Improving Predictive Models of In‐Stream Phosphorus Concentration Based on Nationally‐Available Spatial Data Coverages

Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally‐available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized....

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Water Resources Association Vol. 53; no. 4; pp. 944 - 960
Main Authors Scown, Murray W., McManus, Michael G., Carson, John H., Nietch, Christopher T.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.08.2017
Subjects
Online AccessGet full text
ISSN1093-474X
1752-1688
1752-1688
DOI10.1111/1752-1688.12543

Cover

Abstract Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally‐available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally‐available spatial data could be improved by including local watershed‐specific data in the East Fork of the Little Miami River, Ohio, a 1,290 km2 watershed. We also determined whether a spatial stream network (SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and predictive accuracy were highest for the SSN model that included local covariates, and lowest for the nonspatial model developed from national data. Septic systems and point source TP loads were significant covariates in the local models. These local data not only improved the models but enabled a more explicit interpretation of the processes affecting TP concentrations than more generic national covariates. The results suggest SSN modeling greatly improves prediction and should be applied when using national covariates. Including local covariates further increases the accuracy of TP predictions throughout the studied watershed; such variables should be included in future national databases, particularly the locations of septic systems.
AbstractList Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally-available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally-available spatial data could be improved by including local watershed-specific data in the East Fork of the Little Miami River, Ohio, a 1,290 km2 watershed. We also determined whether a spatial stream network (SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and predictive accuracy were highest for the SSN model that included local covariates, and lowest for the nonspatial model developed from national data. Septic systems and point source TP loads were significant covariates in the local models. These local data not only improved the models but enabled a more explicit interpretation of the processes affecting TP concentrations than more generic national covariates. The results suggest SSN modeling greatly improves prediction and should be applied when using national covariates. Including local covariates further increases the accuracy of TP predictions throughout the studied watershed; such variables should be included in future national databases, particularly the locations of septic systems.
Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally‐available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally‐available spatial data could be improved by including local watershed‐specific data in the East Fork of the Little Miami River, Ohio, a 1,290 km2 watershed. We also determined whether a spatial stream network (SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and predictive accuracy were highest for the SSN model that included local covariates, and lowest for the nonspatial model developed from national data. Septic systems and point source TP loads were significant covariates in the local models. These local data not only improved the models but enabled a more explicit interpretation of the processes affecting TP concentrations than more generic national covariates. The results suggest SSN modeling greatly improves prediction and should be applied when using national covariates. Including local covariates further increases the accuracy of TP predictions throughout the studied watershed; such variables should be included in future national databases, particularly the locations of septic systems.
Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally-available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally-available spatial data could be improved by including local watershed-specific data in the East Fork of the Little Miami River, Ohio, a 1290 km 2 watershed. We also determined whether a spatial stream network (SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and predictive accuracy were highest for the SSN model that included local covariates, and lowest for the nonspatial model developed from national data. Septic systems and point source TP loads were significant covariates in the local models. These local data not only improved the models but enabled a more explicit interpretation of the processes affecting TP concentrations than more generic national covariates. The results suggest that SSN modeling greatly improves prediction and should be applied when using national covariates. Including local covariates further increases the accuracy of TP predictions throughout the studied watershed; such variables should be included in future national databases, particularly the locations of septic systems.
Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally‐available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally‐available spatial data could be improved by including local watershed‐specific data in the East Fork of the Little Miami River, Ohio, a 1,290 km 2 watershed. We also determined whether a spatial stream network (SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and predictive accuracy were highest for the SSN model that included local covariates, and lowest for the nonspatial model developed from national data. Septic systems and point source TP loads were significant covariates in the local models. These local data not only improved the models but enabled a more explicit interpretation of the processes affecting TP concentrations than more generic national covariates. The results suggest SSN modeling greatly improves prediction and should be applied when using national covariates. Including local covariates further increases the accuracy of TP predictions throughout the studied watershed; such variables should be included in future national databases, particularly the locations of septic systems.
Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally-available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally-available spatial data could be improved by including local watershed-specific data in the East Fork of the Little Miami River, Ohio, a 1290 km2 watershed. We also determined whether a spatial stream network (SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and predictive accuracy were highest for the SSN model that included local covariates, and lowest for the nonspatial model developed from national data. Septic systems and point source TP loads were significant covariates in the local models. These local data not only improved the models but enabled a more explicit interpretation of the processes affecting TP concentrations than more generic national covariates. The results suggest that SSN modeling greatly improves prediction and should be applied when using national covariates. Including local covariates further increases the accuracy of TP predictions throughout the studied watershed; such variables should be included in future national databases, particularly the locations of septic systems.Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally-available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally-available spatial data could be improved by including local watershed-specific data in the East Fork of the Little Miami River, Ohio, a 1290 km2 watershed. We also determined whether a spatial stream network (SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and predictive accuracy were highest for the SSN model that included local covariates, and lowest for the nonspatial model developed from national data. Septic systems and point source TP loads were significant covariates in the local models. These local data not only improved the models but enabled a more explicit interpretation of the processes affecting TP concentrations than more generic national covariates. The results suggest that SSN modeling greatly improves prediction and should be applied when using national covariates. Including local covariates further increases the accuracy of TP predictions throughout the studied watershed; such variables should be included in future national databases, particularly the locations of septic systems.
Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally-available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally-available spatial data could be improved by including local watershed-specific data in the East Fork of the Little Miami River, Ohio, a 1290 km watershed. We also determined whether a spatial stream network (SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and predictive accuracy were highest for the SSN model that included local covariates, and lowest for the nonspatial model developed from national data. Septic systems and point source TP loads were significant covariates in the local models. These local data not only improved the models but enabled a more explicit interpretation of the processes affecting TP concentrations than more generic national covariates. The results suggest that SSN modeling greatly improves prediction and should be applied when using national covariates. Including local covariates further increases the accuracy of TP predictions throughout the studied watershed; such variables should be included in future national databases, particularly the locations of septic systems.
Author Scown, Murray W.
Carson, John H.
Nietch, Christopher T.
McManus, Michael G.
Author_xml – sequence: 1
  givenname: Murray W.
  surname: Scown
  fullname: Scown, Murray W.
  email: murray.scown@lucsus.lu.se
  organization: Lund University
– sequence: 2
  givenname: Michael G.
  surname: McManus
  fullname: McManus, Michael G.
  organization: U.S. Environmental Protection Agency
– sequence: 3
  givenname: John H.
  surname: Carson
  fullname: Carson, John H.
  organization: LLC
– sequence: 4
  givenname: Christopher T.
  surname: Nietch
  fullname: Nietch, Christopher T.
  organization: U.S. Environmental Protection Agency
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30034212$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQjVARbRfO3FAkLly2tWPHcS5IZflaVKCileBmTZzJritvHOxkq-XET-A38kvwbtqKVkL4Ynv83sy88TtM9lrXYpI8peSIxnVMizybUiHlEc1yzh4kB7eRvXgmJZvygn_bTw5DuCSE5lSyR8k-I4TxjGYHyY_5qvNubdpFeuaxNro3a0w_uhptSF2TztvfP3-d9x5hlZ4tXeiWzg8hnblWY9t76I1r01cQsE7j4dPuDtZuIutkDcZCZTE972IcbPoaeojUNXpYYHicPGzABnxyvU-Si7dvLmbvp6ef381nJ6dTneeSTeuqqGnGZUFrBhWhohSkYKSuEGhGKo51BqgbILkWQuq8KpGJhgAUKAQt2SSBMW24wm6oVOfNCvxGOTCqc74HqzwGBK-Xyg4qoIooa_ROSlDAhJbQEMWp0IpLQFXGKgqI1JJyZCzXscbLsUakrrAeR2Pvlrrz0pqlWri1EiTPuCAxwYvrBN59HzD0amWCRmuhRTcElZGC00zIqHySPL8HvXSDj0PfooiUZUGLrepnf3d028rNz0dAPgK0dyF4bJQ2_U5zbNBYRYnaOkxt_aS2flI7h0Xe8T3eTep_M8TIuDIWN_-Dqw8nX7-MxD9C0-aH
CitedBy_id crossref_primary_10_1029_2019JG005134
crossref_primary_10_1139_er_2020_0070
crossref_primary_10_1016_j_scitotenv_2017_08_301
crossref_primary_10_3389_frwa_2024_1359109
crossref_primary_10_1002_2017WR020969
crossref_primary_10_1371_journal_pone_0239237
crossref_primary_10_21105_joss_06389
crossref_primary_10_3390_ijerph20064743
crossref_primary_10_1016_j_ecoinf_2023_102358
crossref_primary_10_1080_24694452_2022_2107478
crossref_primary_10_1007_s10021_018_0311_8
crossref_primary_10_1111_1752_1688_12725
crossref_primary_10_1016_j_scitotenv_2020_137661
crossref_primary_10_1021_acssuschemeng_9b03920
crossref_primary_10_1177_0309133319852003
crossref_primary_10_1002_ecs2_2781
crossref_primary_10_1086_710340
Cites_doi 10.1002/9781118643525.ch6
10.1007/s00267-009-9330-8
10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
10.1007/s00267-009-9401-x
10.1007/s10661-005-9156-7
10.1080/00401706.1974.10489231
10.1890/08-1668.1
10.1371/journal.pone.0134757
10.1002/env.995
10.1021/es0716103
10.1061/(ASCE)EE.1943-7870.0000770
10.1007/s10651-006-0022-8
10.1111/j.1752-1688.1994.tb03315.x
10.1046/j.1365-2427.1997.d01-539.x
10.1016/j.envsoft.2014.06.019
10.1198/jasa.2009.ap08248
10.3133/fs20123020
10.1890/14-0935.1
10.1002/env.2284
10.1021/es2003167
10.1016/j.scitotenv.2007.03.036
10.1017/CBO9781139022422.010
10.1214/10-STS330
10.1002/rra.2978
10.1016/j.scitotenv.2008.08.002
10.18637/jss.v056.i02
10.1890/09-0822.1
10.1029/2005GB002496
10.2166/wst.2004.0150
10.1890/0012-9658(1999)080[2283:SHOSWN]2.0.CO;2
10.1007/PL00021506
10.1007/s10661-015-4504-8
10.1002/wat2.1023
10.1002/ecs2.1321
10.1007/s10661-013-3114-6
10.1073/pnas.1404820111
10.1007/s00267-008-9139-x
10.1039/C4EM00583J
10.1111/j.1752-1688.2011.00574.x
10.1111/j.1752-1688.2007.00045.x
ContentType Journal Article
Copyright 2017 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA
2017 American Water Resources Association
Copyright_xml – notice: 2017 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA
– notice: 2017 American Water Resources Association
CorporateAuthor Departments of Administrative, Economic and Social Sciences
Faculty of Social Sciences
Samhällsvetenskapliga fakulteten
LUCSUS (Lund University Centre for Sustainability Studies)
Samhällsvetenskapliga institutioner och centrumbildningar
Lunds universitet
LUCSUS
Lund University
CorporateAuthor_xml – name: Lund University
– name: LUCSUS (Lund University Centre for Sustainability Studies)
– name: Samhällsvetenskapliga institutioner och centrumbildningar
– name: Samhällsvetenskapliga fakulteten
– name: LUCSUS
– name: Faculty of Social Sciences
– name: Departments of Administrative, Economic and Social Sciences
– name: Lunds universitet
DBID AAYXX
CITATION
NPM
7QH
7ST
7UA
8FD
C1K
F1W
FR3
H97
KR7
L.G
SOI
7X8
5PM
ADTPV
AOWAS
D95
DOI 10.1111/1752-1688.12543
DatabaseName CrossRef
PubMed
Aqualine
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
PubMed
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList


CrossRef
Civil Engineering Abstracts
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
Environmental Sciences
EISSN 1752-1688
EndPage 960
ExternalDocumentID oai_portal_research_lu_se_publications_a36c8af0_416c_48ae_98c5_a08c814e335c
PMC6052460
30034212
10_1111_1752_1688_12543
JAWR12543
Genre article
Journal Article
GrantInformation_xml – fundername: Intramural EPA
  grantid: EPA999999
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
3V.
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
7X2
7XC
8-0
8-1
8-3
8-4
8-5
88I
8C1
8CJ
8FE
8FG
8FH
8FW
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJCF
ABJNI
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
C1A
CAG
CCPQU
CO8
COF
CS3
D-E
D-F
D1J
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FYUFA
FZ0
G-S
G.N
GNUQQ
GODZA
H.T
H.X
HCIFZ
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
K48
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK5
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M2P
M7P
M7R
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OHT
OIG
P0-
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PQQKQ
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
R.K
RIWAO
RJQFR
ROL
RX1
S0X
SUPJJ
TAE
UB1
UKHRP
VH1
VQP
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YCJ
YHZ
YV5
ZCA
ZO4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
PJZUB
PPXIY
PQGLB
7QH
7ST
7UA
8FD
C1K
F1W
FR3
H97
KR7
L.G
SOI
7X8
5PM
ADTPV
AOWAS
D95
PUEGO
ID FETCH-LOGICAL-c5583-db7d124871d3ab016960730dbea120b4ed2aecfa05c668c5b9e36f0aa7e66193
IEDL.DBID DR2
ISSN 1093-474X
1752-1688
IngestDate Tue Sep 09 23:41:03 EDT 2025
Thu Aug 21 13:38:39 EDT 2025
Fri Sep 05 13:57:42 EDT 2025
Wed Aug 13 11:00:53 EDT 2025
Mon Jul 21 06:03:23 EDT 2025
Thu Apr 24 22:52:25 EDT 2025
Tue Jul 01 03:34:17 EDT 2025
Wed Jan 22 16:41:10 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords statistical modeling
Spatial data
stream networks
autocorrelation
phosphorus
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5583-db7d124871d3ab016960730dbea120b4ed2aecfa05c668c5b9e36f0aa7e66193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6052460
PMID 30034212
PQID 2008897179
PQPubID 34915
PageCount 0
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_a36c8af0_416c_48ae_98c5_a08c814e335c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6052460
proquest_miscellaneous_2074126807
proquest_journals_2008897179
pubmed_primary_30034212
crossref_citationtrail_10_1111_1752_1688_12543
crossref_primary_10_1111_1752_1688_12543
wiley_primary_10_1111_1752_1688_12543_JAWR12543
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2017
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Middleburg
PublicationTitle Journal of the American Water Resources Association
PublicationTitleAlternate J Am Water Resour Assoc
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1974; 16
2009; 44
2015; 17
2009; 43
2012
2016b
2007; 382
2011
2016a
2006; 13
2004; 49
2010; 105
2015; 52
2015; 32
2015; 187
2015; 10
2009
2014; 25
2006
2013; 185
2008; 400
2014; 111
1999; 80
2014; 60
1999
2010; 45
2014; 1
2010; 21
2016; 7
2010; 20
2015; 25
2005; 19
2010; 25
1997; 37
2003; 6
2013; 139
2006; 121
2016
2015
2011; 45
2014
2011; 47
2007; 42
2010; 91
2007; 43
2014; 56
1994; 30
1998; 8
Fox J. (e_1_2_8_12_1) 2011
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
Mercurio G. (e_1_2_8_29_1) 1999
e_1_2_8_3_1
e_1_2_8_7_1
e_1_2_8_9_1
USEPA (U.S. Environmental Protection Agency) (e_1_2_8_49_1) 2016
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
BOM (Bureau of Metereology) (e_1_2_8_5_1) 2015
e_1_2_8_55_1
Ohio EPA (Ohio Environmental Protection Agency) (e_1_2_8_32_1) 2009
USGS (U.S. Geological Survey) (e_1_2_8_51_1) 2015
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_1
McKay L. (e_1_2_8_28_1) 2012
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
Karcher S.C. (e_1_2_8_23_1) 2012
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
ESRI (Environmental Systems Research Institute) (e_1_2_8_10_1) 2014
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Hill R.A. (e_1_2_8_17_1) 2015; 52
R Core Team (e_1_2_8_39_1) 2015
Ver Hoef J.M. (e_1_2_8_54_1) 2014; 56
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – year: 2011
– volume: 19
  start-page: GB4S07
  year: 2005
  article-title: Modeling Nutrient (N, P, Si) Budget in the Seine Watershed: Application of the Riverstrahler Model Using Data from Local to Global Scale Resolution
  publication-title: Global Biogeochemical Cycles
– year: 2009
– year: 2016b
– volume: 60
  start-page: 320
  year: 2014
  end-page: 330
  article-title: Improving the Predictive Power of Spatial Statistical Models of Stream Macroinvertebrates Using Weighted Autocovariance Functions
  publication-title: Environmental Modelling & Software
– volume: 16
  start-page: 499
  year: 1974
  end-page: 511
  article-title: Regressions by Leaps and Bounds
  publication-title: Technometrics
– volume: 52
  start-page: 1
  year: 2015
  end-page: 9
  article-title: The Stream‐Catchment (Streamcat) Dataset: A Database of Watershed Metrics for the Conterminous United States
  publication-title: Journal of the American Water Resources Association
– volume: 6
  start-page: 407
  year: 2003
  end-page: 423
  article-title: Effects of Land Cover on Stream Ecosystems: Roles of Empirical Models and Scaling Issues
  publication-title: Ecosystems
– volume: 111
  start-page: 7030
  year: 2014
  end-page: 7035
  article-title: Network Analysis Reveals Multiscale Controls on Streamwater Chemistry
  publication-title: Proceedings of the National Academy of Sciences
– volume: 25
  start-page: 289
  year: 2010
  end-page: 310
  article-title: To Explain or to Predict?
  publication-title: Statistical Science
– volume: 30
  start-page: 605
  year: 1994
  end-page: 611
  article-title: Characterization of Surface‐Water Quality along a Watershed Disturbance Gradient
  publication-title: Water Resources Bulletin
– volume: 121
  start-page: 571
  year: 2006
  end-page: 596
  article-title: Patterns of Spatial Autocorrelation in Stream Water Chemistry
  publication-title: Environmental Monitoring and Assessment
– volume: 21
  start-page: 439
  year: 2010
  end-page: 456
  article-title: Spatial Modelling and Prediction on River Networks: Up Model, Down Model or Hybrid?
  publication-title: Environmetrics
– year: 2014
– year: 2016a
– volume: 25
  start-page: 306
  year: 2014
  end-page: 323
  article-title: Spatial Sampling on Streams: Principles for Inference on Aquatic Networks
  publication-title: Environmetrics
– volume: 7
  start-page: e01321
  year: 2016
  article-title: Modeling Lake Trophic State: A Random Forest Approach
  publication-title: Ecosphere
– volume: 382
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Defining the Sources of Low‐Flow Phosphorus Transfers in Complex Catchments
  publication-title: Science of the Total Environment
– volume: 80
  start-page: 2283
  year: 1999
  end-page: 2298
  article-title: Spatial Heterogeneity of Stream Water Nutrient Concentrations over Successional Time
  publication-title: Ecology
– volume: 10
  start-page: e0134757
  year: 2015
  article-title: Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams
  publication-title: PLoS ONE
– volume: 49
  start-page: 1
  year: 2004
  end-page: 10
  article-title: Estimates of Diffuse Phosphorus Sources in Surface Waters of the United States Using a Spatially Referenced Watershed Model
  publication-title: Water Science and Technology
– volume: 400
  start-page: 379
  year: 2008
  end-page: 395
  article-title: Delivery and Cycling of Phosphorus in Rivers: A Review
  publication-title: Science of the Total Environment
– start-page: 126
  year: 2012
  end-page: 150
– volume: 45
  start-page: 336
  year: 2010
  end-page: 350
  article-title: Influences of Spatial Scale and Soil Permeability on Relationships between Land Cover and Baseflow Stream Nutrient Concentrations
  publication-title: Environmental Management
– volume: 32
  start-page: 1654
  year: 2015
  end-page: 1671
  article-title: A Watershed Integrity Definition and Assessment Approach to Support Strategic Management of Watersheds
  publication-title: River Research and Applications
– year: 2015
– start-page: 103
  year: 2016
  end-page: 131
– volume: 56
  start-page: 1
  year: 2014
  end-page: 43
  article-title: SSN: An R Package for Spatial Statistical Modeling on Stream Networks
  publication-title: Journal of Statistical Software
– volume: 17
  start-page: 956
  year: 2015
  end-page: 964
  article-title: Correlation of Trace Contaminants to Wastewater Management Practices in Small Watersheds
  publication-title: Environmental Science: Processes & Impacts
– volume: 56
  start-page: 1
  year: 2014
  end-page: 17
  article-title: Stars: An ArcGIS Toolset Used to Calculate the Spatial Information Needed to Fit Spatial Statistical Models to Stream Network Data
  publication-title: Journal of Statistical Software
– volume: 1
  start-page: 277
  year: 2014
  end-page: 294
  article-title: Applications of Spatial Statistical Network Models to Stream Data
  publication-title: Wiley Interdisciplinary Reviews: Water
– volume: 44
  start-page: 505
  year: 2009
  end-page: 523
  article-title: Long‐Term Effects of Changing Land Use Practices on Surface Water Quality in a Coastal River and Lagoonal Estuary
  publication-title: Environmental Management
– volume: 8
  start-page: 559
  year: 1998
  end-page: 568
  article-title: Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen
  publication-title: Ecological Applications
– volume: 43
  start-page: 594
  year: 2007
  end-page: 604
  article-title: Relationship of Land‐Use/Land‐Cover Patterns and Surface‐Water Quality in the Mullica River Basin
  publication-title: Journal of the American Water Resources Association
– volume: 45
  start-page: 5652
  year: 2011
  end-page: 5659
  article-title: Combining Land Use Information and Small Stream Sampling with PCR‐Based Methods for Better Characterization of Diffuse Sources of Human Fecal Pollution
  publication-title: Environmental Science & Technology
– volume: 185
  start-page: 7485
  year: 2013
  end-page: 7499
  article-title: Automated Riverine Landscape Characterization: GIS‐Based Tools for Watershed‐Scale Research, Assessment, and Management
  publication-title: Environmental Monitoring and Assessment
– volume: 13
  start-page: 449
  year: 2006
  end-page: 464
  article-title: Spatial Statistical Models That Use Flow and Stream Distance
  publication-title: Environmental and Ecological Statistics
– volume: 187
  start-page: 1
  year: 2015
  end-page: 16
  article-title: Combining and Aggregating Environmental Data for Status and Trend Assessments: Challenges and Approaches
  publication-title: Environmental Monitoring and Assessment
– year: 2012
– volume: 139
  start-page: 1413
  year: 2013
  end-page: 1423
  article-title: Alternative Land‐Use Method for Spatially Informed Watershed Management Decision Making Using SWAT
  publication-title: Journal of Environmental Engineering
– volume: 25
  start-page: 943
  year: 2015
  end-page: 955
  article-title: The Importance of Lake‐Specific Characteristics for Water Quality across the Continental United States
  publication-title: Ecological Applications
– volume: 47
  start-page: 1011
  year: 2011
  end-page: 1033
  article-title: Nutrient Inputs to the Laurentian Great Lakes by Source and Watershed Estimated Using Sparrow Watershed Models
  publication-title: Journal of the American Water Resources Association
– volume: 91
  start-page: 644
  year: 2010
  end-page: 651
  article-title: A Mixed‐Model Moving‐Average Approach to Geostatistical Modeling in Stream Networks
  publication-title: Ecology
– year: 2006
– volume: 42
  start-page: 822
  year: 2007
  end-page: 830
  article-title: Differences in Phosphorus and Nitrogen Delivery to the Gulf of Mexico from the Mississippi River Basin
  publication-title: Environmental Science & Technology
– volume: 43
  start-page: 69
  year: 2009
  end-page: 83
  article-title: Landscape Planning for Agricultural Nonpoint Source Pollution Reduction III: Assessing Phosphorus and Sediment Reduction Potential
  publication-title: Environmental Management
– volume: 105
  start-page: 6
  year: 2010
  end-page: 18
  article-title: A Moving Average Approach for Spatial Statistical Models of Stream Networks
  publication-title: Journal of the American Statistical Association
– volume: 37
  start-page: 193
  year: 1997
  end-page: 208
  article-title: Landscape Influences on Water Chemistry in Mid‐Western Stream Ecosystems
  publication-title: Freshwater Biology
– volume: 20
  start-page: 1350
  year: 2010
  end-page: 1371
  article-title: Effects of Climate Change and Wildfire on Stream Temperatures and Salmonid Thermal Habitat in a Mountain River Network
  publication-title: Ecological Applications
– year: 1999
– ident: e_1_2_8_44_1
  doi: 10.1002/9781118643525.ch6
– volume-title: Australian Hydrological Geospatial Fabric Version 2
  year: 2015
  ident: e_1_2_8_5_1
– ident: e_1_2_8_31_1
– ident: e_1_2_8_42_1
  doi: 10.1007/s00267-009-9330-8
– ident: e_1_2_8_6_1
  doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
– ident: e_1_2_8_7_1
  doi: 10.1007/s00267-009-9401-x
– ident: e_1_2_8_36_1
  doi: 10.1007/s10661-005-9156-7
– volume-title: Sparrow Decision Support System—Upper Midwest Total Phosphorus in Water Model
  year: 2015
  ident: e_1_2_8_51_1
– ident: e_1_2_8_14_1
  doi: 10.1080/00401706.1974.10489231
– ident: e_1_2_8_37_1
  doi: 10.1890/08-1668.1
– volume-title: Discharge Monitoring Report Pollutant Loading Tool
  year: 2016
  ident: e_1_2_8_49_1
– ident: e_1_2_8_26_1
  doi: 10.1371/journal.pone.0134757
– ident: e_1_2_8_15_1
  doi: 10.1002/env.995
– volume-title: Examining the Feasibility of Water Quality Trading in the East Fork Watershed Case Study
  year: 2012
  ident: e_1_2_8_23_1
– ident: e_1_2_8_3_1
  doi: 10.1021/es0716103
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2015
  ident: e_1_2_8_39_1
– ident: e_1_2_8_24_1
  doi: 10.1061/(ASCE)EE.1943-7870.0000770
– ident: e_1_2_8_52_1
  doi: 10.1007/s10651-006-0022-8
– ident: e_1_2_8_57_1
  doi: 10.1111/j.1752-1688.1994.tb03315.x
– ident: e_1_2_8_22_1
  doi: 10.1046/j.1365-2427.1997.d01-539.x
– ident: e_1_2_8_13_1
  doi: 10.1016/j.envsoft.2014.06.019
– ident: e_1_2_8_53_1
  doi: 10.1198/jasa.2009.ap08248
– ident: e_1_2_8_19_1
  doi: 10.3133/fs20123020
– ident: e_1_2_8_40_1
  doi: 10.1890/14-0935.1
– ident: e_1_2_8_47_1
  doi: 10.1002/env.2284
– ident: e_1_2_8_34_1
  doi: 10.1021/es2003167
– ident: e_1_2_8_4_1
  doi: 10.1016/j.scitotenv.2007.03.036
– ident: e_1_2_8_33_1
  doi: 10.1017/CBO9781139022422.010
– ident: e_1_2_8_46_1
  doi: 10.1214/10-STS330
– volume: 52
  start-page: 1
  year: 2015
  ident: e_1_2_8_17_1
  article-title: The Stream‐Catchment (Streamcat) Dataset: A Database of Watershed Metrics for the Conterminous United States
  publication-title: Journal of the American Water Resources Association
– ident: e_1_2_8_50_1
– volume-title: Guide to Using 1995–1997 Maryland Biological Stream Survey Data
  year: 1999
  ident: e_1_2_8_29_1
– volume-title: An R Companion to Applied Regression
  year: 2011
  ident: e_1_2_8_12_1
– volume: 56
  start-page: 1
  year: 2014
  ident: e_1_2_8_54_1
  article-title: SSN: An R Package for Spatial Statistical Modeling on Stream Networks
  publication-title: Journal of Statistical Software
– ident: e_1_2_8_11_1
  doi: 10.1002/rra.2978
– ident: e_1_2_8_56_1
  doi: 10.1016/j.scitotenv.2008.08.002
– ident: e_1_2_8_38_1
  doi: 10.18637/jss.v056.i02
– ident: e_1_2_8_20_1
  doi: 10.1890/09-0822.1
– ident: e_1_2_8_45_1
  doi: 10.1029/2005GB002496
– ident: e_1_2_8_2_1
  doi: 10.2166/wst.2004.0150
– ident: e_1_2_8_8_1
  doi: 10.1890/0012-9658(1999)080[2283:SHOSWN]2.0.CO;2
– ident: e_1_2_8_48_1
  doi: 10.1007/PL00021506
– ident: e_1_2_8_16_1
– ident: e_1_2_8_25_1
  doi: 10.1007/s10661-015-4504-8
– ident: e_1_2_8_21_1
  doi: 10.1002/wat2.1023
– ident: e_1_2_8_35_1
– ident: e_1_2_8_18_1
  doi: 10.1002/ecs2.1321
– ident: e_1_2_8_30_1
– ident: e_1_2_8_55_1
  doi: 10.1007/s10661-013-3114-6
– volume-title: Ohio EPA Manual of Surveillance Methods and Quality Assurance Practices
  year: 2009
  ident: e_1_2_8_32_1
– ident: e_1_2_8_27_1
  doi: 10.1073/pnas.1404820111
– volume-title: NHDPlus Version 2: User Guide
  year: 2012
  ident: e_1_2_8_28_1
– ident: e_1_2_8_9_1
  doi: 10.1007/s00267-008-9139-x
– ident: e_1_2_8_43_1
  doi: 10.1039/C4EM00583J
– volume-title: ArcGIS Desktop: Release 10.2.2
  year: 2014
  ident: e_1_2_8_10_1
– ident: e_1_2_8_41_1
  doi: 10.1111/j.1752-1688.2011.00574.x
– ident: e_1_2_8_58_1
  doi: 10.1111/j.1752-1688.2007.00045.x
SSID ssj0015183
Score 2.2729433
Snippet Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 944
SubjectTerms Accuracy
Agricultural and Veterinary sciences
Annan lantbruksvetenskap
autocorrelation
Data
Earth and Related Environmental Sciences
Environmental Sciences
Environmental Sciences and Nature Conservation (including Biodiversity)
Geovetenskap och relaterad miljövetenskap
Goodness of fit
Government agencies
Investment
Lantbruksvetenskap och veterinärmedicin
Mathematical models
Miljö- och naturvårdsvetenskap (Här ingår: Biodiversitet)
Miljövetenskap
Model accuracy
Modelling
Natural Sciences
Naturvetenskap
Oceanografi, hydrologi och vattenresurser
Oceanography, Hydrology and Water Resources
Other Agricultural Sciences
Phosphorus
Prediction models
Regression analysis
Rivers
Septic systems
Spatial data
statistical modeling
stream networks
Water pollution
Watersheds
Title Improving Predictive Models of In‐Stream Phosphorus Concentration Based on Nationally‐Available Spatial Data Coverages
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1752-1688.12543
https://www.ncbi.nlm.nih.gov/pubmed/30034212
https://www.proquest.com/docview/2008897179
https://www.proquest.com/docview/2074126807
https://pubmed.ncbi.nlm.nih.gov/PMC6052460
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_QgtyEgcuGRJ4sSxj0tLVSqBqqqIiovlV7QVIbva7FZqT_wEfiO_hBnnoW4rhBA3R_EoyWRmPGPPfEPIa6dLXYHjEMuq0HFeOh-bCi4RySQBm8y5xQ39j5_4wef88LQYsgmxFqbDhxg33FAzgr1GBdemvaLksO5lccqFmKRY0A1WOGUc0fP3jkcAKVjORJdiL-HxZX7ag_tgLs81-s116YazeTNnskcW3XRqw6q0f4-Y4Xu6ZJRvk_XKTOzlNajH__rg--Ru77PSaSdkD8gt3zwkt4eS5hbGfSv12cUjcjluU9CjJZ4CoT2l2HKtbum8oh-aXz9-4lm4_k6PZvN2MZsv1y3dxfLJpsfwpe9gbXUUBj1sd11fANX0XJ_VWOpFsZEyKA7d0ysNpKCOYBbbx-Rk__3J7kHcN3iIbVEIFjtTOvAvIGZzTBvEheFocZzxOs0Sk3uXaW8rnRSWc2ELIz3jVaJ16cGtkOwJ2WrmjX9GaCJ9zo2TjBc2dxkXTmohi6yCeJEJKyIyGf6usj34OfbgqNUQBCF3FXJXBe5G5M1IsOhwP_48dWcQF9UbgDZ09xQSYmUZkVfjbVBdPI_RjZ-vcQ64c_CuSRmRp510jc9iAZsxzSJSbsjdOAFhwTfvNGezAA8OAWqW8yQiXzsJ3SQJQZ3qkaRmql6r1qvFlS1ipRm3QleJAl_dqlxoryQwX-kEGJnmnrHCRuRtENW_8UYdTr8ch9Hzf6bYJncy9KFCtuUO2Vot1_4FeIAr8zIo-W95ZlRE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqF9yNQwEgcuGTJ5uHYx6Wl2pa2qqpFrLhYju1oK0J2tdkgtSd-Ar-RX8KMk402rRBC3LyKncfszPibsf0NIW-MSlUOwMEXeaL8ODXWz3L4iUwmAfhkxjQm9I9P2PhTfDhNphtnYRp-iC7hhpbh_DUaOCakN6wcJr7QHzLOB0M80X2T3IoBbmAAtnfWUUjBhMabTfYCXiCNpy29D-7muXKD_sx0DW5e3zXZcov2Ya2bl_bvEr3-omY7ytdBvcoG-vIK2eP_ffI9cqeFrXTU6Nl9csOWD8j2-lRzBe22mvrs4iG57DIV9HSJC0HoUilWXSsqOs_pQfnrx09cDlff6OlsXi1m82Vd0V08QVm2NL70PUyvhkKjZe4uigsYNfquzgs87UWxljLYDt1TKwVDwSLBM1aPyGT_w2R37Lc1HnydJDzyTZYagBgQtplIZUgNw9DpmMyqYRhksTWhsjpXQaIZ4zrJhI1YHiiVWkAWInpMtsp5aZ8SGggbs8yIiCU6NiHjRigukjCHkDHimntksP57pW75z7EMRyHXcRBKV6J0pZOuR952AxYN9cefu-6s9UW2PqByBT65gHBZeOR1dxmsF5dkVGnnNfYBRAfvGqQeedKoV_esyNEzDkOPpD3F6zogM3j_Snk-cwzhEKOGMQs88qVR0f4QF9fJlkxqJotaVlYuNrLEUkVMc5UHEuC6ljFXVgoQvlQBCHIY2yhKtEfeOV39m2zk4ejzmWs9--cRr8j2eHJ8JI8OTj4-J7dDhFRu8-UO2Vota_sCAOEqe-ks_jefblhj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCF9yNQwEgcuGTJ5uHYx6Vl1RaoVlURFRfLsR2lappdbXaR2hM_gd_IL2HGeahphRDi5ih2spmdGX9jj78h5I1RqcoBOPgiT5Qfp8b6WQ6XyGQSgE9mTOOC_ud9tvMl3jtKumxCPAvT8EP0C25oGc5fo4EvTH7ByGHeC_0x43w0xgPd18mNmAGeQFx00DNIwXzGmxx7Ae9P46OW3QeTeS49YDgxXUGbV5MmW2rRIap109L0Lsm6D2qyUU5G61U20ueXuB7_64vvkTstaKWTRsvuk2u2ekBudWeaa2i3tdSLs4fkvF-noLMlbgOhQ6VYc62s6Tynu9WvHz9xM1yd0lkxrxfFfLmu6Raen6xaEl_6HiZXQ6HR8naX5RmMmnxXxyWe9aJYSRksh26rlYKhYI_gF-tH5HD64XBrx28rPPg6SXjkmyw1ADAgaDORypAYhqHLMZlV4zDIYmtCZXWugkQzxnWSCRuxPFAqtYArRPSYbFTzyj4lNBA2ZpkREUt0bELGjVBcJGEOAWPENffIqPt3pW7Zz7EIRym7KAilK1G60knXI2_7AYuG-OPPXTc7dZGtB6hdeU8uIFgWHnnd3wbbxQ0ZVdn5GvsAnoPfGqQeedJoV_-uyJEzjkOPpAO96zsgL_jwTnVcOH5wiFBDsAWPfGs0dDjERXWypZIqZLmWtZWLC2vEUkVMc5UHEsC6ljFXVgoQvlQBCHIc2yhKtEfeOVX9m2zk3uTrgWs9--cRr8jN2fZUftrd__ic3A4RT7nMy02ysVqu7QtAg6vspbP3308OVxI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IMPROVING+PREDICTIVE+MODELS+OF+IN-STREAM+PHOSPHORUS+CONCENTRATION+BASED+ON+NATIONALLY-AVAILABLE+SPATIAL+DATA+COVERAGES&rft.jtitle=Journal+of+the+American+Water+Resources+Association&rft.au=Scown%2C+Murray+W&rft.au=McManus%2C+Michael+G&rft.au=Carson%2C+Jr%2C+John+H&rft.au=Nietch%2C+Christopher+T&rft.date=2017-08-01&rft.issn=1093-474X&rft.volume=53&rft.issue=4&rft.spage=944&rft_id=info:doi/10.1111%2F1752-1688.12543&rft_id=info%3Apmid%2F30034212&rft.externalDocID=30034212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-474X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-474X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-474X&client=summon