Mass spectrometry‐based proteomic platforms for better understanding of SARS‐CoV‐2 induced pathogenesis and potential diagnostic approaches

While protein–protein interaction is the first step of the SARS‐CoV‐2 infection, recent comparative proteomic profiling enabled the identification of over 11,000 protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to vira...

Full description

Saved in:
Bibliographic Details
Published inPROTEOMICS Vol. 21; no. 10; pp. e2000279 - n/a
Main Authors Ahsan, Nagib, Rao, R. Shyama Prasad, Wilson, Rashaun S., Punyamurtula, Ujwal, Salvato, Fernanda, Petersen, Max, Ahmed, Mohammad Kabir, Abid, M. Ruhul, Verburgt, Jacob C., Kihara, Daisuke, Yang, Zhibo, Fornelli, Luca, Foster, Steven B., Ramratnam, Bharat
Format Journal Article Web Resource
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.05.2021
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While protein–protein interaction is the first step of the SARS‐CoV‐2 infection, recent comparative proteomic profiling enabled the identification of over 11,000 protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to viral infection. Here we summarize and rationalize the results obtained by various mass spectrometry (MS)‐based proteomic approaches applied to the functional characterization of proteins and pathways associated with SARS‐CoV‐2‐mediated infections in humans. Comparative analysis of cell‐lines versus tissue samples indicates that our knowledge in proteome profile alternation in response to SARS‐CoV‐2 infection is still incomplete and the tissue‐specific response to SARS‐CoV‐2 infection can probably not be recapitulated efficiently by in vitro experiments. However, regardless of the viral infection period, sample types, and experimental strategies, a thorough cross‐comparison of the recently published proteome, phosphoproteome, and interactome datasets led to the identification of a common set of proteins and kinases associated with PI3K‐Akt, EGFR, MAPK, Rap1, and AMPK signaling pathways. Ephrin receptor A2 (EPHA2) was identified by 11 studies including all proteomic platforms, suggesting it as a potential future target for SARS‐CoV‐2 infection mechanisms and the development of new therapeutic strategies. We further discuss the potentials of future proteomics strategies for identifying prognostic SARS‐CoV‐2 responsive age‐, gender‐dependent, tissue‐specific protein targets.
AbstractList While protein‐protein interaction is the first step of the SARS‐CoV‐2 infection, recent comparative proteomic profiling enabled the identification of over eleven thousand protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to viral infection. Here we summarize and rationalize the results obtained by various mass spectrometry (MS)‐based proteomic approaches applied to the functional characterization of proteins and pathways associated with SARS‐CoV‐2‐mediated infections in humans. Comparative analysis of cell‐lines vs tissue samples indicates that our knowledge in proteome profile alternation in response to SARS‐CoV‐2 infection is still incomplete and the tissue‐specific response to SARS‐CoV‐2 infection can probably not be recapitulated efficiently by in vitro experiments. However, regardless of the viral infection period, sample types, and experimental strategies, a thorough cross‐comparison of the recently published proteome, phosphoproteome, and interactome datasets led to the identification of a common set of proteins and kinases associated with PI3K‐Akt, EGFR, MAPK, Rap1, and AMPK signaling pathways. Ephrin receptor A2 (EPHA2), was identified by 11 studies including all proteomic platforms suggesting as a potential future target for SARS‐CoV‐2 infection mechanisms and the development of new therapeutic strategies. We further discuss the potentials of future proteomics strategies for identifying prognostic SARS‐CoV‐2 responsive age, gender‐dependent tissue‐specific protein targets. This article is protected by copyright. All rights reserved
Abstract While protein–protein interaction is the first step of the SARS‐CoV‐2 infection, recent comparative proteomic profiling enabled the identification of over 11,000 protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to viral infection. Here we summarize and rationalize the results obtained by various mass spectrometry (MS)‐based proteomic approaches applied to the functional characterization of proteins and pathways associated with SARS‐CoV‐2‐mediated infections in humans. Comparative analysis of cell‐lines versus tissue samples indicates that our knowledge in proteome profile alternation in response to SARS‐CoV‐2 infection is still incomplete and the tissue‐specific response to SARS‐CoV‐2 infection can probably not be recapitulated efficiently by in vitro experiments. However, regardless of the viral infection period, sample types, and experimental strategies, a thorough cross‐comparison of the recently published proteome, phosphoproteome, and interactome datasets led to the identification of a common set of proteins and kinases associated with PI3K‐Akt, EGFR, MAPK, Rap1, and AMPK signaling pathways. Ephrin receptor A2 (EPHA2) was identified by 11 studies including all proteomic platforms, suggesting it as a potential future target for SARS‐CoV‐2 infection mechanisms and the development of new therapeutic strategies. We further discuss the potentials of future proteomics strategies for identifying prognostic SARS‐CoV‐2 responsive age‐, gender‐dependent, tissue‐specific protein targets.
While protein-protein interaction is the first step of the SARS-CoV-2 infection, recent comparative proteomic profiling enabled the identification of over 11,000 protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to viral infection. Here we summarize and rationalize the results obtained by various mass spectrometry (MS)-based proteomic approaches applied to the functional characterization of proteins and pathways associated with SARS-CoV-2-mediated infections in humans. Comparative analysis of cell-lines versus tissue samples indicates that our knowledge in proteome profile alternation in response to SARS-CoV-2 infection is still incomplete and the tissue-specific response to SARS-CoV-2 infection can probably not be recapitulated efficiently by in vitro experiments. However, regardless of the viral infection period, sample types, and experimental strategies, a thorough cross-comparison of the recently published proteome, phosphoproteome, and interactome datasets led to the identification of a common set of proteins and kinases associated with PI3K-Akt, EGFR, MAPK, Rap1, and AMPK signaling pathways. Ephrin receptor A2 (EPHA2) was identified by 11 studies including all proteomic platforms, suggesting it as a potential future target for SARS-CoV-2 infection mechanisms and the development of new therapeutic strategies. We further discuss the potentials of future proteomics strategies for identifying prognostic SARS-CoV-2 responsive age-, gender-dependent, tissue-specific protein targets.
Author Kihara, Daisuke
Petersen, Max
Abid, M. Ruhul
Wilson, Rashaun S.
Verburgt, Jacob C.
Rao, R. Shyama Prasad
Foster, Steven B.
Ramratnam, Bharat
Punyamurtula, Ujwal
Fornelli, Luca
Ahsan, Nagib
Salvato, Fernanda
Ahmed, Mohammad Kabir
Yang, Zhibo
AuthorAffiliation 6 Signal Transduction Lab, Division of Hematology/Oncology Rhode Island Hospital, Warren Alpert Medical School, Brown University Providence Rhode Island USA
11 Department of Biology University of Oklahoma Norman Oklahoma USA
2 Biostatistics and Bioinformatics Division Yenepoya Research Center Yenepoya University Mangaluru India
7 Department of Biochemistry Faculty of Medicine Universiti Kuala Lumpur Royal College of Medicine Perak Ipoh Perak Malaysia
10 Department of Computer Science Purdue University West Lafayette Indiana USA
12 Division of Infectious Diseases Department of Medicine Warren Alpert Medical School Brown University Providence Rhode Island USA
1 Department of Chemistry and Biochemistry University of Oklahoma Norman Oklahoma USA
9 Department of Biological Sciences Purdue University West Lafayette Indiana USA
4 COBRE Center for Cancer Research Development Proteomics Core Facility Rhode Island Hospital Providence Rhode Island USA
8 Department of Surgery Cardiovascular Research Center
AuthorAffiliation_xml – name: 11 Department of Biology University of Oklahoma Norman Oklahoma USA
– name: 3 Keck Mass Spectrometry and Proteomics Resource Yale University New Haven Connecticut USA
– name: 4 COBRE Center for Cancer Research Development Proteomics Core Facility Rhode Island Hospital Providence Rhode Island USA
– name: 12 Division of Infectious Diseases Department of Medicine Warren Alpert Medical School Brown University Providence Rhode Island USA
– name: 6 Signal Transduction Lab, Division of Hematology/Oncology Rhode Island Hospital, Warren Alpert Medical School, Brown University Providence Rhode Island USA
– name: 2 Biostatistics and Bioinformatics Division Yenepoya Research Center Yenepoya University Mangaluru India
– name: 8 Department of Surgery Cardiovascular Research Center Rhode Island Hospital Warren Alpert Medical School Brown University Providence Rhode Island USA
– name: 10 Department of Computer Science Purdue University West Lafayette Indiana USA
– name: 9 Department of Biological Sciences Purdue University West Lafayette Indiana USA
– name: 1 Department of Chemistry and Biochemistry University of Oklahoma Norman Oklahoma USA
– name: 5 Department of Plant and Microbial Biology College of Agriculture and Life Sciences North Carolina State University Raleigh North Carolina USA
– name: 7 Department of Biochemistry Faculty of Medicine Universiti Kuala Lumpur Royal College of Medicine Perak Ipoh Perak Malaysia
Author_xml – sequence: 1
  givenname: Nagib
  surname: Ahsan
  fullname: Ahsan, Nagib
  email: nahsan@ou.edu
  organization: University of Oklahoma
– sequence: 2
  givenname: R. Shyama Prasad
  surname: Rao
  fullname: Rao, R. Shyama Prasad
  organization: Yenepoya University
– sequence: 3
  givenname: Rashaun S.
  surname: Wilson
  fullname: Wilson, Rashaun S.
  organization: Yale University
– sequence: 4
  givenname: Ujwal
  surname: Punyamurtula
  fullname: Punyamurtula, Ujwal
  organization: Rhode Island Hospital
– sequence: 5
  givenname: Fernanda
  surname: Salvato
  fullname: Salvato, Fernanda
  organization: North Carolina State University
– sequence: 6
  givenname: Max
  surname: Petersen
  fullname: Petersen, Max
  organization: Rhode Island Hospital, Warren Alpert Medical School, Brown University
– sequence: 7
  givenname: Mohammad Kabir
  surname: Ahmed
  fullname: Ahmed, Mohammad Kabir
  organization: Universiti Kuala Lumpur Royal College of Medicine Perak
– sequence: 8
  givenname: M. Ruhul
  surname: Abid
  fullname: Abid, M. Ruhul
  organization: Brown University
– sequence: 9
  givenname: Jacob C.
  surname: Verburgt
  fullname: Verburgt, Jacob C.
  organization: Purdue University
– sequence: 10
  givenname: Daisuke
  surname: Kihara
  fullname: Kihara, Daisuke
  organization: Purdue University
– sequence: 11
  givenname: Zhibo
  surname: Yang
  fullname: Yang, Zhibo
  organization: University of Oklahoma
– sequence: 12
  givenname: Luca
  surname: Fornelli
  fullname: Fornelli, Luca
  organization: University of Oklahoma
– sequence: 13
  givenname: Steven B.
  surname: Foster
  fullname: Foster, Steven B.
  organization: University of Oklahoma
– sequence: 14
  givenname: Bharat
  surname: Ramratnam
  fullname: Ramratnam, Bharat
  organization: Brown University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33860983$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURD_gyhFZ4sJlF3_EjnNBqlYFKrUCUeBqTZzJrqvEDnYC2hs_Af4ivwSvtqyAA1zGHvmZd2bk97Q48sFjUTxmdMko5c_Hwdklp5zmpKrvFSdMMbmotWJHh7sUx8VpSreUskrX1YPiWAitaK3FSfH9GlIiaUQ7xTDgFLc_vn5rIGFLxhgmDFmfjD1MXYhDIjmSBqcJI5l9izFN4Fvn1yR05Ob83U0uXoWPOXLifDvbnQxMm7BGj8klkmkyZlk_OehJ62DtQ5pyCxhzO7AbTA-L-x30CR_dnWfFh5cX71evF1dvXl2uzq8WVkotFshYKxSWnbINatk1ErpGNZ0GZWurFLYdQ9FWVCPjnAHUrKwBoAHeVaVqxFnxYq87zs2Arc0zRejNGN0AcWsCOPPni3cbsw6fjeaScsmzwLM7gRg-zZgmM7hkse_BY5iT4ZKVstalKjP69C_0NszR5_UyxZUoGc-_8U-KiVKXnMpMLfeUjSGliN1hZEbNzhNm5wlz8EQuePL7ogf8lwkyIPfAF9fj9j9y5u315SoPQ4X4CW0Jy8g
CitedBy_id crossref_primary_10_1016_j_csbj_2023_03_040
crossref_primary_10_1186_s12014_024_09481_w
crossref_primary_10_1007_s00216_021_03831_5
crossref_primary_10_1038_s41419_022_05250_5
crossref_primary_10_1186_s12967_024_05342_0
crossref_primary_10_1016_j_neuroscience_2022_11_030
crossref_primary_10_1039_D2AN00431C
crossref_primary_10_3389_fpubh_2022_948520
crossref_primary_10_3390_biology12091196
crossref_primary_10_3390_biochem1030018
crossref_primary_10_1128_jvi_01194_23
crossref_primary_10_1186_s11658_022_00311_1
crossref_primary_10_1186_s12964_023_01306_x
crossref_primary_10_2217_imt_2021_0269
crossref_primary_10_3389_fimmu_2022_1032331
Cites_doi 10.1002/jmv.25989
10.1038/s41467-020-19925-0
10.1038/s41564-020-00841-4
10.1016/j.cell.2020.05.032
10.1038/s41586-020-2286-9
10.1016/j.cell.2021.01.004
10.1183/13993003.01123-2020
10.1371/journal.pone.0240012
10.1073/pnas.1119592109
10.1126/science.abb9983
10.1021/acs.jproteome.0c00365
10.1038/s41392-020-00406-1
10.1126/science.368.6489.356
10.1080/22221751.2020.1799723
10.1002/pmic.200300676
10.1146/annurev-anchem-071015-041550
10.1002/jcc.20945
10.15252/msb.20209610
10.1021/acs.analchem.0c02288
10.1021/acs.jproteome.0c00606
10.2217/fvl-2018-0008
10.1074/jbc.M805747200
10.1021/acs.jproteome.0c00887
10.1152/ajplung.00355.2020
10.1002/pmic.202000246
10.1126/science.aah6157
10.1038/nm.2341
10.1126/sciimmunol.abd7114
10.1038/s41423-020-0447-2
10.1126/sciimmunol.abd0110
10.1016/j.eng.2020.07.014
10.1093/cvr/cvaa078
10.1021/ja502616y
10.1021/acs.jproteome.5b00997
10.1002/pmic.202000107
10.1186/s13073-020-00763-0
10.3390/jcm9040941
10.1126/science.abc8511
10.1038/s41467-021-21118-2
10.1021/acs.jpcb.0c04553
10.1016/j.bbrep.2021.100933
10.1016/j.cell.2020.06.034
10.1038/s41591-020-0962-9
10.1016/j.cels.2020.05.012
10.1074/mcp.RA120.002164
10.1038/s41598-020-80120-8
10.3390/ijms22020532
10.1016/j.sbi.2016.09.008
10.1021/acs.jproteome.0c00674
10.1021/acs.jproteome.0c00412
10.1038/s41467-020-19706-9
10.1016/j.apsb.2020.04.009
10.1016/j.molcel.2020.11.028
10.1007/978-1-4939-6881-7_22
10.1007/s00705-004-0461-1
10.1093/infdis/jiw284
10.1038/s41392-020-00355-9
10.1016/j.cell.2020.02.052
10.1016/j.antiviral.2019.104651
10.1021/acs.jproteome.0c00535
10.1074/mcp.M900620-MCP200
10.1021/acs.jproteome.0c00280
10.1021/acsinfecdis.0c00500
10.1080/22221751.2020.1791737
10.1038/s41467-018-03367-w
10.1016/j.molcel.2020.11.025
10.1021/acsomega.0c04691
10.1021/ac901049w
10.1021/pr400814s
10.1038/nchembio.2178
10.1126/science.abc6027
10.1016/j.bbrc.2020.08.024
10.1038/s41467-020-15562-9
10.1021/acs.jproteome.9b00045
10.1016/j.jprot.2017.06.013
10.1038/s41586-020-2332-7
10.1074/mcp.TIR119.001865
10.1126/science.aaz6695
10.1073/pnas.1716122115
10.1371/journal.pone.0246366
10.1016/j.molcel.2020.08.006
10.1038/s41564-017-0081-7
10.1007/s13238-020-00762-2
10.1371/journal.ppat.1006184
10.1128/JVI.79.6.3846-3850.2005
10.1038/s41564-017-0080-8
ContentType Journal Article
Web Resource
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2021. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://novel-coronavirus.onlinelibrary.wiley.com
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2021. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://novel-coronavirus.onlinelibrary.wiley.com
DBID NPM
AAYXX
CITATION
COVID
7QO
7QP
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.1002/pmic.202000279
DatabaseName PubMed
CrossRef
Coronavirus Research Database
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Coronavirus Research Database
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Coronavirus Research Database
CrossRef
PubMed

Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: COVID
  name: Coronavirus Research Database
  url: https://proxy.k.utb.cz/login?url=https://search.proquest.com/coronavirus
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
EISSN 1615-9861
EndPage n/a
ExternalDocumentID 10_1002_pmic_202000279
33860983
PMIC13403
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: NIH
  funderid: R01GM133840; R01HL133624; R01GM116116
– fundername: National Institute of General Medical Sciences
  funderid: R01GM123055
– fundername: NSF
  funderid: OCE‐1634630
– fundername: NIH HHS
  grantid: R01HL133624
– fundername: NIH HHS
  grantid: R01GM133840
– fundername: NIH HHS
  grantid: R01GM116116
– fundername: NSF
  grantid: OCE-1634630
– fundername: NIGMS NIH HHS
  grantid: R01GM123055
– fundername: ;
  grantid: R01GM133840; R01HL133624; R01GM116116
– fundername: ;
  grantid: OCE‐1634630
– fundername: ;
  grantid: R01GM123055
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-1
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZGI
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
COVID
7QO
7QP
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5583-e11d36e4f6cbe85fb5afb6bf8a6c9c66edf1e3d708e1221aa9149aaaba2f746b3
IEDL.DBID DR2
ISSN 1615-9853
IngestDate Tue Sep 17 21:12:29 EDT 2024
Fri Aug 16 07:43:43 EDT 2024
Fri Sep 13 03:36:48 EDT 2024
Fri Sep 13 04:02:54 EDT 2024
Fri Aug 23 00:32:08 EDT 2024
Sat Sep 28 08:25:07 EDT 2024
Sat Aug 24 01:01:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords COVID-19
comparative proteomics
kinase-substrate signaling
top-down proteomics
biomarkers
targeted proteomics
post-translational modifications
Language English
License 2021 Wiley-VCH GmbH.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5583-e11d36e4f6cbe85fb5afb6bf8a6c9c66edf1e3d708e1221aa9149aaaba2f746b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-2
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8250252
PMID 33860983
PQID 2513484205
PQPubID 4686273
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8250252
proquest_miscellaneous_2514598464
proquest_journals_2526341298
proquest_journals_2513484205
crossref_primary_10_1002_pmic_202000279
pubmed_primary_33860983
wiley_primary_10_1002_pmic_202000279_PMIC13403
PublicationCentury 2000
PublicationDate May 2021
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
– name: Weinheim
PublicationTitle PROTEOMICS
PublicationTitleAlternate Proteomics
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2021; 26
2021; 21
2021; 20
2021; 22
2020; 20
2009; 81
2017; 1584
2004; 4
2020; 369
2020; 17
2020; 368
2020; 16
2020; 15
2019; 18
2020; 12
2020; 56
2020; 11
2020; 124
2020; 367
2021; 320
2020; 10
2011; 17
2014; 136
2020; 19
2020; 6
2018; 9
2020; 5
2018; 3
2020; 173
2008; 29
2020; 92
2020; 9
2016; 353
2014; 13
2016; 40
2009; 284
2020; 532
2017; 165
2005; 79
2010; 9
2021; 6
2005; 150
2020; 583
2020; 181
2020; 80
2020; 182
2021; 184
2016; 15
2012; 109
2016; 12
2021; 16
2021; 12
2020
2017; 13
2018; 115
2020; 116
2020; 26
2016; 214
2016; 9
2018; 13
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
Supekar N. T. (e_1_2_11_60_1) 2020
e_1_2_11_29_1
e_1_2_11_4_1
e_1_2_11_48_1
St‐Germain J. (e_1_2_11_10_1) 2020
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_50_1
e_1_2_11_92_1
Zhang Y. (e_1_2_11_64_1) 2020
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_54_1
e_1_2_11_96_1
Zhou D. (e_1_2_11_28_1) 2020
e_1_2_11_5_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_39_1
Li J. (e_1_2_11_8_1) 2020
e_1_2_11_72_1
e_1_2_11_91_1
Li Y. (e_1_2_11_37_1) 2020
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
Meyer B. (e_1_2_11_67_1) 2020
e_1_2_11_27_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_83_1
Uslupehlivan M. (e_1_2_11_59_1) 2020
Bezstarosti K. (e_1_2_11_16_1) 2020
e_1_2_11_45_1
e_1_2_11_68_1
Samavarchi‐Tehrani P. (e_1_2_11_12_1) 2020
e_1_2_11_41_1
e_1_2_11_22_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
Laurent E. M. N. (e_1_2_11_9_1) 2020
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
Lutomski C. A. (e_1_2_11_87_1) 2020
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
Stukalov A. (e_1_2_11_7_1) 2020
e_1_2_11_18_1
References_xml – volume: 182
  start-page: 685
  issue: 3
  year: 2020
  end-page: 712
  article-title: The Global Phosphorylation Landscape of SARS‐CoV‐2 Infection
  publication-title: Cell
– volume: 26
  start-page: 1205
  issue: 8
  year: 2020
  end-page: 1211
  article-title: Age‐Dependent Effects in the Transmission and Control of COVID‐19 Epidemics
  publication-title: Nature Medicine
– volume: 5
  year: 2020
  article-title: Inhibition of Bruton Tyrosine Kinase in Patients with Severe COVID‐19
  publication-title: Science Immunology
– volume: 9
  start-page: 1748
  year: 2020
  end-page: 1760
  article-title: Dysregulation in Akt/mTOR/HIF‐1 signaling identified by proteo‐transcriptomics of SARS‐CoV‐2 infected cells
  publication-title: Emerg Microbes Infect
– year: 2020
  article-title: A SARS‐CoV‐2 BioID‐based virus‐host membrane protein interactome and virus peptide compendium: New proteomics resources for COVID‐19 research
  publication-title: bioRxiv
– volume: 165
  start-page: 69
  year: 2017
  end-page: 74
  article-title: Highly reproducible improved label‐free quantitative analysis of cellular phosphoproteome by optimization of LC‐MS/MS gradient and analytical column construction
  publication-title: Journal of Proteomics
– year: 2020
  article-title: Targeted Proteomics for the Detection of SARS‐CoV‐2 Proteins
  publication-title: bioRxiv
– volume: 12
  start-page: 68
  year: 2020
  article-title: Characterisation of the transcriptome and proteome of SARS‐CoV‐2 reveals a cell passage induced in‐frame deletion of the furin‐like cleavage site from the spike glycoprotein
  publication-title: Genome Medicine
– volume: 182
  start-page: 59
  year: 2020
  end-page: 72
  publication-title: Cell
– volume: 80
  start-page: 1104
  issue: 6
  year: 2020
  end-page: 1122
  article-title: Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS‐CoV‐2
  publication-title: Molecular Cell
– volume: 320
  start-page: L84
  issue: 1
  year: 2021
  end-page: L98
  article-title: High‐dimensional single‐cell analysis reveals the immune characteristics of COVID‐19
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
– year: 2020
  article-title: Global BioID‐based SARS‐CoV‐2 proteins proximal interactome unveils novel ties between viral polypeptides and host factors involved in multiple COVID19‐associated mechanisms
  publication-title: bioRxiv
– year: 2020
  article-title: Computational Analysis of SARS‐CoV‐2 S1 Protein O‐Glycosylation and Phosphorylation Modifications and Identifying Potential Target Positions against CD209L‐Mannose Interaction to Inhibit Initial Binding of the Virus
  publication-title: bioRxiv
– volume: 26
  year: 2021
  article-title: Variations in Orf3a protein of SARS‐CoV‐2 alter its structure and function
  publication-title: Biochemistry and Biophysics Reports
– volume: 92
  start-page: 13813
  issue: 20
  year: 2020
  end-page: 13821
  article-title: Development of a Parallel Reaction Monitoring Mass Spectrometry Assay for the Detection of SARS‐CoV‐2 Spike Glycoprotein and Nucleoprotein
  publication-title: Analytical Chemistry
– volume: 11
  start-page: 1620
  year: 2020
  article-title: Characterization of spike glycoprotein of SARS‐CoV‐2 on virus entry and its immune cross‐reactivity with SARS‐CoV
  publication-title: Nature communications
– volume: 10
  start-page: 1228
  issue: 7
  year: 2020
  end-page: 1238
  article-title: Crystal structure of SARS‐CoV‐2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites
  publication-title: Acta Pharm. Sin. B.
– year: 2020
  article-title: Virus‐Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS‐CoV‐2 Pathogenesis
  publication-title: Med (N Y)
– volume: 92
  start-page: 2050
  issue: 10
  year: 2020
  end-page: 2054
  article-title: A Comparison Study of SARS‐CoV‐2 IgG Antibody between Male and Female COVID‐19 Patients: A Possible Reason Underlying Different Outcome between Sex
  publication-title: Journal of Medical Virology
– volume: 15
  year: 2020
  article-title: Proteins associated with neutrophil degranulation are upregulated in nasopharyngeal swabs from SARS‐CoV‐2 patients
  publication-title: Plos One
– year: 2020
  article-title: Saliva Glycoproteins Bind to Spike Protein of SARS‐CoV‐2
  publication-title: Preprints
– volume: 6
  start-page: 3174
  year: 2020
  end-page: 3189
  article-title: Comparative multiplexed interactomics of SARS‐CoV‐2 and homologous coronavirus non‐structural proteins identifies unique and shared host‐cell dependencies
  publication-title: ACS Infectious Diseases
– year: 2020
  article-title: Evidence of Structural Protein Damage and Membrane Lipid Remodeling in Red Blood Cells from COVID‐19 Patients
  publication-title: Journal of Proteome Research
– volume: 16
  issue: 7
  year: 2020
  article-title: The protein expression profile of ACE2 in human tissues
  publication-title: Molecular Systems Biology
– volume: 15
  start-page: 976
  issue: 3
  year: 2016
  end-page: 82
  article-title: Quantitation and Identification of Thousands of Human Proteoforms below 30 kDa
  publication-title: Journal of Proteome Research
– volume: 369
  start-page: 718
  issue: 6504
  year: 2020
  article-title: Impaired type I interferon activity and inflammatory responses in severe COVID‐19 patients
  publication-title: Science
– volume: 17
  start-page: 650
  issue: 6
  year: 2020
  end-page: 2
  article-title: High‐dimensional immune profiling by mass cytometry revealed immunosuppression and dysfunction of immunity in COVID‐19 patients
  publication-title: Cellular & Molecular Immunology
– volume: 20
  year: 2020
  article-title: Shortlisting SARS‐CoV‐2 Peptides for Targeted Studies from Experimental Data‐Dependent Acquisition Tandem Mass Spectrometry Data
  publication-title: Proteomics
– volume: 115
  start-page: 4140
  issue: 16
  year: 2018
  end-page: 4145
  article-title: Precise characterization of KRAS4b proteoforms in human colorectal cells and tumors reveals mutation/modification cross‐talk
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 22
  issue: 2
  year: 2021
  article-title: Mapping the SARS‐CoV‐2‐Host Protein‐Protein Interactome by Affinity Purification Mass Spectrometry and Proximity‐Dependent Biotin Labeling: A Rational and Straightforward Route to Discover Host‐Directed Anti‐SARS‐CoV‐2 Therapeutics
  publication-title: International Journal of Molecular Sciences
– volume: 6
  start-page: 9
  issue: 1
  year: 2021
  article-title: Pathological features of COVID‐19‐associated liver injury‐a preliminary proteomics report based on clinical samples
  publication-title: Signal Transduct Target Ther
– volume: 79
  start-page: 3846
  year: 2005
  end-page: 3850
  article-title: Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication
  publication-title: Journal of Virology
– volume: 80
  start-page: 164
  issue: 1
  year: 2020
  end-page: 174
  article-title: Growth Factor Receptor Signaling Inhibition Prevents SARS‐CoV‐2 Replication
  publication-title: Molecular Cell
– volume: 16
  issue: 2
  year: 2021
  article-title: Development of a coronavirus disease 2019 nonhuman primate model using airborne exposure
  publication-title: Plos One
– volume: 56
  issue: 3
  year: 2020
  article-title: Gene expression and in situ protein profiling of candidate SARS‐CoV‐2 receptors in human airway epithelial cells and lung tissue
  publication-title: European Respiratory Journal
– volume: 367
  start-page: 512
  issue: 6477
  year: 2020
  end-page: 513
  article-title: Unpicking the proteome in single cells
  publication-title: Science
– volume: 136
  start-page: 7295
  issue: 20
  year: 2014
  end-page: 9
  article-title: Defining the stoichiometry and cargo load of viral and bacterial nanoparticles by Orbitrap mass spectrometry
  publication-title: Journal of the American Chemical Society
– year: 2020
  article-title: Mass spectrometry analysis of newly emerging coronavirus HCoV‐19 spike protein and human ACE2 reveals camouflaging glycans and unique post‐translational modifications
  publication-title: Engineering
– volume: 19
  start-page: 4417
  issue: 11
  year: 2020
  end-page: 4427
  article-title: Serum Proteomics in COVID‐19 Patients: Altered Coagulation and Complement Status as a Function of IL‐6 Level
  publication-title: Journal of Proteome Research
– volume: 19
  start-page: 4407
  issue: 11
  year: 2020
  end-page: 4416
  article-title: Proteotyping SARS‐CoV‐2 Virus from Nasopharyngeal Swabs: A Proof‐of‐Concept Focused on a 3 Min Mass Spectrometry Window
  publication-title: Journal of Proteome Research
– volume: 9
  start-page: 941
  year: 2020
  article-title: Novel Coronavirus Infection (COVID‐19) in Humans: A Scoping Review and Meta‐Analysis
  publication-title: Journal of Clinical Medicine
– volume: 109
  start-page: E1163
  issue: 19
  year: 2012
  end-page: 72
  article-title: Kaposi's sarcoma‐associated herpesvirus interacts with EphrinA2 receptor to amplify signaling essential for productive infection
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 2020
  article-title: Site‐specific N‐glycosylation Characterization of Recombinant SARS‐CoV‐2 Spike Proteins
  publication-title: Molecular & Cellular Proteomics
– volume: 4
  start-page: 492
  year: 2004
  end-page: 504
  article-title: Proteomic Analysis on Structural Proteins of Severe Acute Respiratory Syndrome Coronavirus
  publication-title: Proteomics
– volume: 13
  start-page: 422
  year: 2014
  end-page: 432
  article-title: Proteomics Reveals Age‐Related Differences in the Host Immune Response to Sepsis
  publication-title: Journal of Proteome Research
– volume: 81
  start-page: 6813
  issue: 16
  year: 2009
  end-page: 22
  article-title: Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time‐of‐Flight Mass Spectrometry
  publication-title: Analytical Chemistry
– volume: 20
  start-page: 1434
  issue: 2
  year: 2021
  end-page: 1443
  article-title: Quantitative Assessment of SARS‐CoV‐2 Virus in Nasopharyngeal Swabs Stored in Transport Medium by a Straightforward LC‐MS/MS Assay Targeting Nucleocapsid, Membrane, and Spike Proteins
  publication-title: Journal of Proteome Research
– volume: 13
  issue: 2
  year: 2017
  article-title: Analysis of the T Cell Response to Zika Virus and Identification of a Novel CD8+ T Cell Epitope in Immunocompetent Mice
  publication-title: Plos Pathogens
– volume: 583
  start-page: 459
  year: 2020
  end-page: 468
  article-title: A SARS‐CoV‐2 protein interaction map reveals targets for drug repurposing
  publication-title: Nature
– volume: 18
  start-page: 1870
  issue: 4
  year: 2019
  end-page: 1879
  article-title: One‐Step SH2 Superbinder‐Based Approach for Sensitive Analysis of Tyrosine Phosphoproteome
  publication-title: Journal of Proteome Research
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280
  article-title: SARS‐CoV‐2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
– volume: 369
  start-page: 330
  year: 2020
  end-page: 333
  article-title: Site‐Specific Glycan Analysis of the SARS‐CoV‐2 Spike
  publication-title: Science
– volume: 11
  start-page: 740
  issue: 10
  year: 2020
  end-page: 70
  article-title: A human circulating immune cell landscape in aging and COVID‐19
  publication-title: Protein Cell
– volume: 369
  start-page: 1209
  issue: 6508
  year: 2020
  article-title: Deep immune profiling of COVID‐19 patients reveals distinct immunotypes with therapeutic implications
  publication-title: Science
– volume: 284
  start-page: 5229
  issue: 8
  year: 2009
  end-page: 39
  article-title: Glycogen synthase kinase‐3 regulates the phosphorylation of severe acute respiratory syndrome coronavirus nucleocapsid protein and viral replication
  publication-title: Journal of Biological Chemistry
– year: 2020
  article-title: A SARS‐CoV‐2—Host proximity interactome
  publication-title: bioRxiv
– volume: 583
  start-page: 469
  year: 2020
  end-page: 472
  article-title: Proteomics of SARS‐CoV‐2‐Infected Host Cells Reveals Therapy Targets
  publication-title: Nature
– year: 2020
  article-title: Multi‐level proteomics reveals host‐perturbation strategies of SARS‐CoV‐2 and SARS‐CoV
  publication-title: bioRxiv
– volume: 3
  start-page: 1
  issue: 2
  year: 2018
  end-page: 8
  article-title: Ephrin receptor A2 is an epithelial cell receptor for Epstein‐Barr virus entry
  publication-title: Nature Microbiology
– volume: 12
  start-page: 959
  issue: 11
  year: 2016
  end-page: 966
  article-title: Ultra‐deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder
  publication-title: Nature Chemical Biology
– volume: 6
  start-page: 73
  issue: 1
  year: 2021
  end-page: 86
  article-title: Responses to acute infection with SARS‐CoV‐2 in the lungs of rhesus macaques, baboons and marmosets
  publication-title: Nature Microbiology
– volume: 353
  start-page: 1129
  issue: 6304
  year: 2016
  end-page: 32
  article-title: Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys
  publication-title: Science
– volume: 6
  start-page: 3525
  issue: 5
  year: 2021
  end-page: 3534
  article-title: Specific and Rapid SARS‐CoV‐2 Identification Based on LC‐MS/MS Analysis
  publication-title: ACS Omega.
– volume: 21
  issue: 2
  year: 2021
  article-title: N‐Terminomics for the Identification of In Vitro Substrates and Cleavage Site Specificity of the SARS‐CoV‐2 Main Protease
  publication-title: Proteomics
– volume: 5
  issue: 49
  year: 2020
  article-title: Comprehensive mapping of immune perturbations associated with severe COVID‐19
  publication-title: Science Immunology
– volume: 368
  start-page: 356
  year: 2020
  end-page: 360
  article-title: A Rampage Through the Body
  publication-title: Science
– volume: 19
  start-page: 4380
  year: 2020
  end-page: 4388
  article-title: Perspective on proteomics for virus detection in clinical samples
  publication-title: Journal of Proteome Research
– volume: 3
  start-page: 172
  issue: 2
  year: 2018
  end-page: 180
  article-title: Ephrin receptor A2 is a functional entry receptor for Epstein‐Barr virus
  publication-title: Nature Microbiology
– volume: 9
  start-page: 1712
  year: 2020
  end-page: 1721
  article-title: Shotgun proteomics analysis of SARS‐CoV‐2‐infected cells and how it can optimize whole viral particle antigen production for vaccines
  publication-title: Emerg Microbes Infect
– volume: 9
  start-page: 882
  issue: 1
  year: 2018
  article-title: Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells
  publication-title: Nature communications
– volume: 1584
  start-page: 369
  year: 2017
  end-page: 382
  article-title: Quantitative Phosphoproteomic Analysis of T‐Cell Receptor Signaling
  publication-title: Methods in Molecular Biology
– volume: 5
  start-page: 240
  issue: 1
  year: 2020
  article-title: Pathological features of COVID‐19‐associated lung injury: a preliminary proteomics report based on clinical samples
  publication-title: Signal Transduct Target Ther
– volume: 12
  start-page: 848
  issue: 1
  year: 2021
  article-title: SARS‐CoV‐2 D614G spike mutation increases entry efficiency with enhanced ACE2‐binding affinity
  publication-title: Nature communications
– volume: 40
  start-page: 136
  year: 2016
  end-page: 144
  article-title: Mass spectrometry guided structural biology
  publication-title: Current Opinion in Structural Biology
– volume: 150
  start-page: 1023
  year: 2005
  end-page: 1031
  article-title: Susceptibility of different eukaryotic cell lines to SARS‐coronavirus
  publication-title: Arch. Virol
– volume: 9
  start-page: 499
  issue: 1
  year: 2016
  end-page: 519
  article-title: Progress in Top‐Down Proteomics and the Analysis of Proteoforms
  publication-title: Annu Rev Anal Chem (Palo Alto Calif)
– volume: 19
  start-page: 4389
  issue: 11
  year: 2020
  end-page: 4392
  article-title: Mass Spectrometric Identification of SARS‐CoV‐2 Proteins from Gargle Solution Samples of COVID‐19 Patients
  publication-title: Journal of Proteome Research
– volume: 214
  start-page: S482
  issue: suppl 5
  year: 2016
  end-page: S487
  article-title: Animal Models of Chikungunya Virus Infection and Disease
  publication-title: Journal of Infectious Diseases
– volume: 19
  start-page: 730
  issue: 4
  year: 2020
  end-page: 743
  article-title: Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome
  publication-title: Molecular & Cellular Proteomics
– volume: 80
  start-page: 1092
  issue: 6
  year: 2020
  end-page: 1103
  article-title: Phosphoregulation of Phase Separation by the SARS‐CoV‐2 N Protein Suggests a Biophysical Basis for its Dual Functions
  publication-title: Molecular Cell
– volume: 19
  start-page: 4393
  issue: 11
  year: 2020
  end-page: 4397
  article-title: Mass‐Spectrometric Detection of SARS‐CoV‐2 Virus in Scrapings of the Epithelium of the Nasopharynx of Infected Patients via Nucleocapsid N Protein
  publication-title: Journal of Proteome Research
– volume: 11
  start-page: 6201
  issue: 1
  year: 2020
  article-title: Establishing a mass spectrometry‐based system for rapid detection of SARS‐CoV‐2 in large clinical sample cohorts
  publication-title: Nature communications
– year: 2020
  article-title: Proteoforms of the SARS‐CoV‐2 nucleocapsid protein are primed to proliferate the virus and attenuate the antibody response
  publication-title: bioRxiv
– volume: 124
  start-page: 7128
  year: 2020
  end-page: 7137
  article-title: Developing a fully glycosylated full‐length SARS‐CoV‐2 spike protein model in a viral membrane
  publication-title: The Journal of Physical Chemistry B
– volume: 11
  start-page: 11
  year: 2020
  end-page: 24
  article-title: Ultra‐High‐Throughput Clinical Proteomics Reveals Classifiers of COVID‐19 Infection
  publication-title: Cell Systems
– volume: 532
  start-page: 134
  issue: 1
  year: 2020
  end-page: 138
  article-title: Mutations in the phosphorylation sites of SARS‐CoV‐2 encoded nucleocapsid protein and structure model of sequestration by protein 14‐3‐3
  publication-title: Biochemical and Biophysical Research Communications
– volume: 10
  issue: 1
  year: 2020
  article-title: In‐depth blood proteome profiling analysis revealed distinct functional characteristics of plasma proteins between severe and non‐severe COVID‐19 patients
  publication-title: Scientific Reports
– volume: 116
  start-page: 1097
  year: 2020
  end-page: 1100
  article-title: The ACE2 Expression in Human Heart Indicates New Potential Mechanism of Heart Injury among Patients Infected with SARS‐CoV‐2
  publication-title: Cardiovascular Research
– volume: 29
  start-page: 1859
  year: 2008
  end-page: 1865
  article-title: CHARMM‐GUI: A web‐based graphical user interface for CHARMM
  publication-title: Journal of Computational Chemistry
– volume: 184
  start-page: 775
  issue: 3
  year: 2021
  end-page: 791
  article-title: Multi‐organ proteomic landscape of COVID‐19 autopsies
  publication-title: Cell
– year: 2020
  article-title: Characterisation of protease activity during SARS‐CoV‐2 infection identifies novel viral cleavage sites and cellular targets for drug repurposing
  publication-title: bioRxiv
– volume: 11
  start-page: 5859
  issue: 1
  year: 2020
  article-title: Immune suppression in the early stage of COVID‐19 disease
  publication-title: Nature communications
– volume: 13
  start-page: 405
  issue: 6
  year: 2018
  end-page: 430
  article-title: Post‐translational modifications of coronavirus proteins: roles and function
  publication-title: Future Virology.
– volume: 17
  start-page: 589
  issue: 5
  year: 2011
  end-page: 95
  article-title: EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy
  publication-title: Nature Medicine
– volume: 19
  start-page: 1503
  year: 2020
  end-page: 1522
  article-title: Data, reagents, assays and merits of proteomics for SARS‐CoV‐2 research and testing
  publication-title: Molecular & Cellular Proteomics
– year: 2020
  article-title: SARS‐CoV‐2 Nucleocapsid protein is decorated with multiple N‐ and O‐glycans
  publication-title: bioRxiv
– volume: 9
  start-page: 1742
  issue: 8
  year: 2010
  end-page: 51
  article-title: Norwalk virus assembly and stability monitored by mass spectrometry
  publication-title: Molecular and Cellular Proteomics
– volume: 173
  year: 2020
  article-title: Receptor tyrosine kinase inhibitors block proliferation of TGEV mainly through p38 mitogen‐activated protein kinase pathways
  publication-title: Antiviral Research
– year: 2020
  article-title: Urine Proteome of COVID‐19 Patients
  publication-title: medRxiv
– ident: e_1_2_11_52_1
  doi: 10.1002/jmv.25989
– ident: e_1_2_11_30_1
  doi: 10.1038/s41467-020-19925-0
– ident: e_1_2_11_79_1
  doi: 10.1038/s41564-020-00841-4
– ident: e_1_2_11_25_1
  doi: 10.1016/j.cell.2020.05.032
– ident: e_1_2_11_11_1
  doi: 10.1038/s41586-020-2286-9
– ident: e_1_2_11_20_1
  doi: 10.1016/j.cell.2021.01.004
– ident: e_1_2_11_71_1
  doi: 10.1183/13993003.01123-2020
– ident: e_1_2_11_33_1
  doi: 10.1371/journal.pone.0240012
– ident: e_1_2_11_41_1
  doi: 10.1073/pnas.1119592109
– ident: e_1_2_11_56_1
  doi: 10.1126/science.abb9983
– ident: e_1_2_11_27_1
  doi: 10.1021/acs.jproteome.0c00365
– ident: e_1_2_11_22_1
  doi: 10.1038/s41392-020-00406-1
– year: 2020
  ident: e_1_2_11_64_1
  article-title: Site‐specific N‐glycosylation Characterization of Recombinant SARS‐CoV‐2 Spike Proteins
  publication-title: Molecular & Cellular Proteomics
  contributor:
    fullname: Zhang Y.
– ident: e_1_2_11_2_1
  doi: 10.1126/science.368.6489.356
– ident: e_1_2_11_3_1
  doi: 10.1080/22221751.2020.1799723
– ident: e_1_2_11_39_1
  doi: 10.1002/pmic.200300676
– ident: e_1_2_11_90_1
  doi: 10.1146/annurev-anchem-071015-041550
– ident: e_1_2_11_62_1
  doi: 10.1002/jcc.20945
– ident: e_1_2_11_70_1
  doi: 10.15252/msb.20209610
– ident: e_1_2_11_32_1
  doi: 10.1021/acs.analchem.0c02288
– ident: e_1_2_11_24_1
  doi: 10.1021/acs.jproteome.0c00606
– ident: e_1_2_11_65_1
  doi: 10.2217/fvl-2018-0008
– year: 2020
  ident: e_1_2_11_16_1
  article-title: Targeted Proteomics for the Detection of SARS‐CoV‐2 Proteins
  publication-title: bioRxiv
  contributor:
    fullname: Bezstarosti K.
– ident: e_1_2_11_54_1
  doi: 10.1074/jbc.M805747200
– ident: e_1_2_11_31_1
  doi: 10.1021/acs.jproteome.0c00887
– ident: e_1_2_11_100_1
  doi: 10.1152/ajplung.00355.2020
– ident: e_1_2_11_66_1
  doi: 10.1002/pmic.202000246
– ident: e_1_2_11_80_1
  doi: 10.1126/science.aah6157
– ident: e_1_2_11_40_1
  doi: 10.1038/nm.2341
– ident: e_1_2_11_96_1
  doi: 10.1126/sciimmunol.abd7114
– ident: e_1_2_11_98_1
  doi: 10.1038/s41423-020-0447-2
– ident: e_1_2_11_68_1
  doi: 10.1126/sciimmunol.abd0110
– ident: e_1_2_11_63_1
  doi: 10.1016/j.eng.2020.07.014
– ident: e_1_2_11_47_1
  doi: 10.1093/cvr/cvaa078
– ident: e_1_2_11_85_1
  doi: 10.1021/ja502616y
– year: 2020
  ident: e_1_2_11_7_1
  article-title: Multi‐level proteomics reveals host‐perturbation strategies of SARS‐CoV‐2 and SARS‐CoV
  publication-title: bioRxiv
  contributor:
    fullname: Stukalov A.
– ident: e_1_2_11_89_1
  doi: 10.1021/acs.jproteome.5b00997
– ident: e_1_2_11_15_1
  doi: 10.1002/pmic.202000107
– ident: e_1_2_11_19_1
  doi: 10.1186/s13073-020-00763-0
– ident: e_1_2_11_51_1
  doi: 10.3390/jcm9040941
– ident: e_1_2_11_97_1
  doi: 10.1126/science.abc8511
– ident: e_1_2_11_83_1
  doi: 10.1038/s41467-021-21118-2
– ident: e_1_2_11_61_1
  doi: 10.1021/acs.jpcb.0c04553
– ident: e_1_2_11_84_1
  doi: 10.1016/j.bbrep.2021.100933
– ident: e_1_2_11_17_1
  doi: 10.1016/j.cell.2020.06.034
– ident: e_1_2_11_49_1
  doi: 10.1038/s41591-020-0962-9
– year: 2020
  ident: e_1_2_11_10_1
  article-title: A SARS‐CoV‐2 BioID‐based virus‐host membrane protein interactome and virus peptide compendium: New proteomics resources for COVID‐19 research
  publication-title: bioRxiv
  contributor:
    fullname: St‐Germain J.
– ident: e_1_2_11_26_1
  doi: 10.1016/j.cels.2020.05.012
– ident: e_1_2_11_6_1
  doi: 10.1074/mcp.RA120.002164
– ident: e_1_2_11_23_1
  doi: 10.1038/s41598-020-80120-8
– ident: e_1_2_11_53_1
  doi: 10.3390/ijms22020532
– ident: e_1_2_11_86_1
  doi: 10.1016/j.sbi.2016.09.008
– ident: e_1_2_11_72_1
  doi: 10.1021/acs.jproteome.0c00674
– ident: e_1_2_11_35_1
  doi: 10.1021/acs.jproteome.0c00412
– year: 2020
  ident: e_1_2_11_28_1
  article-title: Saliva Glycoproteins Bind to Spike Protein of SARS‐CoV‐2
  publication-title: Preprints
  contributor:
    fullname: Zhou D.
– ident: e_1_2_11_38_1
  doi: 10.1038/s41467-020-19706-9
– year: 2020
  ident: e_1_2_11_37_1
  article-title: Urine Proteome of COVID‐19 Patients
  publication-title: medRxiv
  contributor:
    fullname: Li Y.
– ident: e_1_2_11_58_1
  doi: 10.1016/j.apsb.2020.04.009
– year: 2020
  ident: e_1_2_11_8_1
  article-title: Virus‐Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS‐CoV‐2 Pathogenesis
  publication-title: Med (N Y)
  contributor:
    fullname: Li J.
– ident: e_1_2_11_14_1
  doi: 10.1016/j.molcel.2020.11.028
– ident: e_1_2_11_74_1
  doi: 10.1007/978-1-4939-6881-7_22
– year: 2020
  ident: e_1_2_11_60_1
  article-title: SARS‐CoV‐2 Nucleocapsid protein is decorated with multiple N‐ and O‐glycans
  publication-title: bioRxiv
  contributor:
    fullname: Supekar N. T.
– ident: e_1_2_11_44_1
  doi: 10.1007/s00705-004-0461-1
– ident: e_1_2_11_82_1
  doi: 10.1093/infdis/jiw284
– ident: e_1_2_11_21_1
  doi: 10.1038/s41392-020-00355-9
– ident: e_1_2_11_46_1
  doi: 10.1016/j.cell.2020.02.052
– ident: e_1_2_11_69_1
  doi: 10.1016/j.antiviral.2019.104651
– ident: e_1_2_11_34_1
  doi: 10.1021/acs.jproteome.0c00535
– ident: e_1_2_11_88_1
  doi: 10.1074/mcp.M900620-MCP200
– ident: e_1_2_11_29_1
  doi: 10.1021/acs.jproteome.0c00280
– ident: e_1_2_11_13_1
  doi: 10.1021/acsinfecdis.0c00500
– ident: e_1_2_11_5_1
  doi: 10.1080/22221751.2020.1791737
– ident: e_1_2_11_92_1
  doi: 10.1038/s41467-018-03367-w
– ident: e_1_2_11_57_1
  doi: 10.1016/j.molcel.2020.11.025
– ident: e_1_2_11_36_1
  doi: 10.1021/acsomega.0c04691
– year: 2020
  ident: e_1_2_11_67_1
  article-title: Characterisation of protease activity during SARS‐CoV‐2 infection identifies novel viral cleavage sites and cellular targets for drug repurposing
  publication-title: bioRxiv
  contributor:
    fullname: Meyer B.
– year: 2020
  ident: e_1_2_11_87_1
  article-title: Proteoforms of the SARS‐CoV‐2 nucleocapsid protein are primed to proliferate the virus and attenuate the antibody response
  publication-title: bioRxiv
  contributor:
    fullname: Lutomski C. A.
– ident: e_1_2_11_94_1
  doi: 10.1021/ac901049w
– ident: e_1_2_11_50_1
  doi: 10.1021/pr400814s
– ident: e_1_2_11_73_1
  doi: 10.1038/nchembio.2178
– ident: e_1_2_11_95_1
  doi: 10.1126/science.abc6027
– ident: e_1_2_11_55_1
  doi: 10.1016/j.bbrc.2020.08.024
– ident: e_1_2_11_48_1
  doi: 10.1038/s41467-020-15562-9
– ident: e_1_2_11_76_1
  doi: 10.1021/acs.jproteome.9b00045
– ident: e_1_2_11_75_1
  doi: 10.1016/j.jprot.2017.06.013
– ident: e_1_2_11_4_1
  doi: 10.1038/s41586-020-2332-7
– ident: e_1_2_11_77_1
  doi: 10.1074/mcp.TIR119.001865
– year: 2020
  ident: e_1_2_11_9_1
  article-title: Global BioID‐based SARS‐CoV‐2 proteins proximal interactome unveils novel ties between viral polypeptides and host factors involved in multiple COVID19‐associated mechanisms
  publication-title: bioRxiv
  contributor:
    fullname: Laurent E. M. N.
– ident: e_1_2_11_93_1
  doi: 10.1126/science.aaz6695
– ident: e_1_2_11_91_1
  doi: 10.1073/pnas.1716122115
– ident: e_1_2_11_78_1
  doi: 10.1371/journal.pone.0246366
– year: 2020
  ident: e_1_2_11_59_1
  article-title: Computational Analysis of SARS‐CoV‐2 S1 Protein O‐Glycosylation and Phosphorylation Modifications and Identifying Potential Target Positions against CD209L‐Mannose Interaction to Inhibit Initial Binding of the Virus
  publication-title: bioRxiv
  contributor:
    fullname: Uslupehlivan M.
– year: 2020
  ident: e_1_2_11_12_1
  article-title: A SARS‐CoV‐2—Host proximity interactome
  publication-title: bioRxiv
  contributor:
    fullname: Samavarchi‐Tehrani P.
– ident: e_1_2_11_18_1
  doi: 10.1016/j.molcel.2020.08.006
– ident: e_1_2_11_42_1
  doi: 10.1038/s41564-017-0081-7
– ident: e_1_2_11_99_1
  doi: 10.1007/s13238-020-00762-2
– ident: e_1_2_11_81_1
  doi: 10.1371/journal.ppat.1006184
– ident: e_1_2_11_45_1
  doi: 10.1128/JVI.79.6.3846-3850.2005
– ident: e_1_2_11_43_1
  doi: 10.1038/s41564-017-0080-8
SSID ssj0017897
Score 2.4728658
SecondaryResourceType review_article
Snippet While protein–protein interaction is the first step of the SARS‐CoV‐2 infection, recent comparative proteomic profiling enabled the identification of over...
While protein-protein interaction is the first step of the SARS-CoV-2 infection, recent comparative proteomic profiling enabled the identification of over...
Abstract While protein–protein interaction is the first step of the SARS‐CoV‐2 infection, recent comparative proteomic profiling enabled the identification of...
While protein‐protein interaction is the first step of the SARS‐CoV‐2 infection, recent comparative proteomic profiling enabled the identification of over...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2000279
SubjectTerms 1-Phosphatidylinositol 3-kinase
AKT protein
biomarkers
Comparative analysis
comparative proteomics
COVID‐19
EphA2 protein
Epidermal growth factor receptors
Infections
Kinases
kinase‐substrate signaling
MAP kinase
Mass spectrometry
Mass spectroscopy
Molecular modelling
Pathogenesis
Platforms
post‐translational modifications
Proteins
Proteomes
Proteomics
Rap1 protein
Review
Scientific imaging
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Spectroscopy
targeted proteomics
Tissues
top‐down proteomics
Viral diseases
Viral infections
SummonAdditionalLinks – databaseName: Coronavirus Research Database
  dbid: COVID
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QVxKIhXSkFGQuKU3cR2nOSE0JZqQSogSktvkV-BiJKEbvYAJ34C_Yv9JR07m6VLBVy45GLHysTz-GzPfAZ4YhMZ4VI2Dm2W6JBTFYUKJyNE7Fwak6ap8mTP-6_F7JC_Ok6ON2A21MK4tMrBJ3pHbRrt9sgnGIcZzziNkolUbhdAd5Nn7dfQ3R_lzlmXl2lcg02WIQoYweb0zdHL3YGnMaKT9kvlOAupP23L1-PQFXB5NUfyMnb1wWdvC6rhs_uck8_jRafG-vtvjI7_Q66bcOODVWTY078FG7a-DWf7iLCJr8l05Abd6bfzHz9d-DPE0zy4wmbSnsjOAeA5wSdRvkqILC6XzpCmJAfP3x3gy9PmCJ-UVLVB1cJhEIc2H53breYEe5MWh63R-ZwQ0-cCon6Tgf_czu_A4d6L99NZuLzKIdRJkrHQxrFhwvJSaIVaUapElkqoMpNC51oIa8rYMpNGmY0pjaXMceUmpVSSlikXit2FUd3U9j6Q1MSxleiIIplzBD_YM0VYIiXDP6ktDeDpMLFF2zN2FD03My2cChQrFQhgZ5iSYmm58-LXfPyhmQoM_DTPAni8akaTdOcssrbNwg_BkxyBHQ_gXq9Fqy9hLBNoHCyAdE2_Vh0c3fd6S1198rTfuJZHgIryjb0m_kO44i2aMYoSse2_i_kArlOXp-OTOHdg1J0u7EMEWp16tLShC4T2M0I
  priority: 102
  providerName: ProQuest
Title Mass spectrometry‐based proteomic platforms for better understanding of SARS‐CoV‐2 induced pathogenesis and potential diagnostic approaches
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.202000279
https://www.ncbi.nlm.nih.gov/pubmed/33860983
https://www.proquest.com/docview/2513484205/abstract/
https://www.proquest.com/docview/2526341298/abstract/
https://search.proquest.com/docview/2514598464
https://pubmed.ncbi.nlm.nih.gov/PMC8250252
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOPLY8AqUyEoJT2tiO7eS4WqgKUgG1tOotshOnrGiTFdk9wImfAH-RX8LY3oRdKoQQl1z8SEaex2dn5jPAUyt0gltZGttMlHHKTBIbXIwYsXNdVUop48meD97I_eP09ak4XaniD_wQw4Gbswzvr52Ba9Pt_iINnV1MHQUh8z_PXAWfY9NzqOhw4I-iKgu3q2DYjnMMTD1rY8J214evR6VLUPNyxuQqkvWhaO8W6F6IkIHycWcxNzvll9_4Hf9Hyttwc4lTyTgo1h24YpsRbI4b3KNffCbPiM8c9UfyI7g26W-NG8GNFYLDTfh-gNic-GpOR4uAPX58_eYCZ0U8QYQriSazcz130Lkj-CTG1xeRxWrRDWlrcjQ-PMLBk_YEn4xMmwqVEqdBBNueOYc97Qj2JjOctkG3dU6qkEWIApCeOd12d-F47-X7yX68vAQiLoXIeGwprbi0aS1Lg_pUG6FrI02daVnmpZS2qqnllUoySxmjWue459NaG81qlUrD78FG0zb2ARBVUWo1urBE5ynCJuypENBozQXlpWURPO-VoJgFro8isDqzwq1DMaxDBFu9jhRLm-8KRIo8zVKWiD80M4mQgeVZBE-GZlwd94dGN7Zd-ClSkSMkTCO4HzRu-BLOM4lmxSNQa7o4dHBE4estzfSDJwzPEOfi6yMIqvYX4Yp36ABQlIQ__NcBj-A6czk_PiF0Czbmnxb2MYK2udmGq5O3J69ebHsD_QnIakME
link.rule.ids 230,315,786,790,891,1382,27957,27958,38551,43930,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2C6QLEAhCPphQwEhKrTBM7cZIVQgPVFDoF0QfdWXbswIg2CU1mASs-AX6RL-HaSYYOFSCxycaOFee-zrWvjwEem1gGmMqGvknj3I-oCnyFwvAROxdaJ0miHNnzbI9PD6OXx_Fxv-DW9GWVg090jlpXuV0j38I4zKI0okH8tP7k21uj7O5qf4XGZVjDwMqCEaxNXh_tPB_YGQO6VZ_OLVMhdXts2Wr0uQApL1ZGnkesLuRsXwcxfGxXafJxvGjVOP_yG4_j_8_mBlx7ZxQZ1u9vwiVT3oLvM0TTxJ2_tEQG7dnnH1-_2VCniaN0sIeYSX0iWwt2G4JPotyJILI4f0yGVAXZf_Z2H1-eVEf4pASTf1QjHAYxZ_Xeuth5Q7A3qXHYEh3NCdFd3R_qMhm4zk1zGw63XxxMpn5_bYOfx3HKfBOGmnETFTxXqAGFimWhuCpSyfMs59zoIjRMJ0FqQkpDKTPM0qSUStIiibhid2BUVqVZB5LoMDQSnU4gswiBDvZMEIJIyfD_5YZ68GQQp6g7dg7R8TBTYQUvloL3YHMQhOittBG_pPCHZsoxyNMs9eDRshnNz-6pyNJUCzdEFGcI4iIP7na6s_wSzP45GgLzIFnRqmUHS-292lLOPziKb8zbEYzi_MZO__4xOfEGTRanErCNv0_zIVyZHsx2xe7O3qt7cJXa-hxXvLkJo_ZsYe4jwGrVg96KfgK6my6x
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6CIrEcWKYsgQJGQnBKGy9xkuNoyqgsraqWot4iO3boqG0SMTMHOPET4C_yS3h2JmGGCiHEJRcvyZPf8tl57zPAcxurCLeyNLRpXISC6SjUuBghYufSmCRJtCd73t2TO0fizXF8vFTF3_JD9AduzjK8v3YG3phy6xdpaHM-cRSEzP88yy7DFSE5c3q9fdATSNEkba9XwbgdZhiZOtrGiG2tjl8NSxew5sWUyWUo62PR-BaoToo2BeV0cz7Tm8WX3wge_0fM23BzAVTJsNWsO3DJVgNYH1a4ST__TF4Qnzrqz-QHcG3UXRs3gBtLDIfr8H0XwTnx5ZyOFwF7_Pj6zUVOQzxDhKuJJs2ZmjnsPCX4JNoXGJH5ctUNqUtyODw4xMGj-gM-GZlUBrUSp0EIW390HnsyJdibNDhthX7rjJg2jRAFIB11up3ehaPxq_ejnXBxC0RYxHHKQ0up4dKKUhYaFarUsSq11GWqZJEVUlpTUstNEqWWMkaVynDTp5TSipWJkJrfg7WqruwDIImh1Cr0YZHKBOIm7JkgolGKx5QXlgXwslOCvGnJPvKW1pnlbh3yfh0C2Oh0JF8Y_TRHqMhFKlgU_6GZScQMLEsDeNY34-q4XzSqsvXcTyHiDDGhCOB-q3H9l3CeSrQrHkCyoot9B8cUvtpSTU48Y3iKQBdfH0Cran8RLt9HD4CiRPzhvw54Clf3t8f5u9d7bx_Bdebyf3xy6AaszT7N7WMEcDP9xNvoT7PWRD0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mass+spectrometry%E2%80%90based+proteomic+platforms+for+better+understanding+of+SARS%E2%80%90CoV%E2%80%902+induced+pathogenesis+and+potential+diagnostic+approaches&rft.jtitle=Proteomics+%28Weinheim%29&rft.au=Ahsan%2C+Nagib&rft.au=Rao%2C+R.+Shyama+Prasad&rft.au=Wilson%2C+Rashaun+S.&rft.au=Punyamurtula%2C+Ujwal&rft.date=2021-05-01&rft.issn=1615-9853&rft.eissn=1615-9861&rft.volume=21&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpmic.202000279&rft.externalDBID=10.1002%252Fpmic.202000279&rft.externalDocID=PMIC13403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9853&client=summon