基于BP和Elman神经网络的智能变电站录波启动判据算法

针对传统故障录波启动判据算法的局限性,提出一种基于BP神经网络和Elman神经网络的算法。以A、B两相电流越限为例进行了算法的研究,通过选取启动判据样本来训练BP和Elman神经网络,将启动判据信息输入到训练好的两种模型中,由输出结果就可以判断是否需要启动录波。Matlab输出表明:基于。BP神经网络的故障录波启动判据算法能有效地完成录波启动,误差较小,但是速度相对较慢;而基于Elman神经网络的故障录波启动判据算法也可以完成录波启动,但是误差稍大,由于带有反馈环节,所以速度较平稳,易于工程实现。较之两种算法,可针对故障录波数据量的大小进行择优选择。...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 42; no. 5; pp. 110 - 115
Main Author 刘建华 李天玉 付娟娟 吴楠
Format Journal Article
LanguageChinese
Published 中国矿业大学信息与电气工程学院,江苏 徐州,221116%武汉大学电气工程学院,湖北 武汉,430072 2014
Subjects
Online AccessGet full text
ISSN1674-3415

Cover

Abstract 针对传统故障录波启动判据算法的局限性,提出一种基于BP神经网络和Elman神经网络的算法。以A、B两相电流越限为例进行了算法的研究,通过选取启动判据样本来训练BP和Elman神经网络,将启动判据信息输入到训练好的两种模型中,由输出结果就可以判断是否需要启动录波。Matlab输出表明:基于。BP神经网络的故障录波启动判据算法能有效地完成录波启动,误差较小,但是速度相对较慢;而基于Elman神经网络的故障录波启动判据算法也可以完成录波启动,但是误差稍大,由于带有反馈环节,所以速度较平稳,易于工程实现。较之两种算法,可针对故障录波数据量的大小进行择优选择。
AbstractList 针对传统故障录波启动判据算法的局限性,提出一种基于BP神经网络和Elman神经网络的算法。以A、B两相电流越限为例进行了算法的研究,通过选取启动判据样本来训练BP和Elman神经网络,将启动判据信息输入到训练好的两种模型中,由输出结果就可以判断是否需要启动录波。Matlab输出表明:基于。BP神经网络的故障录波启动判据算法能有效地完成录波启动,误差较小,但是速度相对较慢;而基于Elman神经网络的故障录波启动判据算法也可以完成录波启动,但是误差稍大,由于带有反馈环节,所以速度较平稳,易于工程实现。较之两种算法,可针对故障录波数据量的大小进行择优选择。
TM769; 针对传统故障录波启动判据算法的局限性,提出一种基于BP神经网络和Elman神经网络的算法。以A、B两相电流越限为例进行了算法的研究,通过选取启动判据样本来训练BP和Elman神经网络,将启动判据信息输入到训练好的两种模型中,由输出结果就可以判断是否需要启动录波。Matlab输出表明:基于BP神经网络的故障录波启动判据算法能有效地完成录波启动,误差较小,但是速度相对较慢;而基于Elman神经网络的故障录波启动判据算法也可以完成录波启动,但是误差稍大,由于带有反馈环节,所以速度较平稳,易于工程实现。较之两种算法,可针对故障录波数据量的大小进行择优选择。
Abstract_FL As to the limitation of traditional starting criteria for fault recorder algorithm, this paper proposes an algorithm based on BP neural network and Elman neural network. An example of phase A and phase B current out-of-limit is studied with the algorithm. By choosing starting criteria samples to train BP and Elman neural network, then inputting the starting criteria information to the two trained models, whether to start recording can be judged from the output results. The outcome of MATLAB simulation shows that the starting criteria for fault recorder algorithm based on BP neural network can effectively complete the recording start with minor error, but the pace is comparatively slower. The starting criteria for fault recorder algorithm based on Elman neural network can also complete the recording start, but the error is bigger. Thanks to the part of feedback, the pace is smooth and steady and easy to accomplish in engineering project. Comparing two algorithms, the suitable one can be selected according to the amount of recorded data.
Author 刘建华 李天玉 付娟娟 吴楠
AuthorAffiliation 中国矿业大学信息与电气工程学院,江苏徐州221116 武汉大学电气工程学院,湖北武汉430072
AuthorAffiliation_xml – name: 中国矿业大学信息与电气工程学院,江苏 徐州,221116%武汉大学电气工程学院,湖北 武汉,430072
Author_FL LIU Jian-hua
WU Nan
FU Juan-juan
LI Tian-yu
Author_FL_xml – sequence: 1
  fullname: LIU Jian-hua
– sequence: 2
  fullname: LI Tian-yu
– sequence: 3
  fullname: FU Juan-juan
– sequence: 4
  fullname: WU Nan
Author_xml – sequence: 1
  fullname: 刘建华 李天玉 付娟娟 吴楠
BookMark eNotzcFKAkEAxvE5GGTmQwRdF2Z2ZnZnjyVagVAH7zIz69iKjrlLROc6RFRaJGVEQRQEgR2ki7Jv0-z0GBl2-i4_vv8KyOmubuRAHnk-cTBBdBkUkyQSEGJEqceCPKiY5-n39Gpzz9xclNsdru3bk531bXptZ4_24TQbTX9OUtO_t7df9mNk0mE2eTGDT3P-bs5es8uxHd9lk-EqWFK8nTSK_1sAtUq5Vtp2qrtbO6WNqiMpZY6EIoQq9JEnpRKEYORxVzCfcJeRhhC-hDgMXeQLgpgUmAaKUKaUJwIFEWW4ANYXt0dcK66b9Vb3MNbzYL0V9lyICKQQ_bG1BZP7Xd3sRXN4EEcdHh_XCfPdwPUg_gWB42oC
ClassificationCodes TM769
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Criteria algorithm for smart substation recorder starting based on BP & Elman neural network
DocumentTitle_FL Criteria algorithm for smart substation recorder starting based on BP & Elman neural network
EndPage 115
ExternalDocumentID jdq201405018
48729260
GroupedDBID -03
2RA
5XA
5XD
92L
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CQIGP
GROUPED_DOAJ
U1G
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c558-c0bd0fd716ccfb44316a2b874a284ebb7c03dd217b418cb359f458ff6b9f01583
ISSN 1674-3415
IngestDate Thu May 29 03:55:49 EDT 2025
Wed Feb 14 10:37:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords BP neural network
BP神经网络
smart substation
启动判据
模式识别
智能变电站
Elman神经网络
starting criteria
pattern distinction
fault recorder
故障录波
Elman neural network
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c558-c0bd0fd716ccfb44316a2b874a284ebb7c03dd217b418cb359f458ff6b9f01583
Notes smart substation; fault recorder; starting criteria; BP neural network; Elman neural network; pattern distinction
As to the limitation of traditional starting criteria for fault recorder algorithm, this paper proposes an algorithm based on BP neural network and Elman neural network. An example of phase A and phase B current out-of-limit is studied with the algorithm. By choosing starting criteria samples to train BP and Elman neural network, then inputting the starting criteria information to the two trained models, whether to start recording can be judged from the output results. The outcome of MATLAB simulation shows that the starting criteria for fault recorder algorithm based on BP neural network can effectively complete the recording start with minor error, but the pace is comparatively slower. The starting criteria for fault recorder algorithm based on Elman neural network can also complete the recording start, but the error is bigger. Thanks to the part of feedback, the pace is smooth and steady and eas
PageCount 6
ParticipantIDs wanfang_journals_jdq201405018
chongqing_primary_48729260
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 电力系统保护与控制
PublicationTitleAlternate Relay
PublicationTitle_FL Power System Protection and Control
PublicationYear 2014
Publisher 中国矿业大学信息与电气工程学院,江苏 徐州,221116%武汉大学电气工程学院,湖北 武汉,430072
Publisher_xml – name: 中国矿业大学信息与电气工程学院,江苏 徐州,221116%武汉大学电气工程学院,湖北 武汉,430072
SSID ssib003155689
ssib017479473
ssib023166999
ssj0002912115
ssib051374514
ssib002424069
ssib036435463
Score 2.0219223
Snippet ...
TM769;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 110
SubjectTerms BP神经网络
Elman神经网络
启动判据
故障录波
智能变电站
模式识别
Title 基于BP和Elman神经网络的智能变电站录波启动判据算法
URI http://lib.cqvip.com/qk/90494A/201405/48729260.html
https://d.wanfangdata.com.cn/periodical/jdq201405018
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFA-lJy-iqNhqpQfnYonkY2Yyc5xsE4oH6aFCb0uySVpEtlbbS696EFGrYtGKKIiCINRD8dLS_8bd-Gf43ttpNoeCX5fwZvLmN-9jN3lvmHlxnKshFuFSUriyLDyXl5XvZlmlXNzXxLNcQzJH1T5vyoVb_MayWJ6YvNbatbS5kV_vbZ14ruRfvAp94Fc8JfsXnm1AoQNo8C9cwcNw_SMfs0QwnbLYsITjVSXxIvUFTHWSO7i4mUTMQEeCRBwzlRIxz7Rve3QHCQ2DOUsk05rgFFMhsgEYDNGKeGAOQYAxssEtxBE4Kg6ZCWhmj5mURhlmFBGKGUJW88yQGHDVkR01-vTlcXTcmoUQdExChiinlTYlVUGkecI0BA49IHBCPQkzkZ03blYdbYcmiQAGVRQokUrGLBJBEUUgqNE4JTSVHrNwkoFQQDudNkR7IrBBTBqD4Y3XXlbxxwuqVmhDJgY90dYROTO1t7Q5loT0AU4jrfLGJ1V9snWjfGM7sKyHNOpK7kejA0_cwtHoQvBZ0CF-n5QhHpXO0cgEFRlBaNwyG0ASj0swNIFFoZFKnyTo_0gDTUkO6sAvZe6E-YIOD7EafeuVKiPuQqwkWk8T0Xpl-nZbc2lbYhyZNPtFbxfr6CMPq09CuAVBtWqtnthIE89wt15VWFqvaUMWI6UeZ94hBOLtD0EIP4y4sBsKMIgLNNY-xA3QjfxYfWV1rb-yDjElHfHrV1l_pRWNLp1xTts0ctaMnglnnYmt1XNOOvhw8OPgWbw4ePmE_v315_f14XZ99KI-fFe_fTjcPfj54Giw_aZ-9b3-ujs42hnufxw8_zZ4_GXw6NPw6V6993q4v3PeWUqTpc6Ca7-T4vaEUG7PywuvKiJf9npVzrG2RRbkKuIZhJ5lnkc9LyyKwI9y7qteHgpdcaGqSua6gmRAhRecyf5av7zozErlh5ig8MLLuC6jHMN5T-VVIUoto2LKmW5M0L07KofT5QoS9EB6U86MtUnXPiPvd9uOm_7N_UvOKaRH65uXncmNe5vlDET8G_kV8vUvoyu3oQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EBP%E5%92%8CElman%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E6%99%BA%E8%83%BD%E5%8F%98%E7%94%B5%E7%AB%99%E5%BD%95%E6%B3%A2%E5%90%AF%E5%8A%A8%E5%88%A4%E6%8D%AE%E7%AE%97%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E5%88%98%E5%BB%BA%E5%8D%8E&rft.au=%E6%9D%8E%E5%A4%A9%E7%8E%89&rft.au=%E4%BB%98%E5%A8%9F%E5%A8%9F&rft.au=%E5%90%B4%E6%A5%A0&rft.date=2014&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F+%E5%BE%90%E5%B7%9E%2C221116%25%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97+%E6%AD%A6%E6%B1%89%2C430072&rft.issn=1674-3415&rft.issue=5&rft.spage=110&rft.epage=115&rft.externalDocID=jdq201405018
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90494A%2F90494A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg