Neural Population Dynamics Underlying Motor Learning Transfer
Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor bas...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 97; no. 5; pp. 1177 - 1186.e3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.03.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from “covert rehearsal” affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal.
•Covert learning via a brain-machine interface transfers to overt reaching behavior•Covert learning systematically changes motor cortical preparatory activity•Covert and overt movements share preparatory neural states and facilitate transfer•Covert and overt movements engage a similar neural dynamical system
Vyas et al. ask whether learning “covertly,” without physical movements, can transfer to overt behavior. By using visuomotor perturbations, they show that covert and overt movements derive from a common neural substrate consisting of motor cortical preparatory activity that facilitates transfer of learning. |
---|---|
AbstractList | Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal" affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. SummaryCovert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from “covert rehearsal” affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate if and how cortical changes resulting from “covert rehearsal” affect overt performance. We found that covert learning indeed transfers to overt performance, and is accompanied by population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. Vyas et al. ask if learning “covertly,” without physical movements, can transfer to overt behavior. By using visuomotor perturbations, they show that covert and overt movements derive from a common neural substrate consisting of motor cortical preparatory activity that facilitates transfer of learning. Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal" affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal.Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal" affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from “covert rehearsal” affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. •Covert learning via a brain-machine interface transfers to overt reaching behavior•Covert learning systematically changes motor cortical preparatory activity•Covert and overt movements share preparatory neural states and facilitate transfer•Covert and overt movements engage a similar neural dynamical system Vyas et al. ask whether learning “covertly,” without physical movements, can transfer to overt behavior. By using visuomotor perturbations, they show that covert and overt movements derive from a common neural substrate consisting of motor cortical preparatory activity that facilitates transfer of learning. |
Author | Shenoy, Krishna V. Nuyujukian, Paul Vyas, Saurabh Even-Chen, Nir Ryu, Stephen I. Stavisky, Sergey D. |
AuthorAffiliation | 3 Department of Neurosurgery, Stanford University, Stanford CA 94305 4 Department of Neurobiology, Stanford University, Stanford CA 94305 5 Bio-X Program, Stanford University, Stanford CA 94305 2 Department of Electrical Engineering, Stanford University, Stanford CA 94305 1 Department of Bioengineering, Stanford University, Stanford CA 94305 7 Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305 6 Stanford Neurosciences Institute, Stanford University, Stanford CA 94305 8 Palo Alto Medical Foundation, Palo Alto, CA, 94301 |
AuthorAffiliation_xml | – name: 5 Bio-X Program, Stanford University, Stanford CA 94305 – name: 3 Department of Neurosurgery, Stanford University, Stanford CA 94305 – name: 2 Department of Electrical Engineering, Stanford University, Stanford CA 94305 – name: 8 Palo Alto Medical Foundation, Palo Alto, CA, 94301 – name: 4 Department of Neurobiology, Stanford University, Stanford CA 94305 – name: 6 Stanford Neurosciences Institute, Stanford University, Stanford CA 94305 – name: 1 Department of Bioengineering, Stanford University, Stanford CA 94305 – name: 7 Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305 |
Author_xml | – sequence: 1 givenname: Saurabh surname: Vyas fullname: Vyas, Saurabh email: smvyas@stanford.edu organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 2 givenname: Nir surname: Even-Chen fullname: Even-Chen, Nir organization: Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 3 givenname: Sergey D. surname: Stavisky fullname: Stavisky, Sergey D. organization: Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 4 givenname: Stephen I. surname: Ryu fullname: Ryu, Stephen I. organization: Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 5 givenname: Paul surname: Nuyujukian fullname: Nuyujukian, Paul organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 6 givenname: Krishna V. surname: Shenoy fullname: Shenoy, Krishna V. organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29456026$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAURkVJaCZp_0Ephm66sXtlPSwXWijpKzB9LJK1kOXrVINHmkh2YP59NZ1JabNIVkLo3MOn-52SIx88EvKCQkWByjeryuMcg69qoKoCWgGHJ2RBoW1KTtv2iCxAtbKUdcNOyGlKKwDKRUufkpO65UJCLRfk3fcsMWPxM2zm0Uwu-OLj1pu1s6m48j3Gcev8dfEtTCEWSzTR766X0fg0YHxGjgczJnx-OM_I1edPl-dfy-WPLxfnH5alFaKZShz6rqkbq0BBrfqOI6dNz5q-U3UnByuVEXSwjKKQbJCyY9h1ChhroGWc9eyMvN97N3O3xt6in3JovYlubeJWB-P0_y_e_dLX4VYLxZngPAteHwQx3MyYJr12yeI4Go9hTroGyJRSYoe-uoeuwhx9_l6maM2kYFxl6uW_if5GudtsBt7uARtDShEHbd30Z8E5oBs1Bb2rUa_0vsadXGmgOteYh_m94Tv_I2OHNWHu4tZh1Mk69BZ7F9FOug_uYcFvBQW5NA |
CitedBy_id | crossref_primary_10_1007_s11042_023_15653_x crossref_primary_10_1038_s41467_024_54738_5 crossref_primary_10_1038_s41562_023_01804_5 crossref_primary_10_7554_eLife_55872 crossref_primary_10_1016_j_conb_2018_10_004 crossref_primary_10_7554_eLife_74478 crossref_primary_10_1016_j_cub_2024_03_003 crossref_primary_10_1038_s41583_024_00796_z crossref_primary_10_1038_s41583_021_00528_7 crossref_primary_10_3389_fnins_2022_941942 crossref_primary_10_1016_j_celrep_2020_108006 crossref_primary_10_1038_s41593_021_00873_x crossref_primary_10_1038_s41598_018_34711_1 crossref_primary_10_1016_j_neuron_2019_02_012 crossref_primary_10_1016_j_neuron_2018_05_015 crossref_primary_10_1162_jocn_a_01569 crossref_primary_10_7554_eLife_88514 crossref_primary_10_7554_eLife_48190 crossref_primary_10_1038_s41586_024_08193_3 crossref_primary_10_1038_s41598_022_20218_3 crossref_primary_10_1109_TII_2022_3227736 crossref_primary_10_1162_neco_a_01380 crossref_primary_10_1038_s41467_024_51750_7 crossref_primary_10_1016_j_neuron_2020_01_019 crossref_primary_10_7554_eLife_73155 crossref_primary_10_1016_j_neuron_2018_02_017 crossref_primary_10_1146_annurev_neuro_092619_094115 crossref_primary_10_1038_s41467_024_51308_7 crossref_primary_10_3389_fnhum_2024_1368115 crossref_primary_10_1097_PRS_0000000000008811 crossref_primary_10_1016_j_neuron_2018_09_030 crossref_primary_10_1038_s41467_024_48008_7 crossref_primary_10_1038_s41598_018_32606_9 crossref_primary_10_1152_physrev_00034_2020 crossref_primary_10_3389_fnhum_2023_1205881 crossref_primary_10_1016_j_celrep_2021_109090 crossref_primary_10_1016_j_celrep_2023_112136 crossref_primary_10_1038_s41467_020_20371_1 crossref_primary_10_3902_jnns_27_35 crossref_primary_10_1523_JNEUROSCI_1669_18_2018 crossref_primary_10_1038_s41586_021_04329_x crossref_primary_10_1177_1073858418775355 crossref_primary_10_1016_j_neuron_2019_05_003 crossref_primary_10_1038_s41593_018_0095_3 crossref_primary_10_1523_JNEUROSCI_1764_23_2024 crossref_primary_10_1111_ejn_15056 crossref_primary_10_3389_fnsys_2021_578875 crossref_primary_10_7554_eLife_36774 crossref_primary_10_1126_science_abe0874 crossref_primary_10_3389_fncom_2019_00087 crossref_primary_10_1016_j_neunet_2022_03_025 crossref_primary_10_1371_journal_pcbi_1006808 crossref_primary_10_1016_j_neuroscience_2019_06_012 crossref_primary_10_1016_j_cub_2023_06_027 crossref_primary_10_1152_jn_00466_2018 crossref_primary_10_1152_jn_00378_2020 crossref_primary_10_1038_s41562_022_01461_0 crossref_primary_10_1109_TNSRE_2023_3321756 crossref_primary_10_1016_j_neuron_2021_09_005 crossref_primary_10_3390_e23060743 crossref_primary_10_1038_s41467_025_56360_5 crossref_primary_10_1016_j_tics_2023_01_005 crossref_primary_10_7554_eLife_57021 crossref_primary_10_1038_s41467_021_23884_5 crossref_primary_10_1038_s41467_025_57832_4 crossref_primary_10_1038_s41467_018_06560_z crossref_primary_10_1038_s41593_021_00822_8 crossref_primary_10_1016_j_neuron_2021_06_028 crossref_primary_10_1038_s41586_023_06714_0 crossref_primary_10_7554_eLife_88514_3 crossref_primary_10_1073_pnas_1820296116 crossref_primary_10_1007_s10608_024_10540_7 crossref_primary_10_1016_j_tins_2020_11_007 crossref_primary_10_1038_s41598_023_44405_y crossref_primary_10_1162_neco_a_01196 |
Cites_doi | 10.1123/jsp.5.1.25 10.1371/journal.pbio.1000153 10.1016/j.neuron.2017.06.042 10.1016/j.neuron.2017.02.049 10.1038/nature13665 10.1146/annurev-neuro-060909-153135 10.1523/JNEUROSCI.1091-16.2016 10.1523/JNEUROSCI.4455-13.2014 10.1016/j.neuron.2017.05.023 10.5709/acp-0197-1 10.1038/nn.2797 10.1088/1741-2560/13/3/036009 10.1161/STROKEAHA.107.505313 10.1123/jsp.4.1.41 10.1016/j.neuron.2011.04.012 10.1177/155005941104200410 10.1073/pnas.0808113105 10.1152/jn.01044.2007 10.1146/annurev-neuro-062111-150509 10.1016/j.neuron.2006.10.034 10.1126/science.1070291 10.1016/j.cub.2013.01.027 10.1109/JPROC.2014.2307357 10.1093/ptj/68.4.516 10.1038/nature03005 10.1016/j.neuron.2017.01.023 10.1152/jn.00371.2011 10.1006/nimg.2002.1265 10.7554/eLife.18554 10.1161/STROKEAHA.110.584979 10.1016/j.neuron.2017.01.016 10.1523/JNEUROSCI.3967-10.2010 10.1016/j.neuron.2017.04.017 10.1523/JNEUROSCI.20-23-08916.2000 10.7554/eLife.10015 10.1016/j.neuron.2017.04.015 10.1016/j.neuron.2014.08.038 10.1038/nn.3265 10.1038/35090060 10.1038/nn.3776 10.1162/jocn.2009.21189 10.1038/nature11129 10.1016/j.neuron.2011.05.047 10.1007/s00221-002-1012-1 10.1016/S0140-6736(17)30601-3 10.1038/nn.3643 10.1016/j.neuron.2013.11.003 10.1016/j.conb.2011.06.012 10.1016/j.neuron.2014.04.048 10.1016/j.neuron.2016.10.017 10.1007/s00221-010-2209-3 10.7554/eLife.07436 10.1016/j.neuron.2017.05.005 10.1038/nn1097 10.1016/j.neuron.2017.05.025 10.1152/jn.90834.2008 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. 2018. Elsevier Inc. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: 2018. Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.neuron.2018.01.040 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Nursing & Allied Health Premium MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 1186.e3 |
ExternalDocumentID | PMC5843544 29456026 10_1016_j_neuron_2018_01_040 S0896627318300655 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS076460 – fundername: Howard Hughes Medical Institute – fundername: NICHD NIH HHS grantid: DP1 HD075623 – fundername: NINDS NIH HHS grantid: F31 NS103409 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- 5VS AAEDT AAFWJ AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB G-2 HZ~ ITC MVM OZT R2- X7M ZGI ZKB CGR CUY CVF ECM EFKBS EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c557t-efdb727c808028db4e417d37db82b6fc68a51fc31e563f66b3ebb8033709343d3 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Thu Aug 21 18:39:40 EDT 2025 Mon Jul 21 11:08:51 EDT 2025 Fri Jul 25 11:07:50 EDT 2025 Mon Jul 21 06:05:39 EDT 2025 Tue Jul 01 01:16:17 EDT 2025 Thu Apr 24 22:53:10 EDT 2025 Fri Feb 23 02:46:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | transfer learning motor preparation motor learning motor adaptation brain-machine interface dynamical system |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-efdb727c808028db4e417d37db82b6fc68a51fc31e563f66b3ebb8033709343d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Lead Contact |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0896627318300655 |
PMID | 29456026 |
PQID | 2012365348 |
PQPubID | 2031076 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843544 proquest_miscellaneous_2004438854 proquest_journals_2012365348 pubmed_primary_29456026 crossref_citationtrail_10_1016_j_neuron_2018_01_040 crossref_primary_10_1016_j_neuron_2018_01_040 elsevier_sciencedirect_doi_10_1016_j_neuron_2018_01_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-07 |
PublicationDateYYYYMMDD | 2018-03-07 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Cisek, Kalaska (bib11) 2004; 431 Johnson, Rotte, Grafton, Hinrichs, Gazzaniga, Heinze (bib24) 2002; 17 Oby, Perel, Sadtler, Ruff, Mischel, Montez, Cohen, Batista, Chase (bib34) 2016; 13 Taylor, Tillery, Schwartz (bib56) 2002; 296 Sadtler, Quick, Golub, Chase, Ryu, Tyler-Kabara, Yu, Batista (bib44) 2014; 512 Sheahan, Franklin, Wolpert (bib48) 2016; 92 Golub, Sadtler, Oby, Quick, Ryu, Tyler-Kabara, Batista, Chase, Yu (bib61) 2018; 21 Hwang, Bailey, Andersen (bib22) 2013; 23 Krakauer, Mazzoni (bib27) 2011; 21 Jarosiewicz, Chase, Fraser, Velliste, Kass, Schwartz (bib23) 2008; 105 Ranganathan, Wieser, Mosier, Mussa-Ivaldi, Scheidt (bib41) 2014; 34 Tanaka, Sejnowski, Krakauer (bib55) 2009; 102 Allen, Kauvar, Chen, Richman, Yang, Chan, Gradinaru, Deverman, Luo, Deisseroth (bib3) 2017; 94 Kaufman, Churchland, Ryu, Shenoy (bib26) 2014; 17 Ganguly, Carmena (bib16) 2009; 7 Liu, Scheidt (bib29) 2008; 99 Pandarinath, Gilja, Blabe, Nuyujukian, Sarma, Sorice, Eskandar, Hochberg, Henderson, Shenoy (bib36) 2015; 4 Shenoy, Carmena (bib49) 2014; 84 Silvoni, Ramos-Murguialday, Cavinato, Volpato, Cisotto, Turolla, Piccione, Birbaumer (bib51) 2011; 42 Afshar, Santhanam, Yu, Ryu, Sahani, Shenoy (bib1) 2011; 71 Saposnik, Teasell, Mamdani, Hall, McIlroy, Cheung, Thorpe, Cohen, Bayley (bib45) 2010; 41 Feltz, Landers (bib14) 1983; 5 Denis (bib13) 1985; 10 Miri, Warriner, Seely, Elsayed, Cunningham, Churchland, Jessell (bib33) 2017; 95 Shabbott, Sainburg (bib46) 2010; 203 Cunningham, Yu (bib12) 2014; 17 Huang, Haith, Mazzoni, Krakauer (bib21) 2011; 70 Paz, Boraud, Natan, Bergman, Vaadia (bib39) 2003; 6 Buch, Weber, Cohen, Braun, Dimyan, Ard, Mellinger, Caria, Soekadar, Fourkas, Birbaumer (bib6) 2008; 39 Makino, Ren, Liu, Kim, Kondapaneni, Liu, Kuzum, Komiyama (bib31) 2017; 94 Stavisky, Kao, Ryu, Shenoy (bib53) 2017; 95 Kao, Stavisky, Sussillo (bib25) 2014; 102 Stavisky, Kao, Ryu, Shenoy (bib54) 2017; 37 Liu, C., Adviser-Freeman, W.T., and Adviser-Adelson, E.H. (2009). Beyond pixels: exploring new representations and applications for motion analysis. In Proceedings of the 10th European Conference on Computer Vision: Part III, pp. 28–42. Shenoy, Sahani, Churchland (bib50) 2013; 36 Krakauer, Pine, Ghilardi, Ghez (bib28) 2000; 20 Ames, Ryu, Shenoy (bib4) 2014; 81 Hickok (bib20) 2009; 21 Mathis, Mathis, Uchida (bib32) 2017; 93 Rizzolatti, Fogassi, Gallese (bib42) 2001; 2 Chen, Li, Daie, Svoboda (bib8) 2017; 94 Ganguly, Dimitrov, Wallis, Carmena (bib17) 2011; 14 Papaxanthis, Schieppati, Gentili, Pozzo (bib38) 2002; 143 Orsborn, Moorman, Overduin, Shanechi, Dimitrov, Carmena (bib35) 2014; 82 Prsa, Galiñanes, Huber (bib40) 2017; 93 Gilja, Nuyujukian, Chestek, Cunningham, Yu, Fan, Churchland, Kaufman, Kao, Ryu, Shenoy (bib18) 2012; 15 Pandarinath, Nuyujukian, Blabe, Sorice, Saab, Willett, Hochberg, Shenoy, Henderson (bib37) 2017; 6 Sobierajewicz, Szarkiewicz, Przekoracka-Krawczyk, Jaśkowski, van der Lubbe (bib52) 2016; 12 Warner, McNeill (bib57) 1988; 68 Golub, Yu, Chase (bib19) 2015; 4 Churchland, Cunningham, Kaufman, Foster, Nuyujukian, Ryu, Shenoy (bib10) 2012; 487 Churchland, Afshar, Shenoy (bib9) 2006; 52 Gallego, Perich, Miller, Solla (bib15) 2017; 94 Shadmehr, Smith, Krakauer (bib47) 2010; 33 Ajiboye, Willett, Young, Memberg, Murphy, Miller, Walter, Sweet, Hoyen, Keith (bib2) 2017; 389 Suminski, Tkach, Fagg, Hatsopoulos (bib58) 2010; 30 Athalye, Ganguly, Costa, Carmena (bib5) 2017; 93 Chase, Kass, Schwartz (bib7) 2012; 108 Ryan, Simons (bib43) 1982; 4 Sobierajewicz (10.1016/j.neuron.2018.01.040_bib52) 2016; 12 Buch (10.1016/j.neuron.2018.01.040_bib6) 2008; 39 Tanaka (10.1016/j.neuron.2018.01.040_bib55) 2009; 102 Johnson (10.1016/j.neuron.2018.01.040_bib24) 2002; 17 Ganguly (10.1016/j.neuron.2018.01.040_bib17) 2011; 14 10.1016/j.neuron.2018.01.040_bib30 Kao (10.1016/j.neuron.2018.01.040_bib25) 2014; 102 Stavisky (10.1016/j.neuron.2018.01.040_bib53) 2017; 95 Cunningham (10.1016/j.neuron.2018.01.040_bib12) 2014; 17 Huang (10.1016/j.neuron.2018.01.040_bib21) 2011; 70 Shadmehr (10.1016/j.neuron.2018.01.040_bib47) 2010; 33 Chase (10.1016/j.neuron.2018.01.040_bib7) 2012; 108 Gilja (10.1016/j.neuron.2018.01.040_bib18) 2012; 15 Pandarinath (10.1016/j.neuron.2018.01.040_bib36) 2015; 4 Shabbott (10.1016/j.neuron.2018.01.040_bib46) 2010; 203 Ames (10.1016/j.neuron.2018.01.040_bib4) 2014; 81 Prsa (10.1016/j.neuron.2018.01.040_bib40) 2017; 93 Feltz (10.1016/j.neuron.2018.01.040_bib14) 1983; 5 Ranganathan (10.1016/j.neuron.2018.01.040_bib41) 2014; 34 Churchland (10.1016/j.neuron.2018.01.040_bib10) 2012; 487 Kaufman (10.1016/j.neuron.2018.01.040_bib26) 2014; 17 Shenoy (10.1016/j.neuron.2018.01.040_bib49) 2014; 84 Warner (10.1016/j.neuron.2018.01.040_bib57) 1988; 68 Sadtler (10.1016/j.neuron.2018.01.040_bib44) 2014; 512 Liu (10.1016/j.neuron.2018.01.040_bib29) 2008; 99 Afshar (10.1016/j.neuron.2018.01.040_bib1) 2011; 71 Ryan (10.1016/j.neuron.2018.01.040_bib43) 1982; 4 Golub (10.1016/j.neuron.2018.01.040_bib61) 2018; 21 Orsborn (10.1016/j.neuron.2018.01.040_bib35) 2014; 82 Saposnik (10.1016/j.neuron.2018.01.040_bib45) 2010; 41 Oby (10.1016/j.neuron.2018.01.040_bib34) 2016; 13 Sheahan (10.1016/j.neuron.2018.01.040_bib48) 2016; 92 Mathis (10.1016/j.neuron.2018.01.040_bib32) 2017; 93 Denis (10.1016/j.neuron.2018.01.040_bib13) 1985; 10 Cisek (10.1016/j.neuron.2018.01.040_bib11) 2004; 431 Krakauer (10.1016/j.neuron.2018.01.040_bib27) 2011; 21 Paz (10.1016/j.neuron.2018.01.040_bib39) 2003; 6 Silvoni (10.1016/j.neuron.2018.01.040_bib51) 2011; 42 Krakauer (10.1016/j.neuron.2018.01.040_bib28) 2000; 20 Allen (10.1016/j.neuron.2018.01.040_bib3) 2017; 94 Gallego (10.1016/j.neuron.2018.01.040_bib15) 2017; 94 Ganguly (10.1016/j.neuron.2018.01.040_bib16) 2009; 7 Chen (10.1016/j.neuron.2018.01.040_bib8) 2017; 94 Shenoy (10.1016/j.neuron.2018.01.040_bib50) 2013; 36 Stavisky (10.1016/j.neuron.2018.01.040_bib54) 2017; 37 Ajiboye (10.1016/j.neuron.2018.01.040_bib2) 2017; 389 Hickok (10.1016/j.neuron.2018.01.040_bib20) 2009; 21 Athalye (10.1016/j.neuron.2018.01.040_bib5) 2017; 93 Suminski (10.1016/j.neuron.2018.01.040_bib58) 2010; 30 Hwang (10.1016/j.neuron.2018.01.040_bib22) 2013; 23 Rizzolatti (10.1016/j.neuron.2018.01.040_bib42) 2001; 2 Churchland (10.1016/j.neuron.2018.01.040_bib9) 2006; 52 Golub (10.1016/j.neuron.2018.01.040_bib19) 2015; 4 Taylor (10.1016/j.neuron.2018.01.040_bib56) 2002; 296 Pandarinath (10.1016/j.neuron.2018.01.040_bib37) 2017; 6 Jarosiewicz (10.1016/j.neuron.2018.01.040_bib23) 2008; 105 Miri (10.1016/j.neuron.2018.01.040_bib33) 2017; 95 Makino (10.1016/j.neuron.2018.01.040_bib31) 2017; 94 Papaxanthis (10.1016/j.neuron.2018.01.040_bib38) 2002; 143 29518363 - Neuron. 2018 Mar 7;97(5):998-1000. doi: 10.1016/j.neuron.2018.02.017. |
References_xml | – volume: 6 start-page: e18554 year: 2017 ident: bib37 article-title: High performance communication by people with paralysis using an intracortical brain-computer interface publication-title: eLife – volume: 17 start-page: 1500 year: 2014 end-page: 1509 ident: bib12 article-title: Dimensionality reduction for large-scale neural recordings publication-title: Nat. Neurosci. – volume: 10 start-page: 4S year: 1985 end-page: 16S ident: bib13 article-title: Visual imagery and the use of mental practice in the development of motor skills publication-title: Can. J. Appl. Sport Sci. – volume: 70 start-page: 787 year: 2011 end-page: 801 ident: bib21 article-title: Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models publication-title: Neuron – volume: 39 start-page: 910 year: 2008 end-page: 917 ident: bib6 article-title: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke publication-title: Stroke – volume: 6 start-page: 882 year: 2003 end-page: 890 ident: bib39 article-title: Preparatory activity in motor cortex reflects learning of local visuomotor skills publication-title: Nat. Neurosci. – volume: 34 start-page: 8289 year: 2014 end-page: 8299 ident: bib41 article-title: Learning redundant motor tasks with and without overlapping dimensions: facilitation and interference effects publication-title: J. Neurosci. – volume: 52 start-page: 1085 year: 2006 end-page: 1096 ident: bib9 article-title: A central source of movement variability publication-title: Neuron – volume: 4 start-page: 41 year: 1982 end-page: 51 ident: bib43 article-title: Efficacy of mental imagery in enhancing mental rehearsal of motor skills publication-title: J. Sport Psychol. – volume: 93 start-page: 929 year: 2017 end-page: 939.e6 ident: bib40 article-title: Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons publication-title: Neuron – volume: 21 year: 2018 ident: bib61 article-title: Learning by neural reassociation publication-title: Nat. Neurosci. – volume: 4 start-page: e07436 year: 2015 ident: bib36 article-title: Neural population dynamics in human motor cortex during movements in people with ALS publication-title: eLife – volume: 23 start-page: 353 year: 2013 end-page: 361 ident: bib22 article-title: Volitional control of neural activity relies on the natural motor repertoire publication-title: Curr. Biol. – volume: 108 start-page: 624 year: 2012 end-page: 644 ident: bib7 article-title: Behavioral and neural correlates of visuomotor adaptation observed through a brain-computer interface in primary motor cortex publication-title: J. Neurophysiol. – volume: 389 start-page: 1821 year: 2017 end-page: 1830 ident: bib2 article-title: Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration publication-title: Lancet – volume: 93 start-page: 955 year: 2017 end-page: 970.e5 ident: bib5 article-title: Emergence of coordinated neural dynamics underlies neuroprosthetic learning and skillful control publication-title: Neuron – volume: 30 start-page: 16777 year: 2010 end-page: 16787 ident: bib58 article-title: Incorporating feedback from multiple sensory modalities enhances brain-machine interface control publication-title: J. Neurosci. – volume: 2 start-page: 661 year: 2001 end-page: 670 ident: bib42 article-title: Neurophysiological mechanisms underlying the understanding and imitation of action publication-title: Nat. Rev. Neurosci. – volume: 487 start-page: 51 year: 2012 end-page: 56 ident: bib10 article-title: Neural population dynamics during reaching publication-title: Nature – volume: 431 start-page: 993 year: 2004 end-page: 996 ident: bib11 article-title: Neural correlates of mental rehearsal in dorsal premotor cortex publication-title: Nature – volume: 102 start-page: 666 year: 2014 end-page: 682 ident: bib25 article-title: Information systems opportunities in brain-machine interface decoders publication-title: Proceedings of the IEEE – volume: 105 start-page: 19486 year: 2008 end-page: 19491 ident: bib23 article-title: Functional network reorganization during learning in a brain-computer interface paradigm publication-title: Proc. Natl. Acad. Sci. USA – volume: 95 start-page: 683 year: 2017 end-page: 696.e11 ident: bib33 article-title: Behaviorally selective engagement of short-latency effector pathways by motor cortex publication-title: Neuron – volume: 99 start-page: 2546 year: 2008 end-page: 2557 ident: bib29 article-title: Contributions of online visual feedback to the learning and generalization of novel finger coordination patterns publication-title: J. Neurophysiol. – volume: 5 start-page: 25 year: 1983 end-page: 57 ident: bib14 article-title: The effects of mental practice on motor skill learning and performance: A meta-analysis publication-title: J. Sports Psychol. – volume: 71 start-page: 555 year: 2011 end-page: 564 ident: bib1 article-title: Single-trial neural correlates of arm movement preparation publication-title: Neuron – volume: 41 start-page: 1477 year: 2010 end-page: 1484 ident: bib45 article-title: Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle publication-title: Stroke – volume: 42 start-page: 245 year: 2011 end-page: 252 ident: bib51 article-title: Brain-computer interface in stroke: a review of progress publication-title: Clin. EEG Neurosci. – volume: 94 start-page: 891 year: 2017 end-page: 907.e6 ident: bib3 article-title: Global representations of goal-directed behavior in distinct cell types of mouse neocortex publication-title: Neuron – volume: 94 start-page: 880 year: 2017 end-page: 890.e8 ident: bib31 article-title: Transformation of Cortex-wide Emergent Properties during Motor Learning publication-title: Neuron – volume: 512 start-page: 423 year: 2014 end-page: 426 ident: bib44 article-title: Neural constraints on learning publication-title: Nature – volume: 21 start-page: 1229 year: 2009 end-page: 1243 ident: bib20 article-title: Eight problems for the mirror neuron theory of action understanding in monkeys and humans publication-title: J. Cogn. Neurosci. – volume: 33 start-page: 89 year: 2010 end-page: 108 ident: bib47 article-title: Error correction, sensory prediction, and adaptation in motor control publication-title: Annu. Rev. Neurosci. – volume: 296 start-page: 1829 year: 2002 end-page: 1832 ident: bib56 article-title: Direct cortical control of 3D neuroprosthetic devices publication-title: Science – volume: 203 start-page: 75 year: 2010 end-page: 87 ident: bib46 article-title: Learning a visuomotor rotation: simultaneous visual and proprioceptive information is crucial for visuomotor remapping publication-title: Exp. Brain Res. – volume: 95 start-page: 195 year: 2017 end-page: 208.e9 ident: bib53 article-title: Motor cortical visuomotor feedback activity is initially isolated from downstream targets in output-null neural state space dimensions publication-title: Neuron – volume: 94 start-page: 866 year: 2017 end-page: 879.e4 ident: bib8 article-title: A map of anticipatory activity in mouse motor cortex publication-title: Neuron – volume: 12 start-page: 179 year: 2016 end-page: 192 ident: bib52 article-title: To what extent can motor imagery replace motor execution while learning a fine motor skill? publication-title: Adv. Cogn. Psychol. – volume: 17 start-page: 1693 year: 2002 end-page: 1704 ident: bib24 article-title: Selective activation of a parietofrontal circuit during implicitly imagined prehension publication-title: Neuroimage – volume: 20 start-page: 8916 year: 2000 end-page: 8924 ident: bib28 article-title: Learning of visuomotor transformations for vectorial planning of reaching trajectories publication-title: J. Neurosci. – volume: 37 start-page: 1721 year: 2017 end-page: 1732 ident: bib54 article-title: Trial-by-trial motor cortical correlates of a rapidly adapting visuomotor internal model publication-title: J. Neurosci. – volume: 81 start-page: 438 year: 2014 end-page: 451 ident: bib4 article-title: Neural dynamics of reaching following incorrect or absent motor preparation publication-title: Neuron – volume: 68 start-page: 516 year: 1988 end-page: 521 ident: bib57 article-title: Mental imagery and its potential for physical therapy publication-title: Phys. Ther. – volume: 94 start-page: 978 year: 2017 end-page: 984 ident: bib15 article-title: Neural manifolds for the control of movement publication-title: Neuron – volume: 143 start-page: 447 year: 2002 end-page: 452 ident: bib38 article-title: Imagined and actual arm movements have similar durations when performed under different conditions of direction and mass publication-title: Exp. Brain Res. – volume: 17 start-page: 440 year: 2014 end-page: 448 ident: bib26 article-title: Cortical activity in the null space: permitting preparation without movement publication-title: Nat. Neurosci. – volume: 93 start-page: 1493 year: 2017 end-page: 1503.e6 ident: bib32 article-title: Somatosensory cortex plays an essential role in forelimb motor adaptation in mice publication-title: Neuron – volume: 102 start-page: 2921 year: 2009 end-page: 2932 ident: bib55 article-title: Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas publication-title: J. Neurophysiol. – volume: 92 start-page: 773 year: 2016 end-page: 779 ident: bib48 article-title: Motor planning, not execution, separates motor memories publication-title: Neuron – volume: 84 start-page: 665 year: 2014 end-page: 680 ident: bib49 article-title: Combining decoder design and neural adaptation in brain-machine interfaces publication-title: Neuron – volume: 4 start-page: e10015 year: 2015 ident: bib19 article-title: Internal models for interpreting neural population activity during sensorimotor control publication-title: eLife – volume: 13 start-page: 036009 year: 2016 ident: bib34 article-title: Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters publication-title: J. Neural Eng. – volume: 36 start-page: 337 year: 2013 end-page: 359 ident: bib50 article-title: Cortical control of arm movements: a dynamical systems perspective publication-title: Annu. Rev. Neurosci. – volume: 15 start-page: 1752 year: 2012 end-page: 1757 ident: bib18 article-title: A high-performance neural prosthesis enabled by control algorithm design publication-title: Nat. Neurosci. – reference: Liu, C., Adviser-Freeman, W.T., and Adviser-Adelson, E.H. (2009). Beyond pixels: exploring new representations and applications for motion analysis. In Proceedings of the 10th European Conference on Computer Vision: Part III, pp. 28–42. – volume: 21 start-page: 636 year: 2011 end-page: 644 ident: bib27 article-title: Human sensorimotor learning: adaptation, skill, and beyond publication-title: Curr. Opin. Neurobiol. – volume: 82 start-page: 1380 year: 2014 end-page: 1393 ident: bib35 article-title: Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control publication-title: Neuron – volume: 7 start-page: e1000153 year: 2009 ident: bib16 article-title: Emergence of a stable cortical map for neuroprosthetic control publication-title: PLoS Biol. – volume: 14 start-page: 662 year: 2011 end-page: 667 ident: bib17 article-title: Reversible large-scale modification of cortical networks during neuroprosthetic control publication-title: Nat. Neurosci. – volume: 5 start-page: 25 year: 1983 ident: 10.1016/j.neuron.2018.01.040_bib14 article-title: The effects of mental practice on motor skill learning and performance: A meta-analysis publication-title: J. Sports Psychol. doi: 10.1123/jsp.5.1.25 – volume: 7 start-page: e1000153 year: 2009 ident: 10.1016/j.neuron.2018.01.040_bib16 article-title: Emergence of a stable cortical map for neuroprosthetic control publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000153 – volume: 95 start-page: 683 year: 2017 ident: 10.1016/j.neuron.2018.01.040_bib33 article-title: Behaviorally selective engagement of short-latency effector pathways by motor cortex publication-title: Neuron doi: 10.1016/j.neuron.2017.06.042 – volume: 93 start-page: 1493 year: 2017 ident: 10.1016/j.neuron.2018.01.040_bib32 article-title: Somatosensory cortex plays an essential role in forelimb motor adaptation in mice publication-title: Neuron doi: 10.1016/j.neuron.2017.02.049 – volume: 512 start-page: 423 year: 2014 ident: 10.1016/j.neuron.2018.01.040_bib44 article-title: Neural constraints on learning publication-title: Nature doi: 10.1038/nature13665 – volume: 33 start-page: 89 year: 2010 ident: 10.1016/j.neuron.2018.01.040_bib47 article-title: Error correction, sensory prediction, and adaptation in motor control publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-060909-153135 – volume: 37 start-page: 1721 year: 2017 ident: 10.1016/j.neuron.2018.01.040_bib54 article-title: Trial-by-trial motor cortical correlates of a rapidly adapting visuomotor internal model publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1091-16.2016 – volume: 34 start-page: 8289 year: 2014 ident: 10.1016/j.neuron.2018.01.040_bib41 article-title: Learning redundant motor tasks with and without overlapping dimensions: facilitation and interference effects publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4455-13.2014 – volume: 95 start-page: 195 year: 2017 ident: 10.1016/j.neuron.2018.01.040_bib53 article-title: Motor cortical visuomotor feedback activity is initially isolated from downstream targets in output-null neural state space dimensions publication-title: Neuron doi: 10.1016/j.neuron.2017.05.023 – volume: 12 start-page: 179 year: 2016 ident: 10.1016/j.neuron.2018.01.040_bib52 article-title: To what extent can motor imagery replace motor execution while learning a fine motor skill? publication-title: Adv. Cogn. Psychol. doi: 10.5709/acp-0197-1 – volume: 14 start-page: 662 year: 2011 ident: 10.1016/j.neuron.2018.01.040_bib17 article-title: Reversible large-scale modification of cortical networks during neuroprosthetic control publication-title: Nat. Neurosci. doi: 10.1038/nn.2797 – volume: 13 start-page: 036009 year: 2016 ident: 10.1016/j.neuron.2018.01.040_bib34 article-title: Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/3/036009 – volume: 39 start-page: 910 year: 2008 ident: 10.1016/j.neuron.2018.01.040_bib6 article-title: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke publication-title: Stroke doi: 10.1161/STROKEAHA.107.505313 – volume: 4 start-page: 41 year: 1982 ident: 10.1016/j.neuron.2018.01.040_bib43 article-title: Efficacy of mental imagery in enhancing mental rehearsal of motor skills publication-title: J. Sport Psychol. doi: 10.1123/jsp.4.1.41 – volume: 10 start-page: 4S year: 1985 ident: 10.1016/j.neuron.2018.01.040_bib13 article-title: Visual imagery and the use of mental practice in the development of motor skills publication-title: Can. J. Appl. Sport Sci. – volume: 70 start-page: 787 year: 2011 ident: 10.1016/j.neuron.2018.01.040_bib21 article-title: Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models publication-title: Neuron doi: 10.1016/j.neuron.2011.04.012 – volume: 42 start-page: 245 year: 2011 ident: 10.1016/j.neuron.2018.01.040_bib51 article-title: Brain-computer interface in stroke: a review of progress publication-title: Clin. EEG Neurosci. doi: 10.1177/155005941104200410 – volume: 105 start-page: 19486 year: 2008 ident: 10.1016/j.neuron.2018.01.040_bib23 article-title: Functional network reorganization during learning in a brain-computer interface paradigm publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0808113105 – volume: 99 start-page: 2546 year: 2008 ident: 10.1016/j.neuron.2018.01.040_bib29 article-title: Contributions of online visual feedback to the learning and generalization of novel finger coordination patterns publication-title: J. Neurophysiol. doi: 10.1152/jn.01044.2007 – volume: 36 start-page: 337 year: 2013 ident: 10.1016/j.neuron.2018.01.040_bib50 article-title: Cortical control of arm movements: a dynamical systems perspective publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062111-150509 – volume: 21 year: 2018 ident: 10.1016/j.neuron.2018.01.040_bib61 article-title: Learning by neural reassociation publication-title: Nat. Neurosci. – volume: 52 start-page: 1085 year: 2006 ident: 10.1016/j.neuron.2018.01.040_bib9 article-title: A central source of movement variability publication-title: Neuron doi: 10.1016/j.neuron.2006.10.034 – volume: 296 start-page: 1829 year: 2002 ident: 10.1016/j.neuron.2018.01.040_bib56 article-title: Direct cortical control of 3D neuroprosthetic devices publication-title: Science doi: 10.1126/science.1070291 – volume: 23 start-page: 353 year: 2013 ident: 10.1016/j.neuron.2018.01.040_bib22 article-title: Volitional control of neural activity relies on the natural motor repertoire publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.01.027 – volume: 102 start-page: 666 year: 2014 ident: 10.1016/j.neuron.2018.01.040_bib25 article-title: Information systems opportunities in brain-machine interface decoders publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2014.2307357 – volume: 68 start-page: 516 year: 1988 ident: 10.1016/j.neuron.2018.01.040_bib57 article-title: Mental imagery and its potential for physical therapy publication-title: Phys. Ther. doi: 10.1093/ptj/68.4.516 – volume: 431 start-page: 993 year: 2004 ident: 10.1016/j.neuron.2018.01.040_bib11 article-title: Neural correlates of mental rehearsal in dorsal premotor cortex publication-title: Nature doi: 10.1038/nature03005 – volume: 93 start-page: 929 year: 2017 ident: 10.1016/j.neuron.2018.01.040_bib40 article-title: Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons publication-title: Neuron doi: 10.1016/j.neuron.2017.01.023 – volume: 108 start-page: 624 year: 2012 ident: 10.1016/j.neuron.2018.01.040_bib7 article-title: Behavioral and neural correlates of visuomotor adaptation observed through a brain-computer interface in primary motor cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00371.2011 – volume: 17 start-page: 1693 year: 2002 ident: 10.1016/j.neuron.2018.01.040_bib24 article-title: Selective activation of a parietofrontal circuit during implicitly imagined prehension publication-title: Neuroimage doi: 10.1006/nimg.2002.1265 – volume: 6 start-page: e18554 year: 2017 ident: 10.1016/j.neuron.2018.01.040_bib37 article-title: High performance communication by people with paralysis using an intracortical brain-computer interface publication-title: eLife doi: 10.7554/eLife.18554 – volume: 41 start-page: 1477 year: 2010 ident: 10.1016/j.neuron.2018.01.040_bib45 article-title: Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle publication-title: Stroke doi: 10.1161/STROKEAHA.110.584979 – volume: 93 start-page: 955 year: 2017 ident: 10.1016/j.neuron.2018.01.040_bib5 article-title: Emergence of coordinated neural dynamics underlies neuroprosthetic learning and skillful control publication-title: Neuron doi: 10.1016/j.neuron.2017.01.016 – volume: 30 start-page: 16777 year: 2010 ident: 10.1016/j.neuron.2018.01.040_bib58 article-title: Incorporating feedback from multiple sensory modalities enhances brain-machine interface control publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3967-10.2010 – volume: 94 start-page: 891 year: 2017 ident: 10.1016/j.neuron.2018.01.040_bib3 article-title: Global representations of goal-directed behavior in distinct cell types of mouse neocortex publication-title: Neuron doi: 10.1016/j.neuron.2017.04.017 – volume: 20 start-page: 8916 year: 2000 ident: 10.1016/j.neuron.2018.01.040_bib28 article-title: Learning of visuomotor transformations for vectorial planning of reaching trajectories publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-23-08916.2000 – volume: 4 start-page: e10015 year: 2015 ident: 10.1016/j.neuron.2018.01.040_bib19 article-title: Internal models for interpreting neural population activity during sensorimotor control publication-title: eLife doi: 10.7554/eLife.10015 – volume: 94 start-page: 880 year: 2017 ident: 10.1016/j.neuron.2018.01.040_bib31 article-title: Transformation of Cortex-wide Emergent Properties during Motor Learning publication-title: Neuron doi: 10.1016/j.neuron.2017.04.015 – volume: 84 start-page: 665 year: 2014 ident: 10.1016/j.neuron.2018.01.040_bib49 article-title: Combining decoder design and neural adaptation in brain-machine interfaces publication-title: Neuron doi: 10.1016/j.neuron.2014.08.038 – volume: 15 start-page: 1752 year: 2012 ident: 10.1016/j.neuron.2018.01.040_bib18 article-title: A high-performance neural prosthesis enabled by control algorithm design publication-title: Nat. Neurosci. doi: 10.1038/nn.3265 – volume: 2 start-page: 661 year: 2001 ident: 10.1016/j.neuron.2018.01.040_bib42 article-title: Neurophysiological mechanisms underlying the understanding and imitation of action publication-title: Nat. Rev. Neurosci. doi: 10.1038/35090060 – volume: 17 start-page: 1500 year: 2014 ident: 10.1016/j.neuron.2018.01.040_bib12 article-title: Dimensionality reduction for large-scale neural recordings publication-title: Nat. Neurosci. doi: 10.1038/nn.3776 – volume: 21 start-page: 1229 year: 2009 ident: 10.1016/j.neuron.2018.01.040_bib20 article-title: Eight problems for the mirror neuron theory of action understanding in monkeys and humans publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2009.21189 – ident: 10.1016/j.neuron.2018.01.040_bib30 – volume: 487 start-page: 51 year: 2012 ident: 10.1016/j.neuron.2018.01.040_bib10 article-title: Neural population dynamics during reaching publication-title: Nature doi: 10.1038/nature11129 – volume: 71 start-page: 555 year: 2011 ident: 10.1016/j.neuron.2018.01.040_bib1 article-title: Single-trial neural correlates of arm movement preparation publication-title: Neuron doi: 10.1016/j.neuron.2011.05.047 – volume: 143 start-page: 447 year: 2002 ident: 10.1016/j.neuron.2018.01.040_bib38 article-title: Imagined and actual arm movements have similar durations when performed under different conditions of direction and mass publication-title: Exp. Brain Res. doi: 10.1007/s00221-002-1012-1 – volume: 389 start-page: 1821 year: 2017 ident: 10.1016/j.neuron.2018.01.040_bib2 article-title: Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration publication-title: Lancet doi: 10.1016/S0140-6736(17)30601-3 – volume: 17 start-page: 440 year: 2014 ident: 10.1016/j.neuron.2018.01.040_bib26 article-title: Cortical activity in the null space: permitting preparation without movement publication-title: Nat. Neurosci. doi: 10.1038/nn.3643 – volume: 81 start-page: 438 year: 2014 ident: 10.1016/j.neuron.2018.01.040_bib4 article-title: Neural dynamics of reaching following incorrect or absent motor preparation publication-title: Neuron doi: 10.1016/j.neuron.2013.11.003 – volume: 21 start-page: 636 year: 2011 ident: 10.1016/j.neuron.2018.01.040_bib27 article-title: Human sensorimotor learning: adaptation, skill, and beyond publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2011.06.012 – volume: 82 start-page: 1380 year: 2014 ident: 10.1016/j.neuron.2018.01.040_bib35 article-title: Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control publication-title: Neuron doi: 10.1016/j.neuron.2014.04.048 – volume: 92 start-page: 773 year: 2016 ident: 10.1016/j.neuron.2018.01.040_bib48 article-title: Motor planning, not execution, separates motor memories publication-title: Neuron doi: 10.1016/j.neuron.2016.10.017 – volume: 203 start-page: 75 year: 2010 ident: 10.1016/j.neuron.2018.01.040_bib46 article-title: Learning a visuomotor rotation: simultaneous visual and proprioceptive information is crucial for visuomotor remapping publication-title: Exp. Brain Res. doi: 10.1007/s00221-010-2209-3 – volume: 4 start-page: e07436 year: 2015 ident: 10.1016/j.neuron.2018.01.040_bib36 article-title: Neural population dynamics in human motor cortex during movements in people with ALS publication-title: eLife doi: 10.7554/eLife.07436 – volume: 94 start-page: 866 year: 2017 ident: 10.1016/j.neuron.2018.01.040_bib8 article-title: A map of anticipatory activity in mouse motor cortex publication-title: Neuron doi: 10.1016/j.neuron.2017.05.005 – volume: 6 start-page: 882 year: 2003 ident: 10.1016/j.neuron.2018.01.040_bib39 article-title: Preparatory activity in motor cortex reflects learning of local visuomotor skills publication-title: Nat. Neurosci. doi: 10.1038/nn1097 – volume: 94 start-page: 978 year: 2017 ident: 10.1016/j.neuron.2018.01.040_bib15 article-title: Neural manifolds for the control of movement publication-title: Neuron doi: 10.1016/j.neuron.2017.05.025 – volume: 102 start-page: 2921 year: 2009 ident: 10.1016/j.neuron.2018.01.040_bib55 article-title: Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas publication-title: J. Neurophysiol. doi: 10.1152/jn.90834.2008 – reference: 29518363 - Neuron. 2018 Mar 7;97(5):998-1000. doi: 10.1016/j.neuron.2018.02.017. |
SSID | ssj0014591 |
Score | 2.528578 |
Snippet | Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context... SummaryCovert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1177 |
SubjectTerms | Adaptation Animals Arm Behavior Brain-Computer Interfaces brain-machine interface dynamical system Dynamical systems Feedback Learning Learning - physiology Macaca mulatta Male Mathematical functions Motor ability motor adaptation Motor Cortex - physiology motor learning motor preparation Motor skill learning Neurons Photic Stimulation - methods Psychomotor Performance - physiology Stroke Studies Transfer learning Transfer, Psychology - physiology |
Title | Neural Population Dynamics Underlying Motor Learning Transfer |
URI | https://dx.doi.org/10.1016/j.neuron.2018.01.040 https://www.ncbi.nlm.nih.gov/pubmed/29456026 https://www.proquest.com/docview/2012365348 https://www.proquest.com/docview/2004438854 https://pubmed.ncbi.nlm.nih.gov/PMC5843544 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KRfBFtPXjbC0RxLfldvO9D304q6VYFFGL9xY2m6xeafdKe33of-9M9gPPFgo-7mayZCeTmUky8xuAt9xwHtFvzbipykxGiXoQvfIslMo0lQmWhxRt8UUfnchPczXfgIMhF4bCKnvd3-n0pK37N9Oem9OLxWL6PbcloZeTUJIhpURzIW1K4pu_H28SpOqq5iFxRtRD-lyK8UqYkYSCWtgE3klHIHebp9vu579RlH-ZpcMn8Lj3J9msG_JT2IjtFmzPWtxLn9-wdyxFeKaj8y142BWevNmGfcLkwG5fx_Jd7ENXmv6KpUpIZ5T9xD4vcUfOegjWXyzZtSZePoOTw48_Do6yvpBCVitlVllsgkc_pSYMSW6DxykpTBAmeMsp2UfbShVNLYqotGi09iJ6b3MhTF4KKYJ4Dpvtso0vgenG13nVmChwOxu8LrluCotfNJWs0bRNQAz8c3WPMk7FLs7cEE526jquO-K6ywuHXJ9ANva66FA27qE3w9S4NWlxaAju6bk7zKTrV-sVtXOhFUrPBN6MzbjO6PKkauPymmhyKYW1Sk7gRTfx41B5iW4obmZxWGsiMRIQhvd6S7v4nbC80f8TSspX__1DO_CInlJYnNmFzdXldXyNftLK78GD2fG3n8d7aUH8AamXEv0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXBC2PhQJGQtyiTfzOgUMpVFtoKyRaaW9WHDuwqGSrdnvov2fGeYgFpEpc43HkzMMzdma-AXjDDecR49aMm6rMZJS4D2JUnoVSmaYywfKQsi2O9exUfpqr-QbsDbUwlFbZ7_3dnp526_7JtOfm9HyxmH7NbUno5aSU5EjVLbiN0YAh6zyYvx9_JUjVtc1D6ozIh_q5lOSVQCMJBrWwCb2T7kD-7Z_-jj__TKP8zS_tP4D7fUDJdrs1P4SN2G7B9m6Lh-mf1-wtSyme6e58C-50nSevt-EdgXLgtC9j_y72oetNf8lSK6QzKn9iR0s8krMeg_UbS46tiReP4HT_48neLOs7KWS1UmaVxSZ4DFRqApHkNniUSWGCMMFbTtU-2laqaGpRRKVFo7UX0XubC2HyUkgRxGPYbJdtfApMN77Oq8ZEgefZ4HXJdVNYfKOpZI2-bQJi4J-re5hx6nZx5oZ8sh-u47ojrru8cMj1CWTjrPMOZuMGejOIxq2pi0NPcMPMnUGSrjfXSxrnQish7QRej8NoaPT3pGrj8opocimFtUpO4Ekn-HGpvETNw9MsLmtNJUYCAvFeH2kX3xOYNwaAQkn57L8_6BXcnZ0cHbrDg-PPz-EejaQcObMDm6uLq_gCg6aVf5mM4hfTexR6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Population+Dynamics+Underlying+Motor+Learning+Transfer&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Vyas%2C+Saurabh&rft.au=Even-Chen%2C+Nir&rft.au=Stavisky%2C+Sergey+D&rft.au=Ryu%2C+Stephen+I&rft.date=2018-03-07&rft.pub=Elsevier+Limited&rft.issn=0896-6273&rft.eissn=1097-4199&rft.volume=97&rft.issue=5&rft.spage=1177&rft_id=info:doi/10.1016%2Fj.neuron.2018.01.040&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |