-katalysierten Acyloinund Benzoin-Bildung; II. Herstellung unsymmetrischer Acyloine and α-Diletone. Synthesis 403-404.
Bruhn H, Pohl M, Grotzinger J, Kula MR. 1995. The replacement of Trp392 by alanine influences the decarboxylase/carboligase activity and stability of pyruvate decarboxylase from Zymomonas mobilis. Eur J Biochem 234:650-655.
Pohl M. 1997. Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. Application to mechanistical investigations, and tailoring PDC for the use in organic synthesis. Adv Biochem Eng Biotechnol 58:15-43.
Shukla VB, Kulkarni PR. 2000. L-Phenylacetylcarbinol (L-PAC): biosynthesis and industrial applications. World J Microbiol Biotechnol 16:499-506.
Iwan P, Goetz G, Schmitz S, Hauer B, Breuer M, Pohl M. 2001. Studies on the continuous production of (R)-(-)-phenylacetylcarbinol in an enzyme-membrane reactor. J Mol Catal B-Enz 11:387-396.
Schorken U, Sprenger GA. 1998. Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses. Biochim Biophys Acta 1385:229-243.
Ward OP, Singh A. 2000. Enzymatic asymmetric synthesis by decarboxylases. Curr Opin Biotechnol 11:520-526.
Vyazmensky M, Elkayam T, Chipman DM, Barak Z. 2000. Isolation of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme. Meth Enzymol 324:95-103.
1990; 1
1987; l
2000; 16
2001
1988; 29
1990
2002; 374
2000; 324
1976; 72
1956; 43
1997; 58
2000; 11
1997; 56
1990; 191
1995; 234
1993
1998; 1385
2001; 11
1996; 5
1996; 35
2001; 40
1988; 1385
1948; 17
1977
Krampitz LO (e_1_2_1_17_1) 1948; 17
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_26_1
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
Umbarger HE (e_1_2_1_25_1) 1987
e_1_2_1_14_1
Schloss JV (e_1_2_1_21_1) 1990
Crout DHG (e_1_2_1_10_1) 1990
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Vyazmensky M, Elkayam T, Chipman DM, Barak Z. 2000. Isolation of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme. Meth Enzymol 324:95-103.
– reference: Crout DHG, Lee ER, Rathbone DL. 1990. Absolute configuration of the product of the acetolactate synthase reaction by a novel method of analysis using acetolactate decarboxylase. J Chem Soc-Perkin Trans 1 1:1367-1370.
– reference: Epelbaum S, Chipman DM, Barak Z. 1990. Determination of products of acetohydroxy acid synthase by the colorimetric method, revisited. Anal Biochem 191:96-99.
– reference: Bruhn H, Pohl M, Grotzinger J, Kula MR. 1995. The replacement of Trp392 by alanine influences the decarboxylase/carboligase activity and stability of pyruvate decarboxylase from Zymomonas mobilis. Eur J Biochem 234:650-655.
– reference: Chipman D, Barak Z, Schloss JV. 1988. Biosynthesis of 2-aceto-2-hydroxy acids: Acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385:401-419.
– reference: Iwan P, Goetz G, Schmitz S, Hauer B, Breuer M, Pohl M. 2001. Studies on the continuous production of (R)-(-)-phenylacetylcarbinol in an enzyme-membrane reactor. J Mol Catal B-Enz 11:387-396.
– reference: Krampitz LO. 1948. Preparation and determination of 2-acetolactic acid. Arch Biochem 17:81.
– reference: Pohl M. 1997. Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. Application to mechanistical investigations, and tailoring PDC for the use in organic synthesis. Adv Biochem Eng Biotechnol 58:15-43.
– reference: Bar-Ilan A, Balan V, Tittmann K, Golbik R, Vyazmensky M, Hubner G, Barak Z, Chipman DM. 2001. Binding and activation of thiamin diphosphate in acetohydroxyacid synthase. Biochemistry 40:11946-11954.
– reference: Schorken U, Sprenger GA. 1998. Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses. Biochim Biophys Acta 1385:229-243.
– reference: Hanc O, Karac B. 1956. Yeast carboxylase and the formation of phenylacetylcarbinol. Naturwissenschaften 43:498-501.
– reference: Rogers PL, Shin HS, Wang B. 1997. Biotransformation for L-ephedrine production. Adv Biochem Eng Biotechnol 56:33-59.
– reference: Kren V, Crout DHG, Dalton H, Hutchinson DW, Konig W, Turner MM, Dean G, Thomson N. 1993. Pyruvate decarboxylase-A new enzyme for the production of acyloins by biotransformation. J Chem Soc-Chem Commun 341-343.
– reference: Bornemann S, Crout DHG, Dalton H, Kren V, Lobell M, Dean G, Thomson N, Turner MM. 1996. Stereospecific formation of R-aromatic acyloins by Zymomonas mobilis pyruvate decarboxylase. J Chem Soc-Perkin Trans 1 5:425-430.
– reference: Breuer M, Pohl M, Hauere B, Lingen B. 2002. High-throughput assay of (R)-phenylacetylcarbinol synthesized by pyruvate decarboxylase. Anal Bioanal Chem 374:1069-1073.
– reference: Stetter H, Dambkes G. 1977. Uber die praparative Nutzung der Thiazoliumsalz-katalysierten Acyloinund Benzoin-Bildung; II. Herstellung unsymmetrischer Acyloine and α-Diletone. Synthesis 403-404.
– reference: Brusee J, Roos EC, Der Gen AV. 1988. Bio-organic synthesis of optically active cyanohydrins and acyloins. Tetrahedron Lett 29:4485-4488.
– reference: Bradford M. 1976. A rapid and sensitive method of quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248.
– reference: Iding H, Siegert P, Mesch K, Pohl M. 1998. Application of α-keto acid decarboxylases in biotransformations. Biochim Biophys Acta 1385:307-322.
– reference: Ibdah M, Bar-Ilan A, Livnah O, Schloss JV, Barak Z, Chipman DM. 1996. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry 35:16282-16291.
– reference: Ward OP, Singh A. 2000. Enzymatic asymmetric synthesis by decarboxylases. Curr Opin Biotechnol 11:520-526.
– reference: Shukla VB, Kulkarni PR. 2000. L-Phenylacetylcarbinol (L-PAC): biosynthesis and industrial applications. World J Microbiol Biotechnol 16:499-506.
– volume: 40
  start-page: 11946
  year: 2001
  end-page: 11954
  article-title: Binding and activation of thiamin diphosphate in acetohydroxyacid synthase
  publication-title: Biochemistry
– volume: 35
  start-page: 16282
  year: 1996
  end-page: 16291
  article-title: Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site‐directed mutagenesis
  publication-title: Biochemistry
– volume: 1385
  start-page: 229
  year: 1998
  end-page: 243
  article-title: Thiamin‐dependent enzymes as catalysts in chemoenzymatic syntheses
  publication-title: Biochim Biophys Acta
– volume: 1
  start-page: 1367
  year: 1990
  end-page: 1370
  article-title: Absolute configuration of the product of the acetolactate synthase reaction by a novel method of analysis using acetolactate decarboxylase
  publication-title: J Chem Soc‐Perkin Trans 1
– year: 2001
– start-page: 199
  year: 1990
  end-page: 242
– volume: 17
  start-page: 81
  year: 1948
  article-title: Preparation and determination of 2‐acetolactic acid
  publication-title: Arch Biochem
– volume: l
  start-page: 352
  year: 1987
– volume: 11
  start-page: 387
  year: 2001
  end-page: 396
  article-title: Studies on the continuous production of ( )‐(‐)‐phenylacetylcarbinol in an enzyme‐membrane reactor
  publication-title: J Mol Catal B‐Enz
– volume: 72
  start-page: 248
  year: 1976
  article-title: A rapid and sensitive method of quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal Biochem
– volume: 43
  start-page: 498
  year: 1956
  end-page: 501
  article-title: Yeast carboxylase and the formation of phenylacetylcarbinol
  publication-title: Naturwissenschaften
– volume: 11
  start-page: 520
  year: 2000
  end-page: 526
  article-title: Enzymatic asymmetric synthesis by decarboxylases
  publication-title: Curr Opin Biotechnol
– start-page: 341
  year: 1993
  end-page: 343
  article-title: Pyruvate decarboxylase—A new enzyme for the production of acyloins by biotransformation
  publication-title: J Chem Soc‐Chem Commun
– volume: 29
  start-page: 4485
  year: 1988
  end-page: 4488
  article-title: Bio‐organic synthesis of optically active cyanohydrins and acyloins
  publication-title: Tetrahedron Lett
– volume: 16
  start-page: 499
  year: 2000
  end-page: 506
  article-title: L‐Phenylacetylcarbinol (L‐PAC): biosynthesis and industrial applications
  publication-title: World J Microbiol Biotechnol
– volume: 324
  start-page: 95
  year: 2000
  end-page: 103
  article-title: Isolation of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme
  publication-title: Meth Enzymol
– start-page: 329
  year: 1990
  end-page: 356
– volume: 58
  start-page: 15
  year: 1997
  end-page: 43
  article-title: Protein design on pyruvate decarboxylase (PDC) by site‐directed mutagenesis. Application to mechanistical investigations, and tailoring PDC for the use in organic synthesis
  publication-title: Adv Biochem Eng Biotechnol
– volume: 5
  start-page: 425
  year: 1996
  end-page: 430
  article-title: Stereospecific formation of ‐aromatic acyloins by pyruvate decarboxylase
  publication-title: J Chem Soc‐Perkin Trans 1
– volume: 1385
  start-page: 401
  year: 1988
  end-page: 419
  article-title: Biosynthesis of 2‐aceto‐2‐hydroxy acids: Acetolactate synthases and acetohydroxyacid synthases
  publication-title: Biochim Biophys Acta
– volume: 234
  start-page: 650
  year: 1995
  end-page: 655
  article-title: The replacement of Trp392 by alanine influences the decarboxylase/carboligase activity and stability of pyruvate decarboxylase from
  publication-title: Eur J Biochem
– volume: 191
  start-page: 96
  year: 1990
  end-page: 99
  article-title: Determination of products of acetohydroxy acid synthase by the colorimetric method, revisited
  publication-title: Anal Biochem
– volume: 1385
  start-page: 307
  year: 1998
  end-page: 322
  article-title: Application of α‐keto acid decarboxylases in biotransformations
  publication-title: Biochim Biophys Acta
– volume: 56
  start-page: 33
  year: 1997
  end-page: 59
  article-title: Biotransformation for L‐ephedrine production
  publication-title: Adv Biochem Eng Biotechnol
– start-page: 403
  year: 1977
  end-page: 404
  article-title: Uber die praparative Nutzung der Thiazoliumsalz‐katalysierten Acyloinund Benzoin‐Bildung; II. Herstellung unsymmetrischer Acyloine and α‐Diletone
  publication-title: Synthesis
– volume: 374
  start-page: 1069
  year: 2002
  end-page: 1073
  article-title: High‐throughput assay of ( )‐phenylacetylcarbinol synthesized by pyruvate decarboxylase
  publication-title: Anal Bioanal Chem
– ident: e_1_2_1_12_1
  doi: 10.1016/0003-2697(90)90393-N
– start-page: 329
  volume-title: Biosynthesis of Branched Chain Amino Acids
  year: 1990
  ident: e_1_2_1_21_1
– ident: e_1_2_1_6_1
  doi: 10.1007/s00216-002-1579-1
– ident: e_1_2_1_15_1
  doi: 10.1016/S0167-4838(98)00076-4
– ident: e_1_2_1_20_1
  doi: 10.1007/BFb0103029
– ident: e_1_2_1_14_1
  doi: 10.1021/bi961588i
– ident: e_1_2_1_18_1
  doi: 10.1039/c39930000341
– volume: 17
  start-page: 81
  year: 1948
  ident: e_1_2_1_17_1
  article-title: Preparation and determination of 2‐acetolactic acid
  publication-title: Arch Biochem
– ident: e_1_2_1_9_1
  doi: 10.1016/S0167-4838(98)00083-1
– ident: e_1_2_1_3_1
  doi: 10.1021/bi0104524
– ident: e_1_2_1_7_1
  doi: 10.1111/j.1432-1033.1995.650_b.x
– ident: e_1_2_1_16_1
  doi: 10.1016/S1381-1177(00)00029-1
– ident: e_1_2_1_26_1
  doi: 10.1016/S0076-6879(00)24222-5
– ident: e_1_2_1_4_1
  doi: 10.1039/p19960000425
– ident: e_1_2_1_11_1
  doi: 10.1039/p19900001367
– ident: e_1_2_1_23_1
  doi: 10.1023/A:1008903817990
– ident: e_1_2_1_5_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_1_2_1
– ident: e_1_2_1_22_1
  doi: 10.1016/S0167-4838(98)00071-5
– start-page: 352
  year: 1987
  ident: e_1_2_1_25_1
– ident: e_1_2_1_27_1
  doi: 10.1016/S0958-1669(00)00139-7
– ident: e_1_2_1_24_1
  doi: 10.1055/s-1977-24413
– ident: e_1_2_1_13_1
  doi: 10.1007/BF00632526
– ident: e_1_2_1_19_1
  doi: 10.1007/BFb0103301
– ident: e_1_2_1_8_1
  doi: 10.1016/S0040-4039(00)80529-8
– start-page: 199
  volume-title: Biosynthesis of branched chain amino acids
  year: 1990
  ident: e_1_2_1_10_1
SSID ssj0007866
Score 1.9885337
Snippet We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (≥98% enantiomeric excess) synthesis of...
We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (≥98% enantiomeric excess) synthesis of ( R...
We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (> or =98% enantiomeric excess) synthesis of...
We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (=>98% enantiomeric excess) synthesis of (R)-...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 833
SubjectTerms acetolactate synthase
Acetolactate Synthase - metabolism
Acetone - analogs & derivatives
Acetone - chemical synthesis
Acetone - chemistry
Acetone - isolation & purification
benzaldehyde
Benzaldehydes
Binding Sites
biocatalysis
Biological and medical sciences
Biotechnology
Catalysis
chiral
enantiomeric excess
Enzyme engineering
Escherichia coli - enzymology
Escherichia coli - genetics
Fermentation
Fundamental and applied biological sciences. Psychology
hydroxyketone
Isoenzymes - metabolism
Methods. Procedures. Technologies
Miscellaneous
Molecular Structure
pyruvate
pyruvate decarboxylase
Pyruvic Acid
Stereoisomerism
stereospecificity
Temperature
thiamin diphosphate
Time Factors
Title Acetohydroxyacid synthase: A new enzyme for chiral synthesis of R-phenylacetylcarbinol
URI https://api.istex.fr/ark:/67375/WNG-6S5RNBZ6-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.10728
https://www.ncbi.nlm.nih.gov/pubmed/12889023
https://www.proquest.com/docview/18805809
https://www.proquest.com/docview/73519247
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELemIQQ8DOiAlT_DQmjiJVsSx3ECT-1gDCT6UDZRTUiW_0Wt1iWoSSWyJz4Cn5FPgs9pWoo2CfGWSJdLzr6Lf7bPv0PoJYmEUIJmnpZG2wmKTjwhAuOxLKWp0Ez7AZx3_jSIj0-jjyM62kBv2rMwDT_EcsENIsP9ryHAhSwPVqShcgLszyyEg76QqwWAaLiijmJJs08JM2ZC07BlFfLDg-WTa2PRDWjW75AbKUrbPFlT1-Iq4LmOY91AdHQXfW1NaPJPzvfnldxXl3-xO_6njffQ1gKg4l7jUffRhsk7aLuX28n5RY33sEsZdWvxHXSz317dOmwLx3XQnT84DrfRqKdMVYxrDd8r1ETjss6rsR08X-MetqAem_yyvjDYomesxpOZfbmTMOWkxEWGh79-_IREtBoW_Kt6qsTMzuaL6QN0evTu5PDYW5Rz8BSlNh4zQlQaa0aSLI7tTZAmNDEmYhb1BMYoKQDM6VT6LMsEQCNl4ZA2wiI0QZOYPESbeZGbHYSViYFYTQWZ9iMi01RqGRAqSaS1Yjrooldtx3K14DqHkhtT3rA0h9y2LHct20UvlqLfGoKPq4T2nHcsJcTsHDLiGOVfBu95_JkOB_2zmL_tot0191mptEgzsbq66HnrT9x2C-zOiNwU85IDMR5N_PR6CQbFFMPI6njUOOJKe5jAfjGxdjt3ut4S3v9w4i4e_7voE3TbpTC6LJmnaLOazc0zC8Uqueti7jecuzCy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am9DggUsHW7lsFkITL9lycy6Il3YwOtj6UDpRISHLsR21WpegNpXInvgJ_EZ-CT5O01K0SYi3RDpxYvuc-DvHx98BeOn5nAtOU0smSmoHRUYW546ywjSmMZehtB0873zWDTrn_ocBHazBm_osTMUPsQi4oWWY_zUaOAakD5esockI6Z9DN7oFG1jR2zhUvSV5VBhVO5XoM3s0dmteIds9XDy6shpt4MB-x-xIPtUDlFaVLa6DnqtI1ixFx_fha92JKgPl4mBWJAfi6i9-x__t5QO4N8eopFUp1UNYU1kDtlqZ9s8vS7JPTNaoCcc34Ha7vto8qmvHNeDuHzSHWzBoCVXkw1LiB3MxkmRaZsVQr5-vSYtoXE9UdlVeKqIBNBHD0US_3Eio6WhK8pT0fv34ibloJcb8i3Is-EQ79Pn4EZwfv-sfdax5RQdLUKpNMvU8EQcy9KI0CPSNE0c0UsoPNfBxlBIJRzwn48QO05QjOhIaEUnFNUjjNAq8x7Ce5ZnaASJUgNxqwkml7XtJHCcycTyaeL6UIpROE17VM8vEnO4cq26MWUXU7DI9ssyMbBNeLES_VRwf1wntG_VYSPDJBSbFhZR97r5nwSfa67a_BOxtE3ZX9GfZpAabkW6rCXu1QjE9LbhBwzOVz6YMufFoZMc3S4RYT9H1dRvblSYuW3cj3DL2dL-NPt3cE9Y-6ZuLJ_8uugebnf7ZKTs96X58CndMRqNJmnkG68Vkpp5rZFYku8YAfwOBgTTN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VVlwPHClHONoVQhUvbn2tvYanpCG0HBFKWxEhpNVeVqKmdpU4Eu4TP4HfyC9hdx0nBLUS4s2WxmPP7oz3293ZbwBeBiFjguHUkVxJPUGRxGHMU06cJjhhMpauZ847f-pFByfh-wEerMGb-ixMxQ-xWHAzkWH_1ybAz2W6tyQN5SPD_hz75BpshJFLjEt3-kvuqJhUG5VmyhzgxK9phVx_b_HoymC0Ydr1u0mOZFPdPmlV2OIy5LkKZO1I1L0L32obqgSU091ZwXfFxV_0jv9p5D24M0eoqFW51H1YU1kDNluZnp2flWgH2ZxRuxjfgOvt-urmfl05rgG3_yA53IRBS6giH5bSfC8TI4mmZVYM9ej5GrWQRvVIZRflmUIaPiMxHE30y62Emo6mKE9R_9ePnyYTrTQr_kU5Fmyip_P5-AGcdN8e7x8483oOjsBYB2QaBCKJZByQNIr0jZcQTJQKYw17PKUEZwbNyYS7cZoyg42ExkNSMQ3RGCZR8BDWszxTjwEJFRlmNeGl0g0DniRcci_APAilFLH0mvCq7lgq5mTnpubGmFY0zT7VLUttyzbhxUL0vGL4uExox3rHQoJNTk1KXIzpl947Gh3hfq_9NaKdJmytuM9SpYaaROtqwnbtT1R3i9meYZnKZ1NqmPEwcZOrJWJTTdEPtY5HlSMutfvEbBgH2m7rTldbQtuHx_biyb-LbsONz50u_XjY-_AUbtl0Rpsx8wzWi8lMPdewrOBbNvx-A-COM4U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acetohydroxyacid+synthase%3A+A+new+enzyme+for+chiral+synthesis+of+R+%E2%80%90phenylacetylcarbinol&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Engel%2C+Stanislav&rft.au=Vyazmensky%2C+Maria&rft.au=Geresh%2C+Shimona&rft.au=Barak%2C+Ze%27ev&rft.date=2003-09-30&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=83&rft.issue=7&rft.spage=833&rft.epage=840&rft_id=info:doi/10.1002%2Fbit.10728&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bit_10728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon