Self-healing in Nanocomposite Hydrogels
Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self‐healing through autonomi...
Saved in:
Published in | Macromolecular rapid communications. Vol. 32; no. 16; pp. 1253 - 1258 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
17.08.2011
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self‐healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage in NC gels can be repaired without the use of a healing agent, and even sections of NC gels separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re‐)combine by just contacting the cut surfaces together at mildly elevated temperatures. In NC gels, the autonomic fusion of cut surfaces as well as the self‐healing could be achieved not only immediately after being cut but also after a long waiting time.
Self‐healing: Nanocomposite (NC) gel with a unique polymer/clay network structure, can exhibit complete self‐healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage can be repaired without the use of a healing agent, and even sections separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re‐)combine by contacting the cut surfaces at mildly elevated temperatures. |
---|---|
AbstractList | Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self-healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage in NC gels can be repaired without the use of a healing agent, and even sections of NC gels separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re-)combine by just contacting the cut surfaces together at mildly elevated temperatures. In NC gels, the autonomic fusion of cut surfaces as well as the self-healing could be achieved not only immediately after being cut but also after a long waiting time. Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self‐healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage in NC gels can be repaired without the use of a healing agent, and even sections of NC gels separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re‐)combine by just contacting the cut surfaces together at mildly elevated temperatures. In NC gels, the autonomic fusion of cut surfaces as well as the self‐healing could be achieved not only immediately after being cut but also after a long waiting time. Self‐healing: Nanocomposite (NC) gel with a unique polymer/clay network structure, can exhibit complete self‐healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage can be repaired without the use of a healing agent, and even sections separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re‐)combine by contacting the cut surfaces at mildly elevated temperatures. Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self‐healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage in NC gels can be repaired without the use of a healing agent, and even sections of NC gels separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re‐)combine by just contacting the cut surfaces together at mildly elevated temperatures. In NC gels, the autonomic fusion of cut surfaces as well as the self‐healing could be achieved not only immediately after being cut but also after a long waiting time. magnified image Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self-healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage in NC gels can be repaired without the use of a healing agent, and even sections of NC gels separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re-)combine by just contacting the cut surfaces together at mildly elevated temperatures. In NC gels, the autonomic fusion of cut surfaces as well as the self-healing could be achieved not only immediately after being cut but also after a long waiting time.Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self-healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage in NC gels can be repaired without the use of a healing agent, and even sections of NC gels separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re-)combine by just contacting the cut surfaces together at mildly elevated temperatures. In NC gels, the autonomic fusion of cut surfaces as well as the self-healing could be achieved not only immediately after being cut but also after a long waiting time. |
Author | Uyama, Kazuhisa Haraguchi, Kazutoshi Tanimoto, Hisashi |
Author_xml | – sequence: 1 givenname: Kazutoshi surname: Haraguchi fullname: Haraguchi, Kazutoshi email: hara@kicr.or.jp organization: Material Chemistry Laboratory, Kawamura Institute of Chemical Research, 631 Sakado, Sakura, Chiba 285-0078, Japan – sequence: 2 givenname: Kazuhisa surname: Uyama fullname: Uyama, Kazuhisa organization: Material Chemistry Laboratory, Kawamura Institute of Chemical Research, 631 Sakado, Sakura, Chiba 285-0078, Japan – sequence: 3 givenname: Hisashi surname: Tanimoto fullname: Tanimoto, Hisashi organization: Material Chemistry Laboratory, Kawamura Institute of Chemical Research, 631 Sakado, Sakura, Chiba 285-0078, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21732467$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKAzEUQIMoPqpbl9KdbqbevCbJUotWoSr4QHchnbmj0emkTqZo_94p1SKCukoC59xLzhZZrUKFhOxS6FEAdjh2ddZjQOcPoVfIJpWMJtwwtdregbGEcp5ukK0YnwFAC2DrZINRxZlI1SbZv8GySJ7Qlb567Pqqe-mqkIXxJETfYPdsltfhEcu4TdYKV0bc-Tw75O705LZ_lgyvBuf9o2GSSal1ojXLtHMqN0rwYpRSg8iFZIZJLTBXIlMmV9SwwkhpYCSAG14g0CI3IGXOO2R_MXdSh9cpxsaOfcywLF2FYRqt1hwgNSxtyYM_SQqcMp2a1LTo3ic6HY0xt5Pat91m9itDC_QWQFaHGGsslggFO09r553tsnMriB9C5hvX-FA1tfPl75pZaG--xNk_S-zF0XX_u5ssXB8bfF-6rn6x7Q-UtPeXAwuDBw0X8tj2-Qc_VZ2y |
CitedBy_id | crossref_primary_10_1002_adma_202305537 crossref_primary_10_1002_macp_202000207 crossref_primary_10_1038_srep03138 crossref_primary_10_1007_s10311_017_0671_x crossref_primary_10_1016_j_eurpolymj_2023_111933 crossref_primary_10_1039_C9SM01178A crossref_primary_10_1007_s42114_017_0009_y crossref_primary_10_1002_adfm_201303699 crossref_primary_10_1016_j_msec_2016_12_026 crossref_primary_10_1016_j_polymer_2023_126122 crossref_primary_10_1002_mame_201400110 crossref_primary_10_1021_acsami_9b00274 crossref_primary_10_3390_biomedicines9111537 crossref_primary_10_1039_c2sm07364a crossref_primary_10_1021_acs_chemmater_7b02895 crossref_primary_10_1002_app_53491 crossref_primary_10_1016_j_polymer_2020_123365 crossref_primary_10_1021_acsami_8b00168 crossref_primary_10_1039_c3tb21554g crossref_primary_10_1039_D1NJ01629F crossref_primary_10_1021_mz300451r crossref_primary_10_1039_c2cc35634a crossref_primary_10_1115_1_4040330 crossref_primary_10_1021_acssuschemeng_7b01060 crossref_primary_10_1021_acs_macromol_6b00437 crossref_primary_10_1021_ma202114z crossref_primary_10_1016_j_progpolymsci_2017_04_001 crossref_primary_10_1039_D0GC03010D crossref_primary_10_1002_macp_201300637 crossref_primary_10_1016_j_memsci_2018_02_027 crossref_primary_10_1088_2053_1591_ac2bd2 crossref_primary_10_1039_C9TB00244H crossref_primary_10_3390_polym11020275 crossref_primary_10_3390_gels9100819 crossref_primary_10_1016_j_ijpharm_2025_125186 crossref_primary_10_1016_j_ijbiomac_2017_10_104 crossref_primary_10_1021_acsami_9b20573 crossref_primary_10_1016_j_jcis_2021_12_055 crossref_primary_10_1039_C6RA04234A crossref_primary_10_3390_gels10020093 crossref_primary_10_1007_s10965_017_1284_6 crossref_primary_10_3390_gels2020016 crossref_primary_10_1177_8756087920960195 crossref_primary_10_3390_polym10121362 crossref_primary_10_1039_c3sm52961d crossref_primary_10_1007_s10853_020_04542_5 crossref_primary_10_1021_acssuschemeng_8b04452 crossref_primary_10_1021_ja408547g crossref_primary_10_1088_1748_6041_11_1_014104 crossref_primary_10_1002_marc_201300242 crossref_primary_10_1039_D1TC02360H crossref_primary_10_1088_0034_4885_79_4_046601 crossref_primary_10_1103_PhysRevLett_123_158002 crossref_primary_10_1039_C9TB01625B crossref_primary_10_1021_nn504334u crossref_primary_10_1002_mame_201800295 crossref_primary_10_1039_C7NR04722C crossref_primary_10_1007_s11431_016_0698_0 crossref_primary_10_1016_j_jmps_2017_08_004 crossref_primary_10_1021_ma5015116 crossref_primary_10_1016_j_polymer_2018_07_045 crossref_primary_10_1016_j_eml_2015_12_002 crossref_primary_10_1038_s41598_018_19936_4 crossref_primary_10_1002_marc_201300494 crossref_primary_10_1039_C6QM00370B crossref_primary_10_1039_c3sm52887a crossref_primary_10_1016_j_reactfunctpolym_2017_12_009 crossref_primary_10_1021_acsami_1c02351 crossref_primary_10_1002_adhm_201600938 crossref_primary_10_1039_c2jm32255b crossref_primary_10_1007_s00396_013_3121_8 crossref_primary_10_3389_fphar_2023_1333986 crossref_primary_10_1021_la303889s crossref_primary_10_1016_j_snb_2016_05_027 crossref_primary_10_1016_j_progpolymsci_2015_11_005 crossref_primary_10_1021_ma400447j crossref_primary_10_1016_j_compscitech_2021_109119 crossref_primary_10_1021_acsapm_3c02117 crossref_primary_10_1115_1_4034538 crossref_primary_10_1134_S10704272160020245 crossref_primary_10_1021_acsami_9b14348 crossref_primary_10_1016_j_jmps_2018_08_007 crossref_primary_10_1039_c3py00086a crossref_primary_10_1002_advs_201901388 crossref_primary_10_1088_2631_6331_ab47f9 crossref_primary_10_1021_acsabm_2c00856 crossref_primary_10_1002_adfm_201401989 crossref_primary_10_1021_acs_macromol_5b02352 crossref_primary_10_1088_1742_6596_1948_1_012227 crossref_primary_10_1002_adfm_201401502 crossref_primary_10_1021_acsnano_5b06692 crossref_primary_10_1002_masy_201500041 crossref_primary_10_1039_C5SM01996F crossref_primary_10_1016_j_jmps_2018_11_019 crossref_primary_10_1016_j_nanoso_2024_101254 crossref_primary_10_1021_acsami_9b20254 crossref_primary_10_1039_C9SM01346F crossref_primary_10_1002_app_49836 crossref_primary_10_1039_C6SM02543A crossref_primary_10_1016_j_polymer_2013_09_051 crossref_primary_10_1016_j_clay_2016_01_030 crossref_primary_10_1002_adfm_201505305 crossref_primary_10_1021_acsabm_1c00857 crossref_primary_10_1002_adma_201503255 crossref_primary_10_1016_j_eurpolymj_2019_109448 crossref_primary_10_3390_gels1010058 crossref_primary_10_1007_s12034_019_2028_5 crossref_primary_10_1016_j_cej_2019_03_149 crossref_primary_10_1039_C8NJ01869C crossref_primary_10_1039_c3ra41350k crossref_primary_10_1002_marc_202100768 crossref_primary_10_1002_app_48853 crossref_primary_10_1021_acsami_9b04463 crossref_primary_10_1021_acsami_8b01082 crossref_primary_10_1021_acs_langmuir_8b01448 crossref_primary_10_1002_adma_201805044 crossref_primary_10_1016_j_polymer_2015_04_086 crossref_primary_10_1016_j_polymer_2016_09_046 crossref_primary_10_1016_j_cej_2021_132685 crossref_primary_10_1039_C5NJ03608A crossref_primary_10_1038_s41428_018_0037_7 crossref_primary_10_1002_adma_201601613 crossref_primary_10_1021_acsagscitech_2c00187 crossref_primary_10_1021_acs_macromol_7b02305 crossref_primary_10_1002_adem_202400944 crossref_primary_10_1038_pj_2016_85 crossref_primary_10_1016_j_polymer_2016_01_008 crossref_primary_10_1039_D2PY01414A crossref_primary_10_1021_acsanm_7b00264 crossref_primary_10_1021_acs_jpcb_6b01449 crossref_primary_10_3390_polym13234254 crossref_primary_10_1021_ma402618z crossref_primary_10_1038_s41427_022_00372_w crossref_primary_10_1002_pola_26736 crossref_primary_10_1016_j_progpolymsci_2019_02_007 crossref_primary_10_1039_C6PY01752E crossref_primary_10_4325_seikeikakou_25_125 crossref_primary_10_1021_acs_langmuir_5b03474 crossref_primary_10_1021_acssuschemeng_5b00405 crossref_primary_10_1021_acsami_8b20178 crossref_primary_10_1016_j_polymer_2015_03_022 crossref_primary_10_1016_j_eurpolymj_2014_03_009 crossref_primary_10_1021_acssuschemeng_7b04738 crossref_primary_10_1179_1753555714Y_0000000128 crossref_primary_10_1016_j_matchemphys_2023_127440 crossref_primary_10_1039_C5RA06361B crossref_primary_10_1002_adfm_201905968 crossref_primary_10_1016_j_eurpolymj_2014_07_022 crossref_primary_10_1016_j_compscitech_2016_12_027 crossref_primary_10_1002_pc_24490 crossref_primary_10_1002_polb_24514 crossref_primary_10_1016_j_bprint_2024_e00353 crossref_primary_10_1039_C9TB02570G crossref_primary_10_1021_acs_iecr_6b03093 crossref_primary_10_1038_srep30804 crossref_primary_10_1016_j_polymer_2021_124006 crossref_primary_10_1021_acssuschemeng_2c00872 crossref_primary_10_1039_C4TA02463J crossref_primary_10_1002_mame_201500141 crossref_primary_10_1002_macp_201300593 crossref_primary_10_1016_j_msec_2019_110310 crossref_primary_10_1002_slct_202300212 crossref_primary_10_1039_C4PY00292J crossref_primary_10_1016_j_colsurfa_2020_124836 crossref_primary_10_1016_j_eurpolymj_2015_09_002 crossref_primary_10_1021_acs_biomac_9b01009 crossref_primary_10_1021_acsnano_7b04981 crossref_primary_10_1039_D1RA05896G crossref_primary_10_1002_macp_201300229 crossref_primary_10_1016_j_cej_2020_125421 crossref_primary_10_1007_s10853_021_05930_1 crossref_primary_10_3390_gels8100657 crossref_primary_10_1016_j_cej_2023_146602 crossref_primary_10_1002_pi_5051 crossref_primary_10_3724_SP_J_1105_2012_12035 crossref_primary_10_1002_adma_202004190 crossref_primary_10_1080_01932691_2018_1467777 crossref_primary_10_1021_acs_jpcb_8b09357 crossref_primary_10_1021_acsami_5b00704 crossref_primary_10_1039_C4CS00219A crossref_primary_10_1039_C7ME00071E crossref_primary_10_1016_j_colsurfa_2022_129195 crossref_primary_10_1021_am507100m crossref_primary_10_1002_advs_201801664 crossref_primary_10_1002_macp_201300458 crossref_primary_10_1039_D1MA00099C crossref_primary_10_1039_c2cc34701f crossref_primary_10_1021_acs_est_6b04574 crossref_primary_10_1002_mame_201800104 crossref_primary_10_1039_C9MH01390C crossref_primary_10_1039_C3TA15429G crossref_primary_10_1063_1_4904977 crossref_primary_10_1016_j_carbpol_2022_120468 crossref_primary_10_1002_polb_23636 crossref_primary_10_1007_s10965_023_03479_y crossref_primary_10_4028_www_scientific_net_AMR_680_65 crossref_primary_10_1002_mame_201700184 crossref_primary_10_1021_acs_chemmater_0c03342 crossref_primary_10_1039_D0SM01471K crossref_primary_10_1021_acs_macromol_6b00528 crossref_primary_10_1039_C7TB00824D crossref_primary_10_1002_cphc_201300367 crossref_primary_10_1002_marc_201400216 crossref_primary_10_1002_polb_24728 crossref_primary_10_1039_C5TB00569H crossref_primary_10_1016_j_polymer_2014_03_040 crossref_primary_10_1002_adma_201301034 crossref_primary_10_1021_acsapm_0c00464 crossref_primary_10_1002_mame_201600042 crossref_primary_10_1039_c3tb20704h crossref_primary_10_1016_j_jmps_2020_103938 crossref_primary_10_1021_acsami_6b07713 crossref_primary_10_1039_C5SC03483C crossref_primary_10_11618_adhesion_48_156 crossref_primary_10_1016_j_jmrt_2023_12_168 crossref_primary_10_1016_j_mser_2020_100543 crossref_primary_10_1039_C8RA09644A crossref_primary_10_1016_j_carbpol_2017_10_076 crossref_primary_10_1039_C6RA01074A crossref_primary_10_1016_j_jmps_2016_04_011 crossref_primary_10_1063_1674_0068_29_cjcp1605109 crossref_primary_10_1038_s41428_018_0079_x crossref_primary_10_1126_science_1247811 crossref_primary_10_1002_adma_202004290 crossref_primary_10_1016_j_colsurfa_2015_07_044 crossref_primary_10_1016_j_eurpolymj_2015_06_013 crossref_primary_10_1038_nature12806 crossref_primary_10_1038_s41563_025_02146_5 crossref_primary_10_1016_j_polymertesting_2019_01_022 crossref_primary_10_1007_s10118_017_1971_0 crossref_primary_10_1016_j_jmps_2019_103831 crossref_primary_10_1016_j_colsurfa_2020_125609 crossref_primary_10_1039_C9NR07035D crossref_primary_10_1016_j_eurpolymj_2017_05_020 crossref_primary_10_1038_s41598_020_78663_x crossref_primary_10_1039_C6TB01606E crossref_primary_10_1039_D0NJ06083F crossref_primary_10_1016_j_procir_2018_12_012 crossref_primary_10_1002_adhm_201901396 crossref_primary_10_1016_j_surfin_2021_101368 crossref_primary_10_1021_acs_iecr_9b02972 crossref_primary_10_1021_ja300050x crossref_primary_10_1155_2021_7848088 crossref_primary_10_1039_C8PY01402G crossref_primary_10_1002_pi_4685 crossref_primary_10_1021_acs_nanolett_0c03646 crossref_primary_10_3390_polym14193941 crossref_primary_10_1016_j_cej_2020_126436 crossref_primary_10_1007_s10570_018_2025_7 crossref_primary_10_1016_j_polymer_2018_01_038 crossref_primary_10_1016_j_polymer_2022_124591 crossref_primary_10_1021_acs_chemmater_6b01144 crossref_primary_10_1002_app_41944 crossref_primary_10_1021_acsapm_4c00548 crossref_primary_10_1002_cjce_23328 crossref_primary_10_1002_masy_201300026 crossref_primary_10_1021_la401269p crossref_primary_10_1002_cjoc_202000310 crossref_primary_10_1016_j_progpolymsci_2025_101929 crossref_primary_10_3724_SP_J_1105_2013_12332 crossref_primary_10_1007_s10965_014_0541_1 crossref_primary_10_1016_j_cej_2025_160331 crossref_primary_10_1016_j_conbuildmat_2023_132090 crossref_primary_10_1016_j_mtphys_2022_100807 crossref_primary_10_1016_j_apmt_2020_100776 crossref_primary_10_1039_c3sm52015c |
Cites_doi | 10.1106/YEIH-QUDH-FC7W-4QFM 10.1038/pj.2010.141 10.1002/adma.201003036 10.1016/S1359-835X(01)00020-3 10.1002/macp.200600445 10.1002/adfm.200700086 10.1126/science.1167391 10.1038/nature06669 10.1021/cm049394 10.1007/978-1-4020-6250-6 10.1038/35057232 10.1021/ma052093g 10.1002/jbm.a.32987 10.1002/adma.200501814 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9 10.1021/ma034366i 10.1021/ma071348i 10.1021/ma047431c 10.1002/anie.200502004 10.1002/smll.200700064 10.1126/science.1065879 10.1002/adfm.201000147 10.1021/ma9022197 10.1021/ma052468y 10.1039/B713953P 10.1038/nature08693 10.1002/masy.200751014 10.1021/ma021301r 10.1002/anie.200353046 10.1021/ma0210675 10.1021/ma070104v 10.1039/b711716g 10.1002/adma.200802008 10.1126/science.1110505 |
ContentType | Journal Article |
Copyright | Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 L7M 7X8 |
DOI | 10.1002/marc.201100248 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | 1258 |
ExternalDocumentID | 21732467 10_1002_marc_201100248 MARC201100248 ark_67375_WNG_0GX80M5B_C |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Education, Science, Sports and Culture of Japan (Grant‐in‐Aid) funderid: 23350117 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c5588-882c8aa7d9743fb619ee345292584ed74c79d7192f95590b40393fe01fd9055d3 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri Jul 11 05:10:33 EDT 2025 Fri Jul 11 04:07:19 EDT 2025 Thu Apr 03 07:07:41 EDT 2025 Tue Jul 01 01:50:07 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Wed Jan 22 16:16:39 EST 2025 Wed Oct 30 09:49:57 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5588-882c8aa7d9743fb619ee345292584ed74c79d7192f95590b40393fe01fd9055d3 |
Notes | ark:/67375/WNG-0GX80M5B-C Ministry of Education, Science, Sports and Culture of Japan (Grant-in-Aid) - No. 23350117 ArticleID:MARC201100248 istex:BD47C58A64819EB9FFC3012B467266B3D4438D09 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/marc.201100248 |
PMID | 21732467 |
PQID | 1031286969 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_883006926 proquest_miscellaneous_1031286969 pubmed_primary_21732467 crossref_primary_10_1002_marc_201100248 crossref_citationtrail_10_1002_marc_201100248 wiley_primary_10_1002_marc_201100248_MARC201100248 istex_primary_ark_67375_WNG_0GX80M5B_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 17, 2011 |
PublicationDateYYYYMMDD | 2011-08-17 |
PublicationDate_xml | – month: 08 year: 2011 text: August 17, 2011 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol. Rapid Commun |
PublicationYear | 2011 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | D. Coillot, F. O. Mear, R. Podor, L. Montagne, Adv. Funct. Mater. 2010, 20, 4371. X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F. Wudl, Science 2002, 295, 1698 K. Haraguchi, H. J. Li, L. Song, K. Murata, Macromolecules 2007, 40, 6973. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature 2008, 451, 977. X. Chen, F. Wudl, A. K. Mal, H. Shen, S. R. Nutt, Macromolecules 2003, 36, 1802 S. M. Bleay, C. B. Loader, V. J. Hawyes, L. Humberstone, P. T. Curtis, Composites, Par A 2001, 32, 1767. M. W. Keller, S. R. White, N. R. Sottos, Adv. Funct. Mater. 2007, 17, 2399. B. Ghosh, M. W. Urban, Science 2009, 323, 1458. M. D. Hager, P. Greil, C. Leyens, S. Van Der Zwaag, U. S. Schubert, Adv. Mater. 2010, 22, 5424 K. Haraguchi, T. Takehisa, S. Fan, Macromolecules 2002, 35, 10162 C. M. Chung, Y. S. Roh, S. Y. Cho, J. G. Kim, Chem. Mater. 2004, 16, 3982 K. Haraguchi, T. Takehisa, Adv. Mater. 2002, 14, 1120 A. B. W. Brochu, S. L. Craig, W. M. Reichert, J. Biomed. Mater. Res., Part A 2010, 96A, 492. Y. L. Liu, Y. W. Chen, Macromol. Chem. Phys. 2007, 208, 224. R. P. Wool, Soft Matter 2008, 4, 400 T. F. Scott, A. D. Schneider, W. D. Cook, C. N. Bowman, Science 2005, 308, 1615 D. G. Shchukin, H. Mohwald, Small 2007, 3, 926 G. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, Macromolecules 2010, 43, 1191. T. Oku, Y. Furusho, T. Takata, Angew. Chem., Int. Ed. 2004, 43, 966. Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339. S. Miyazaki, H. Endo, T. Karino, K. Haraguchi, M. Shibayama, Macromolecules 2007, 40, 4287. K. Haraguchi, H. J. Li, Angew. Chem., Int. Ed. 2005, 44, 6500 S. H. Cho, S. R. White, P. V. Braun, Adv. Mater. 2009, 21, 645. Y. Higaki, H. Otsuka, A. Takahara, Macromolecules 2006, 39, 2121. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan, Nature 2001, 409, 794. S. D. Bergman, F. Wudl, J. Mater. Chem. 2008, 18, 41 S. H. Cho, H. M. Andersson, S. R. White, N. R. Sottos, P. V. Braun, Adv. Mater. 2006, 18, 997 K. Haraguchi, Polym. J. 2011, 43, 223. M. Zako, N. Takano, J. Intell. Mater. Syst. Struct. 1999, 10, 836 K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Macromolecules 2003, 36, 5732. K. Haraguchi, H. J. Li, K. Matsuda, T. Takehisa, E. Elliott, Macromolecules 2005, 38, 3482. S. van der Zwaag, Self-Healing Materials, Springer, Dordrecht 2007. K. Haraguchi, Macromol. Symp. 2007, 256, 120. K. Haraguchi, H. J. Li, Macromolecules 2006, 39, 1898. 2004; 43 2007; 17 2002; 14 2009; 21 2010 2002; 295 2008; 18 2006; 39 2002; 35 2009 2003; 36 2010; 463 2007 2006; 18 2001; 409 2008; 4 2007; 208 2005; 44 2010; 22 2010; 43 2010; 20 2007; 256 2004; 16 2005; 308 1999; 10 2011; 43 2007; 40 2007; 3 2005; 38 2008; 451 2010; 96A 2009; 323 2001; 32 e_1_2_6_31_2 e_1_2_6_30_2 Ghosh S. K. (e_1_2_6_2_2) 2009 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_39_2 Wilson G. O. (e_1_2_6_3_2) 2010 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_42_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_22_2 e_1_2_6_1_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – reference: K. Haraguchi, H. J. Li, K. Matsuda, T. Takehisa, E. Elliott, Macromolecules 2005, 38, 3482. – reference: Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339. – reference: P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature 2008, 451, 977. – reference: G. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, Macromolecules 2010, 43, 1191. – reference: Y. Higaki, H. Otsuka, A. Takahara, Macromolecules 2006, 39, 2121. – reference: K. Haraguchi, T. Takehisa, S. Fan, Macromolecules 2002, 35, 10162; – reference: K. Haraguchi, H. J. Li, Angew. Chem., Int. Ed. 2005, 44, 6500; – reference: S. M. Bleay, C. B. Loader, V. J. Hawyes, L. Humberstone, P. T. Curtis, Composites, Par A 2001, 32, 1767. – reference: A. B. W. Brochu, S. L. Craig, W. M. Reichert, J. Biomed. Mater. Res., Part A 2010, 96A, 492. – reference: S. Miyazaki, H. Endo, T. Karino, K. Haraguchi, M. Shibayama, Macromolecules 2007, 40, 4287. – reference: S. D. Bergman, F. Wudl, J. Mater. Chem. 2008, 18, 41; – reference: C. M. Chung, Y. S. Roh, S. Y. Cho, J. G. Kim, Chem. Mater. 2004, 16, 3982; – reference: R. P. Wool, Soft Matter 2008, 4, 400; – reference: D. Coillot, F. O. Mear, R. Podor, L. Montagne, Adv. Funct. Mater. 2010, 20, 4371. – reference: S. van der Zwaag, Self-Healing Materials, Springer, Dordrecht 2007. – reference: D. G. Shchukin, H. Mohwald, Small 2007, 3, 926; – reference: S. H. Cho, S. R. White, P. V. Braun, Adv. Mater. 2009, 21, 645. – reference: X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F. Wudl, Science 2002, 295, 1698; – reference: T. F. Scott, A. D. Schneider, W. D. Cook, C. N. Bowman, Science 2005, 308, 1615; – reference: M. Zako, N. Takano, J. Intell. Mater. Syst. Struct. 1999, 10, 836; – reference: K. Haraguchi, Macromol. Symp. 2007, 256, 120. – reference: S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan, Nature 2001, 409, 794. – reference: B. Ghosh, M. W. Urban, Science 2009, 323, 1458. – reference: K. Haraguchi, T. Takehisa, Adv. Mater. 2002, 14, 1120; – reference: K. Haraguchi, H. J. Li, Macromolecules 2006, 39, 1898. – reference: M. D. Hager, P. Greil, C. Leyens, S. Van Der Zwaag, U. S. Schubert, Adv. Mater. 2010, 22, 5424; – reference: M. W. Keller, S. R. White, N. R. Sottos, Adv. Funct. Mater. 2007, 17, 2399. – reference: K. Haraguchi, H. J. Li, L. Song, K. Murata, Macromolecules 2007, 40, 6973. – reference: Y. L. Liu, Y. W. Chen, Macromol. Chem. Phys. 2007, 208, 224. – reference: K. Haraguchi, Polym. J. 2011, 43, 223. – reference: T. Oku, Y. Furusho, T. Takata, Angew. Chem., Int. Ed. 2004, 43, 966. – reference: X. Chen, F. Wudl, A. K. Mal, H. Shen, S. R. Nutt, Macromolecules 2003, 36, 1802; – reference: S. H. Cho, H. M. Andersson, S. R. White, N. R. Sottos, P. V. Braun, Adv. Mater. 2006, 18, 997; – reference: K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Macromolecules 2003, 36, 5732. – volume: 14 start-page: 1120 year: 2002 publication-title: Adv. Mater. – volume: 40 start-page: 4287 year: 2007 publication-title: Macromolecules – year: 2009 – volume: 43 start-page: 1191 year: 2010 publication-title: Macromolecules – volume: 409 start-page: 794 year: 2001 publication-title: Nature – volume: 38 start-page: 3482 year: 2005 publication-title: Macromolecules – year: 2007 – volume: 96A start-page: 492 year: 2010 publication-title: J. Biomed. Mater. Res., Part A – volume: 295 start-page: 1698 year: 2002 publication-title: Science – volume: 35 start-page: 10162 year: 2002 publication-title: Macromolecules – volume: 3 start-page: 926 year: 2007 publication-title: Small – volume: 40 start-page: 6973 year: 2007 publication-title: Macromolecules – volume: 18 start-page: 997 year: 2006 publication-title: Adv. Mater. – volume: 16 start-page: 3982 year: 2004 publication-title: Chem. Mater. – start-page: 1 year: 2010 end-page: 33 – volume: 36 start-page: 5732 year: 2003 publication-title: Macromolecules – volume: 39 start-page: 1898 year: 2006 publication-title: Macromolecules – volume: 256 start-page: 120 year: 2007 publication-title: Macromol. Symp. – volume: 36 start-page: 1802 year: 2003 publication-title: Macromolecules – volume: 44 start-page: 6500 year: 2005 publication-title: Angew. Chem., Int. Ed. – volume: 463 start-page: 339 year: 2010 publication-title: Nature – volume: 208 start-page: 224 year: 2007 publication-title: Macromol. Chem. Phys. – volume: 323 start-page: 1458 year: 2009 publication-title: Science – volume: 22 start-page: 5424 year: 2010 publication-title: Adv. Mater. – volume: 10 start-page: 836 year: 1999 publication-title: J. Intell. Mater. Syst. Struct. – volume: 43 start-page: 966 year: 2004 publication-title: Angew. Chem., Int. Ed. – volume: 18 start-page: 41 year: 2008 publication-title: J. Mater. Chem. – volume: 32 start-page: 1767 year: 2001 publication-title: Composites, Par A – volume: 308 start-page: 1615 year: 2005 publication-title: Science – volume: 39 start-page: 2121 year: 2006 publication-title: Macromolecules – volume: 21 start-page: 645 year: 2009 publication-title: Adv. Mater. – volume: 43 start-page: 223 year: 2011 publication-title: Polym. J. – volume: 17 start-page: 2399 year: 2007 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 400 year: 2008 publication-title: Soft Matter – volume: 451 start-page: 977 year: 2008 publication-title: Nature – volume: 20 start-page: 4371 year: 2010 publication-title: Adv. Funct. Mater. – ident: e_1_2_6_5_2 – ident: e_1_2_6_22_2 doi: 10.1106/YEIH-QUDH-FC7W-4QFM – ident: e_1_2_6_42_2 doi: 10.1038/pj.2010.141 – ident: e_1_2_6_9_2 doi: 10.1002/adma.201003036 – ident: e_1_2_6_20_2 doi: 10.1016/S1359-835X(01)00020-3 – ident: e_1_2_6_21_2 – ident: e_1_2_6_14_2 doi: 10.1002/macp.200600445 – ident: e_1_2_6_28_2 doi: 10.1002/adfm.200700086 – ident: e_1_2_6_31_2 doi: 10.1126/science.1167391 – ident: e_1_2_6_30_2 doi: 10.1038/nature06669 – ident: e_1_2_6_17_2 doi: 10.1021/cm049394 – ident: e_1_2_6_4_2 doi: 10.1007/978-1-4020-6250-6 – ident: e_1_2_6_24_2 doi: 10.1038/35057232 – start-page: 1 volume-title: Encyclopedia of Polymer Science and Technology year: 2010 ident: e_1_2_6_3_2 – ident: e_1_2_6_15_2 – ident: e_1_2_6_18_2 doi: 10.1021/ma052093g – ident: e_1_2_6_10_2 doi: 10.1002/jbm.a.32987 – ident: e_1_2_6_26_2 doi: 10.1002/adma.200501814 – ident: e_1_2_6_34_2 doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9 – ident: e_1_2_6_36_2 doi: 10.1021/ma034366i – ident: e_1_2_6_44_2 doi: 10.1021/ma071348i – ident: e_1_2_6_40_2 doi: 10.1021/ma047431c – ident: e_1_2_6_38_2 doi: 10.1002/anie.200502004 – ident: e_1_2_6_6_2 doi: 10.1002/smll.200700064 – ident: e_1_2_6_12_2 doi: 10.1126/science.1065879 – ident: e_1_2_6_23_2 doi: 10.1002/adfm.201000147 – ident: e_1_2_6_29_2 doi: 10.1021/ma9022197 – ident: e_1_2_6_41_2 doi: 10.1021/ma052468y – ident: e_1_2_6_8_2 doi: 10.1039/B713953P – ident: e_1_2_6_37_2 – ident: e_1_2_6_32_2 doi: 10.1038/nature08693 – ident: e_1_2_6_39_2 doi: 10.1002/masy.200751014 – ident: e_1_2_6_11_2 – ident: e_1_2_6_35_2 doi: 10.1021/ma021301r – ident: e_1_2_6_19_2 doi: 10.1002/anie.200353046 – ident: e_1_2_6_13_2 doi: 10.1021/ma0210675 – ident: e_1_2_6_43_2 doi: 10.1021/ma070104v – ident: e_1_2_6_33_2 – ident: e_1_2_6_1_2 – ident: e_1_2_6_7_2 doi: 10.1039/b711716g – ident: e_1_2_6_27_2 doi: 10.1002/adma.200802008 – volume-title: Design Strategies, and Applications year: 2009 ident: e_1_2_6_2_2 – ident: e_1_2_6_16_2 doi: 10.1126/science.1110505 – ident: e_1_2_6_25_2 |
SSID | ssj0008402 |
Score | 2.491612 |
Snippet | Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1253 |
SubjectTerms | clay Cutting Damage Elasticity Healing Hydrogels Hydrogels - chemistry nanocomposite Nanocomposites Nanocomposites - chemistry Nanomaterials Nanostructure network Numerical control Polymers - chemistry self-healing Surface Properties |
Title | Self-healing in Nanocomposite Hydrogels |
URI | https://api.istex.fr/ark:/67375/WNG-0GX80M5B-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201100248 https://www.ncbi.nlm.nih.gov/pubmed/21732467 https://www.proquest.com/docview/1031286969 https://www.proquest.com/docview/883006926 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VcGgv0B_ahtIqSFURh4DXiZ3sEVaFFdJyoEXdm-XfqgJlq2VXAk48As_IkzCTbEIXgZDKMdJYsWc89jf2-BuAr8YgzHXSJdIFk2TeukSnRieMG84NC5YZOtAfHMr-cXYwFMN_XvHX_BDtgRt5RrVek4Nrc7Z9RxpKVA8VBWdFy4WLMCVsESo6uuOPwuilvu7EiAuDMdmwNjK-Pd98bldaJAWfPwQ55xFstQXtLYNuOl9nnpxsTSdmy17e43V8zuhew9IMn8Y79YR6Ay98-RZe9pqycO9g84c_DTdX14QwcduL_5QxrtAjSk2n_C8f9y_cePQbt9wVON77_rPXT2b1FhIrBDoMgm1baJ07jDHSYDC08j6li1mOKMW7PLN51-UICQPR1jGT0bve4FknuC4TwqXvYaEclf4jxAWaWTiTdjKdISQUpqNtITMTTLA2K2QESaNvZWdk5FQT41TVNMpckQJUq4AINlr5vzUNx6OS3yrztWJ6fELJa7lQvw73FdsfFmwgdlUvgvXGvgpVSPckuvSj6Zmiyhe8kF3ZjSB-RKYoUiJ55jiSD_XcaH-IQR6iVJlHwCsLP9FhNdg56rVfq__T6BO8ao66O_kaLEzGU_8ZsdLEfKn84RaB1gj4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VOMAF-oRAW1IJFfWQxevETvZIt4Vty-6Bh8rNil8IgbJo2ZWgp_6E_sb-ks4km6BFoErtMZKt2DO255vx-BuALa0R5lppI2m9jhJnbJTHOo8Y15xr5g3TFNDvD2TvJPl6KupsQnoLU_FDNAE32hnleU0bnALSO3esocT1UHJwlrxcc7BAZb2JPv_T4R2DFPov1YUn-lzojsmat5Hxndn-M3ZpgUR88xDonMWwpRHaWwFdD7_KPbloTca6ZX7cY3b8r_k9heUpRA13qzX1DJ644jksduvKcC_gw5G79L9__iKQiZYvPC9CPKSHlJ1OKWAu7N3a0fAMre5LONn7fNztRdOSC5ERAvcM4m2T5Xlq0c2IvUbvyrmY7mY5AhVn08SkHZsiKvTEXMd0Qk97vWNtbztMCBu_gvliWLg1CDPUtLA6bid5gqhQ6HZuMplor70xSSYDiGqBKzPlI6eyGJeqYlLmigSgGgEEsN20v6qYOB5t-b7UX9MsH11Q_loq1PfBvmL7pxnri4-qG8C7WsEKRUhXJXnhhpNrRcUveCY7shNA-EibLIuJ55njTFarxdH8EP08BKoyDYCXKv7LgFV_97DbfK3_S6dNWOwd9w_UwZfBtw1YqiPf7fQ1zI9HE_cGodNYvy03xx8bMw0U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEX3o_wDBICcUjrTWwnOZYt2-WxK1So2JvlJ0KtstWyK0FP_Qn9jf0lzCSblEVUSHCMNFbsscfzjT3-BuCZMQhznXSJdMEk3FuX6MzohKUmTQ0Llhk60B-N5XCPv52IyS-v-Bt-iO7AjSyj3q_JwA9d2DwjDSWqh5qCs6blugjrXLKSijds754RSGH40tx3YsiF0ZhsaRtZurnafsUtrZOGv_8Jc65C2NoHDa6BbnvfpJ7sbyzmZsMe_Ubs-D_Duw5XlwA13mpW1A244KubcLnf1oW7BS8_-oNwenxCEBP9Xvy1inGLnlJuOiWA-Xj4w82mX9Dn3oa9wetP_WGyLLiQWCHQYhBt20Lr3GGQkQWDsZX3Gd3MpghTvMu5zUuXIyYMxFvHDKeHvcGzXnAlE8Jld2Ctmlb-HsQFzrNwJutxzRETCtPTtpDcBBOs5YWMIGn1reySjZyKYhyohkc5VaQA1Skgghed_GHDw3Gu5PN6-joxPdun7LVcqM_jHcV2JgUbiVeqH8HTdn4VqpAuSnTlp4tvikpfpIUsZRlBfI5MUWTE8pziSO42a6P7IUZ5CFNlHkFaz_BfOqxGW7v97uv-vzR6Apc-bA_U-zfjdw_gSnvs3csfwtp8tvCPEDfNzePaNH4C3bgLww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90healing+in+Nanocomposite+Hydrogels&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Haraguchi%2C+Kazutoshi&rft.au=Uyama%2C+Kazuhisa&rft.au=Tanimoto%2C+Hisashi&rft.date=2011-08-17&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=32&rft.issue=16&rft.spage=1253&rft.epage=1258&rft_id=info:doi/10.1002%2Fmarc.201100248&rft.externalDBID=10.1002%252Fmarc.201100248&rft.externalDocID=MARC201100248 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |