Self-healing in Nanocomposite Hydrogels

Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self‐healing through autonomi...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 32; no. 16; pp. 1253 - 1258
Main Authors Haraguchi, Kazutoshi, Uyama, Kazuhisa, Tanimoto, Hisashi
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 17.08.2011
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self‐healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage in NC gels can be repaired without the use of a healing agent, and even sections of NC gels separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re‐)combine by just contacting the cut surfaces together at mildly elevated temperatures. In NC gels, the autonomic fusion of cut surfaces as well as the self‐healing could be achieved not only immediately after being cut but also after a long waiting time. Self‐healing: Nanocomposite (NC) gel with a unique polymer/clay network structure, can exhibit complete self‐healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage can be repaired without the use of a healing agent, and even sections separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re‐)combine by contacting the cut surfaces at mildly elevated temperatures.
AbstractList Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self-healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage in NC gels can be repaired without the use of a healing agent, and even sections of NC gels separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re-)combine by just contacting the cut surfaces together at mildly elevated temperatures. In NC gels, the autonomic fusion of cut surfaces as well as the self-healing could be achieved not only immediately after being cut but also after a long waiting time.
Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self‐healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage in NC gels can be repaired without the use of a healing agent, and even sections of NC gels separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re‐)combine by just contacting the cut surfaces together at mildly elevated temperatures. In NC gels, the autonomic fusion of cut surfaces as well as the self‐healing could be achieved not only immediately after being cut but also after a long waiting time. Self‐healing: Nanocomposite (NC) gel with a unique polymer/clay network structure, can exhibit complete self‐healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage can be repaired without the use of a healing agent, and even sections separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re‐)combine by contacting the cut surfaces at mildly elevated temperatures.
Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self‐healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage in NC gels can be repaired without the use of a healing agent, and even sections of NC gels separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re‐)combine by just contacting the cut surfaces together at mildly elevated temperatures. In NC gels, the autonomic fusion of cut surfaces as well as the self‐healing could be achieved not only immediately after being cut but also after a long waiting time. magnified image
Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self-healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage in NC gels can be repaired without the use of a healing agent, and even sections of NC gels separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re-)combine by just contacting the cut surfaces together at mildly elevated temperatures. In NC gels, the autonomic fusion of cut surfaces as well as the self-healing could be achieved not only immediately after being cut but also after a long waiting time.Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self-healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage in NC gels can be repaired without the use of a healing agent, and even sections of NC gels separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re-)combine by just contacting the cut surfaces together at mildly elevated temperatures. In NC gels, the autonomic fusion of cut surfaces as well as the self-healing could be achieved not only immediately after being cut but also after a long waiting time.
Author Uyama, Kazuhisa
Haraguchi, Kazutoshi
Tanimoto, Hisashi
Author_xml – sequence: 1
  givenname: Kazutoshi
  surname: Haraguchi
  fullname: Haraguchi, Kazutoshi
  email: hara@kicr.or.jp
  organization: Material Chemistry Laboratory, Kawamura Institute of Chemical Research, 631 Sakado, Sakura, Chiba 285-0078, Japan
– sequence: 2
  givenname: Kazuhisa
  surname: Uyama
  fullname: Uyama, Kazuhisa
  organization: Material Chemistry Laboratory, Kawamura Institute of Chemical Research, 631 Sakado, Sakura, Chiba 285-0078, Japan
– sequence: 3
  givenname: Hisashi
  surname: Tanimoto
  fullname: Tanimoto, Hisashi
  organization: Material Chemistry Laboratory, Kawamura Institute of Chemical Research, 631 Sakado, Sakura, Chiba 285-0078, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21732467$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKAzEUQIMoPqpbl9KdbqbevCbJUotWoSr4QHchnbmj0emkTqZo_94p1SKCukoC59xLzhZZrUKFhOxS6FEAdjh2ddZjQOcPoVfIJpWMJtwwtdregbGEcp5ukK0YnwFAC2DrZINRxZlI1SbZv8GySJ7Qlb567Pqqe-mqkIXxJETfYPdsltfhEcu4TdYKV0bc-Tw75O705LZ_lgyvBuf9o2GSSal1ojXLtHMqN0rwYpRSg8iFZIZJLTBXIlMmV9SwwkhpYCSAG14g0CI3IGXOO2R_MXdSh9cpxsaOfcywLF2FYRqt1hwgNSxtyYM_SQqcMp2a1LTo3ic6HY0xt5Pat91m9itDC_QWQFaHGGsslggFO09r553tsnMriB9C5hvX-FA1tfPl75pZaG--xNk_S-zF0XX_u5ssXB8bfF-6rn6x7Q-UtPeXAwuDBw0X8tj2-Qc_VZ2y
CitedBy_id crossref_primary_10_1002_adma_202305537
crossref_primary_10_1002_macp_202000207
crossref_primary_10_1038_srep03138
crossref_primary_10_1007_s10311_017_0671_x
crossref_primary_10_1016_j_eurpolymj_2023_111933
crossref_primary_10_1039_C9SM01178A
crossref_primary_10_1007_s42114_017_0009_y
crossref_primary_10_1002_adfm_201303699
crossref_primary_10_1016_j_msec_2016_12_026
crossref_primary_10_1016_j_polymer_2023_126122
crossref_primary_10_1002_mame_201400110
crossref_primary_10_1021_acsami_9b00274
crossref_primary_10_3390_biomedicines9111537
crossref_primary_10_1039_c2sm07364a
crossref_primary_10_1021_acs_chemmater_7b02895
crossref_primary_10_1002_app_53491
crossref_primary_10_1016_j_polymer_2020_123365
crossref_primary_10_1021_acsami_8b00168
crossref_primary_10_1039_c3tb21554g
crossref_primary_10_1039_D1NJ01629F
crossref_primary_10_1021_mz300451r
crossref_primary_10_1039_c2cc35634a
crossref_primary_10_1115_1_4040330
crossref_primary_10_1021_acssuschemeng_7b01060
crossref_primary_10_1021_acs_macromol_6b00437
crossref_primary_10_1021_ma202114z
crossref_primary_10_1016_j_progpolymsci_2017_04_001
crossref_primary_10_1039_D0GC03010D
crossref_primary_10_1002_macp_201300637
crossref_primary_10_1016_j_memsci_2018_02_027
crossref_primary_10_1088_2053_1591_ac2bd2
crossref_primary_10_1039_C9TB00244H
crossref_primary_10_3390_polym11020275
crossref_primary_10_3390_gels9100819
crossref_primary_10_1016_j_ijpharm_2025_125186
crossref_primary_10_1016_j_ijbiomac_2017_10_104
crossref_primary_10_1021_acsami_9b20573
crossref_primary_10_1016_j_jcis_2021_12_055
crossref_primary_10_1039_C6RA04234A
crossref_primary_10_3390_gels10020093
crossref_primary_10_1007_s10965_017_1284_6
crossref_primary_10_3390_gels2020016
crossref_primary_10_1177_8756087920960195
crossref_primary_10_3390_polym10121362
crossref_primary_10_1039_c3sm52961d
crossref_primary_10_1007_s10853_020_04542_5
crossref_primary_10_1021_acssuschemeng_8b04452
crossref_primary_10_1021_ja408547g
crossref_primary_10_1088_1748_6041_11_1_014104
crossref_primary_10_1002_marc_201300242
crossref_primary_10_1039_D1TC02360H
crossref_primary_10_1088_0034_4885_79_4_046601
crossref_primary_10_1103_PhysRevLett_123_158002
crossref_primary_10_1039_C9TB01625B
crossref_primary_10_1021_nn504334u
crossref_primary_10_1002_mame_201800295
crossref_primary_10_1039_C7NR04722C
crossref_primary_10_1007_s11431_016_0698_0
crossref_primary_10_1016_j_jmps_2017_08_004
crossref_primary_10_1021_ma5015116
crossref_primary_10_1016_j_polymer_2018_07_045
crossref_primary_10_1016_j_eml_2015_12_002
crossref_primary_10_1038_s41598_018_19936_4
crossref_primary_10_1002_marc_201300494
crossref_primary_10_1039_C6QM00370B
crossref_primary_10_1039_c3sm52887a
crossref_primary_10_1016_j_reactfunctpolym_2017_12_009
crossref_primary_10_1021_acsami_1c02351
crossref_primary_10_1002_adhm_201600938
crossref_primary_10_1039_c2jm32255b
crossref_primary_10_1007_s00396_013_3121_8
crossref_primary_10_3389_fphar_2023_1333986
crossref_primary_10_1021_la303889s
crossref_primary_10_1016_j_snb_2016_05_027
crossref_primary_10_1016_j_progpolymsci_2015_11_005
crossref_primary_10_1021_ma400447j
crossref_primary_10_1016_j_compscitech_2021_109119
crossref_primary_10_1021_acsapm_3c02117
crossref_primary_10_1115_1_4034538
crossref_primary_10_1134_S10704272160020245
crossref_primary_10_1021_acsami_9b14348
crossref_primary_10_1016_j_jmps_2018_08_007
crossref_primary_10_1039_c3py00086a
crossref_primary_10_1002_advs_201901388
crossref_primary_10_1088_2631_6331_ab47f9
crossref_primary_10_1021_acsabm_2c00856
crossref_primary_10_1002_adfm_201401989
crossref_primary_10_1021_acs_macromol_5b02352
crossref_primary_10_1088_1742_6596_1948_1_012227
crossref_primary_10_1002_adfm_201401502
crossref_primary_10_1021_acsnano_5b06692
crossref_primary_10_1002_masy_201500041
crossref_primary_10_1039_C5SM01996F
crossref_primary_10_1016_j_jmps_2018_11_019
crossref_primary_10_1016_j_nanoso_2024_101254
crossref_primary_10_1021_acsami_9b20254
crossref_primary_10_1039_C9SM01346F
crossref_primary_10_1002_app_49836
crossref_primary_10_1039_C6SM02543A
crossref_primary_10_1016_j_polymer_2013_09_051
crossref_primary_10_1016_j_clay_2016_01_030
crossref_primary_10_1002_adfm_201505305
crossref_primary_10_1021_acsabm_1c00857
crossref_primary_10_1002_adma_201503255
crossref_primary_10_1016_j_eurpolymj_2019_109448
crossref_primary_10_3390_gels1010058
crossref_primary_10_1007_s12034_019_2028_5
crossref_primary_10_1016_j_cej_2019_03_149
crossref_primary_10_1039_C8NJ01869C
crossref_primary_10_1039_c3ra41350k
crossref_primary_10_1002_marc_202100768
crossref_primary_10_1002_app_48853
crossref_primary_10_1021_acsami_9b04463
crossref_primary_10_1021_acsami_8b01082
crossref_primary_10_1021_acs_langmuir_8b01448
crossref_primary_10_1002_adma_201805044
crossref_primary_10_1016_j_polymer_2015_04_086
crossref_primary_10_1016_j_polymer_2016_09_046
crossref_primary_10_1016_j_cej_2021_132685
crossref_primary_10_1039_C5NJ03608A
crossref_primary_10_1038_s41428_018_0037_7
crossref_primary_10_1002_adma_201601613
crossref_primary_10_1021_acsagscitech_2c00187
crossref_primary_10_1021_acs_macromol_7b02305
crossref_primary_10_1002_adem_202400944
crossref_primary_10_1038_pj_2016_85
crossref_primary_10_1016_j_polymer_2016_01_008
crossref_primary_10_1039_D2PY01414A
crossref_primary_10_1021_acsanm_7b00264
crossref_primary_10_1021_acs_jpcb_6b01449
crossref_primary_10_3390_polym13234254
crossref_primary_10_1021_ma402618z
crossref_primary_10_1038_s41427_022_00372_w
crossref_primary_10_1002_pola_26736
crossref_primary_10_1016_j_progpolymsci_2019_02_007
crossref_primary_10_1039_C6PY01752E
crossref_primary_10_4325_seikeikakou_25_125
crossref_primary_10_1021_acs_langmuir_5b03474
crossref_primary_10_1021_acssuschemeng_5b00405
crossref_primary_10_1021_acsami_8b20178
crossref_primary_10_1016_j_polymer_2015_03_022
crossref_primary_10_1016_j_eurpolymj_2014_03_009
crossref_primary_10_1021_acssuschemeng_7b04738
crossref_primary_10_1179_1753555714Y_0000000128
crossref_primary_10_1016_j_matchemphys_2023_127440
crossref_primary_10_1039_C5RA06361B
crossref_primary_10_1002_adfm_201905968
crossref_primary_10_1016_j_eurpolymj_2014_07_022
crossref_primary_10_1016_j_compscitech_2016_12_027
crossref_primary_10_1002_pc_24490
crossref_primary_10_1002_polb_24514
crossref_primary_10_1016_j_bprint_2024_e00353
crossref_primary_10_1039_C9TB02570G
crossref_primary_10_1021_acs_iecr_6b03093
crossref_primary_10_1038_srep30804
crossref_primary_10_1016_j_polymer_2021_124006
crossref_primary_10_1021_acssuschemeng_2c00872
crossref_primary_10_1039_C4TA02463J
crossref_primary_10_1002_mame_201500141
crossref_primary_10_1002_macp_201300593
crossref_primary_10_1016_j_msec_2019_110310
crossref_primary_10_1002_slct_202300212
crossref_primary_10_1039_C4PY00292J
crossref_primary_10_1016_j_colsurfa_2020_124836
crossref_primary_10_1016_j_eurpolymj_2015_09_002
crossref_primary_10_1021_acs_biomac_9b01009
crossref_primary_10_1021_acsnano_7b04981
crossref_primary_10_1039_D1RA05896G
crossref_primary_10_1002_macp_201300229
crossref_primary_10_1016_j_cej_2020_125421
crossref_primary_10_1007_s10853_021_05930_1
crossref_primary_10_3390_gels8100657
crossref_primary_10_1016_j_cej_2023_146602
crossref_primary_10_1002_pi_5051
crossref_primary_10_3724_SP_J_1105_2012_12035
crossref_primary_10_1002_adma_202004190
crossref_primary_10_1080_01932691_2018_1467777
crossref_primary_10_1021_acs_jpcb_8b09357
crossref_primary_10_1021_acsami_5b00704
crossref_primary_10_1039_C4CS00219A
crossref_primary_10_1039_C7ME00071E
crossref_primary_10_1016_j_colsurfa_2022_129195
crossref_primary_10_1021_am507100m
crossref_primary_10_1002_advs_201801664
crossref_primary_10_1002_macp_201300458
crossref_primary_10_1039_D1MA00099C
crossref_primary_10_1039_c2cc34701f
crossref_primary_10_1021_acs_est_6b04574
crossref_primary_10_1002_mame_201800104
crossref_primary_10_1039_C9MH01390C
crossref_primary_10_1039_C3TA15429G
crossref_primary_10_1063_1_4904977
crossref_primary_10_1016_j_carbpol_2022_120468
crossref_primary_10_1002_polb_23636
crossref_primary_10_1007_s10965_023_03479_y
crossref_primary_10_4028_www_scientific_net_AMR_680_65
crossref_primary_10_1002_mame_201700184
crossref_primary_10_1021_acs_chemmater_0c03342
crossref_primary_10_1039_D0SM01471K
crossref_primary_10_1021_acs_macromol_6b00528
crossref_primary_10_1039_C7TB00824D
crossref_primary_10_1002_cphc_201300367
crossref_primary_10_1002_marc_201400216
crossref_primary_10_1002_polb_24728
crossref_primary_10_1039_C5TB00569H
crossref_primary_10_1016_j_polymer_2014_03_040
crossref_primary_10_1002_adma_201301034
crossref_primary_10_1021_acsapm_0c00464
crossref_primary_10_1002_mame_201600042
crossref_primary_10_1039_c3tb20704h
crossref_primary_10_1016_j_jmps_2020_103938
crossref_primary_10_1021_acsami_6b07713
crossref_primary_10_1039_C5SC03483C
crossref_primary_10_11618_adhesion_48_156
crossref_primary_10_1016_j_jmrt_2023_12_168
crossref_primary_10_1016_j_mser_2020_100543
crossref_primary_10_1039_C8RA09644A
crossref_primary_10_1016_j_carbpol_2017_10_076
crossref_primary_10_1039_C6RA01074A
crossref_primary_10_1016_j_jmps_2016_04_011
crossref_primary_10_1063_1674_0068_29_cjcp1605109
crossref_primary_10_1038_s41428_018_0079_x
crossref_primary_10_1126_science_1247811
crossref_primary_10_1002_adma_202004290
crossref_primary_10_1016_j_colsurfa_2015_07_044
crossref_primary_10_1016_j_eurpolymj_2015_06_013
crossref_primary_10_1038_nature12806
crossref_primary_10_1038_s41563_025_02146_5
crossref_primary_10_1016_j_polymertesting_2019_01_022
crossref_primary_10_1007_s10118_017_1971_0
crossref_primary_10_1016_j_jmps_2019_103831
crossref_primary_10_1016_j_colsurfa_2020_125609
crossref_primary_10_1039_C9NR07035D
crossref_primary_10_1016_j_eurpolymj_2017_05_020
crossref_primary_10_1038_s41598_020_78663_x
crossref_primary_10_1039_C6TB01606E
crossref_primary_10_1039_D0NJ06083F
crossref_primary_10_1016_j_procir_2018_12_012
crossref_primary_10_1002_adhm_201901396
crossref_primary_10_1016_j_surfin_2021_101368
crossref_primary_10_1021_acs_iecr_9b02972
crossref_primary_10_1021_ja300050x
crossref_primary_10_1155_2021_7848088
crossref_primary_10_1039_C8PY01402G
crossref_primary_10_1002_pi_4685
crossref_primary_10_1021_acs_nanolett_0c03646
crossref_primary_10_3390_polym14193941
crossref_primary_10_1016_j_cej_2020_126436
crossref_primary_10_1007_s10570_018_2025_7
crossref_primary_10_1016_j_polymer_2018_01_038
crossref_primary_10_1016_j_polymer_2022_124591
crossref_primary_10_1021_acs_chemmater_6b01144
crossref_primary_10_1002_app_41944
crossref_primary_10_1021_acsapm_4c00548
crossref_primary_10_1002_cjce_23328
crossref_primary_10_1002_masy_201300026
crossref_primary_10_1021_la401269p
crossref_primary_10_1002_cjoc_202000310
crossref_primary_10_1016_j_progpolymsci_2025_101929
crossref_primary_10_3724_SP_J_1105_2013_12332
crossref_primary_10_1007_s10965_014_0541_1
crossref_primary_10_1016_j_cej_2025_160331
crossref_primary_10_1016_j_conbuildmat_2023_132090
crossref_primary_10_1016_j_mtphys_2022_100807
crossref_primary_10_1016_j_apmt_2020_100776
crossref_primary_10_1039_c3sm52015c
Cites_doi 10.1106/YEIH-QUDH-FC7W-4QFM
10.1038/pj.2010.141
10.1002/adma.201003036
10.1016/S1359-835X(01)00020-3
10.1002/macp.200600445
10.1002/adfm.200700086
10.1126/science.1167391
10.1038/nature06669
10.1021/cm049394
10.1007/978-1-4020-6250-6
10.1038/35057232
10.1021/ma052093g
10.1002/jbm.a.32987
10.1002/adma.200501814
10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
10.1021/ma034366i
10.1021/ma071348i
10.1021/ma047431c
10.1002/anie.200502004
10.1002/smll.200700064
10.1126/science.1065879
10.1002/adfm.201000147
10.1021/ma9022197
10.1021/ma052468y
10.1039/B713953P
10.1038/nature08693
10.1002/masy.200751014
10.1021/ma021301r
10.1002/anie.200353046
10.1021/ma0210675
10.1021/ma070104v
10.1039/b711716g
10.1002/adma.200802008
10.1126/science.1110505
ContentType Journal Article
Copyright Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
L7M
7X8
DOI 10.1002/marc.201100248
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage 1258
ExternalDocumentID 21732467
10_1002_marc_201100248
MARC201100248
ark_67375_WNG_0GX80M5B_C
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Education, Science, Sports and Culture of Japan (Grant‐in‐Aid)
  funderid: 23350117
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c5588-882c8aa7d9743fb619ee345292584ed74c79d7192f95590b40393fe01fd9055d3
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 05:10:33 EDT 2025
Fri Jul 11 04:07:19 EDT 2025
Thu Apr 03 07:07:41 EDT 2025
Tue Jul 01 01:50:07 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Wed Jan 22 16:16:39 EST 2025
Wed Oct 30 09:49:57 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5588-882c8aa7d9743fb619ee345292584ed74c79d7192f95590b40393fe01fd9055d3
Notes ark:/67375/WNG-0GX80M5B-C
Ministry of Education, Science, Sports and Culture of Japan (Grant-in-Aid) - No. 23350117
ArticleID:MARC201100248
istex:BD47C58A64819EB9FFC3012B467266B3D4438D09
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/marc.201100248
PMID 21732467
PQID 1031286969
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_883006926
proquest_miscellaneous_1031286969
pubmed_primary_21732467
crossref_primary_10_1002_marc_201100248
crossref_citationtrail_10_1002_marc_201100248
wiley_primary_10_1002_marc_201100248_MARC201100248
istex_primary_ark_67375_WNG_0GX80M5B_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 17, 2011
PublicationDateYYYYMMDD 2011-08-17
PublicationDate_xml – month: 08
  year: 2011
  text: August 17, 2011
  day: 17
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol. Rapid Commun
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References D. Coillot, F. O. Mear, R. Podor, L. Montagne, Adv. Funct. Mater. 2010, 20, 4371.
X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F. Wudl, Science 2002, 295, 1698
K. Haraguchi, H. J. Li, L. Song, K. Murata, Macromolecules 2007, 40, 6973.
P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature 2008, 451, 977.
X. Chen, F. Wudl, A. K. Mal, H. Shen, S. R. Nutt, Macromolecules 2003, 36, 1802
S. M. Bleay, C. B. Loader, V. J. Hawyes, L. Humberstone, P. T. Curtis, Composites, Par A 2001, 32, 1767.
M. W. Keller, S. R. White, N. R. Sottos, Adv. Funct. Mater. 2007, 17, 2399.
B. Ghosh, M. W. Urban, Science 2009, 323, 1458.
M. D. Hager, P. Greil, C. Leyens, S. Van Der Zwaag, U. S. Schubert, Adv. Mater. 2010, 22, 5424
K. Haraguchi, T. Takehisa, S. Fan, Macromolecules 2002, 35, 10162
C. M. Chung, Y. S. Roh, S. Y. Cho, J. G. Kim, Chem. Mater. 2004, 16, 3982
K. Haraguchi, T. Takehisa, Adv. Mater. 2002, 14, 1120
A. B. W. Brochu, S. L. Craig, W. M. Reichert, J. Biomed. Mater. Res., Part A 2010, 96A, 492.
Y. L. Liu, Y. W. Chen, Macromol. Chem. Phys. 2007, 208, 224.
R. P. Wool, Soft Matter 2008, 4, 400
T. F. Scott, A. D. Schneider, W. D. Cook, C. N. Bowman, Science 2005, 308, 1615
D. G. Shchukin, H. Mohwald, Small 2007, 3, 926
G. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, Macromolecules 2010, 43, 1191.
T. Oku, Y. Furusho, T. Takata, Angew. Chem., Int. Ed. 2004, 43, 966.
Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339.
S. Miyazaki, H. Endo, T. Karino, K. Haraguchi, M. Shibayama, Macromolecules 2007, 40, 4287.
K. Haraguchi, H. J. Li, Angew. Chem., Int. Ed. 2005, 44, 6500
S. H. Cho, S. R. White, P. V. Braun, Adv. Mater. 2009, 21, 645.
Y. Higaki, H. Otsuka, A. Takahara, Macromolecules 2006, 39, 2121.
S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan, Nature 2001, 409, 794.
S. D. Bergman, F. Wudl, J. Mater. Chem. 2008, 18, 41
S. H. Cho, H. M. Andersson, S. R. White, N. R. Sottos, P. V. Braun, Adv. Mater. 2006, 18, 997
K. Haraguchi, Polym. J. 2011, 43, 223.
M. Zako, N. Takano, J. Intell. Mater. Syst. Struct. 1999, 10, 836
K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Macromolecules 2003, 36, 5732.
K. Haraguchi, H. J. Li, K. Matsuda, T. Takehisa, E. Elliott, Macromolecules 2005, 38, 3482.
S. van der Zwaag, Self-Healing Materials, Springer, Dordrecht 2007.
K. Haraguchi, Macromol. Symp. 2007, 256, 120.
K. Haraguchi, H. J. Li, Macromolecules 2006, 39, 1898.
2004; 43
2007; 17
2002; 14
2009; 21
2010
2002; 295
2008; 18
2006; 39
2002; 35
2009
2003; 36
2010; 463
2007
2006; 18
2001; 409
2008; 4
2007; 208
2005; 44
2010; 22
2010; 43
2010; 20
2007; 256
2004; 16
2005; 308
1999; 10
2011; 43
2007; 40
2007; 3
2005; 38
2008; 451
2010; 96A
2009; 323
2001; 32
e_1_2_6_31_2
e_1_2_6_30_2
Ghosh S. K. (e_1_2_6_2_2) 2009
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
Wilson G. O. (e_1_2_6_3_2) 2010
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_42_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_22_2
e_1_2_6_1_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: K. Haraguchi, H. J. Li, K. Matsuda, T. Takehisa, E. Elliott, Macromolecules 2005, 38, 3482.
– reference: Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339.
– reference: P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature 2008, 451, 977.
– reference: G. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, Macromolecules 2010, 43, 1191.
– reference: Y. Higaki, H. Otsuka, A. Takahara, Macromolecules 2006, 39, 2121.
– reference: K. Haraguchi, T. Takehisa, S. Fan, Macromolecules 2002, 35, 10162;
– reference: K. Haraguchi, H. J. Li, Angew. Chem., Int. Ed. 2005, 44, 6500;
– reference: S. M. Bleay, C. B. Loader, V. J. Hawyes, L. Humberstone, P. T. Curtis, Composites, Par A 2001, 32, 1767.
– reference: A. B. W. Brochu, S. L. Craig, W. M. Reichert, J. Biomed. Mater. Res., Part A 2010, 96A, 492.
– reference: S. Miyazaki, H. Endo, T. Karino, K. Haraguchi, M. Shibayama, Macromolecules 2007, 40, 4287.
– reference: S. D. Bergman, F. Wudl, J. Mater. Chem. 2008, 18, 41;
– reference: C. M. Chung, Y. S. Roh, S. Y. Cho, J. G. Kim, Chem. Mater. 2004, 16, 3982;
– reference: R. P. Wool, Soft Matter 2008, 4, 400;
– reference: D. Coillot, F. O. Mear, R. Podor, L. Montagne, Adv. Funct. Mater. 2010, 20, 4371.
– reference: S. van der Zwaag, Self-Healing Materials, Springer, Dordrecht 2007.
– reference: D. G. Shchukin, H. Mohwald, Small 2007, 3, 926;
– reference: S. H. Cho, S. R. White, P. V. Braun, Adv. Mater. 2009, 21, 645.
– reference: X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F. Wudl, Science 2002, 295, 1698;
– reference: T. F. Scott, A. D. Schneider, W. D. Cook, C. N. Bowman, Science 2005, 308, 1615;
– reference: M. Zako, N. Takano, J. Intell. Mater. Syst. Struct. 1999, 10, 836;
– reference: K. Haraguchi, Macromol. Symp. 2007, 256, 120.
– reference: S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan, Nature 2001, 409, 794.
– reference: B. Ghosh, M. W. Urban, Science 2009, 323, 1458.
– reference: K. Haraguchi, T. Takehisa, Adv. Mater. 2002, 14, 1120;
– reference: K. Haraguchi, H. J. Li, Macromolecules 2006, 39, 1898.
– reference: M. D. Hager, P. Greil, C. Leyens, S. Van Der Zwaag, U. S. Schubert, Adv. Mater. 2010, 22, 5424;
– reference: M. W. Keller, S. R. White, N. R. Sottos, Adv. Funct. Mater. 2007, 17, 2399.
– reference: K. Haraguchi, H. J. Li, L. Song, K. Murata, Macromolecules 2007, 40, 6973.
– reference: Y. L. Liu, Y. W. Chen, Macromol. Chem. Phys. 2007, 208, 224.
– reference: K. Haraguchi, Polym. J. 2011, 43, 223.
– reference: T. Oku, Y. Furusho, T. Takata, Angew. Chem., Int. Ed. 2004, 43, 966.
– reference: X. Chen, F. Wudl, A. K. Mal, H. Shen, S. R. Nutt, Macromolecules 2003, 36, 1802;
– reference: S. H. Cho, H. M. Andersson, S. R. White, N. R. Sottos, P. V. Braun, Adv. Mater. 2006, 18, 997;
– reference: K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Macromolecules 2003, 36, 5732.
– volume: 14
  start-page: 1120
  year: 2002
  publication-title: Adv. Mater.
– volume: 40
  start-page: 4287
  year: 2007
  publication-title: Macromolecules
– year: 2009
– volume: 43
  start-page: 1191
  year: 2010
  publication-title: Macromolecules
– volume: 409
  start-page: 794
  year: 2001
  publication-title: Nature
– volume: 38
  start-page: 3482
  year: 2005
  publication-title: Macromolecules
– year: 2007
– volume: 96A
  start-page: 492
  year: 2010
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 295
  start-page: 1698
  year: 2002
  publication-title: Science
– volume: 35
  start-page: 10162
  year: 2002
  publication-title: Macromolecules
– volume: 3
  start-page: 926
  year: 2007
  publication-title: Small
– volume: 40
  start-page: 6973
  year: 2007
  publication-title: Macromolecules
– volume: 18
  start-page: 997
  year: 2006
  publication-title: Adv. Mater.
– volume: 16
  start-page: 3982
  year: 2004
  publication-title: Chem. Mater.
– start-page: 1
  year: 2010
  end-page: 33
– volume: 36
  start-page: 5732
  year: 2003
  publication-title: Macromolecules
– volume: 39
  start-page: 1898
  year: 2006
  publication-title: Macromolecules
– volume: 256
  start-page: 120
  year: 2007
  publication-title: Macromol. Symp.
– volume: 36
  start-page: 1802
  year: 2003
  publication-title: Macromolecules
– volume: 44
  start-page: 6500
  year: 2005
  publication-title: Angew. Chem., Int. Ed.
– volume: 463
  start-page: 339
  year: 2010
  publication-title: Nature
– volume: 208
  start-page: 224
  year: 2007
  publication-title: Macromol. Chem. Phys.
– volume: 323
  start-page: 1458
  year: 2009
  publication-title: Science
– volume: 22
  start-page: 5424
  year: 2010
  publication-title: Adv. Mater.
– volume: 10
  start-page: 836
  year: 1999
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 43
  start-page: 966
  year: 2004
  publication-title: Angew. Chem., Int. Ed.
– volume: 18
  start-page: 41
  year: 2008
  publication-title: J. Mater. Chem.
– volume: 32
  start-page: 1767
  year: 2001
  publication-title: Composites, Par A
– volume: 308
  start-page: 1615
  year: 2005
  publication-title: Science
– volume: 39
  start-page: 2121
  year: 2006
  publication-title: Macromolecules
– volume: 21
  start-page: 645
  year: 2009
  publication-title: Adv. Mater.
– volume: 43
  start-page: 223
  year: 2011
  publication-title: Polym. J.
– volume: 17
  start-page: 2399
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 400
  year: 2008
  publication-title: Soft Matter
– volume: 451
  start-page: 977
  year: 2008
  publication-title: Nature
– volume: 20
  start-page: 4371
  year: 2010
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_6_5_2
– ident: e_1_2_6_22_2
  doi: 10.1106/YEIH-QUDH-FC7W-4QFM
– ident: e_1_2_6_42_2
  doi: 10.1038/pj.2010.141
– ident: e_1_2_6_9_2
  doi: 10.1002/adma.201003036
– ident: e_1_2_6_20_2
  doi: 10.1016/S1359-835X(01)00020-3
– ident: e_1_2_6_21_2
– ident: e_1_2_6_14_2
  doi: 10.1002/macp.200600445
– ident: e_1_2_6_28_2
  doi: 10.1002/adfm.200700086
– ident: e_1_2_6_31_2
  doi: 10.1126/science.1167391
– ident: e_1_2_6_30_2
  doi: 10.1038/nature06669
– ident: e_1_2_6_17_2
  doi: 10.1021/cm049394
– ident: e_1_2_6_4_2
  doi: 10.1007/978-1-4020-6250-6
– ident: e_1_2_6_24_2
  doi: 10.1038/35057232
– start-page: 1
  volume-title: Encyclopedia of Polymer Science and Technology
  year: 2010
  ident: e_1_2_6_3_2
– ident: e_1_2_6_15_2
– ident: e_1_2_6_18_2
  doi: 10.1021/ma052093g
– ident: e_1_2_6_10_2
  doi: 10.1002/jbm.a.32987
– ident: e_1_2_6_26_2
  doi: 10.1002/adma.200501814
– ident: e_1_2_6_34_2
  doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
– ident: e_1_2_6_36_2
  doi: 10.1021/ma034366i
– ident: e_1_2_6_44_2
  doi: 10.1021/ma071348i
– ident: e_1_2_6_40_2
  doi: 10.1021/ma047431c
– ident: e_1_2_6_38_2
  doi: 10.1002/anie.200502004
– ident: e_1_2_6_6_2
  doi: 10.1002/smll.200700064
– ident: e_1_2_6_12_2
  doi: 10.1126/science.1065879
– ident: e_1_2_6_23_2
  doi: 10.1002/adfm.201000147
– ident: e_1_2_6_29_2
  doi: 10.1021/ma9022197
– ident: e_1_2_6_41_2
  doi: 10.1021/ma052468y
– ident: e_1_2_6_8_2
  doi: 10.1039/B713953P
– ident: e_1_2_6_37_2
– ident: e_1_2_6_32_2
  doi: 10.1038/nature08693
– ident: e_1_2_6_39_2
  doi: 10.1002/masy.200751014
– ident: e_1_2_6_11_2
– ident: e_1_2_6_35_2
  doi: 10.1021/ma021301r
– ident: e_1_2_6_19_2
  doi: 10.1002/anie.200353046
– ident: e_1_2_6_13_2
  doi: 10.1021/ma0210675
– ident: e_1_2_6_43_2
  doi: 10.1021/ma070104v
– ident: e_1_2_6_33_2
– ident: e_1_2_6_1_2
– ident: e_1_2_6_7_2
  doi: 10.1039/b711716g
– ident: e_1_2_6_27_2
  doi: 10.1002/adma.200802008
– volume-title: Design Strategies, and Applications
  year: 2009
  ident: e_1_2_6_2_2
– ident: e_1_2_6_16_2
  doi: 10.1126/science.1110505
– ident: e_1_2_6_25_2
SSID ssj0008402
Score 2.491612
Snippet Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1253
SubjectTerms clay
Cutting
Damage
Elasticity
Healing
Hydrogels
Hydrogels - chemistry
nanocomposite
Nanocomposites
Nanocomposites - chemistry
Nanomaterials
Nanostructure
network
Numerical control
Polymers - chemistry
self-healing
Surface Properties
Title Self-healing in Nanocomposite Hydrogels
URI https://api.istex.fr/ark:/67375/WNG-0GX80M5B-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201100248
https://www.ncbi.nlm.nih.gov/pubmed/21732467
https://www.proquest.com/docview/1031286969
https://www.proquest.com/docview/883006926
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VcGgv0B_ahtIqSFURh4DXiZ3sEVaFFdJyoEXdm-XfqgJlq2VXAk48As_IkzCTbEIXgZDKMdJYsWc89jf2-BuAr8YgzHXSJdIFk2TeukSnRieMG84NC5YZOtAfHMr-cXYwFMN_XvHX_BDtgRt5RrVek4Nrc7Z9RxpKVA8VBWdFy4WLMCVsESo6uuOPwuilvu7EiAuDMdmwNjK-Pd98bldaJAWfPwQ55xFstQXtLYNuOl9nnpxsTSdmy17e43V8zuhew9IMn8Y79YR6Ay98-RZe9pqycO9g84c_DTdX14QwcduL_5QxrtAjSk2n_C8f9y_cePQbt9wVON77_rPXT2b1FhIrBDoMgm1baJ07jDHSYDC08j6li1mOKMW7PLN51-UICQPR1jGT0bve4FknuC4TwqXvYaEclf4jxAWaWTiTdjKdISQUpqNtITMTTLA2K2QESaNvZWdk5FQT41TVNMpckQJUq4AINlr5vzUNx6OS3yrztWJ6fELJa7lQvw73FdsfFmwgdlUvgvXGvgpVSPckuvSj6Zmiyhe8kF3ZjSB-RKYoUiJ55jiSD_XcaH-IQR6iVJlHwCsLP9FhNdg56rVfq__T6BO8ao66O_kaLEzGU_8ZsdLEfKn84RaB1gj4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VOMAF-oRAW1IJFfWQxevETvZIt4Vty-6Bh8rNil8IgbJo2ZWgp_6E_sb-ks4km6BFoErtMZKt2DO255vx-BuALa0R5lppI2m9jhJnbJTHOo8Y15xr5g3TFNDvD2TvJPl6KupsQnoLU_FDNAE32hnleU0bnALSO3esocT1UHJwlrxcc7BAZb2JPv_T4R2DFPov1YUn-lzojsmat5Hxndn-M3ZpgUR88xDonMWwpRHaWwFdD7_KPbloTca6ZX7cY3b8r_k9heUpRA13qzX1DJ644jksduvKcC_gw5G79L9__iKQiZYvPC9CPKSHlJ1OKWAu7N3a0fAMre5LONn7fNztRdOSC5ERAvcM4m2T5Xlq0c2IvUbvyrmY7mY5AhVn08SkHZsiKvTEXMd0Qk97vWNtbztMCBu_gvliWLg1CDPUtLA6bid5gqhQ6HZuMplor70xSSYDiGqBKzPlI6eyGJeqYlLmigSgGgEEsN20v6qYOB5t-b7UX9MsH11Q_loq1PfBvmL7pxnri4-qG8C7WsEKRUhXJXnhhpNrRcUveCY7shNA-EibLIuJ55njTFarxdH8EP08BKoyDYCXKv7LgFV_97DbfK3_S6dNWOwd9w_UwZfBtw1YqiPf7fQ1zI9HE_cGodNYvy03xx8bMw0U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEX3o_wDBICcUjrTWwnOZYt2-WxK1So2JvlJ0KtstWyK0FP_Qn9jf0lzCSblEVUSHCMNFbsscfzjT3-BuCZMQhznXSJdMEk3FuX6MzohKUmTQ0Llhk60B-N5XCPv52IyS-v-Bt-iO7AjSyj3q_JwA9d2DwjDSWqh5qCs6blugjrXLKSijds754RSGH40tx3YsiF0ZhsaRtZurnafsUtrZOGv_8Jc65C2NoHDa6BbnvfpJ7sbyzmZsMe_Ubs-D_Duw5XlwA13mpW1A244KubcLnf1oW7BS8_-oNwenxCEBP9Xvy1inGLnlJuOiWA-Xj4w82mX9Dn3oa9wetP_WGyLLiQWCHQYhBt20Lr3GGQkQWDsZX3Gd3MpghTvMu5zUuXIyYMxFvHDKeHvcGzXnAlE8Jld2Ctmlb-HsQFzrNwJutxzRETCtPTtpDcBBOs5YWMIGn1reySjZyKYhyohkc5VaQA1Skgghed_GHDw3Gu5PN6-joxPdun7LVcqM_jHcV2JgUbiVeqH8HTdn4VqpAuSnTlp4tvikpfpIUsZRlBfI5MUWTE8pziSO42a6P7IUZ5CFNlHkFaz_BfOqxGW7v97uv-vzR6Apc-bA_U-zfjdw_gSnvs3csfwtp8tvCPEDfNzePaNH4C3bgLww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90healing+in+Nanocomposite+Hydrogels&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Haraguchi%2C+Kazutoshi&rft.au=Uyama%2C+Kazuhisa&rft.au=Tanimoto%2C+Hisashi&rft.date=2011-08-17&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=32&rft.issue=16&rft.spage=1253&rft.epage=1258&rft_id=info:doi/10.1002%2Fmarc.201100248&rft.externalDBID=10.1002%252Fmarc.201100248&rft.externalDocID=MARC201100248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon