Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases

[Display omitted] ► Xylan clearly inhibited the enzymatic hydrolysis of cellulose by cellulase. ► Xylan clearly inhibited the cellulose hydrolysis by individual EGII, CBHI and CBHII. ► The solubility of oat spelt xylan did not clearly affect the hydrolysis of cellulose. ► After the addition of xylan...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 121; pp. 8 - 12
Main Authors Zhang, Junhua, Tang, Ming, Viikari, Liisa
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] ► Xylan clearly inhibited the enzymatic hydrolysis of cellulose by cellulase. ► Xylan clearly inhibited the cellulose hydrolysis by individual EGII, CBHI and CBHII. ► The solubility of oat spelt xylan did not clearly affect the hydrolysis of cellulose. ► After the addition of xylans, cleaved cellobiose units by CBHI from cellulose chain decreased. Hemicelluloses have been found to be physical barriers in the hydrolysis of cellulose, and prevent the access of enzymes to cellulose surface. In addition, soluble hemicelluloses may strongly inhibit the cellulase activity. In this work, birchwood xylan clearly inhibited the enzymatic hydrolysis of wheat straw, Avicel and nanocellulose by cellulases. Hydrolysis efficiencies of cellobiohydrolase I (CBHI, from Thermoascus aurantiacus), cellobiohydrolase II (CBHII, from Trichoderma reesei) and endoglucanase II (from T. aurantiacus) were clearly inhibited by birchwood xylan, respectively. The strongest inhibitory effect of birchwood xylan was observed on the hydrolysis of Avicel by CBHI and CBHII, as a dramatically decreased formation of the main product, cellobiose. After additions of soluble and insoluble oat spelt xylan, cleaved cellobiose units by CBHI from cellulose chain decreased from 8 to 4 and 6, respectively. The results in this work demonstrated that xylans clearly inhibited the hydrolysis efficiencies of both endoglucanase and cellobiohydrolase.
AbstractList Hemicelluloses have been found to be physical barriers in the hydrolysis of cellulose, and prevent the access of enzymes to cellulose surface. In addition, soluble hemicelluloses may strongly inhibit the cellulase activity. In this work, birchwood xylan clearly inhibited the enzymatic hydrolysis of wheat straw, Avicel and nanocellulose by cellulases. Hydrolysis efficiencies of cellobiohydrolase I (CBHI, from Thermoascus aurantiacus), cellobiohydrolase II (CBHII, from Trichoderma reesei) and endoglucanase II (from T. aurantiacus) were clearly inhibited by birchwood xylan, respectively. The strongest inhibitory effect of birchwood xylan was observed on the hydrolysis of Avicel by CBHI and CBHII, as a dramatically decreased formation of the main product, cellobiose. After additions of soluble and insoluble oat spelt xylan, cleaved cellobiose units by CBHI from cellulose chain decreased from 8 to 4 and 6, respectively. The results in this work demonstrated that xylans clearly inhibited the hydrolysis efficiencies of both endoglucanase and cellobiohydrolase.Hemicelluloses have been found to be physical barriers in the hydrolysis of cellulose, and prevent the access of enzymes to cellulose surface. In addition, soluble hemicelluloses may strongly inhibit the cellulase activity. In this work, birchwood xylan clearly inhibited the enzymatic hydrolysis of wheat straw, Avicel and nanocellulose by cellulases. Hydrolysis efficiencies of cellobiohydrolase I (CBHI, from Thermoascus aurantiacus), cellobiohydrolase II (CBHII, from Trichoderma reesei) and endoglucanase II (from T. aurantiacus) were clearly inhibited by birchwood xylan, respectively. The strongest inhibitory effect of birchwood xylan was observed on the hydrolysis of Avicel by CBHI and CBHII, as a dramatically decreased formation of the main product, cellobiose. After additions of soluble and insoluble oat spelt xylan, cleaved cellobiose units by CBHI from cellulose chain decreased from 8 to 4 and 6, respectively. The results in this work demonstrated that xylans clearly inhibited the hydrolysis efficiencies of both endoglucanase and cellobiohydrolase.
Hemicelluloses have been found to be physical barriers in the hydrolysis of cellulose, and prevent the access of enzymes to cellulose surface. In addition, soluble hemicelluloses may strongly inhibit the cellulase activity. In this work, birchwood xylan clearly inhibited the enzymatic hydrolysis of wheat straw, Avicel and nanocellulose by cellulases. Hydrolysis efficiencies of cellobiohydrolase I (CBHI, from Thermoascus aurantiacus), cellobiohydrolase II (CBHII, from Trichoderma reesei) and endoglucanase II (from T. aurantiacus) were clearly inhibited by birchwood xylan, respectively. The strongest inhibitory effect of birchwood xylan was observed on the hydrolysis of Avicel by CBHI and CBHII, as a dramatically decreased formation of the main product, cellobiose. After additions of soluble and insoluble oat spelt xylan, cleaved cellobiose units by CBHI from cellulose chain decreased from 8 to 4 and 6, respectively. The results in this work demonstrated that xylans clearly inhibited the hydrolysis efficiencies of both endoglucanase and cellobiohydrolase.
[Display omitted] ► Xylan clearly inhibited the enzymatic hydrolysis of cellulose by cellulase. ► Xylan clearly inhibited the cellulose hydrolysis by individual EGII, CBHI and CBHII. ► The solubility of oat spelt xylan did not clearly affect the hydrolysis of cellulose. ► After the addition of xylans, cleaved cellobiose units by CBHI from cellulose chain decreased. Hemicelluloses have been found to be physical barriers in the hydrolysis of cellulose, and prevent the access of enzymes to cellulose surface. In addition, soluble hemicelluloses may strongly inhibit the cellulase activity. In this work, birchwood xylan clearly inhibited the enzymatic hydrolysis of wheat straw, Avicel and nanocellulose by cellulases. Hydrolysis efficiencies of cellobiohydrolase I (CBHI, from Thermoascus aurantiacus), cellobiohydrolase II (CBHII, from Trichoderma reesei) and endoglucanase II (from T. aurantiacus) were clearly inhibited by birchwood xylan, respectively. The strongest inhibitory effect of birchwood xylan was observed on the hydrolysis of Avicel by CBHI and CBHII, as a dramatically decreased formation of the main product, cellobiose. After additions of soluble and insoluble oat spelt xylan, cleaved cellobiose units by CBHI from cellulose chain decreased from 8 to 4 and 6, respectively. The results in this work demonstrated that xylans clearly inhibited the hydrolysis efficiencies of both endoglucanase and cellobiohydrolase.
Author Tang, Ming
Zhang, Junhua
Viikari, Liisa
Author_xml – sequence: 1
  givenname: Junhua
  surname: Zhang
  fullname: Zhang, Junhua
  email: junhuazhang@nwsuaf.edu.cn
  organization: College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
– sequence: 2
  givenname: Ming
  surname: Tang
  fullname: Tang, Ming
  organization: College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
– sequence: 3
  givenname: Liisa
  surname: Viikari
  fullname: Viikari, Liisa
  organization: Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, FIN-00014 Helsinki, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22858461$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQhi1URLeFVyg5csky48R2InEAVUArVXCAStwsx550vcrGxc5WCk-PV-leuCynkWa-f8byd8HOxjASY1cIawSU77frzoc4kd2sOSBfg1oDwgu2wkZVJW-VPGMraCWUjeD1ObtIaQsAFSr-ip1z3oimlrhi337NgxlT4ceN7_xU0Phn3pnJ22IzuxiGOflUhL4Y_MMYLA3DfggpTzND0ZshFd1cLH2TKL1mL_vcpDfP9ZLdf_n88_qmvPv-9fb6011phVBTSW3thDA1OeR1K0yDliuBVHMjnQJHrm_apq-dtIpjpUyHqusr6iW2ZNumumTvlr2PMfzeU5r0zqfDM8xIYZ80SoUyf8z_oAJAKYUoT6OVFFCpSsJpFKoGZHaBGb16Rvfdjpx-jH5n4qyPEjLwYQFsDClF6rX1U3YQxikaP-Rd-uBcb_XRuT4416B0dp7j8p_48cLJ4Nsl2JugzUP0Sd__yEANgE0rpcjEx4Wg7PLJU9TJehotOR_JTtoFf-rIXyaH0uQ
CitedBy_id crossref_primary_10_1016_j_ibiod_2019_104880
crossref_primary_10_1002_jctb_4470
crossref_primary_10_1186_1754_6834_6_15
crossref_primary_10_1016_j_biortech_2021_126662
crossref_primary_10_1016_j_jiec_2015_09_001
crossref_primary_10_1039_C8SE00287H
crossref_primary_10_1016_j_enzmictec_2014_09_009
crossref_primary_10_1016_j_indcrop_2015_05_017
crossref_primary_10_1016_j_heliyon_2020_e05036
crossref_primary_10_1016_j_biombioe_2020_105639
crossref_primary_10_1016_j_ijbiomac_2022_03_158
crossref_primary_10_1111_febs_13265
crossref_primary_10_1016_j_biortech_2014_03_025
crossref_primary_10_1016_j_biortech_2015_05_035
crossref_primary_10_1186_s13068_017_0980_0
crossref_primary_10_1016_j_renene_2020_06_061
crossref_primary_10_1016_j_biombioe_2017_12_020
crossref_primary_10_1186_s13068_022_02110_4
crossref_primary_10_1016_j_renene_2022_04_058
crossref_primary_10_1039_C6RA14617A
crossref_primary_10_1016_j_biortech_2018_11_024
crossref_primary_10_1016_j_ijbiomac_2017_07_039
crossref_primary_10_1039_D2GC02237K
crossref_primary_10_1007_s00203_019_01672_6
crossref_primary_10_1016_j_ijbiomac_2019_01_087
crossref_primary_10_3389_fbioe_2022_825981
crossref_primary_10_1016_j_carbpol_2016_04_069
crossref_primary_10_1016_j_copbio_2014_11_024
crossref_primary_10_1016_j_ijbiomac_2024_133325
crossref_primary_10_1016_j_biortech_2014_08_082
crossref_primary_10_1016_j_carbpol_2015_07_016
crossref_primary_10_1186_2193_1801_3_365
crossref_primary_10_1016_j_biortech_2015_01_136
crossref_primary_10_1016_j_biortech_2015_06_074
crossref_primary_10_1186_s13068_017_0718_z
crossref_primary_10_1371_journal_pone_0139195
crossref_primary_10_1016_j_biortech_2019_01_017
crossref_primary_10_1016_j_rser_2021_111622
crossref_primary_10_1021_acs_iecr_6b04733
crossref_primary_10_1016_j_biortech_2014_06_018
crossref_primary_10_3390_molecules23071647
crossref_primary_10_1016_j_aquatox_2025_107287
crossref_primary_10_1038_s41598_019_40053_3
crossref_primary_10_1016_j_biortech_2020_124472
crossref_primary_10_1016_j_ijbiomac_2024_136714
crossref_primary_10_1002_jctb_4521
crossref_primary_10_1016_j_ijbiomac_2023_125053
crossref_primary_10_1007_s00253_016_7726_y
crossref_primary_10_1016_j_biortech_2015_04_008
crossref_primary_10_1007_s10570_020_03087_9
crossref_primary_10_1016_j_ibiod_2019_04_003
crossref_primary_10_1016_j_biortech_2017_08_155
crossref_primary_10_1016_j_enzmictec_2019_109447
crossref_primary_10_1016_j_ijbiomac_2020_03_249
crossref_primary_10_3390_catal10050536
crossref_primary_10_1007_s12155_020_10123_w
crossref_primary_10_1021_acssuschemeng_7b00605
crossref_primary_10_1016_j_chemosphere_2018_10_092
crossref_primary_10_1016_j_biortech_2018_05_057
crossref_primary_10_1021_bm400338b
crossref_primary_10_2139_ssrn_3954353
crossref_primary_10_1016_j_biortech_2016_08_035
crossref_primary_10_1089_ind_2024_0022
crossref_primary_10_1007_s10570_015_0602_6
crossref_primary_10_1017_S1431927614000063
crossref_primary_10_1016_j_biortech_2012_11_122
crossref_primary_10_1016_j_indcrop_2015_11_021
crossref_primary_10_1128_AEM_03677_14
crossref_primary_10_1016_j_biortech_2014_02_096
crossref_primary_10_1039_D4SU00006D
crossref_primary_10_1128_AEM_00282_18
crossref_primary_10_1186_s13068_022_02119_9
crossref_primary_10_3390_computation3030336
crossref_primary_10_1016_j_procbio_2013_09_012
crossref_primary_10_4236_aer_2016_42005
crossref_primary_10_1016_j_greenca_2024_01_003
crossref_primary_10_3390_fermentation9080775
crossref_primary_10_1016_j_biortech_2013_03_033
crossref_primary_10_1016_j_biombioe_2016_03_012
crossref_primary_10_1016_j_biortech_2013_04_103
crossref_primary_10_1186_s13568_016_0196_x
crossref_primary_10_1016_j_indcrop_2022_114654
crossref_primary_10_1016_j_renene_2024_120281
crossref_primary_10_1016_j_biortech_2019_122240
crossref_primary_10_1016_j_renene_2019_06_120
crossref_primary_10_1016_j_enconman_2014_09_029
crossref_primary_10_1007_s10570_016_1117_5
crossref_primary_10_1007_s12649_018_0218_9
crossref_primary_10_1016_j_biortech_2013_07_124
crossref_primary_10_1039_C5GC01748C
crossref_primary_10_1089_ind_2020_0009
crossref_primary_10_1007_s12010_014_1140_7
crossref_primary_10_1042_BCJ20200083
crossref_primary_10_1186_s13068_020_01697_w
crossref_primary_10_1186_s13068_019_1417_8
crossref_primary_10_1007_s10163_024_02016_3
crossref_primary_10_1007_s12155_024_10745_4
crossref_primary_10_1016_j_carbpol_2022_119221
crossref_primary_10_1016_j_indcrop_2015_05_050
crossref_primary_10_1002_elsc_202100053
crossref_primary_10_1016_j_biombioe_2014_01_011
crossref_primary_10_1002_slct_202200423
crossref_primary_10_1021_acssuschemeng_7b02361
crossref_primary_10_1016_j_biombioe_2015_03_020
crossref_primary_10_3390_ma13225062
crossref_primary_10_1016_j_biombioe_2025_107693
crossref_primary_10_1016_j_biortech_2017_04_040
crossref_primary_10_1016_j_biortech_2017_08_184
crossref_primary_10_1007_s00253_016_7562_0
crossref_primary_10_1007_s13197_018_3499_x
crossref_primary_10_1186_s13068_017_0970_2
crossref_primary_10_1186_s13068_015_0282_3
crossref_primary_10_1016_j_fuel_2015_08_045
crossref_primary_10_1016_j_biortech_2024_130460
crossref_primary_10_1007_s10529_014_1705_0
crossref_primary_10_1016_j_biortech_2014_07_097
crossref_primary_10_1007_s12602_019_09617_7
crossref_primary_10_3390_pr8070860
crossref_primary_10_1007_s12010_024_04922_6
crossref_primary_10_1186_s12934_021_01619_x
crossref_primary_10_1007_s10570_016_1098_4
crossref_primary_10_1186_s13068_014_0185_8
crossref_primary_10_1016_j_bej_2016_10_004
crossref_primary_10_1016_j_indcrop_2018_12_077
crossref_primary_10_1016_j_cej_2018_04_057
crossref_primary_10_3390_pr9060969
crossref_primary_10_1016_j_biombioe_2017_12_005
crossref_primary_10_1002_bbb_2008
crossref_primary_10_1016_j_fuel_2019_02_043
crossref_primary_10_1016_j_jclepro_2022_132351
crossref_primary_10_1007_s11694_021_00815_y
crossref_primary_10_1016_j_renene_2019_04_131
crossref_primary_10_1016_j_indcrop_2024_118840
crossref_primary_10_1007_s00253_020_10427_z
crossref_primary_10_1016_j_biombioe_2024_107375
crossref_primary_10_1021_acs_energyfuels_8b01424
crossref_primary_10_1002_btpr_2306
crossref_primary_10_1021_acssuschemeng_6b00481
crossref_primary_10_1021_acs_biomac_9b01694
crossref_primary_10_5897_AJAR2015_9487
crossref_primary_10_1007_s10570_019_02650_3
crossref_primary_10_1016_j_biombioe_2020_105623
crossref_primary_10_1016_j_biortech_2022_127966
crossref_primary_10_1016_j_eti_2021_101882
crossref_primary_10_1007_s00226_015_0757_1
crossref_primary_10_1016_j_enconman_2017_10_089
crossref_primary_10_1016_j_rser_2021_110996
crossref_primary_10_3390_en12091606
crossref_primary_10_1007_s10570_021_03688_y
crossref_primary_10_1186_1754_6834_6_135
crossref_primary_10_1016_j_indcrop_2018_02_011
crossref_primary_10_1080_10826068_2020_1734939
Cites_doi 10.1021/bm200437m
10.1016/j.jbiotec.2003.09.011
10.1016/j.carbpol.2006.09.006
10.1016/j.biortech.2007.09.064
10.1016/S0141-0229(03)00176-5
10.1016/j.biortech.2011.06.059
10.1002/bit.20043
10.1016/0076-6879(88)60106-6
10.1515/HF.2001.104
10.1002/(SICI)1097-0290(19980905)59:5<621::AID-BIT13>3.0.CO;2-C
10.1111/j.1438-8677.1993.tb00692.x
10.1016/j.biortech.2012.04.072
10.1016/S0021-9258(19)52451-6
10.1007/s10570-008-9209-5
10.1016/j.biortech.2010.06.137
10.1016/j.biortech.2008.11.057
10.1016/j.biortech.2011.06.085
10.1007/BF02936472
10.1016/0014-5793(82)81092-2
10.1016/j.biortech.2006.09.003
10.1021/la0341355
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright © 2012 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: Copyright © 2012 Elsevier Ltd. All rights reserved.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7SU
7TB
8FD
C1K
FR3
KR7
DOI 10.1016/j.biortech.2012.07.010
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE - Academic
MEDLINE
Civil Engineering Abstracts
AGRICOLA
Civil Engineering Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 12
ExternalDocumentID 22858461
10_1016_j_biortech_2012_07_010
US201400189665
S0960852412010577
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
7SU
7TB
8FD
C1K
FR3
KR7
ID FETCH-LOGICAL-c557t-e94d55a4ed12495a81c2751e42a6d70dedf898f4d6c72137ab17bf3ef619ec983
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Thu Jul 10 23:47:07 EDT 2025
Fri Jul 11 15:28:17 EDT 2025
Fri Jul 11 11:37:25 EDT 2025
Fri Jul 11 02:38:47 EDT 2025
Mon Jul 21 05:55:53 EDT 2025
Tue Jul 01 02:42:59 EDT 2025
Thu Apr 24 23:07:37 EDT 2025
Wed Dec 27 19:16:55 EST 2023
Fri Feb 23 02:34:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords EG
MUL
Enzymatic hydrolysis
Cellulose
CBH
Xylan
DM
CEL
HPAEC-PAD
βG
Cellulase
Inhibition
XOS
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-e94d55a4ed12495a81c2751e42a6d70dedf898f4d6c72137ab17bf3ef619ec983
Notes http://dx.doi.org/10.1016/j.biortech.2012.07.010
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22858461
PQID 1038068731
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1671620198
proquest_miscellaneous_1500777116
proquest_miscellaneous_1365037360
proquest_miscellaneous_1038068731
pubmed_primary_22858461
crossref_citationtrail_10_1016_j_biortech_2012_07_010
crossref_primary_10_1016_j_biortech_2012_07_010
fao_agris_US201400189665
elsevier_sciencedirect_doi_10_1016_j_biortech_2012_07_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ryan, Nolan, Thompson, Gubitz, Savage, Tuohy (b0065) 2003; 33
Schönberg, Oksanen, Suurnäkki, Kettunen, Buchert (b0070) 2001; 55
van Tilbeurgh, Claeyssens, de Bruyne (b0085) 1982; 149
Qing, Yang, Wyman (b0060) 2010; 101
Kabel, van den Borne, Vincken, Voragen, Schols (b0010) 2007; 69
Medve, Karlsson, Lee, Tjerneld (b0045) 1998; 59
Várnai, Huikko, Pere, Siika-aho, Viikari (b0095) 2011; 102
Köhnke, Pujolras, Roubroeks, Gatenholm (b0015) 2008; 15
Zhang, Viikari (b0110) 2012; 117
Linder, Bergman, Bodin, Gatenholm (b0035) 2003; 19
Selig, Knoshaug, Adney, Himmel, Decker (b0075) 2008; 99
Köhnke, T., 2010. Adsorption of xylans on cellulosic fibres- Influence of xylan composition on adsorption characteristics and kraft pulp properties. Chalmers University of Technology, Ph.D. theses.
Lowry, Roseborough, Farr, Randall (b0040) 1951; 193
Kumar, Wyman (b0030) 2009; 100
Yang, Wyman (b0100) 2004; 86
Palonen, Tjerneld, Zacchi, Tenkanen (b0055) 2004; 107
Taylor, Haigler (b0080) 1993; 42
Öhgren, Bura, Saddler, Zacchi (b0050) 2007; 98
van Tilbeurgh, Loontiens, de Bruyne, Claeyssens (b0090) 1988; 160
Zhang, Tuomainen, Siika-aho, Viikari (b0105) 2011; 102
Köhnke, Östlund, Brelid (b0025) 2011; 12
Grohmann, Mitchell, Himmel, Dale, Schroeder (b0005) 1989; 20
Öhgren (10.1016/j.biortech.2012.07.010_b0050) 2007; 98
Kumar (10.1016/j.biortech.2012.07.010_b0030) 2009; 100
van Tilbeurgh (10.1016/j.biortech.2012.07.010_b0090) 1988; 160
Linder (10.1016/j.biortech.2012.07.010_b0035) 2003; 19
Palonen (10.1016/j.biortech.2012.07.010_b0055) 2004; 107
Selig (10.1016/j.biortech.2012.07.010_b0075) 2008; 99
Köhnke (10.1016/j.biortech.2012.07.010_b0015) 2008; 15
Yang (10.1016/j.biortech.2012.07.010_b0100) 2004; 86
van Tilbeurgh (10.1016/j.biortech.2012.07.010_b0085) 1982; 149
Ryan (10.1016/j.biortech.2012.07.010_b0065) 2003; 33
Zhang (10.1016/j.biortech.2012.07.010_b0110) 2012; 117
Qing (10.1016/j.biortech.2012.07.010_b0060) 2010; 101
Lowry (10.1016/j.biortech.2012.07.010_b0040) 1951; 193
10.1016/j.biortech.2012.07.010_b0020
Schönberg (10.1016/j.biortech.2012.07.010_b0070) 2001; 55
Várnai (10.1016/j.biortech.2012.07.010_b0095) 2011; 102
Medve (10.1016/j.biortech.2012.07.010_b0045) 1998; 59
Kabel (10.1016/j.biortech.2012.07.010_b0010) 2007; 69
Köhnke (10.1016/j.biortech.2012.07.010_b0025) 2011; 12
Taylor (10.1016/j.biortech.2012.07.010_b0080) 1993; 42
Zhang (10.1016/j.biortech.2012.07.010_b0105) 2011; 102
Grohmann (10.1016/j.biortech.2012.07.010_b0005) 1989; 20
References_xml – volume: 19
  start-page: 5072
  year: 2003
  end-page: 5077
  ident: b0035
  article-title: Mechanism of assembly of xylan onto cellulose surfaces
  publication-title: Langmuir
– volume: 98
  start-page: 2503
  year: 2007
  end-page: 2510
  ident: b0050
  article-title: Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover
  publication-title: Bioresour. Technol.
– volume: 149
  start-page: 152
  year: 1982
  end-page: 156
  ident: b0085
  article-title: The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes
  publication-title: FEBS Lett.
– volume: 86
  start-page: 88
  year: 2004
  end-page: 95
  ident: b0100
  article-title: Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose
  publication-title: Biotechnol. Bioeng.
– volume: 69
  start-page: 94
  year: 2007
  end-page: 105
  ident: b0010
  article-title: Structural differences of xylans affect their interaction with cellulose
  publication-title: Carbohydr. Polym.
– volume: 193
  start-page: 265
  year: 1951
  end-page: 275
  ident: b0040
  article-title: Protein measurement with the folin phenol reagent
  publication-title: J. Biol. Chem.
– volume: 33
  start-page: 775
  year: 2003
  end-page: 785
  ident: b0065
  article-title: Purification and characterization of a new low molecular weight endoxylanase from
  publication-title: Enzyme Microb. Technol.
– volume: 20
  start-page: 45
  year: 1989
  end-page: 61
  ident: b0005
  article-title: The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis
  publication-title: Appl. Biochem. Biotechnol.
– volume: 99
  start-page: 4997
  year: 2008
  end-page: 5005
  ident: b0075
  article-title: Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities
  publication-title: Bioresour. Technol.
– volume: 107
  start-page: 65
  year: 2004
  end-page: 72
  ident: b0055
  article-title: Adsorption of
  publication-title: J. Biotechnol.
– volume: 15
  start-page: 537
  year: 2008
  end-page: 546
  ident: b0015
  article-title: The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres
  publication-title: Cellulose
– volume: 101
  start-page: 9624
  year: 2010
  end-page: 9630
  ident: b0060
  article-title: Xylooligosaccharides are strong inhibitors of cellulose hydrolysis by enzymes
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 9096
  year: 2011
  end-page: 9104
  ident: b0095
  article-title: Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood
  publication-title: Bioresour. Technol.
– volume: 55
  start-page: 639
  year: 2001
  end-page: 644
  ident: b0070
  article-title: The importance of xylan for the strength properties of spruce kraft pulp fibre
  publication-title: Holzforschung
– reference: Köhnke, T., 2010. Adsorption of xylans on cellulosic fibres- Influence of xylan composition on adsorption characteristics and kraft pulp properties. Chalmers University of Technology, Ph.D. theses.
– volume: 12
  start-page: 2633
  year: 2011
  end-page: 2641
  ident: b0025
  article-title: Adsorption of arabinoxylan on cellulosic surface. Influence of degree of substitution and substitution pattern on adsorption characteristics
  publication-title: Biomacromolecules
– volume: 160
  start-page: 45
  year: 1988
  end-page: 59
  ident: b0090
  article-title: Fluorogenic and chromogenic glycosides as substrates and ligands of carbohydrases
  publication-title: Methods Enzymol.
– volume: 117
  start-page: 286
  year: 2012
  end-page: 291
  ident: b0110
  article-title: Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from
  publication-title: Bioresour. Technol.
– volume: 59
  start-page: 621
  year: 1998
  end-page: 634
  ident: b0045
  article-title: Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from
  publication-title: Biotechnol. Bioeng.
– volume: 100
  start-page: 4203
  year: 2009
  end-page: 4213
  ident: b0030
  article-title: Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies
  publication-title: Bioresour. Technol.
– volume: 42
  start-page: 153
  year: 1993
  end-page: 163
  ident: b0080
  article-title: Patterned secondary cell-wall assembly occurs in a self-perpetuating cascade
  publication-title: Acta Bot. Neerl.
– volume: 102
  start-page: 9090
  year: 2011
  end-page: 9095
  ident: b0105
  article-title: Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis
  publication-title: Bioresour. Technol.
– ident: 10.1016/j.biortech.2012.07.010_b0020
– volume: 12
  start-page: 2633
  year: 2011
  ident: 10.1016/j.biortech.2012.07.010_b0025
  article-title: Adsorption of arabinoxylan on cellulosic surface. Influence of degree of substitution and substitution pattern on adsorption characteristics
  publication-title: Biomacromolecules
  doi: 10.1021/bm200437m
– volume: 107
  start-page: 65
  year: 2004
  ident: 10.1016/j.biortech.2012.07.010_b0055
  article-title: Adsorption of Trichoderma reesei CBHI and EGII and their catalytic domains on steam pretreated softwood and isolated lignin
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2003.09.011
– volume: 69
  start-page: 94
  year: 2007
  ident: 10.1016/j.biortech.2012.07.010_b0010
  article-title: Structural differences of xylans affect their interaction with cellulose
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2006.09.006
– volume: 99
  start-page: 4997
  year: 2008
  ident: 10.1016/j.biortech.2012.07.010_b0075
  article-title: Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.09.064
– volume: 33
  start-page: 775
  year: 2003
  ident: 10.1016/j.biortech.2012.07.010_b0065
  article-title: Purification and characterization of a new low molecular weight endoxylanase from Penicillium capsulatum
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/S0141-0229(03)00176-5
– volume: 102
  start-page: 9096
  year: 2011
  ident: 10.1016/j.biortech.2012.07.010_b0095
  article-title: Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.06.059
– volume: 86
  start-page: 88
  year: 2004
  ident: 10.1016/j.biortech.2012.07.010_b0100
  article-title: Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20043
– volume: 160
  start-page: 45
  year: 1988
  ident: 10.1016/j.biortech.2012.07.010_b0090
  article-title: Fluorogenic and chromogenic glycosides as substrates and ligands of carbohydrases
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(88)60106-6
– volume: 55
  start-page: 639
  year: 2001
  ident: 10.1016/j.biortech.2012.07.010_b0070
  article-title: The importance of xylan for the strength properties of spruce kraft pulp fibre
  publication-title: Holzforschung
  doi: 10.1515/HF.2001.104
– volume: 59
  start-page: 621
  year: 1998
  ident: 10.1016/j.biortech.2012.07.010_b0045
  article-title: Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/(SICI)1097-0290(19980905)59:5<621::AID-BIT13>3.0.CO;2-C
– volume: 42
  start-page: 153
  year: 1993
  ident: 10.1016/j.biortech.2012.07.010_b0080
  article-title: Patterned secondary cell-wall assembly occurs in a self-perpetuating cascade
  publication-title: Acta Bot. Neerl.
  doi: 10.1111/j.1438-8677.1993.tb00692.x
– volume: 117
  start-page: 286
  year: 2012
  ident: 10.1016/j.biortech.2012.07.010_b0110
  article-title: Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.04.072
– volume: 193
  start-page: 265
  year: 1951
  ident: 10.1016/j.biortech.2012.07.010_b0040
  article-title: Protein measurement with the folin phenol reagent
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)52451-6
– volume: 15
  start-page: 537
  year: 2008
  ident: 10.1016/j.biortech.2012.07.010_b0015
  article-title: The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres
  publication-title: Cellulose
  doi: 10.1007/s10570-008-9209-5
– volume: 101
  start-page: 9624
  year: 2010
  ident: 10.1016/j.biortech.2012.07.010_b0060
  article-title: Xylooligosaccharides are strong inhibitors of cellulose hydrolysis by enzymes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.137
– volume: 100
  start-page: 4203
  year: 2009
  ident: 10.1016/j.biortech.2012.07.010_b0030
  article-title: Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.11.057
– volume: 102
  start-page: 9090
  year: 2011
  ident: 10.1016/j.biortech.2012.07.010_b0105
  article-title: Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.06.085
– volume: 20
  start-page: 45
  issue: 21
  year: 1989
  ident: 10.1016/j.biortech.2012.07.010_b0005
  article-title: The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/BF02936472
– volume: 149
  start-page: 152
  year: 1982
  ident: 10.1016/j.biortech.2012.07.010_b0085
  article-title: The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(82)81092-2
– volume: 98
  start-page: 2503
  year: 2007
  ident: 10.1016/j.biortech.2012.07.010_b0050
  article-title: Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.09.003
– volume: 19
  start-page: 5072
  year: 2003
  ident: 10.1016/j.biortech.2012.07.010_b0035
  article-title: Mechanism of assembly of xylan onto cellulose surfaces
  publication-title: Langmuir
  doi: 10.1021/la0341355
SSID ssj0003172
Score 2.4740498
Snippet [Display omitted] ► Xylan clearly inhibited the enzymatic hydrolysis of cellulose by cellulase. ► Xylan clearly inhibited the cellulose hydrolysis by...
Hemicelluloses have been found to be physical barriers in the hydrolysis of cellulose, and prevent the access of enzymes to cellulose surface. In addition,...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8
SubjectTerms antagonists & inhibitors
Betula
Betula - chemistry
cellobiose
Cellulase
Cellulases
Cellulases - antagonists & inhibitors
Cellulose
Cellulose - metabolism
cellulose 1,4-beta-cellobiosidase
chemistry
Chromatography, Ion Exchange
drug effects
endo-1,4-beta-glucanase
Endoglucanase
Enzymatic hydrolysis
enzymology
Hydrolysis
Hydrolysis - drug effects
Hypocrea jecorina
Inhibition
Lignin
Lignin - metabolism
Lignocellulose
metabolism
oats
pharmacology
Straw
Surface chemistry
Thermoascus
Thermoascus - enzymology
Trichoderma
Trichoderma - enzymology
Trichoderma reesei
Triticum
Triticum - metabolism
wheat straw
Xylan
Xylans
Xylans - pharmacology
Title Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases
URI https://dx.doi.org/10.1016/j.biortech.2012.07.010
https://www.ncbi.nlm.nih.gov/pubmed/22858461
https://www.proquest.com/docview/1038068731
https://www.proquest.com/docview/1365037360
https://www.proquest.com/docview/1500777116
https://www.proquest.com/docview/1671620198
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbSdGg7FGn6iNskYIGuskVRfGg0jAZuinpJDXgjKJFMFBhS4MfgDv3tvdMjTYHWGTpaPkLCfRTvO_H4HSGfgHSGQmYyCkL6KIUUA945qyIZOwWrITCSpovCt5mcztPLhVgckEl_FgbLKru1v13Tm9W6uzLqvDm6K8vRFZJvLSAC4YauUHiiPE0VzvLhz99lHhAfm50EMI7Q-sEp4dthXmJFa7Mpgd8E1TDGk7R_D1BPgq3_TUObcHRxRF52PJKO20d9RQ58dUxejK9XnZaGPybPJn0zN_jnge7gazJb7JYQomhZ3ZR5uaG--rFrpFvpzc6t6kalhNaBLsvrqsZP-9tlDWhSsGknLM13tL0OQXD9hswvPn-fTKOusUJUCKE2kc9SJ4RNvWtaT1vNikQJ5tPESqdi513QmQ6pkwUkiFzZnKk8cB8g2_JFpvlbcljVlT8htGCZ8CKo1EJ6y4PICs6ZZarQLji4wYCI3pum6FTHsfnF0vTlZbemR8EgCiZWBlAYkNH9uLtWd-PREVkPlvljBhkIDo-OPQF0jQWQ1mZ-lWDaGTMNqaAYkI895AYwQ9_aytfbtUFp-VhqxdkeGw4MmCsu4z02AjWVFGNyj41EpS-g43pA3rXz7t4tSaKRRbL3_-GAD-Q5_mqrFE_J4Wa19WfAtjb5efM6nZOn4y9fp7NfJVInhg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED4k6ZB2KNr0EffJAl1li6L40BgYDdw28ZIY8EZQIpkoMKTAj8Ed-tt71CNNgdYZukpH2LiP5H0nHr8D-Iyk0xciE5HnwkUpphi45oyMRGwl7obISJouCudTMZml3-Z8vgfj_i5MKKvs9v52T2926-7JqPPm6LYsRxeBfCuOESgc6HIp9-FRiss3tDEY_vxd54EBsjlKQOsomN-7JnwzzMtQ0tqcSoSPgnIYh6u0f49Q-97U_-ahTTw6fQZPOyJJTtr_-hz2XHUET06ulp2YhjuCw3HfzQ3f3BMefAHT-XaBMYqU1XWZl2viqh_bRruVXG_tsm5kSkjtyaK8qurwbX-zqBFOgjbtjCX5lrTPMQquXsLs9MvleBJ1nRWignO5jlyWWs5N6mzTe9ooWiSSU5cmRlgZW2e9ypRPrSgwQ2TS5FTmnjmP6ZYrMsVewUFVV-4YSEEz7riXqcH8lnmeFYxRQ2WhrLf4AwPgvTd10cmOh-4XC93Xl93oHgUdUNCx1IjCAEZ3425b4Y0HR2Q9WPqPKaQxOjw49hjR1QZBWunZRRLyzpgqzAX5AD71kGvELPjWVK7erHTQlo-FkozusGFIgZlkIt5hw4OokqRU7LARQeoL-bgawOt23t25JUlUoJH0zX844CMcTi7Pz_TZ1-n3t_A4vGlLFt_BwXq5ce-Req3zD83S-gWlXCkU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Xylans+inhibit+enzymatic+hydrolysis+of+lignocellulosic+materials+by+cellulases&rft.jtitle=Bioresource+technology&rft.au=Zhang%2C+Junhua&rft.au=Tang%2C+Ming&rft.au=Viikari%2C+Liisa&rft.date=2012-10-01&rft.issn=0960-8524&rft.volume=121&rft.spage=8&rft.epage=12&rft_id=info:doi/10.1016%2Fj.biortech.2012.07.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2012_07_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon