Neural Population Dynamics Underlying Motor Learning Transfer

Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor bas...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 97; no. 5; pp. 1177 - 1186.e3
Main Authors Vyas, Saurabh, Even-Chen, Nir, Stavisky, Sergey D., Ryu, Stephen I., Nuyujukian, Paul, Shenoy, Krishna V.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.03.2018
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from “covert rehearsal” affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. •Covert learning via a brain-machine interface transfers to overt reaching behavior•Covert learning systematically changes motor cortical preparatory activity•Covert and overt movements share preparatory neural states and facilitate transfer•Covert and overt movements engage a similar neural dynamical system Vyas et al. ask whether learning “covertly,” without physical movements, can transfer to overt behavior. By using visuomotor perturbations, they show that covert and overt movements derive from a common neural substrate consisting of motor cortical preparatory activity that facilitates transfer of learning.
AbstractList Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal" affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal.
SummaryCovert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from “covert rehearsal” affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal.
Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate if and how cortical changes resulting from “covert rehearsal” affect overt performance. We found that covert learning indeed transfers to overt performance, and is accompanied by population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. Vyas et al. ask if learning “covertly,” without physical movements, can transfer to overt behavior. By using visuomotor perturbations, they show that covert and overt movements derive from a common neural substrate consisting of motor cortical preparatory activity that facilitates transfer of learning.
Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal" affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal.Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal" affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal.
Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from “covert rehearsal” affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. •Covert learning via a brain-machine interface transfers to overt reaching behavior•Covert learning systematically changes motor cortical preparatory activity•Covert and overt movements share preparatory neural states and facilitate transfer•Covert and overt movements engage a similar neural dynamical system Vyas et al. ask whether learning “covertly,” without physical movements, can transfer to overt behavior. By using visuomotor perturbations, they show that covert and overt movements derive from a common neural substrate consisting of motor cortical preparatory activity that facilitates transfer of learning.
Author Shenoy, Krishna V.
Nuyujukian, Paul
Vyas, Saurabh
Even-Chen, Nir
Ryu, Stephen I.
Stavisky, Sergey D.
AuthorAffiliation 3 Department of Neurosurgery, Stanford University, Stanford CA 94305
4 Department of Neurobiology, Stanford University, Stanford CA 94305
5 Bio-X Program, Stanford University, Stanford CA 94305
2 Department of Electrical Engineering, Stanford University, Stanford CA 94305
1 Department of Bioengineering, Stanford University, Stanford CA 94305
7 Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305
6 Stanford Neurosciences Institute, Stanford University, Stanford CA 94305
8 Palo Alto Medical Foundation, Palo Alto, CA, 94301
AuthorAffiliation_xml – name: 5 Bio-X Program, Stanford University, Stanford CA 94305
– name: 3 Department of Neurosurgery, Stanford University, Stanford CA 94305
– name: 2 Department of Electrical Engineering, Stanford University, Stanford CA 94305
– name: 8 Palo Alto Medical Foundation, Palo Alto, CA, 94301
– name: 4 Department of Neurobiology, Stanford University, Stanford CA 94305
– name: 6 Stanford Neurosciences Institute, Stanford University, Stanford CA 94305
– name: 1 Department of Bioengineering, Stanford University, Stanford CA 94305
– name: 7 Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305
Author_xml – sequence: 1
  givenname: Saurabh
  surname: Vyas
  fullname: Vyas, Saurabh
  email: smvyas@stanford.edu
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
– sequence: 2
  givenname: Nir
  surname: Even-Chen
  fullname: Even-Chen, Nir
  organization: Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
– sequence: 3
  givenname: Sergey D.
  surname: Stavisky
  fullname: Stavisky, Sergey D.
  organization: Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
– sequence: 4
  givenname: Stephen I.
  surname: Ryu
  fullname: Ryu, Stephen I.
  organization: Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
– sequence: 5
  givenname: Paul
  surname: Nuyujukian
  fullname: Nuyujukian, Paul
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
– sequence: 6
  givenname: Krishna V.
  surname: Shenoy
  fullname: Shenoy, Krishna V.
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29456026$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAURkVJaCZp_0Ephm66sXtlPSwXWijpKzB9LJK1kOXrVINHmkh2YP59NZ1JabNIVkLo3MOn-52SIx88EvKCQkWByjeryuMcg69qoKoCWgGHJ2RBoW1KTtv2iCxAtbKUdcNOyGlKKwDKRUufkpO65UJCLRfk3fcsMWPxM2zm0Uwu-OLj1pu1s6m48j3Gcev8dfEtTCEWSzTR766X0fg0YHxGjgczJnx-OM_I1edPl-dfy-WPLxfnH5alFaKZShz6rqkbq0BBrfqOI6dNz5q-U3UnByuVEXSwjKKQbJCyY9h1ChhroGWc9eyMvN97N3O3xt6in3JovYlubeJWB-P0_y_e_dLX4VYLxZngPAteHwQx3MyYJr12yeI4Go9hTroGyJRSYoe-uoeuwhx9_l6maM2kYFxl6uW_if5GudtsBt7uARtDShEHbd30Z8E5oBs1Bb2rUa_0vsadXGmgOteYh_m94Tv_I2OHNWHu4tZh1Mk69BZ7F9FOug_uYcFvBQW5NA
CitedBy_id crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_1038_s41467_024_54738_5
crossref_primary_10_1038_s41562_023_01804_5
crossref_primary_10_7554_eLife_55872
crossref_primary_10_1016_j_conb_2018_10_004
crossref_primary_10_7554_eLife_74478
crossref_primary_10_1016_j_cub_2024_03_003
crossref_primary_10_1038_s41583_024_00796_z
crossref_primary_10_1038_s41583_021_00528_7
crossref_primary_10_3389_fnins_2022_941942
crossref_primary_10_1016_j_celrep_2020_108006
crossref_primary_10_1038_s41593_021_00873_x
crossref_primary_10_1038_s41598_018_34711_1
crossref_primary_10_1016_j_neuron_2019_02_012
crossref_primary_10_1016_j_neuron_2018_05_015
crossref_primary_10_1162_jocn_a_01569
crossref_primary_10_7554_eLife_88514
crossref_primary_10_7554_eLife_48190
crossref_primary_10_1038_s41586_024_08193_3
crossref_primary_10_1038_s41598_022_20218_3
crossref_primary_10_1109_TII_2022_3227736
crossref_primary_10_1162_neco_a_01380
crossref_primary_10_1038_s41467_024_51750_7
crossref_primary_10_1016_j_neuron_2020_01_019
crossref_primary_10_7554_eLife_73155
crossref_primary_10_1016_j_neuron_2018_02_017
crossref_primary_10_1146_annurev_neuro_092619_094115
crossref_primary_10_1038_s41467_024_51308_7
crossref_primary_10_3389_fnhum_2024_1368115
crossref_primary_10_1097_PRS_0000000000008811
crossref_primary_10_1016_j_neuron_2018_09_030
crossref_primary_10_1038_s41467_024_48008_7
crossref_primary_10_1038_s41598_018_32606_9
crossref_primary_10_1152_physrev_00034_2020
crossref_primary_10_3389_fnhum_2023_1205881
crossref_primary_10_1016_j_celrep_2021_109090
crossref_primary_10_1016_j_celrep_2023_112136
crossref_primary_10_1038_s41467_020_20371_1
crossref_primary_10_3902_jnns_27_35
crossref_primary_10_1523_JNEUROSCI_1669_18_2018
crossref_primary_10_1038_s41586_021_04329_x
crossref_primary_10_1177_1073858418775355
crossref_primary_10_1016_j_neuron_2019_05_003
crossref_primary_10_1038_s41593_018_0095_3
crossref_primary_10_1523_JNEUROSCI_1764_23_2024
crossref_primary_10_1111_ejn_15056
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_7554_eLife_36774
crossref_primary_10_1126_science_abe0874
crossref_primary_10_3389_fncom_2019_00087
crossref_primary_10_1016_j_neunet_2022_03_025
crossref_primary_10_1371_journal_pcbi_1006808
crossref_primary_10_1016_j_neuroscience_2019_06_012
crossref_primary_10_1016_j_cub_2023_06_027
crossref_primary_10_1152_jn_00466_2018
crossref_primary_10_1152_jn_00378_2020
crossref_primary_10_1038_s41562_022_01461_0
crossref_primary_10_1109_TNSRE_2023_3321756
crossref_primary_10_1016_j_neuron_2021_09_005
crossref_primary_10_3390_e23060743
crossref_primary_10_1038_s41467_025_56360_5
crossref_primary_10_1016_j_tics_2023_01_005
crossref_primary_10_7554_eLife_57021
crossref_primary_10_1038_s41467_021_23884_5
crossref_primary_10_1038_s41467_025_57832_4
crossref_primary_10_1038_s41467_018_06560_z
crossref_primary_10_1038_s41593_021_00822_8
crossref_primary_10_1016_j_neuron_2021_06_028
crossref_primary_10_1038_s41586_023_06714_0
crossref_primary_10_7554_eLife_88514_3
crossref_primary_10_1073_pnas_1820296116
crossref_primary_10_1007_s10608_024_10540_7
crossref_primary_10_1016_j_tins_2020_11_007
crossref_primary_10_1038_s41598_023_44405_y
crossref_primary_10_1162_neco_a_01196
Cites_doi 10.1123/jsp.5.1.25
10.1371/journal.pbio.1000153
10.1016/j.neuron.2017.06.042
10.1016/j.neuron.2017.02.049
10.1038/nature13665
10.1146/annurev-neuro-060909-153135
10.1523/JNEUROSCI.1091-16.2016
10.1523/JNEUROSCI.4455-13.2014
10.1016/j.neuron.2017.05.023
10.5709/acp-0197-1
10.1038/nn.2797
10.1088/1741-2560/13/3/036009
10.1161/STROKEAHA.107.505313
10.1123/jsp.4.1.41
10.1016/j.neuron.2011.04.012
10.1177/155005941104200410
10.1073/pnas.0808113105
10.1152/jn.01044.2007
10.1146/annurev-neuro-062111-150509
10.1016/j.neuron.2006.10.034
10.1126/science.1070291
10.1016/j.cub.2013.01.027
10.1109/JPROC.2014.2307357
10.1093/ptj/68.4.516
10.1038/nature03005
10.1016/j.neuron.2017.01.023
10.1152/jn.00371.2011
10.1006/nimg.2002.1265
10.7554/eLife.18554
10.1161/STROKEAHA.110.584979
10.1016/j.neuron.2017.01.016
10.1523/JNEUROSCI.3967-10.2010
10.1016/j.neuron.2017.04.017
10.1523/JNEUROSCI.20-23-08916.2000
10.7554/eLife.10015
10.1016/j.neuron.2017.04.015
10.1016/j.neuron.2014.08.038
10.1038/nn.3265
10.1038/35090060
10.1038/nn.3776
10.1162/jocn.2009.21189
10.1038/nature11129
10.1016/j.neuron.2011.05.047
10.1007/s00221-002-1012-1
10.1016/S0140-6736(17)30601-3
10.1038/nn.3643
10.1016/j.neuron.2013.11.003
10.1016/j.conb.2011.06.012
10.1016/j.neuron.2014.04.048
10.1016/j.neuron.2016.10.017
10.1007/s00221-010-2209-3
10.7554/eLife.07436
10.1016/j.neuron.2017.05.005
10.1038/nn1097
10.1016/j.neuron.2017.05.025
10.1152/jn.90834.2008
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
2018. Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: 2018. Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.neuron.2018.01.040
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Nursing & Allied Health Premium

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 1186.e3
ExternalDocumentID PMC5843544
29456026
10_1016_j_neuron_2018_01_040
S0896627318300655
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS076460
– fundername: Howard Hughes Medical Institute
– fundername: NICHD NIH HHS
  grantid: DP1 HD075623
– fundername: NINDS NIH HHS
  grantid: F31 NS103409
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
5VS
AAEDT
AAFWJ
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c557t-efdb727c808028db4e417d37db82b6fc68a51fc31e563f66b3ebb8033709343d3
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Thu Aug 21 18:39:40 EDT 2025
Mon Jul 21 11:08:51 EDT 2025
Fri Jul 25 11:07:50 EDT 2025
Mon Jul 21 06:05:39 EDT 2025
Tue Jul 01 01:16:17 EDT 2025
Thu Apr 24 22:53:10 EDT 2025
Fri Feb 23 02:46:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords transfer learning
motor preparation
motor learning
motor adaptation
brain-machine interface
dynamical system
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-efdb727c808028db4e417d37db82b6fc68a51fc31e563f66b3ebb8033709343d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Lead Contact
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0896627318300655
PMID 29456026
PQID 2012365348
PQPubID 2031076
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843544
proquest_miscellaneous_2004438854
proquest_journals_2012365348
pubmed_primary_29456026
crossref_citationtrail_10_1016_j_neuron_2018_01_040
crossref_primary_10_1016_j_neuron_2018_01_040
elsevier_sciencedirect_doi_10_1016_j_neuron_2018_01_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-07
PublicationDateYYYYMMDD 2018-03-07
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Cisek, Kalaska (bib11) 2004; 431
Johnson, Rotte, Grafton, Hinrichs, Gazzaniga, Heinze (bib24) 2002; 17
Oby, Perel, Sadtler, Ruff, Mischel, Montez, Cohen, Batista, Chase (bib34) 2016; 13
Taylor, Tillery, Schwartz (bib56) 2002; 296
Sadtler, Quick, Golub, Chase, Ryu, Tyler-Kabara, Yu, Batista (bib44) 2014; 512
Sheahan, Franklin, Wolpert (bib48) 2016; 92
Golub, Sadtler, Oby, Quick, Ryu, Tyler-Kabara, Batista, Chase, Yu (bib61) 2018; 21
Hwang, Bailey, Andersen (bib22) 2013; 23
Krakauer, Mazzoni (bib27) 2011; 21
Jarosiewicz, Chase, Fraser, Velliste, Kass, Schwartz (bib23) 2008; 105
Ranganathan, Wieser, Mosier, Mussa-Ivaldi, Scheidt (bib41) 2014; 34
Tanaka, Sejnowski, Krakauer (bib55) 2009; 102
Allen, Kauvar, Chen, Richman, Yang, Chan, Gradinaru, Deverman, Luo, Deisseroth (bib3) 2017; 94
Kaufman, Churchland, Ryu, Shenoy (bib26) 2014; 17
Ganguly, Carmena (bib16) 2009; 7
Liu, Scheidt (bib29) 2008; 99
Pandarinath, Gilja, Blabe, Nuyujukian, Sarma, Sorice, Eskandar, Hochberg, Henderson, Shenoy (bib36) 2015; 4
Shenoy, Carmena (bib49) 2014; 84
Silvoni, Ramos-Murguialday, Cavinato, Volpato, Cisotto, Turolla, Piccione, Birbaumer (bib51) 2011; 42
Afshar, Santhanam, Yu, Ryu, Sahani, Shenoy (bib1) 2011; 71
Saposnik, Teasell, Mamdani, Hall, McIlroy, Cheung, Thorpe, Cohen, Bayley (bib45) 2010; 41
Feltz, Landers (bib14) 1983; 5
Denis (bib13) 1985; 10
Miri, Warriner, Seely, Elsayed, Cunningham, Churchland, Jessell (bib33) 2017; 95
Shabbott, Sainburg (bib46) 2010; 203
Cunningham, Yu (bib12) 2014; 17
Huang, Haith, Mazzoni, Krakauer (bib21) 2011; 70
Paz, Boraud, Natan, Bergman, Vaadia (bib39) 2003; 6
Buch, Weber, Cohen, Braun, Dimyan, Ard, Mellinger, Caria, Soekadar, Fourkas, Birbaumer (bib6) 2008; 39
Makino, Ren, Liu, Kim, Kondapaneni, Liu, Kuzum, Komiyama (bib31) 2017; 94
Stavisky, Kao, Ryu, Shenoy (bib53) 2017; 95
Kao, Stavisky, Sussillo (bib25) 2014; 102
Stavisky, Kao, Ryu, Shenoy (bib54) 2017; 37
Liu, C., Adviser-Freeman, W.T., and Adviser-Adelson, E.H. (2009). Beyond pixels: exploring new representations and applications for motion analysis. In Proceedings of the 10th European Conference on Computer Vision: Part III, pp. 28–42.
Shenoy, Sahani, Churchland (bib50) 2013; 36
Krakauer, Pine, Ghilardi, Ghez (bib28) 2000; 20
Ames, Ryu, Shenoy (bib4) 2014; 81
Hickok (bib20) 2009; 21
Mathis, Mathis, Uchida (bib32) 2017; 93
Rizzolatti, Fogassi, Gallese (bib42) 2001; 2
Chen, Li, Daie, Svoboda (bib8) 2017; 94
Ganguly, Dimitrov, Wallis, Carmena (bib17) 2011; 14
Papaxanthis, Schieppati, Gentili, Pozzo (bib38) 2002; 143
Orsborn, Moorman, Overduin, Shanechi, Dimitrov, Carmena (bib35) 2014; 82
Prsa, Galiñanes, Huber (bib40) 2017; 93
Gilja, Nuyujukian, Chestek, Cunningham, Yu, Fan, Churchland, Kaufman, Kao, Ryu, Shenoy (bib18) 2012; 15
Pandarinath, Nuyujukian, Blabe, Sorice, Saab, Willett, Hochberg, Shenoy, Henderson (bib37) 2017; 6
Sobierajewicz, Szarkiewicz, Przekoracka-Krawczyk, Jaśkowski, van der Lubbe (bib52) 2016; 12
Warner, McNeill (bib57) 1988; 68
Golub, Yu, Chase (bib19) 2015; 4
Churchland, Cunningham, Kaufman, Foster, Nuyujukian, Ryu, Shenoy (bib10) 2012; 487
Churchland, Afshar, Shenoy (bib9) 2006; 52
Gallego, Perich, Miller, Solla (bib15) 2017; 94
Shadmehr, Smith, Krakauer (bib47) 2010; 33
Ajiboye, Willett, Young, Memberg, Murphy, Miller, Walter, Sweet, Hoyen, Keith (bib2) 2017; 389
Suminski, Tkach, Fagg, Hatsopoulos (bib58) 2010; 30
Athalye, Ganguly, Costa, Carmena (bib5) 2017; 93
Chase, Kass, Schwartz (bib7) 2012; 108
Ryan, Simons (bib43) 1982; 4
Sobierajewicz (10.1016/j.neuron.2018.01.040_bib52) 2016; 12
Buch (10.1016/j.neuron.2018.01.040_bib6) 2008; 39
Tanaka (10.1016/j.neuron.2018.01.040_bib55) 2009; 102
Johnson (10.1016/j.neuron.2018.01.040_bib24) 2002; 17
Ganguly (10.1016/j.neuron.2018.01.040_bib17) 2011; 14
10.1016/j.neuron.2018.01.040_bib30
Kao (10.1016/j.neuron.2018.01.040_bib25) 2014; 102
Stavisky (10.1016/j.neuron.2018.01.040_bib53) 2017; 95
Cunningham (10.1016/j.neuron.2018.01.040_bib12) 2014; 17
Huang (10.1016/j.neuron.2018.01.040_bib21) 2011; 70
Shadmehr (10.1016/j.neuron.2018.01.040_bib47) 2010; 33
Chase (10.1016/j.neuron.2018.01.040_bib7) 2012; 108
Gilja (10.1016/j.neuron.2018.01.040_bib18) 2012; 15
Pandarinath (10.1016/j.neuron.2018.01.040_bib36) 2015; 4
Shabbott (10.1016/j.neuron.2018.01.040_bib46) 2010; 203
Ames (10.1016/j.neuron.2018.01.040_bib4) 2014; 81
Prsa (10.1016/j.neuron.2018.01.040_bib40) 2017; 93
Feltz (10.1016/j.neuron.2018.01.040_bib14) 1983; 5
Ranganathan (10.1016/j.neuron.2018.01.040_bib41) 2014; 34
Churchland (10.1016/j.neuron.2018.01.040_bib10) 2012; 487
Kaufman (10.1016/j.neuron.2018.01.040_bib26) 2014; 17
Shenoy (10.1016/j.neuron.2018.01.040_bib49) 2014; 84
Warner (10.1016/j.neuron.2018.01.040_bib57) 1988; 68
Sadtler (10.1016/j.neuron.2018.01.040_bib44) 2014; 512
Liu (10.1016/j.neuron.2018.01.040_bib29) 2008; 99
Afshar (10.1016/j.neuron.2018.01.040_bib1) 2011; 71
Ryan (10.1016/j.neuron.2018.01.040_bib43) 1982; 4
Golub (10.1016/j.neuron.2018.01.040_bib61) 2018; 21
Orsborn (10.1016/j.neuron.2018.01.040_bib35) 2014; 82
Saposnik (10.1016/j.neuron.2018.01.040_bib45) 2010; 41
Oby (10.1016/j.neuron.2018.01.040_bib34) 2016; 13
Sheahan (10.1016/j.neuron.2018.01.040_bib48) 2016; 92
Mathis (10.1016/j.neuron.2018.01.040_bib32) 2017; 93
Denis (10.1016/j.neuron.2018.01.040_bib13) 1985; 10
Cisek (10.1016/j.neuron.2018.01.040_bib11) 2004; 431
Krakauer (10.1016/j.neuron.2018.01.040_bib27) 2011; 21
Paz (10.1016/j.neuron.2018.01.040_bib39) 2003; 6
Silvoni (10.1016/j.neuron.2018.01.040_bib51) 2011; 42
Krakauer (10.1016/j.neuron.2018.01.040_bib28) 2000; 20
Allen (10.1016/j.neuron.2018.01.040_bib3) 2017; 94
Gallego (10.1016/j.neuron.2018.01.040_bib15) 2017; 94
Ganguly (10.1016/j.neuron.2018.01.040_bib16) 2009; 7
Chen (10.1016/j.neuron.2018.01.040_bib8) 2017; 94
Shenoy (10.1016/j.neuron.2018.01.040_bib50) 2013; 36
Stavisky (10.1016/j.neuron.2018.01.040_bib54) 2017; 37
Ajiboye (10.1016/j.neuron.2018.01.040_bib2) 2017; 389
Hickok (10.1016/j.neuron.2018.01.040_bib20) 2009; 21
Athalye (10.1016/j.neuron.2018.01.040_bib5) 2017; 93
Suminski (10.1016/j.neuron.2018.01.040_bib58) 2010; 30
Hwang (10.1016/j.neuron.2018.01.040_bib22) 2013; 23
Rizzolatti (10.1016/j.neuron.2018.01.040_bib42) 2001; 2
Churchland (10.1016/j.neuron.2018.01.040_bib9) 2006; 52
Golub (10.1016/j.neuron.2018.01.040_bib19) 2015; 4
Taylor (10.1016/j.neuron.2018.01.040_bib56) 2002; 296
Pandarinath (10.1016/j.neuron.2018.01.040_bib37) 2017; 6
Jarosiewicz (10.1016/j.neuron.2018.01.040_bib23) 2008; 105
Miri (10.1016/j.neuron.2018.01.040_bib33) 2017; 95
Makino (10.1016/j.neuron.2018.01.040_bib31) 2017; 94
Papaxanthis (10.1016/j.neuron.2018.01.040_bib38) 2002; 143
29518363 - Neuron. 2018 Mar 7;97(5):998-1000. doi: 10.1016/j.neuron.2018.02.017.
References_xml – volume: 6
  start-page: e18554
  year: 2017
  ident: bib37
  article-title: High performance communication by people with paralysis using an intracortical brain-computer interface
  publication-title: eLife
– volume: 17
  start-page: 1500
  year: 2014
  end-page: 1509
  ident: bib12
  article-title: Dimensionality reduction for large-scale neural recordings
  publication-title: Nat. Neurosci.
– volume: 10
  start-page: 4S
  year: 1985
  end-page: 16S
  ident: bib13
  article-title: Visual imagery and the use of mental practice in the development of motor skills
  publication-title: Can. J. Appl. Sport Sci.
– volume: 70
  start-page: 787
  year: 2011
  end-page: 801
  ident: bib21
  article-title: Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models
  publication-title: Neuron
– volume: 39
  start-page: 910
  year: 2008
  end-page: 917
  ident: bib6
  article-title: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke
  publication-title: Stroke
– volume: 6
  start-page: 882
  year: 2003
  end-page: 890
  ident: bib39
  article-title: Preparatory activity in motor cortex reflects learning of local visuomotor skills
  publication-title: Nat. Neurosci.
– volume: 34
  start-page: 8289
  year: 2014
  end-page: 8299
  ident: bib41
  article-title: Learning redundant motor tasks with and without overlapping dimensions: facilitation and interference effects
  publication-title: J. Neurosci.
– volume: 52
  start-page: 1085
  year: 2006
  end-page: 1096
  ident: bib9
  article-title: A central source of movement variability
  publication-title: Neuron
– volume: 4
  start-page: 41
  year: 1982
  end-page: 51
  ident: bib43
  article-title: Efficacy of mental imagery in enhancing mental rehearsal of motor skills
  publication-title: J. Sport Psychol.
– volume: 93
  start-page: 929
  year: 2017
  end-page: 939.e6
  ident: bib40
  article-title: Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons
  publication-title: Neuron
– volume: 21
  year: 2018
  ident: bib61
  article-title: Learning by neural reassociation
  publication-title: Nat. Neurosci.
– volume: 4
  start-page: e07436
  year: 2015
  ident: bib36
  article-title: Neural population dynamics in human motor cortex during movements in people with ALS
  publication-title: eLife
– volume: 23
  start-page: 353
  year: 2013
  end-page: 361
  ident: bib22
  article-title: Volitional control of neural activity relies on the natural motor repertoire
  publication-title: Curr. Biol.
– volume: 108
  start-page: 624
  year: 2012
  end-page: 644
  ident: bib7
  article-title: Behavioral and neural correlates of visuomotor adaptation observed through a brain-computer interface in primary motor cortex
  publication-title: J. Neurophysiol.
– volume: 389
  start-page: 1821
  year: 2017
  end-page: 1830
  ident: bib2
  article-title: Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration
  publication-title: Lancet
– volume: 93
  start-page: 955
  year: 2017
  end-page: 970.e5
  ident: bib5
  article-title: Emergence of coordinated neural dynamics underlies neuroprosthetic learning and skillful control
  publication-title: Neuron
– volume: 30
  start-page: 16777
  year: 2010
  end-page: 16787
  ident: bib58
  article-title: Incorporating feedback from multiple sensory modalities enhances brain-machine interface control
  publication-title: J. Neurosci.
– volume: 2
  start-page: 661
  year: 2001
  end-page: 670
  ident: bib42
  article-title: Neurophysiological mechanisms underlying the understanding and imitation of action
  publication-title: Nat. Rev. Neurosci.
– volume: 487
  start-page: 51
  year: 2012
  end-page: 56
  ident: bib10
  article-title: Neural population dynamics during reaching
  publication-title: Nature
– volume: 431
  start-page: 993
  year: 2004
  end-page: 996
  ident: bib11
  article-title: Neural correlates of mental rehearsal in dorsal premotor cortex
  publication-title: Nature
– volume: 102
  start-page: 666
  year: 2014
  end-page: 682
  ident: bib25
  article-title: Information systems opportunities in brain-machine interface decoders
  publication-title: Proceedings of the IEEE
– volume: 105
  start-page: 19486
  year: 2008
  end-page: 19491
  ident: bib23
  article-title: Functional network reorganization during learning in a brain-computer interface paradigm
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 95
  start-page: 683
  year: 2017
  end-page: 696.e11
  ident: bib33
  article-title: Behaviorally selective engagement of short-latency effector pathways by motor cortex
  publication-title: Neuron
– volume: 99
  start-page: 2546
  year: 2008
  end-page: 2557
  ident: bib29
  article-title: Contributions of online visual feedback to the learning and generalization of novel finger coordination patterns
  publication-title: J. Neurophysiol.
– volume: 5
  start-page: 25
  year: 1983
  end-page: 57
  ident: bib14
  article-title: The effects of mental practice on motor skill learning and performance: A meta-analysis
  publication-title: J. Sports Psychol.
– volume: 71
  start-page: 555
  year: 2011
  end-page: 564
  ident: bib1
  article-title: Single-trial neural correlates of arm movement preparation
  publication-title: Neuron
– volume: 41
  start-page: 1477
  year: 2010
  end-page: 1484
  ident: bib45
  article-title: Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle
  publication-title: Stroke
– volume: 42
  start-page: 245
  year: 2011
  end-page: 252
  ident: bib51
  article-title: Brain-computer interface in stroke: a review of progress
  publication-title: Clin. EEG Neurosci.
– volume: 94
  start-page: 891
  year: 2017
  end-page: 907.e6
  ident: bib3
  article-title: Global representations of goal-directed behavior in distinct cell types of mouse neocortex
  publication-title: Neuron
– volume: 94
  start-page: 880
  year: 2017
  end-page: 890.e8
  ident: bib31
  article-title: Transformation of Cortex-wide Emergent Properties during Motor Learning
  publication-title: Neuron
– volume: 512
  start-page: 423
  year: 2014
  end-page: 426
  ident: bib44
  article-title: Neural constraints on learning
  publication-title: Nature
– volume: 21
  start-page: 1229
  year: 2009
  end-page: 1243
  ident: bib20
  article-title: Eight problems for the mirror neuron theory of action understanding in monkeys and humans
  publication-title: J. Cogn. Neurosci.
– volume: 33
  start-page: 89
  year: 2010
  end-page: 108
  ident: bib47
  article-title: Error correction, sensory prediction, and adaptation in motor control
  publication-title: Annu. Rev. Neurosci.
– volume: 296
  start-page: 1829
  year: 2002
  end-page: 1832
  ident: bib56
  article-title: Direct cortical control of 3D neuroprosthetic devices
  publication-title: Science
– volume: 203
  start-page: 75
  year: 2010
  end-page: 87
  ident: bib46
  article-title: Learning a visuomotor rotation: simultaneous visual and proprioceptive information is crucial for visuomotor remapping
  publication-title: Exp. Brain Res.
– volume: 95
  start-page: 195
  year: 2017
  end-page: 208.e9
  ident: bib53
  article-title: Motor cortical visuomotor feedback activity is initially isolated from downstream targets in output-null neural state space dimensions
  publication-title: Neuron
– volume: 94
  start-page: 866
  year: 2017
  end-page: 879.e4
  ident: bib8
  article-title: A map of anticipatory activity in mouse motor cortex
  publication-title: Neuron
– volume: 12
  start-page: 179
  year: 2016
  end-page: 192
  ident: bib52
  article-title: To what extent can motor imagery replace motor execution while learning a fine motor skill?
  publication-title: Adv. Cogn. Psychol.
– volume: 17
  start-page: 1693
  year: 2002
  end-page: 1704
  ident: bib24
  article-title: Selective activation of a parietofrontal circuit during implicitly imagined prehension
  publication-title: Neuroimage
– volume: 20
  start-page: 8916
  year: 2000
  end-page: 8924
  ident: bib28
  article-title: Learning of visuomotor transformations for vectorial planning of reaching trajectories
  publication-title: J. Neurosci.
– volume: 37
  start-page: 1721
  year: 2017
  end-page: 1732
  ident: bib54
  article-title: Trial-by-trial motor cortical correlates of a rapidly adapting visuomotor internal model
  publication-title: J. Neurosci.
– volume: 81
  start-page: 438
  year: 2014
  end-page: 451
  ident: bib4
  article-title: Neural dynamics of reaching following incorrect or absent motor preparation
  publication-title: Neuron
– volume: 68
  start-page: 516
  year: 1988
  end-page: 521
  ident: bib57
  article-title: Mental imagery and its potential for physical therapy
  publication-title: Phys. Ther.
– volume: 94
  start-page: 978
  year: 2017
  end-page: 984
  ident: bib15
  article-title: Neural manifolds for the control of movement
  publication-title: Neuron
– volume: 143
  start-page: 447
  year: 2002
  end-page: 452
  ident: bib38
  article-title: Imagined and actual arm movements have similar durations when performed under different conditions of direction and mass
  publication-title: Exp. Brain Res.
– volume: 17
  start-page: 440
  year: 2014
  end-page: 448
  ident: bib26
  article-title: Cortical activity in the null space: permitting preparation without movement
  publication-title: Nat. Neurosci.
– volume: 93
  start-page: 1493
  year: 2017
  end-page: 1503.e6
  ident: bib32
  article-title: Somatosensory cortex plays an essential role in forelimb motor adaptation in mice
  publication-title: Neuron
– volume: 102
  start-page: 2921
  year: 2009
  end-page: 2932
  ident: bib55
  article-title: Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas
  publication-title: J. Neurophysiol.
– volume: 92
  start-page: 773
  year: 2016
  end-page: 779
  ident: bib48
  article-title: Motor planning, not execution, separates motor memories
  publication-title: Neuron
– volume: 84
  start-page: 665
  year: 2014
  end-page: 680
  ident: bib49
  article-title: Combining decoder design and neural adaptation in brain-machine interfaces
  publication-title: Neuron
– volume: 4
  start-page: e10015
  year: 2015
  ident: bib19
  article-title: Internal models for interpreting neural population activity during sensorimotor control
  publication-title: eLife
– volume: 13
  start-page: 036009
  year: 2016
  ident: bib34
  article-title: Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters
  publication-title: J. Neural Eng.
– volume: 36
  start-page: 337
  year: 2013
  end-page: 359
  ident: bib50
  article-title: Cortical control of arm movements: a dynamical systems perspective
  publication-title: Annu. Rev. Neurosci.
– volume: 15
  start-page: 1752
  year: 2012
  end-page: 1757
  ident: bib18
  article-title: A high-performance neural prosthesis enabled by control algorithm design
  publication-title: Nat. Neurosci.
– reference: Liu, C., Adviser-Freeman, W.T., and Adviser-Adelson, E.H. (2009). Beyond pixels: exploring new representations and applications for motion analysis. In Proceedings of the 10th European Conference on Computer Vision: Part III, pp. 28–42.
– volume: 21
  start-page: 636
  year: 2011
  end-page: 644
  ident: bib27
  article-title: Human sensorimotor learning: adaptation, skill, and beyond
  publication-title: Curr. Opin. Neurobiol.
– volume: 82
  start-page: 1380
  year: 2014
  end-page: 1393
  ident: bib35
  article-title: Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control
  publication-title: Neuron
– volume: 7
  start-page: e1000153
  year: 2009
  ident: bib16
  article-title: Emergence of a stable cortical map for neuroprosthetic control
  publication-title: PLoS Biol.
– volume: 14
  start-page: 662
  year: 2011
  end-page: 667
  ident: bib17
  article-title: Reversible large-scale modification of cortical networks during neuroprosthetic control
  publication-title: Nat. Neurosci.
– volume: 5
  start-page: 25
  year: 1983
  ident: 10.1016/j.neuron.2018.01.040_bib14
  article-title: The effects of mental practice on motor skill learning and performance: A meta-analysis
  publication-title: J. Sports Psychol.
  doi: 10.1123/jsp.5.1.25
– volume: 7
  start-page: e1000153
  year: 2009
  ident: 10.1016/j.neuron.2018.01.040_bib16
  article-title: Emergence of a stable cortical map for neuroprosthetic control
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000153
– volume: 95
  start-page: 683
  year: 2017
  ident: 10.1016/j.neuron.2018.01.040_bib33
  article-title: Behaviorally selective engagement of short-latency effector pathways by motor cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.06.042
– volume: 93
  start-page: 1493
  year: 2017
  ident: 10.1016/j.neuron.2018.01.040_bib32
  article-title: Somatosensory cortex plays an essential role in forelimb motor adaptation in mice
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.02.049
– volume: 512
  start-page: 423
  year: 2014
  ident: 10.1016/j.neuron.2018.01.040_bib44
  article-title: Neural constraints on learning
  publication-title: Nature
  doi: 10.1038/nature13665
– volume: 33
  start-page: 89
  year: 2010
  ident: 10.1016/j.neuron.2018.01.040_bib47
  article-title: Error correction, sensory prediction, and adaptation in motor control
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-060909-153135
– volume: 37
  start-page: 1721
  year: 2017
  ident: 10.1016/j.neuron.2018.01.040_bib54
  article-title: Trial-by-trial motor cortical correlates of a rapidly adapting visuomotor internal model
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1091-16.2016
– volume: 34
  start-page: 8289
  year: 2014
  ident: 10.1016/j.neuron.2018.01.040_bib41
  article-title: Learning redundant motor tasks with and without overlapping dimensions: facilitation and interference effects
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4455-13.2014
– volume: 95
  start-page: 195
  year: 2017
  ident: 10.1016/j.neuron.2018.01.040_bib53
  article-title: Motor cortical visuomotor feedback activity is initially isolated from downstream targets in output-null neural state space dimensions
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.05.023
– volume: 12
  start-page: 179
  year: 2016
  ident: 10.1016/j.neuron.2018.01.040_bib52
  article-title: To what extent can motor imagery replace motor execution while learning a fine motor skill?
  publication-title: Adv. Cogn. Psychol.
  doi: 10.5709/acp-0197-1
– volume: 14
  start-page: 662
  year: 2011
  ident: 10.1016/j.neuron.2018.01.040_bib17
  article-title: Reversible large-scale modification of cortical networks during neuroprosthetic control
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2797
– volume: 13
  start-page: 036009
  year: 2016
  ident: 10.1016/j.neuron.2018.01.040_bib34
  article-title: Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/3/036009
– volume: 39
  start-page: 910
  year: 2008
  ident: 10.1016/j.neuron.2018.01.040_bib6
  article-title: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.505313
– volume: 4
  start-page: 41
  year: 1982
  ident: 10.1016/j.neuron.2018.01.040_bib43
  article-title: Efficacy of mental imagery in enhancing mental rehearsal of motor skills
  publication-title: J. Sport Psychol.
  doi: 10.1123/jsp.4.1.41
– volume: 10
  start-page: 4S
  year: 1985
  ident: 10.1016/j.neuron.2018.01.040_bib13
  article-title: Visual imagery and the use of mental practice in the development of motor skills
  publication-title: Can. J. Appl. Sport Sci.
– volume: 70
  start-page: 787
  year: 2011
  ident: 10.1016/j.neuron.2018.01.040_bib21
  article-title: Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.04.012
– volume: 42
  start-page: 245
  year: 2011
  ident: 10.1016/j.neuron.2018.01.040_bib51
  article-title: Brain-computer interface in stroke: a review of progress
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/155005941104200410
– volume: 105
  start-page: 19486
  year: 2008
  ident: 10.1016/j.neuron.2018.01.040_bib23
  article-title: Functional network reorganization during learning in a brain-computer interface paradigm
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0808113105
– volume: 99
  start-page: 2546
  year: 2008
  ident: 10.1016/j.neuron.2018.01.040_bib29
  article-title: Contributions of online visual feedback to the learning and generalization of novel finger coordination patterns
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01044.2007
– volume: 36
  start-page: 337
  year: 2013
  ident: 10.1016/j.neuron.2018.01.040_bib50
  article-title: Cortical control of arm movements: a dynamical systems perspective
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062111-150509
– volume: 21
  year: 2018
  ident: 10.1016/j.neuron.2018.01.040_bib61
  article-title: Learning by neural reassociation
  publication-title: Nat. Neurosci.
– volume: 52
  start-page: 1085
  year: 2006
  ident: 10.1016/j.neuron.2018.01.040_bib9
  article-title: A central source of movement variability
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.10.034
– volume: 296
  start-page: 1829
  year: 2002
  ident: 10.1016/j.neuron.2018.01.040_bib56
  article-title: Direct cortical control of 3D neuroprosthetic devices
  publication-title: Science
  doi: 10.1126/science.1070291
– volume: 23
  start-page: 353
  year: 2013
  ident: 10.1016/j.neuron.2018.01.040_bib22
  article-title: Volitional control of neural activity relies on the natural motor repertoire
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.01.027
– volume: 102
  start-page: 666
  year: 2014
  ident: 10.1016/j.neuron.2018.01.040_bib25
  article-title: Information systems opportunities in brain-machine interface decoders
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2014.2307357
– volume: 68
  start-page: 516
  year: 1988
  ident: 10.1016/j.neuron.2018.01.040_bib57
  article-title: Mental imagery and its potential for physical therapy
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/68.4.516
– volume: 431
  start-page: 993
  year: 2004
  ident: 10.1016/j.neuron.2018.01.040_bib11
  article-title: Neural correlates of mental rehearsal in dorsal premotor cortex
  publication-title: Nature
  doi: 10.1038/nature03005
– volume: 93
  start-page: 929
  year: 2017
  ident: 10.1016/j.neuron.2018.01.040_bib40
  article-title: Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.01.023
– volume: 108
  start-page: 624
  year: 2012
  ident: 10.1016/j.neuron.2018.01.040_bib7
  article-title: Behavioral and neural correlates of visuomotor adaptation observed through a brain-computer interface in primary motor cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00371.2011
– volume: 17
  start-page: 1693
  year: 2002
  ident: 10.1016/j.neuron.2018.01.040_bib24
  article-title: Selective activation of a parietofrontal circuit during implicitly imagined prehension
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1265
– volume: 6
  start-page: e18554
  year: 2017
  ident: 10.1016/j.neuron.2018.01.040_bib37
  article-title: High performance communication by people with paralysis using an intracortical brain-computer interface
  publication-title: eLife
  doi: 10.7554/eLife.18554
– volume: 41
  start-page: 1477
  year: 2010
  ident: 10.1016/j.neuron.2018.01.040_bib45
  article-title: Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.584979
– volume: 93
  start-page: 955
  year: 2017
  ident: 10.1016/j.neuron.2018.01.040_bib5
  article-title: Emergence of coordinated neural dynamics underlies neuroprosthetic learning and skillful control
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.01.016
– volume: 30
  start-page: 16777
  year: 2010
  ident: 10.1016/j.neuron.2018.01.040_bib58
  article-title: Incorporating feedback from multiple sensory modalities enhances brain-machine interface control
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3967-10.2010
– volume: 94
  start-page: 891
  year: 2017
  ident: 10.1016/j.neuron.2018.01.040_bib3
  article-title: Global representations of goal-directed behavior in distinct cell types of mouse neocortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.04.017
– volume: 20
  start-page: 8916
  year: 2000
  ident: 10.1016/j.neuron.2018.01.040_bib28
  article-title: Learning of visuomotor transformations for vectorial planning of reaching trajectories
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-23-08916.2000
– volume: 4
  start-page: e10015
  year: 2015
  ident: 10.1016/j.neuron.2018.01.040_bib19
  article-title: Internal models for interpreting neural population activity during sensorimotor control
  publication-title: eLife
  doi: 10.7554/eLife.10015
– volume: 94
  start-page: 880
  year: 2017
  ident: 10.1016/j.neuron.2018.01.040_bib31
  article-title: Transformation of Cortex-wide Emergent Properties during Motor Learning
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.04.015
– volume: 84
  start-page: 665
  year: 2014
  ident: 10.1016/j.neuron.2018.01.040_bib49
  article-title: Combining decoder design and neural adaptation in brain-machine interfaces
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.08.038
– volume: 15
  start-page: 1752
  year: 2012
  ident: 10.1016/j.neuron.2018.01.040_bib18
  article-title: A high-performance neural prosthesis enabled by control algorithm design
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3265
– volume: 2
  start-page: 661
  year: 2001
  ident: 10.1016/j.neuron.2018.01.040_bib42
  article-title: Neurophysiological mechanisms underlying the understanding and imitation of action
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/35090060
– volume: 17
  start-page: 1500
  year: 2014
  ident: 10.1016/j.neuron.2018.01.040_bib12
  article-title: Dimensionality reduction for large-scale neural recordings
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3776
– volume: 21
  start-page: 1229
  year: 2009
  ident: 10.1016/j.neuron.2018.01.040_bib20
  article-title: Eight problems for the mirror neuron theory of action understanding in monkeys and humans
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2009.21189
– ident: 10.1016/j.neuron.2018.01.040_bib30
– volume: 487
  start-page: 51
  year: 2012
  ident: 10.1016/j.neuron.2018.01.040_bib10
  article-title: Neural population dynamics during reaching
  publication-title: Nature
  doi: 10.1038/nature11129
– volume: 71
  start-page: 555
  year: 2011
  ident: 10.1016/j.neuron.2018.01.040_bib1
  article-title: Single-trial neural correlates of arm movement preparation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.05.047
– volume: 143
  start-page: 447
  year: 2002
  ident: 10.1016/j.neuron.2018.01.040_bib38
  article-title: Imagined and actual arm movements have similar durations when performed under different conditions of direction and mass
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-002-1012-1
– volume: 389
  start-page: 1821
  year: 2017
  ident: 10.1016/j.neuron.2018.01.040_bib2
  article-title: Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)30601-3
– volume: 17
  start-page: 440
  year: 2014
  ident: 10.1016/j.neuron.2018.01.040_bib26
  article-title: Cortical activity in the null space: permitting preparation without movement
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3643
– volume: 81
  start-page: 438
  year: 2014
  ident: 10.1016/j.neuron.2018.01.040_bib4
  article-title: Neural dynamics of reaching following incorrect or absent motor preparation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.11.003
– volume: 21
  start-page: 636
  year: 2011
  ident: 10.1016/j.neuron.2018.01.040_bib27
  article-title: Human sensorimotor learning: adaptation, skill, and beyond
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2011.06.012
– volume: 82
  start-page: 1380
  year: 2014
  ident: 10.1016/j.neuron.2018.01.040_bib35
  article-title: Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.04.048
– volume: 92
  start-page: 773
  year: 2016
  ident: 10.1016/j.neuron.2018.01.040_bib48
  article-title: Motor planning, not execution, separates motor memories
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.017
– volume: 203
  start-page: 75
  year: 2010
  ident: 10.1016/j.neuron.2018.01.040_bib46
  article-title: Learning a visuomotor rotation: simultaneous visual and proprioceptive information is crucial for visuomotor remapping
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-010-2209-3
– volume: 4
  start-page: e07436
  year: 2015
  ident: 10.1016/j.neuron.2018.01.040_bib36
  article-title: Neural population dynamics in human motor cortex during movements in people with ALS
  publication-title: eLife
  doi: 10.7554/eLife.07436
– volume: 94
  start-page: 866
  year: 2017
  ident: 10.1016/j.neuron.2018.01.040_bib8
  article-title: A map of anticipatory activity in mouse motor cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.05.005
– volume: 6
  start-page: 882
  year: 2003
  ident: 10.1016/j.neuron.2018.01.040_bib39
  article-title: Preparatory activity in motor cortex reflects learning of local visuomotor skills
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1097
– volume: 94
  start-page: 978
  year: 2017
  ident: 10.1016/j.neuron.2018.01.040_bib15
  article-title: Neural manifolds for the control of movement
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.05.025
– volume: 102
  start-page: 2921
  year: 2009
  ident: 10.1016/j.neuron.2018.01.040_bib55
  article-title: Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90834.2008
– reference: 29518363 - Neuron. 2018 Mar 7;97(5):998-1000. doi: 10.1016/j.neuron.2018.02.017.
SSID ssj0014591
Score 2.528578
Snippet Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context...
SummaryCovert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1177
SubjectTerms Adaptation
Animals
Arm
Behavior
Brain-Computer Interfaces
brain-machine interface
dynamical system
Dynamical systems
Feedback
Learning
Learning - physiology
Macaca mulatta
Male
Mathematical functions
Motor ability
motor adaptation
Motor Cortex - physiology
motor learning
motor preparation
Motor skill learning
Neurons
Photic Stimulation - methods
Psychomotor Performance - physiology
Stroke
Studies
Transfer learning
Transfer, Psychology - physiology
Title Neural Population Dynamics Underlying Motor Learning Transfer
URI https://dx.doi.org/10.1016/j.neuron.2018.01.040
https://www.ncbi.nlm.nih.gov/pubmed/29456026
https://www.proquest.com/docview/2012365348
https://www.proquest.com/docview/2004438854
https://pubmed.ncbi.nlm.nih.gov/PMC5843544
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KRfBFtPXjbC0RxLfldvO9D304q6VYFFGL9xY2m6xeafdKe33of-9M9gPPFgo-7mayZCeTmUky8xuAt9xwHtFvzbipykxGiXoQvfIslMo0lQmWhxRt8UUfnchPczXfgIMhF4bCKnvd3-n0pK37N9Oem9OLxWL6PbcloZeTUJIhpURzIW1K4pu_H28SpOqq5iFxRtRD-lyK8UqYkYSCWtgE3klHIHebp9vu579RlH-ZpcMn8Lj3J9msG_JT2IjtFmzPWtxLn9-wdyxFeKaj8y142BWevNmGfcLkwG5fx_Jd7ENXmv6KpUpIZ5T9xD4vcUfOegjWXyzZtSZePoOTw48_Do6yvpBCVitlVllsgkc_pSYMSW6DxykpTBAmeMsp2UfbShVNLYqotGi09iJ6b3MhTF4KKYJ4Dpvtso0vgenG13nVmChwOxu8LrluCotfNJWs0bRNQAz8c3WPMk7FLs7cEE526jquO-K6ywuHXJ9ANva66FA27qE3w9S4NWlxaAju6bk7zKTrV-sVtXOhFUrPBN6MzbjO6PKkauPymmhyKYW1Sk7gRTfx41B5iW4obmZxWGsiMRIQhvd6S7v4nbC80f8TSspX__1DO_CInlJYnNmFzdXldXyNftLK78GD2fG3n8d7aUH8AamXEv0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXBC2PhQJGQtyiTfzOgUMpVFtoKyRaaW9WHDuwqGSrdnvov2fGeYgFpEpc43HkzMMzdma-AXjDDecR49aMm6rMZJS4D2JUnoVSmaYywfKQsi2O9exUfpqr-QbsDbUwlFbZ7_3dnp526_7JtOfm9HyxmH7NbUno5aSU5EjVLbiN0YAh6zyYvx9_JUjVtc1D6ozIh_q5lOSVQCMJBrWwCb2T7kD-7Z_-jj__TKP8zS_tP4D7fUDJdrs1P4SN2G7B9m6Lh-mf1-wtSyme6e58C-50nSevt-EdgXLgtC9j_y72oetNf8lSK6QzKn9iR0s8krMeg_UbS46tiReP4HT_48neLOs7KWS1UmaVxSZ4DFRqApHkNniUSWGCMMFbTtU-2laqaGpRRKVFo7UX0XubC2HyUkgRxGPYbJdtfApMN77Oq8ZEgefZ4HXJdVNYfKOpZI2-bQJi4J-re5hx6nZx5oZ8sh-u47ojrru8cMj1CWTjrPMOZuMGejOIxq2pi0NPcMPMnUGSrjfXSxrnQish7QRej8NoaPT3pGrj8opocimFtUpO4Ekn-HGpvETNw9MsLmtNJUYCAvFeH2kX3xOYNwaAQkn57L8_6BXcnZ0cHbrDg-PPz-EejaQcObMDm6uLq_gCg6aVf5mM4hfTexR6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Population+Dynamics+Underlying+Motor+Learning+Transfer&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Vyas%2C+Saurabh&rft.au=Even-Chen%2C+Nir&rft.au=Stavisky%2C+Sergey+D&rft.au=Ryu%2C+Stephen+I&rft.date=2018-03-07&rft.pub=Elsevier+Limited&rft.issn=0896-6273&rft.eissn=1097-4199&rft.volume=97&rft.issue=5&rft.spage=1177&rft_id=info:doi/10.1016%2Fj.neuron.2018.01.040&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon