Acetohydroxyacid synthase: A new enzyme for chiral synthesis of R-phenylacetylcarbinol
We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (≥98% enantiomeric excess) synthesis of (R)‐phenylacetylcarbinol (R‐PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)‐acetohydroxyacids from...
Saved in:
Published in | Biotechnology and bioengineering Vol. 83; no. 7; pp. 833 - 840 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
30.09.2003
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (≥98% enantiomeric excess) synthesis of (R)‐phenylacetylcarbinol (R‐PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)‐acetohydroxyacids from pyruvate and a second ketoacid. (R)‐phenylacetylcarbinol is the precursor of important drugs having α and β adrenergic properties, such as L‐ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole‐cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 833–840, 2003. |
---|---|
AbstractList | We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (≥98% enantiomeric excess) synthesis of (R)‐phenylacetylcarbinol (R‐PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)‐acetohydroxyacids from pyruvate and a second ketoacid. (R)‐phenylacetylcarbinol is the precursor of important drugs having α and β adrenergic properties, such as L‐ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole‐cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 833–840, 2003. We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (=>98% enantiomeric excess) synthesis of (R)- phenylacetylcarbinol (R-PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)-acetohydroxyacids from pyruvate and a second ketoacid. (R)-phenylacetylcarbinol is the precursor of important drugs having alpha and beta adrenergic properties, such as L-ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole-cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used. We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (> or =98% enantiomeric excess) synthesis of (R)-phenylacetylcarbinol (R-PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)-acetohydroxyacids from pyruvate and a second ketoacid. (R)-phenylacetylcarbinol is the precursor of important drugs having alpha and beta adrenergic properties, such as L-ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole-cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used.We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (> or =98% enantiomeric excess) synthesis of (R)-phenylacetylcarbinol (R-PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)-acetohydroxyacids from pyruvate and a second ketoacid. (R)-phenylacetylcarbinol is the precursor of important drugs having alpha and beta adrenergic properties, such as L-ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole-cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used. We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (≥98% enantiomeric excess) synthesis of ( R )‐phenylacetylcarbinol (R‐PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of ( S )‐acetohydroxyacids from pyruvate and a second ketoacid. ( R )‐phenylacetylcarbinol is the precursor of important drugs having α and β adrenergic properties, such as L ‐ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole‐cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 833–840, 2003. We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (> or =98% enantiomeric excess) synthesis of (R)-phenylacetylcarbinol (R-PAC) from pyruvate and benzaldehyde, despite the fact that its normal physiological role is synthesis of (S)-acetohydroxyacids from pyruvate and a second ketoacid. (R)-phenylacetylcarbinol is the precursor of important drugs having alpha and beta adrenergic properties, such as L-ephedrine, pseudoephedrine, and norephedrin. It is currently produced by whole-cell fermentations, but the use of the isolated enzyme pyruvate decarboxylase (PDC) for this purpose is the subject of active research and development efforts. Some of the AHAS isozymes of Escherichia coli have important advantages compared to PDC, including negligible acetaldehyde formation and high conversion of substrates (both pyruvate and benzaldehyde) to PAC. Acetohydroxyacid synthase isozyme I is particularly efficient. The reaction is not limited to condensation of pyruvate with benzaldehyde and other aromatic aldehydes may be used. |
Author | Vyazmensky, Maria Barak, Ze'ev Chipman, David M. Geresh, Shimona Engel, Stanislav |
Author_xml | – sequence: 1 givenname: Stanislav surname: Engel fullname: Engel, Stanislav organization: Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel – sequence: 2 givenname: Maria surname: Vyazmensky fullname: Vyazmensky, Maria organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; telephone: + 972 8 6472646; fax: + 972 8 6479178 – sequence: 3 givenname: Shimona surname: Geresh fullname: Geresh, Shimona organization: Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel – sequence: 4 givenname: Ze'ev surname: Barak fullname: Barak, Ze'ev organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; telephone: + 972 8 6472646; fax: + 972 8 6479178 – sequence: 5 givenname: David M. surname: Chipman fullname: Chipman, David M. email: chipman@bgumail.bgu.ac.il organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; telephone: + 972 8 6472646; fax: + 972 8 6479178 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15058107$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12889023$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U9rFDEYBvAgFbutHvwCMhcFD2OTyeaft23VWigValXwEjKZN2w0m6zJLO346Y3utoIonpLA73kOeQ7QXkwREHpM8AuCcXfU-7FeRCfvoRnBSrS4U3gPzTDGvKVMdfvooJQv9Skk5w_QPumkVLijM_RxYWFMy2nI6WYy1g9NmeK4NAVeNosmwnUD8fu0gsal3NilzyZsBRRfmuSay3a9hDgFU3umYE3ufUzhIbrvTCjwaHceog9vXl-dvG3P352enSzOW8uYlK2j1Co-CCod5_VBlGQSYC4w5wTA9mbOOBlUj4VzBnMmLed0AMM7apjk9BA92_auc_q2gTLqlS8WQjAR0qZoQRlR3Vz8FxIpMZNYVfhkBzf9Cga9zn5l8qRvv6yCpztgijXBZROtL78dqz11jOqOts7mVEoGp60fzehTHLPxQROsf46n63j613g18fyPxF3pX-yu_doHmP4N9fHZ1W2i3SZ8GeHmLmHyV80FFUx_ujjV_D27vDj-zPUr-gOxbbcV |
CODEN | BIBIAU |
CitedBy_id | crossref_primary_10_1002_cctc_201300950 crossref_primary_10_1016_j_biochi_2021_02_008 crossref_primary_10_1007_s00253_007_1071_0 crossref_primary_10_1016_j_molcatb_2009_03_015 crossref_primary_10_1016_j_jbiosc_2015_05_010 crossref_primary_10_1016_j_jbiotec_2019_11_008 crossref_primary_10_1016_j_mcat_2024_114639 crossref_primary_10_1111_febs_12496 crossref_primary_10_1021_acscatal_9b01081 crossref_primary_10_1073_pnas_0408210101 crossref_primary_10_1074_jbc_M401667200 crossref_primary_10_1016_j_abb_2024_109962 crossref_primary_10_1016_j_ab_2005_03_049 crossref_primary_10_1038_s41598_020_72416_6 crossref_primary_10_1002_ange_200906181 crossref_primary_10_1021_ci400721y crossref_primary_10_1016_j_abb_2021_108807 crossref_primary_10_1002_ange_201300718 crossref_primary_10_1021_acs_jcim_9b00863 crossref_primary_10_1021_bi102051h crossref_primary_10_1002_bit_20392 crossref_primary_10_1016_j_cbpa_2005_07_002 crossref_primary_10_1002_bit_20275 crossref_primary_10_1007_s00726_005_0297_3 crossref_primary_10_1016_j_bbapap_2006_02_011 crossref_primary_10_1039_C4CC07277D crossref_primary_10_1002_clen_200720003 crossref_primary_10_1002_ejoc_201600228 crossref_primary_10_1002_jcc_21356 crossref_primary_10_1002_anie_200906181 crossref_primary_10_1016_j_abb_2021_108849 crossref_primary_10_1016_j_tibs_2005_03_006 crossref_primary_10_1016_j_mcat_2023_113286 crossref_primary_10_1039_C8NJ00485D crossref_primary_10_1016_j_copbio_2004_10_006 crossref_primary_10_1590_S1415_47572011000400017 crossref_primary_10_1021_bi300893v crossref_primary_10_1016_j_bbrep_2016_07_008 crossref_primary_10_1007_s00253_016_7809_9 crossref_primary_10_1007_s13213_015_1190_2 crossref_primary_10_1016_j_cplett_2017_03_066 crossref_primary_10_1007_s11244_013_0237_5 crossref_primary_10_1111_j_1742_4658_2012_08505_x crossref_primary_10_1016_j_cplett_2018_12_039 crossref_primary_10_1002_anie_201300718 crossref_primary_10_1002_adsc_200606055 crossref_primary_10_1371_journal_pone_0119701 crossref_primary_10_1002_jcc_23523 crossref_primary_10_1039_C7RA04641C crossref_primary_10_34133_bdr_0048 crossref_primary_10_1016_j_procbio_2018_08_009 crossref_primary_10_1021_acs_analchem_9b02739 crossref_primary_10_1016_j_bbagen_2005_10_008 crossref_primary_10_1016_j_phytochem_2012_05_018 crossref_primary_10_1002_prot_22693 crossref_primary_10_1111_j_1742_4658_2012_08577_x crossref_primary_10_3390_reactions3010011 |
Cites_doi | 10.1016/0003-2697(90)90393-N 10.1007/s00216-002-1579-1 10.1016/S0167-4838(98)00076-4 10.1007/BFb0103029 10.1021/bi961588i 10.1039/c39930000341 10.1016/S0167-4838(98)00083-1 10.1021/bi0104524 10.1111/j.1432-1033.1995.650_b.x 10.1016/S1381-1177(00)00029-1 10.1016/S0076-6879(00)24222-5 10.1039/p19960000425 10.1039/p19900001367 10.1023/A:1008903817990 10.1016/0003-2697(76)90527-3 10.1016/S0167-4838(98)00071-5 10.1016/S0958-1669(00)00139-7 10.1055/s-1977-24413 10.1007/BF00632526 10.1007/BFb0103301 10.1016/S0040-4039(00)80529-8 |
ContentType | Journal Article |
Copyright | Copyright © 2003 Wiley Periodicals, Inc. 2003 INIST-CNRS Copyright 2003 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2003 Wiley Periodicals, Inc. – notice: 2003 INIST-CNRS – notice: Copyright 2003 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
DOI | 10.1002/bit.10728 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 840 |
ExternalDocumentID | 12889023 15058107 10_1002_bit_10728 BIT10728 ark_67375_WNG_6S5RNBZ6_D |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fund for Applied Research |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RBB RNS ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION .GJ 3EH ABEML ACSCC AGHNM AI. BLYAC EBD EMOBN HF~ IQODW LH6 NDZJH PALCI RIWAO RJQFR RYL SAMSI SV3 VH1 ZGI ZXP CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 |
ID | FETCH-LOGICAL-c5588-f33c96d738f66f3319858ee470661eecba4561d9b07ffa0658c663dea623a5863 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 |
IngestDate | Fri Jul 11 02:27:14 EDT 2025 Fri Jul 11 10:24:08 EDT 2025 Wed Feb 19 01:34:03 EST 2025 Wed Apr 02 07:29:32 EDT 2025 Tue Jul 01 00:39:14 EDT 2025 Thu Apr 24 23:08:37 EDT 2025 Wed Jan 22 16:42:26 EST 2025 Wed Oct 30 09:51:29 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | chiral Enzyme thiamin diphosphate Benzaldehyde Lyases enantiomeric excess pyruvate biocatalysis Biocatalyst Oxo-acid-lyases Carbon-carbon lyases Carboxy-lyases Chirality Acetolactate synthase Stereospecificity hydroxyketone Pyruvate decarboxylase |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2003 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5588-f33c96d738f66f3319858ee470661eecba4561d9b07ffa0658c663dea623a5863 |
Notes | Fund for Applied Research istex:72AAF1D6C121EA75B95BFA1E69D58D7DFB35FCA0 ark:/67375/WNG-6S5RNBZ6-D ArticleID:BIT10728 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bit.10728 |
PMID | 12889023 |
PQID | 18805809 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_73519247 proquest_miscellaneous_18805809 pubmed_primary_12889023 pascalfrancis_primary_15058107 crossref_citationtrail_10_1002_bit_10728 crossref_primary_10_1002_bit_10728 wiley_primary_10_1002_bit_10728_BIT10728 istex_primary_ark_67375_WNG_6S5RNBZ6_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 September 2003 |
PublicationDateYYYYMMDD | 2003-09-30 |
PublicationDate_xml | – month: 09 year: 2003 text: 30 September 2003 day: 30 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 2003 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley |
References | Breuer M, Pohl M, Hauere B, Lingen B. 2002. High-throughput assay of (R)-phenylacetylcarbinol synthesized by pyruvate decarboxylase. Anal Bioanal Chem 374:1069-1073. Rogers PL, Shin HS, Wang B. 1997. Biotransformation for L-ephedrine production. Adv Biochem Eng Biotechnol 56:33-59. Crout DHG, Lee ER, Rathbone DL. 1990. Absolute configuration of the product of the acetolactate synthase reaction by a novel method of analysis using acetolactate decarboxylase. J Chem Soc-Perkin Trans 1 1:1367-1370. Epelbaum S, Chipman DM, Barak Z. 1990. Determination of products of acetohydroxy acid synthase by the colorimetric method, revisited. Anal Biochem 191:96-99. Brusee J, Roos EC, Der Gen AV. 1988. Bio-organic synthesis of optically active cyanohydrins and acyloins. Tetrahedron Lett 29:4485-4488. Ibdah M, Bar-Ilan A, Livnah O, Schloss JV, Barak Z, Chipman DM. 1996. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry 35:16282-16291. Bar-Ilan A, Balan V, Tittmann K, Golbik R, Vyazmensky M, Hubner G, Barak Z, Chipman DM. 2001. Binding and activation of thiamin diphosphate in acetohydroxyacid synthase. Biochemistry 40:11946-11954. Bornemann S, Crout DHG, Dalton H, Kren V, Lobell M, Dean G, Thomson N, Turner MM. 1996. Stereospecific formation of R-aromatic acyloins by Zymomonas mobilis pyruvate decarboxylase. J Chem Soc-Perkin Trans 1 5:425-430. Hanc O, Karac B. 1956. Yeast carboxylase and the formation of phenylacetylcarbinol. Naturwissenschaften 43:498-501. Iding H, Siegert P, Mesch K, Pohl M. 1998. Application of α-keto acid decarboxylases in biotransformations. Biochim Biophys Acta 1385:307-322. Krampitz LO. 1948. Preparation and determination of 2-acetolactic acid. Arch Biochem 17:81. Bradford M. 1976. A rapid and sensitive method of quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248. Kren V, Crout DHG, Dalton H, Hutchinson DW, Konig W, Turner MM, Dean G, Thomson N. 1993. Pyruvate decarboxylase-A new enzyme for the production of acyloins by biotransformation. J Chem Soc-Chem Commun 341-343. Chipman D, Barak Z, Schloss JV. 1988. Biosynthesis of 2-aceto-2-hydroxy acids: Acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385:401-419. Stetter H, Dambkes G. 1977. Uber die praparative Nutzung der Thiazoliumsalz-katalysierten Acyloinund Benzoin-Bildung; II. Herstellung unsymmetrischer Acyloine and α-Diletone. Synthesis 403-404. Bruhn H, Pohl M, Grotzinger J, Kula MR. 1995. The replacement of Trp392 by alanine influences the decarboxylase/carboligase activity and stability of pyruvate decarboxylase from Zymomonas mobilis. Eur J Biochem 234:650-655. Pohl M. 1997. Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. Application to mechanistical investigations, and tailoring PDC for the use in organic synthesis. Adv Biochem Eng Biotechnol 58:15-43. Shukla VB, Kulkarni PR. 2000. L-Phenylacetylcarbinol (L-PAC): biosynthesis and industrial applications. World J Microbiol Biotechnol 16:499-506. Iwan P, Goetz G, Schmitz S, Hauer B, Breuer M, Pohl M. 2001. Studies on the continuous production of (R)-(-)-phenylacetylcarbinol in an enzyme-membrane reactor. J Mol Catal B-Enz 11:387-396. Schorken U, Sprenger GA. 1998. Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses. Biochim Biophys Acta 1385:229-243. Ward OP, Singh A. 2000. Enzymatic asymmetric synthesis by decarboxylases. Curr Opin Biotechnol 11:520-526. Vyazmensky M, Elkayam T, Chipman DM, Barak Z. 2000. Isolation of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme. Meth Enzymol 324:95-103. 1990; 1 1987; l 2000; 16 2001 1988; 29 1990 2002; 374 2000; 324 1976; 72 1956; 43 1997; 58 2000; 11 1997; 56 1990; 191 1995; 234 1993 1998; 1385 2001; 11 1996; 5 1996; 35 2001; 40 1988; 1385 1948; 17 1977 Krampitz LO (e_1_2_1_17_1) 1948; 17 e_1_2_1_20_1 e_1_2_1_23_1 e_1_2_1_24_1 e_1_2_1_22_1 e_1_2_1_27_1 e_1_2_1_26_1 e_1_2_1_7_1 e_1_2_1_8_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_16_1 Umbarger HE (e_1_2_1_25_1) 1987 e_1_2_1_14_1 Schloss JV (e_1_2_1_21_1) 1990 Crout DHG (e_1_2_1_10_1) 1990 e_1_2_1_15_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – reference: Vyazmensky M, Elkayam T, Chipman DM, Barak Z. 2000. Isolation of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme. Meth Enzymol 324:95-103. – reference: Crout DHG, Lee ER, Rathbone DL. 1990. Absolute configuration of the product of the acetolactate synthase reaction by a novel method of analysis using acetolactate decarboxylase. J Chem Soc-Perkin Trans 1 1:1367-1370. – reference: Epelbaum S, Chipman DM, Barak Z. 1990. Determination of products of acetohydroxy acid synthase by the colorimetric method, revisited. Anal Biochem 191:96-99. – reference: Bruhn H, Pohl M, Grotzinger J, Kula MR. 1995. The replacement of Trp392 by alanine influences the decarboxylase/carboligase activity and stability of pyruvate decarboxylase from Zymomonas mobilis. Eur J Biochem 234:650-655. – reference: Chipman D, Barak Z, Schloss JV. 1988. Biosynthesis of 2-aceto-2-hydroxy acids: Acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385:401-419. – reference: Iwan P, Goetz G, Schmitz S, Hauer B, Breuer M, Pohl M. 2001. Studies on the continuous production of (R)-(-)-phenylacetylcarbinol in an enzyme-membrane reactor. J Mol Catal B-Enz 11:387-396. – reference: Krampitz LO. 1948. Preparation and determination of 2-acetolactic acid. Arch Biochem 17:81. – reference: Pohl M. 1997. Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. Application to mechanistical investigations, and tailoring PDC for the use in organic synthesis. Adv Biochem Eng Biotechnol 58:15-43. – reference: Bar-Ilan A, Balan V, Tittmann K, Golbik R, Vyazmensky M, Hubner G, Barak Z, Chipman DM. 2001. Binding and activation of thiamin diphosphate in acetohydroxyacid synthase. Biochemistry 40:11946-11954. – reference: Schorken U, Sprenger GA. 1998. Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses. Biochim Biophys Acta 1385:229-243. – reference: Hanc O, Karac B. 1956. Yeast carboxylase and the formation of phenylacetylcarbinol. Naturwissenschaften 43:498-501. – reference: Rogers PL, Shin HS, Wang B. 1997. Biotransformation for L-ephedrine production. Adv Biochem Eng Biotechnol 56:33-59. – reference: Kren V, Crout DHG, Dalton H, Hutchinson DW, Konig W, Turner MM, Dean G, Thomson N. 1993. Pyruvate decarboxylase-A new enzyme for the production of acyloins by biotransformation. J Chem Soc-Chem Commun 341-343. – reference: Bornemann S, Crout DHG, Dalton H, Kren V, Lobell M, Dean G, Thomson N, Turner MM. 1996. Stereospecific formation of R-aromatic acyloins by Zymomonas mobilis pyruvate decarboxylase. J Chem Soc-Perkin Trans 1 5:425-430. – reference: Breuer M, Pohl M, Hauere B, Lingen B. 2002. High-throughput assay of (R)-phenylacetylcarbinol synthesized by pyruvate decarboxylase. Anal Bioanal Chem 374:1069-1073. – reference: Stetter H, Dambkes G. 1977. Uber die praparative Nutzung der Thiazoliumsalz-katalysierten Acyloinund Benzoin-Bildung; II. Herstellung unsymmetrischer Acyloine and α-Diletone. Synthesis 403-404. – reference: Brusee J, Roos EC, Der Gen AV. 1988. Bio-organic synthesis of optically active cyanohydrins and acyloins. Tetrahedron Lett 29:4485-4488. – reference: Bradford M. 1976. A rapid and sensitive method of quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248. – reference: Iding H, Siegert P, Mesch K, Pohl M. 1998. Application of α-keto acid decarboxylases in biotransformations. Biochim Biophys Acta 1385:307-322. – reference: Ibdah M, Bar-Ilan A, Livnah O, Schloss JV, Barak Z, Chipman DM. 1996. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry 35:16282-16291. – reference: Ward OP, Singh A. 2000. Enzymatic asymmetric synthesis by decarboxylases. Curr Opin Biotechnol 11:520-526. – reference: Shukla VB, Kulkarni PR. 2000. L-Phenylacetylcarbinol (L-PAC): biosynthesis and industrial applications. World J Microbiol Biotechnol 16:499-506. – volume: 40 start-page: 11946 year: 2001 end-page: 11954 article-title: Binding and activation of thiamin diphosphate in acetohydroxyacid synthase publication-title: Biochemistry – volume: 35 start-page: 16282 year: 1996 end-page: 16291 article-title: Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site‐directed mutagenesis publication-title: Biochemistry – volume: 1385 start-page: 229 year: 1998 end-page: 243 article-title: Thiamin‐dependent enzymes as catalysts in chemoenzymatic syntheses publication-title: Biochim Biophys Acta – volume: 1 start-page: 1367 year: 1990 end-page: 1370 article-title: Absolute configuration of the product of the acetolactate synthase reaction by a novel method of analysis using acetolactate decarboxylase publication-title: J Chem Soc‐Perkin Trans 1 – year: 2001 – start-page: 199 year: 1990 end-page: 242 – volume: 17 start-page: 81 year: 1948 article-title: Preparation and determination of 2‐acetolactic acid publication-title: Arch Biochem – volume: l start-page: 352 year: 1987 – volume: 11 start-page: 387 year: 2001 end-page: 396 article-title: Studies on the continuous production of ( )‐(‐)‐phenylacetylcarbinol in an enzyme‐membrane reactor publication-title: J Mol Catal B‐Enz – volume: 72 start-page: 248 year: 1976 article-title: A rapid and sensitive method of quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding publication-title: Anal Biochem – volume: 43 start-page: 498 year: 1956 end-page: 501 article-title: Yeast carboxylase and the formation of phenylacetylcarbinol publication-title: Naturwissenschaften – volume: 11 start-page: 520 year: 2000 end-page: 526 article-title: Enzymatic asymmetric synthesis by decarboxylases publication-title: Curr Opin Biotechnol – start-page: 341 year: 1993 end-page: 343 article-title: Pyruvate decarboxylase—A new enzyme for the production of acyloins by biotransformation publication-title: J Chem Soc‐Chem Commun – volume: 29 start-page: 4485 year: 1988 end-page: 4488 article-title: Bio‐organic synthesis of optically active cyanohydrins and acyloins publication-title: Tetrahedron Lett – volume: 16 start-page: 499 year: 2000 end-page: 506 article-title: L‐Phenylacetylcarbinol (L‐PAC): biosynthesis and industrial applications publication-title: World J Microbiol Biotechnol – volume: 324 start-page: 95 year: 2000 end-page: 103 article-title: Isolation of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme publication-title: Meth Enzymol – start-page: 329 year: 1990 end-page: 356 – volume: 58 start-page: 15 year: 1997 end-page: 43 article-title: Protein design on pyruvate decarboxylase (PDC) by site‐directed mutagenesis. Application to mechanistical investigations, and tailoring PDC for the use in organic synthesis publication-title: Adv Biochem Eng Biotechnol – volume: 5 start-page: 425 year: 1996 end-page: 430 article-title: Stereospecific formation of ‐aromatic acyloins by pyruvate decarboxylase publication-title: J Chem Soc‐Perkin Trans 1 – volume: 1385 start-page: 401 year: 1988 end-page: 419 article-title: Biosynthesis of 2‐aceto‐2‐hydroxy acids: Acetolactate synthases and acetohydroxyacid synthases publication-title: Biochim Biophys Acta – volume: 234 start-page: 650 year: 1995 end-page: 655 article-title: The replacement of Trp392 by alanine influences the decarboxylase/carboligase activity and stability of pyruvate decarboxylase from publication-title: Eur J Biochem – volume: 191 start-page: 96 year: 1990 end-page: 99 article-title: Determination of products of acetohydroxy acid synthase by the colorimetric method, revisited publication-title: Anal Biochem – volume: 1385 start-page: 307 year: 1998 end-page: 322 article-title: Application of α‐keto acid decarboxylases in biotransformations publication-title: Biochim Biophys Acta – volume: 56 start-page: 33 year: 1997 end-page: 59 article-title: Biotransformation for L‐ephedrine production publication-title: Adv Biochem Eng Biotechnol – start-page: 403 year: 1977 end-page: 404 article-title: Uber die praparative Nutzung der Thiazoliumsalz‐katalysierten Acyloinund Benzoin‐Bildung; II. Herstellung unsymmetrischer Acyloine and α‐Diletone publication-title: Synthesis – volume: 374 start-page: 1069 year: 2002 end-page: 1073 article-title: High‐throughput assay of ( )‐phenylacetylcarbinol synthesized by pyruvate decarboxylase publication-title: Anal Bioanal Chem – ident: e_1_2_1_12_1 doi: 10.1016/0003-2697(90)90393-N – start-page: 329 volume-title: Biosynthesis of Branched Chain Amino Acids year: 1990 ident: e_1_2_1_21_1 – ident: e_1_2_1_6_1 doi: 10.1007/s00216-002-1579-1 – ident: e_1_2_1_15_1 doi: 10.1016/S0167-4838(98)00076-4 – ident: e_1_2_1_20_1 doi: 10.1007/BFb0103029 – ident: e_1_2_1_14_1 doi: 10.1021/bi961588i – ident: e_1_2_1_18_1 doi: 10.1039/c39930000341 – volume: 17 start-page: 81 year: 1948 ident: e_1_2_1_17_1 article-title: Preparation and determination of 2‐acetolactic acid publication-title: Arch Biochem – ident: e_1_2_1_9_1 doi: 10.1016/S0167-4838(98)00083-1 – ident: e_1_2_1_3_1 doi: 10.1021/bi0104524 – ident: e_1_2_1_7_1 doi: 10.1111/j.1432-1033.1995.650_b.x – ident: e_1_2_1_16_1 doi: 10.1016/S1381-1177(00)00029-1 – ident: e_1_2_1_26_1 doi: 10.1016/S0076-6879(00)24222-5 – ident: e_1_2_1_4_1 doi: 10.1039/p19960000425 – ident: e_1_2_1_11_1 doi: 10.1039/p19900001367 – ident: e_1_2_1_23_1 doi: 10.1023/A:1008903817990 – ident: e_1_2_1_5_1 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_2_1_2_1 – ident: e_1_2_1_22_1 doi: 10.1016/S0167-4838(98)00071-5 – start-page: 352 year: 1987 ident: e_1_2_1_25_1 – ident: e_1_2_1_27_1 doi: 10.1016/S0958-1669(00)00139-7 – ident: e_1_2_1_24_1 doi: 10.1055/s-1977-24413 – ident: e_1_2_1_13_1 doi: 10.1007/BF00632526 – ident: e_1_2_1_19_1 doi: 10.1007/BFb0103301 – ident: e_1_2_1_8_1 doi: 10.1016/S0040-4039(00)80529-8 – start-page: 199 volume-title: Biosynthesis of branched chain amino acids year: 1990 ident: e_1_2_1_10_1 |
SSID | ssj0007866 |
Score | 1.9885337 |
Snippet | We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (≥98% enantiomeric excess) synthesis of... We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (≥98% enantiomeric excess) synthesis of ( R... We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (> or =98% enantiomeric excess) synthesis of... We have found that acetohydroxyacid synthase (AHAS) is an efficient catalyst for the enantiospecific (=>98% enantiomeric excess) synthesis of (R)-... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 833 |
SubjectTerms | acetolactate synthase Acetolactate Synthase - metabolism Acetone - analogs & derivatives Acetone - chemical synthesis Acetone - chemistry Acetone - isolation & purification benzaldehyde Benzaldehydes Binding Sites biocatalysis Biological and medical sciences Biotechnology Catalysis chiral enantiomeric excess Enzyme engineering Escherichia coli - enzymology Escherichia coli - genetics Fermentation Fundamental and applied biological sciences. Psychology hydroxyketone Isoenzymes - metabolism Methods. Procedures. Technologies Miscellaneous Molecular Structure pyruvate pyruvate decarboxylase Pyruvic Acid Stereoisomerism stereospecificity Temperature thiamin diphosphate Time Factors |
Title | Acetohydroxyacid synthase: A new enzyme for chiral synthesis of R-phenylacetylcarbinol |
URI | https://api.istex.fr/ark:/67375/WNG-6S5RNBZ6-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.10728 https://www.ncbi.nlm.nih.gov/pubmed/12889023 https://www.proquest.com/docview/18805809 https://www.proquest.com/docview/73519247 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELemIQQ8DOiAlT_DQmjiJVsSx3ECT-1gDCT6UDZRTUiW_0Wt1iWoSSWyJz4Cn5FPgs9pWoo2CfGWSJdLzr6Lf7bPv0PoJYmEUIJmnpZG2wmKTjwhAuOxLKWp0Ez7AZx3_jSIj0-jjyM62kBv2rMwDT_EcsENIsP9ryHAhSwPVqShcgLszyyEg76QqwWAaLiijmJJs08JM2ZC07BlFfLDg-WTa2PRDWjW75AbKUrbPFlT1-Iq4LmOY91AdHQXfW1NaPJPzvfnldxXl3-xO_6njffQ1gKg4l7jUffRhsk7aLuX28n5RY33sEsZdWvxHXSz317dOmwLx3XQnT84DrfRqKdMVYxrDd8r1ETjss6rsR08X-MetqAem_yyvjDYomesxpOZfbmTMOWkxEWGh79-_IREtBoW_Kt6qsTMzuaL6QN0evTu5PDYW5Rz8BSlNh4zQlQaa0aSLI7tTZAmNDEmYhb1BMYoKQDM6VT6LMsEQCNl4ZA2wiI0QZOYPESbeZGbHYSViYFYTQWZ9iMi01RqGRAqSaS1Yjrooldtx3K14DqHkhtT3rA0h9y2LHct20UvlqLfGoKPq4T2nHcsJcTsHDLiGOVfBu95_JkOB_2zmL_tot0191mptEgzsbq66HnrT9x2C-zOiNwU85IDMR5N_PR6CQbFFMPI6njUOOJKe5jAfjGxdjt3ut4S3v9w4i4e_7voE3TbpTC6LJmnaLOazc0zC8Uqueti7jecuzCy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am9DggUsHW7lsFkITL9lycy6Il3YwOtj6UDpRISHLsR21WpegNpXInvgJ_EZ-CT5O01K0SYi3RDpxYvuc-DvHx98BeOn5nAtOU0smSmoHRUYW546ywjSmMZehtB0873zWDTrn_ocBHazBm_osTMUPsQi4oWWY_zUaOAakD5esockI6Z9DN7oFG1jR2zhUvSV5VBhVO5XoM3s0dmteIds9XDy6shpt4MB-x-xIPtUDlFaVLa6DnqtI1ixFx_fha92JKgPl4mBWJAfi6i9-x__t5QO4N8eopFUp1UNYU1kDtlqZ9s8vS7JPTNaoCcc34Ha7vto8qmvHNeDuHzSHWzBoCVXkw1LiB3MxkmRaZsVQr5-vSYtoXE9UdlVeKqIBNBHD0US_3Eio6WhK8pT0fv34ibloJcb8i3Is-EQ79Pn4EZwfv-sfdax5RQdLUKpNMvU8EQcy9KI0CPSNE0c0UsoPNfBxlBIJRzwn48QO05QjOhIaEUnFNUjjNAq8x7Ce5ZnaASJUgNxqwkml7XtJHCcycTyaeL6UIpROE17VM8vEnO4cq26MWUXU7DI9ssyMbBNeLES_VRwf1wntG_VYSPDJBSbFhZR97r5nwSfa67a_BOxtE3ZX9GfZpAabkW6rCXu1QjE9LbhBwzOVz6YMufFoZMc3S4RYT9H1dRvblSYuW3cj3DL2dL-NPt3cE9Y-6ZuLJ_8uugebnf7ZKTs96X58CndMRqNJmnkG68Vkpp5rZFYku8YAfwOBgTTN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VVlwPHClHONoVQhUvbn2tvYanpCG0HBFKWxEhpNVeVqKmdpU4Eu4TP4HfyC9hdx0nBLUS4s2WxmPP7oz3293ZbwBeBiFjguHUkVxJPUGRxGHMU06cJjhhMpauZ847f-pFByfh-wEerMGb-ixMxQ-xWHAzkWH_1ybAz2W6tyQN5SPD_hz75BpshJFLjEt3-kvuqJhUG5VmyhzgxK9phVx_b_HoymC0Ydr1u0mOZFPdPmlV2OIy5LkKZO1I1L0L32obqgSU091ZwXfFxV_0jv9p5D24M0eoqFW51H1YU1kDNluZnp2flWgH2ZxRuxjfgOvt-urmfl05rgG3_yA53IRBS6giH5bSfC8TI4mmZVYM9ej5GrWQRvVIZRflmUIaPiMxHE30y62Emo6mKE9R_9ePnyYTrTQr_kU5Fmyip_P5-AGcdN8e7x8483oOjsBYB2QaBCKJZByQNIr0jZcQTJQKYw17PKUEZwbNyYS7cZoyg42ExkNSMQ3RGCZR8BDWszxTjwEJFRlmNeGl0g0DniRcci_APAilFLH0mvCq7lgq5mTnpubGmFY0zT7VLUttyzbhxUL0vGL4uExox3rHQoJNTk1KXIzpl947Gh3hfq_9NaKdJmytuM9SpYaaROtqwnbtT1R3i9meYZnKZ1NqmPEwcZOrJWJTTdEPtY5HlSMutfvEbBgH2m7rTldbQtuHx_biyb-LbsONz50u_XjY-_AUbtl0Rpsx8wzWi8lMPdewrOBbNvx-A-COM4U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acetohydroxyacid+synthase%3A+A+new+enzyme+for+chiral+synthesis+of+R+%E2%80%90phenylacetylcarbinol&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Engel%2C+Stanislav&rft.au=Vyazmensky%2C+Maria&rft.au=Geresh%2C+Shimona&rft.au=Barak%2C+Ze%27ev&rft.date=2003-09-30&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=83&rft.issue=7&rft.spage=833&rft.epage=840&rft_id=info:doi/10.1002%2Fbit.10728&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bit_10728 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |