基于BP和Elman神经网络的智能变电站录波启动判据算法
针对传统故障录波启动判据算法的局限性,提出一种基于BP神经网络和Elman神经网络的算法。以A、B两相电流越限为例进行了算法的研究,通过选取启动判据样本来训练BP和Elman神经网络,将启动判据信息输入到训练好的两种模型中,由输出结果就可以判断是否需要启动录波。Matlab输出表明:基于。BP神经网络的故障录波启动判据算法能有效地完成录波启动,误差较小,但是速度相对较慢;而基于Elman神经网络的故障录波启动判据算法也可以完成录波启动,但是误差稍大,由于带有反馈环节,所以速度较平稳,易于工程实现。较之两种算法,可针对故障录波数据量的大小进行择优选择。...
Saved in:
Published in | 电力系统保护与控制 Vol. 42; no. 5; pp. 110 - 115 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
中国矿业大学信息与电气工程学院,江苏 徐州,221116%武汉大学电气工程学院,湖北 武汉,430072
2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-3415 |
Cover
Abstract | 针对传统故障录波启动判据算法的局限性,提出一种基于BP神经网络和Elman神经网络的算法。以A、B两相电流越限为例进行了算法的研究,通过选取启动判据样本来训练BP和Elman神经网络,将启动判据信息输入到训练好的两种模型中,由输出结果就可以判断是否需要启动录波。Matlab输出表明:基于。BP神经网络的故障录波启动判据算法能有效地完成录波启动,误差较小,但是速度相对较慢;而基于Elman神经网络的故障录波启动判据算法也可以完成录波启动,但是误差稍大,由于带有反馈环节,所以速度较平稳,易于工程实现。较之两种算法,可针对故障录波数据量的大小进行择优选择。 |
---|---|
AbstractList | 针对传统故障录波启动判据算法的局限性,提出一种基于BP神经网络和Elman神经网络的算法。以A、B两相电流越限为例进行了算法的研究,通过选取启动判据样本来训练BP和Elman神经网络,将启动判据信息输入到训练好的两种模型中,由输出结果就可以判断是否需要启动录波。Matlab输出表明:基于。BP神经网络的故障录波启动判据算法能有效地完成录波启动,误差较小,但是速度相对较慢;而基于Elman神经网络的故障录波启动判据算法也可以完成录波启动,但是误差稍大,由于带有反馈环节,所以速度较平稳,易于工程实现。较之两种算法,可针对故障录波数据量的大小进行择优选择。 TM769; 针对传统故障录波启动判据算法的局限性,提出一种基于BP神经网络和Elman神经网络的算法。以A、B两相电流越限为例进行了算法的研究,通过选取启动判据样本来训练BP和Elman神经网络,将启动判据信息输入到训练好的两种模型中,由输出结果就可以判断是否需要启动录波。Matlab输出表明:基于BP神经网络的故障录波启动判据算法能有效地完成录波启动,误差较小,但是速度相对较慢;而基于Elman神经网络的故障录波启动判据算法也可以完成录波启动,但是误差稍大,由于带有反馈环节,所以速度较平稳,易于工程实现。较之两种算法,可针对故障录波数据量的大小进行择优选择。 |
Abstract_FL | As to the limitation of traditional starting criteria for fault recorder algorithm, this paper proposes an algorithm based on BP neural network and Elman neural network. An example of phase A and phase B current out-of-limit is studied with the algorithm. By choosing starting criteria samples to train BP and Elman neural network, then inputting the starting criteria information to the two trained models, whether to start recording can be judged from the output results. The outcome of MATLAB simulation shows that the starting criteria for fault recorder algorithm based on BP neural network can effectively complete the recording start with minor error, but the pace is comparatively slower. The starting criteria for fault recorder algorithm based on Elman neural network can also complete the recording start, but the error is bigger. Thanks to the part of feedback, the pace is smooth and steady and easy to accomplish in engineering project. Comparing two algorithms, the suitable one can be selected according to the amount of recorded data. |
Author | 刘建华 李天玉 付娟娟 吴楠 |
AuthorAffiliation | 中国矿业大学信息与电气工程学院,江苏徐州221116 武汉大学电气工程学院,湖北武汉430072 |
AuthorAffiliation_xml | – name: 中国矿业大学信息与电气工程学院,江苏 徐州,221116%武汉大学电气工程学院,湖北 武汉,430072 |
Author_FL | LIU Jian-hua WU Nan FU Juan-juan LI Tian-yu |
Author_FL_xml | – sequence: 1 fullname: LIU Jian-hua – sequence: 2 fullname: LI Tian-yu – sequence: 3 fullname: FU Juan-juan – sequence: 4 fullname: WU Nan |
Author_xml | – sequence: 1 fullname: 刘建华 李天玉 付娟娟 吴楠 |
BookMark | eNotzcFKAkEAxvE5GGTmQwRdF2Z2ZnZnjyVagVAH7zIz69iKjrlLROc6RFRaJGVEQRQEgR2ki7Jv0-z0GBl2-i4_vv8KyOmubuRAHnk-cTBBdBkUkyQSEGJEqceCPKiY5-n39Gpzz9xclNsdru3bk531bXptZ4_24TQbTX9OUtO_t7df9mNk0mE2eTGDT3P-bs5es8uxHd9lk-EqWFK8nTSK_1sAtUq5Vtp2qrtbO6WNqiMpZY6EIoQq9JEnpRKEYORxVzCfcJeRhhC-hDgMXeQLgpgUmAaKUKaUJwIFEWW4ANYXt0dcK66b9Vb3MNbzYL0V9lyICKQQ_bG1BZP7Xd3sRXN4EEcdHh_XCfPdwPUg_gWB42oC |
ClassificationCodes | TM769 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Criteria algorithm for smart substation recorder starting based on BP & Elman neural network |
DocumentTitle_FL | Criteria algorithm for smart substation recorder starting based on BP & Elman neural network |
EndPage | 115 |
ExternalDocumentID | jdq201405018 48729260 |
GroupedDBID | -03 2RA 5XA 5XD 92L ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CQIGP GROUPED_DOAJ U1G W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c558-c0bd0fd716ccfb44316a2b874a284ebb7c03dd217b418cb359f458ff6b9f01583 |
ISSN | 1674-3415 |
IngestDate | Thu May 29 03:55:49 EDT 2025 Wed Feb 14 10:37:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | BP neural network BP神经网络 smart substation 启动判据 模式识别 智能变电站 Elman神经网络 starting criteria pattern distinction fault recorder 故障录波 Elman neural network |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c558-c0bd0fd716ccfb44316a2b874a284ebb7c03dd217b418cb359f458ff6b9f01583 |
Notes | smart substation; fault recorder; starting criteria; BP neural network; Elman neural network; pattern distinction As to the limitation of traditional starting criteria for fault recorder algorithm, this paper proposes an algorithm based on BP neural network and Elman neural network. An example of phase A and phase B current out-of-limit is studied with the algorithm. By choosing starting criteria samples to train BP and Elman neural network, then inputting the starting criteria information to the two trained models, whether to start recording can be judged from the output results. The outcome of MATLAB simulation shows that the starting criteria for fault recorder algorithm based on BP neural network can effectively complete the recording start with minor error, but the pace is comparatively slower. The starting criteria for fault recorder algorithm based on Elman neural network can also complete the recording start, but the error is bigger. Thanks to the part of feedback, the pace is smooth and steady and eas |
PageCount | 6 |
ParticipantIDs | wanfang_journals_jdq201405018 chongqing_primary_48729260 |
PublicationCentury | 2000 |
PublicationDate | 2014 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – year: 2014 text: 2014 |
PublicationDecade | 2010 |
PublicationTitle | 电力系统保护与控制 |
PublicationTitleAlternate | Relay |
PublicationTitle_FL | Power System Protection and Control |
PublicationYear | 2014 |
Publisher | 中国矿业大学信息与电气工程学院,江苏 徐州,221116%武汉大学电气工程学院,湖北 武汉,430072 |
Publisher_xml | – name: 中国矿业大学信息与电气工程学院,江苏 徐州,221116%武汉大学电气工程学院,湖北 武汉,430072 |
SSID | ssib003155689 ssib017479473 ssib023166999 ssj0002912115 ssib051374514 ssib002424069 ssib036435463 |
Score | 2.0219223 |
Snippet | ... TM769;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 110 |
SubjectTerms | BP神经网络 Elman神经网络 启动判据 故障录波 智能变电站 模式识别 |
Title | 基于BP和Elman神经网络的智能变电站录波启动判据算法 |
URI | http://lib.cqvip.com/qk/90494A/201405/48729260.html https://d.wanfangdata.com.cn/periodical/jdq201405018 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFA-lJy-iqNhqpQfnYonkY2Yyc5xsE4oH6aFCb0uySVpEtlbbS696EFGrYtGKKIiCINRD8dLS_8bd-Gf43ttpNoeCX5fwZvLmN-9jN3lvmHlxnKshFuFSUriyLDyXl5XvZlmlXNzXxLNcQzJH1T5vyoVb_MayWJ6YvNbatbS5kV_vbZ14ruRfvAp94Fc8JfsXnm1AoQNo8C9cwcNw_SMfs0QwnbLYsITjVSXxIvUFTHWSO7i4mUTMQEeCRBwzlRIxz7Rve3QHCQ2DOUsk05rgFFMhsgEYDNGKeGAOQYAxssEtxBE4Kg6ZCWhmj5mURhlmFBGKGUJW88yQGHDVkR01-vTlcXTcmoUQdExChiinlTYlVUGkecI0BA49IHBCPQkzkZ03blYdbYcmiQAGVRQokUrGLBJBEUUgqNE4JTSVHrNwkoFQQDudNkR7IrBBTBqD4Y3XXlbxxwuqVmhDJgY90dYROTO1t7Q5loT0AU4jrfLGJ1V9snWjfGM7sKyHNOpK7kejA0_cwtHoQvBZ0CF-n5QhHpXO0cgEFRlBaNwyG0ASj0swNIFFoZFKnyTo_0gDTUkO6sAvZe6E-YIOD7EafeuVKiPuQqwkWk8T0Xpl-nZbc2lbYhyZNPtFbxfr6CMPq09CuAVBtWqtnthIE89wt15VWFqvaUMWI6UeZ94hBOLtD0EIP4y4sBsKMIgLNNY-xA3QjfxYfWV1rb-yDjElHfHrV1l_pRWNLp1xTts0ctaMnglnnYmt1XNOOvhw8OPgWbw4ePmE_v315_f14XZ99KI-fFe_fTjcPfj54Giw_aZ-9b3-ujs42hnufxw8_zZ4_GXw6NPw6V6993q4v3PeWUqTpc6Ca7-T4vaEUG7PywuvKiJf9npVzrG2RRbkKuIZhJ5lnkc9LyyKwI9y7qteHgpdcaGqSua6gmRAhRecyf5av7zozErlh5ig8MLLuC6jHMN5T-VVIUoto2LKmW5M0L07KofT5QoS9EB6U86MtUnXPiPvd9uOm_7N_UvOKaRH65uXncmNe5vlDET8G_kV8vUvoyu3oQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EBP%E5%92%8CElman%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E6%99%BA%E8%83%BD%E5%8F%98%E7%94%B5%E7%AB%99%E5%BD%95%E6%B3%A2%E5%90%AF%E5%8A%A8%E5%88%A4%E6%8D%AE%E7%AE%97%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E5%88%98%E5%BB%BA%E5%8D%8E&rft.au=%E6%9D%8E%E5%A4%A9%E7%8E%89&rft.au=%E4%BB%98%E5%A8%9F%E5%A8%9F&rft.au=%E5%90%B4%E6%A5%A0&rft.date=2014&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F+%E5%BE%90%E5%B7%9E%2C221116%25%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97+%E6%AD%A6%E6%B1%89%2C430072&rft.issn=1674-3415&rft.issue=5&rft.spage=110&rft.epage=115&rft.externalDocID=jdq201405018 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90494A%2F90494A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |