Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases
[Display omitted] ► Xylan clearly inhibited the enzymatic hydrolysis of cellulose by cellulase. ► Xylan clearly inhibited the cellulose hydrolysis by individual EGII, CBHI and CBHII. ► The solubility of oat spelt xylan did not clearly affect the hydrolysis of cellulose. ► After the addition of xylan...
Saved in:
Published in | Bioresource technology Vol. 121; pp. 8 - 12 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
► Xylan clearly inhibited the enzymatic hydrolysis of cellulose by cellulase. ► Xylan clearly inhibited the cellulose hydrolysis by individual EGII, CBHI and CBHII. ► The solubility of oat spelt xylan did not clearly affect the hydrolysis of cellulose. ► After the addition of xylans, cleaved cellobiose units by CBHI from cellulose chain decreased.
Hemicelluloses have been found to be physical barriers in the hydrolysis of cellulose, and prevent the access of enzymes to cellulose surface. In addition, soluble hemicelluloses may strongly inhibit the cellulase activity. In this work, birchwood xylan clearly inhibited the enzymatic hydrolysis of wheat straw, Avicel and nanocellulose by cellulases. Hydrolysis efficiencies of cellobiohydrolase I (CBHI, from Thermoascus aurantiacus), cellobiohydrolase II (CBHII, from Trichoderma reesei) and endoglucanase II (from T. aurantiacus) were clearly inhibited by birchwood xylan, respectively. The strongest inhibitory effect of birchwood xylan was observed on the hydrolysis of Avicel by CBHI and CBHII, as a dramatically decreased formation of the main product, cellobiose. After additions of soluble and insoluble oat spelt xylan, cleaved cellobiose units by CBHI from cellulose chain decreased from 8 to 4 and 6, respectively. The results in this work demonstrated that xylans clearly inhibited the hydrolysis efficiencies of both endoglucanase and cellobiohydrolase. |
---|---|
AbstractList | Hemicelluloses have been found to be physical barriers in the hydrolysis of cellulose, and prevent the access of enzymes to cellulose surface. In addition, soluble hemicelluloses may strongly inhibit the cellulase activity. In this work, birchwood xylan clearly inhibited the enzymatic hydrolysis of wheat straw, Avicel and nanocellulose by cellulases. Hydrolysis efficiencies of cellobiohydrolase I (CBHI, from Thermoascus aurantiacus), cellobiohydrolase II (CBHII, from Trichoderma reesei) and endoglucanase II (from T. aurantiacus) were clearly inhibited by birchwood xylan, respectively. The strongest inhibitory effect of birchwood xylan was observed on the hydrolysis of Avicel by CBHI and CBHII, as a dramatically decreased formation of the main product, cellobiose. After additions of soluble and insoluble oat spelt xylan, cleaved cellobiose units by CBHI from cellulose chain decreased from 8 to 4 and 6, respectively. The results in this work demonstrated that xylans clearly inhibited the hydrolysis efficiencies of both endoglucanase and cellobiohydrolase.Hemicelluloses have been found to be physical barriers in the hydrolysis of cellulose, and prevent the access of enzymes to cellulose surface. In addition, soluble hemicelluloses may strongly inhibit the cellulase activity. In this work, birchwood xylan clearly inhibited the enzymatic hydrolysis of wheat straw, Avicel and nanocellulose by cellulases. Hydrolysis efficiencies of cellobiohydrolase I (CBHI, from Thermoascus aurantiacus), cellobiohydrolase II (CBHII, from Trichoderma reesei) and endoglucanase II (from T. aurantiacus) were clearly inhibited by birchwood xylan, respectively. The strongest inhibitory effect of birchwood xylan was observed on the hydrolysis of Avicel by CBHI and CBHII, as a dramatically decreased formation of the main product, cellobiose. After additions of soluble and insoluble oat spelt xylan, cleaved cellobiose units by CBHI from cellulose chain decreased from 8 to 4 and 6, respectively. The results in this work demonstrated that xylans clearly inhibited the hydrolysis efficiencies of both endoglucanase and cellobiohydrolase. Hemicelluloses have been found to be physical barriers in the hydrolysis of cellulose, and prevent the access of enzymes to cellulose surface. In addition, soluble hemicelluloses may strongly inhibit the cellulase activity. In this work, birchwood xylan clearly inhibited the enzymatic hydrolysis of wheat straw, Avicel and nanocellulose by cellulases. Hydrolysis efficiencies of cellobiohydrolase I (CBHI, from Thermoascus aurantiacus), cellobiohydrolase II (CBHII, from Trichoderma reesei) and endoglucanase II (from T. aurantiacus) were clearly inhibited by birchwood xylan, respectively. The strongest inhibitory effect of birchwood xylan was observed on the hydrolysis of Avicel by CBHI and CBHII, as a dramatically decreased formation of the main product, cellobiose. After additions of soluble and insoluble oat spelt xylan, cleaved cellobiose units by CBHI from cellulose chain decreased from 8 to 4 and 6, respectively. The results in this work demonstrated that xylans clearly inhibited the hydrolysis efficiencies of both endoglucanase and cellobiohydrolase. [Display omitted] ► Xylan clearly inhibited the enzymatic hydrolysis of cellulose by cellulase. ► Xylan clearly inhibited the cellulose hydrolysis by individual EGII, CBHI and CBHII. ► The solubility of oat spelt xylan did not clearly affect the hydrolysis of cellulose. ► After the addition of xylans, cleaved cellobiose units by CBHI from cellulose chain decreased. Hemicelluloses have been found to be physical barriers in the hydrolysis of cellulose, and prevent the access of enzymes to cellulose surface. In addition, soluble hemicelluloses may strongly inhibit the cellulase activity. In this work, birchwood xylan clearly inhibited the enzymatic hydrolysis of wheat straw, Avicel and nanocellulose by cellulases. Hydrolysis efficiencies of cellobiohydrolase I (CBHI, from Thermoascus aurantiacus), cellobiohydrolase II (CBHII, from Trichoderma reesei) and endoglucanase II (from T. aurantiacus) were clearly inhibited by birchwood xylan, respectively. The strongest inhibitory effect of birchwood xylan was observed on the hydrolysis of Avicel by CBHI and CBHII, as a dramatically decreased formation of the main product, cellobiose. After additions of soluble and insoluble oat spelt xylan, cleaved cellobiose units by CBHI from cellulose chain decreased from 8 to 4 and 6, respectively. The results in this work demonstrated that xylans clearly inhibited the hydrolysis efficiencies of both endoglucanase and cellobiohydrolase. |
Author | Tang, Ming Zhang, Junhua Viikari, Liisa |
Author_xml | – sequence: 1 givenname: Junhua surname: Zhang fullname: Zhang, Junhua email: junhuazhang@nwsuaf.edu.cn organization: College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China – sequence: 2 givenname: Ming surname: Tang fullname: Tang, Ming organization: College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China – sequence: 3 givenname: Liisa surname: Viikari fullname: Viikari, Liisa organization: Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, FIN-00014 Helsinki, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22858461$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAQhi1URLeFVyg5csky48R2InEAVUArVXCAStwsx550vcrGxc5WCk-PV-leuCynkWa-f8byd8HOxjASY1cIawSU77frzoc4kd2sOSBfg1oDwgu2wkZVJW-VPGMraCWUjeD1ObtIaQsAFSr-ip1z3oimlrhi337NgxlT4ceN7_xU0Phn3pnJ22IzuxiGOflUhL4Y_MMYLA3DfggpTzND0ZshFd1cLH2TKL1mL_vcpDfP9ZLdf_n88_qmvPv-9fb6011phVBTSW3thDA1OeR1K0yDliuBVHMjnQJHrm_apq-dtIpjpUyHqusr6iW2ZNumumTvlr2PMfzeU5r0zqfDM8xIYZ80SoUyf8z_oAJAKYUoT6OVFFCpSsJpFKoGZHaBGb16Rvfdjpx-jH5n4qyPEjLwYQFsDClF6rX1U3YQxikaP-Rd-uBcb_XRuT4416B0dp7j8p_48cLJ4Nsl2JugzUP0Sd__yEANgE0rpcjEx4Wg7PLJU9TJehotOR_JTtoFf-rIXyaH0uQ |
CitedBy_id | crossref_primary_10_1016_j_ibiod_2019_104880 crossref_primary_10_1002_jctb_4470 crossref_primary_10_1186_1754_6834_6_15 crossref_primary_10_1016_j_biortech_2021_126662 crossref_primary_10_1016_j_jiec_2015_09_001 crossref_primary_10_1039_C8SE00287H crossref_primary_10_1016_j_enzmictec_2014_09_009 crossref_primary_10_1016_j_indcrop_2015_05_017 crossref_primary_10_1016_j_heliyon_2020_e05036 crossref_primary_10_1016_j_biombioe_2020_105639 crossref_primary_10_1016_j_ijbiomac_2022_03_158 crossref_primary_10_1111_febs_13265 crossref_primary_10_1016_j_biortech_2014_03_025 crossref_primary_10_1016_j_biortech_2015_05_035 crossref_primary_10_1186_s13068_017_0980_0 crossref_primary_10_1016_j_renene_2020_06_061 crossref_primary_10_1016_j_biombioe_2017_12_020 crossref_primary_10_1186_s13068_022_02110_4 crossref_primary_10_1016_j_renene_2022_04_058 crossref_primary_10_1039_C6RA14617A crossref_primary_10_1016_j_biortech_2018_11_024 crossref_primary_10_1016_j_ijbiomac_2017_07_039 crossref_primary_10_1039_D2GC02237K crossref_primary_10_1007_s00203_019_01672_6 crossref_primary_10_1016_j_ijbiomac_2019_01_087 crossref_primary_10_3389_fbioe_2022_825981 crossref_primary_10_1016_j_carbpol_2016_04_069 crossref_primary_10_1016_j_copbio_2014_11_024 crossref_primary_10_1016_j_ijbiomac_2024_133325 crossref_primary_10_1016_j_biortech_2014_08_082 crossref_primary_10_1016_j_carbpol_2015_07_016 crossref_primary_10_1186_2193_1801_3_365 crossref_primary_10_1016_j_biortech_2015_01_136 crossref_primary_10_1016_j_biortech_2015_06_074 crossref_primary_10_1186_s13068_017_0718_z crossref_primary_10_1371_journal_pone_0139195 crossref_primary_10_1016_j_biortech_2019_01_017 crossref_primary_10_1016_j_rser_2021_111622 crossref_primary_10_1021_acs_iecr_6b04733 crossref_primary_10_1016_j_biortech_2014_06_018 crossref_primary_10_3390_molecules23071647 crossref_primary_10_1016_j_aquatox_2025_107287 crossref_primary_10_1038_s41598_019_40053_3 crossref_primary_10_1016_j_biortech_2020_124472 crossref_primary_10_1016_j_ijbiomac_2024_136714 crossref_primary_10_1002_jctb_4521 crossref_primary_10_1016_j_ijbiomac_2023_125053 crossref_primary_10_1007_s00253_016_7726_y crossref_primary_10_1016_j_biortech_2015_04_008 crossref_primary_10_1007_s10570_020_03087_9 crossref_primary_10_1016_j_ibiod_2019_04_003 crossref_primary_10_1016_j_biortech_2017_08_155 crossref_primary_10_1016_j_enzmictec_2019_109447 crossref_primary_10_1016_j_ijbiomac_2020_03_249 crossref_primary_10_3390_catal10050536 crossref_primary_10_1007_s12155_020_10123_w crossref_primary_10_1021_acssuschemeng_7b00605 crossref_primary_10_1016_j_chemosphere_2018_10_092 crossref_primary_10_1016_j_biortech_2018_05_057 crossref_primary_10_1021_bm400338b crossref_primary_10_2139_ssrn_3954353 crossref_primary_10_1016_j_biortech_2016_08_035 crossref_primary_10_1089_ind_2024_0022 crossref_primary_10_1007_s10570_015_0602_6 crossref_primary_10_1017_S1431927614000063 crossref_primary_10_1016_j_biortech_2012_11_122 crossref_primary_10_1016_j_indcrop_2015_11_021 crossref_primary_10_1128_AEM_03677_14 crossref_primary_10_1016_j_biortech_2014_02_096 crossref_primary_10_1039_D4SU00006D crossref_primary_10_1128_AEM_00282_18 crossref_primary_10_1186_s13068_022_02119_9 crossref_primary_10_3390_computation3030336 crossref_primary_10_1016_j_procbio_2013_09_012 crossref_primary_10_4236_aer_2016_42005 crossref_primary_10_1016_j_greenca_2024_01_003 crossref_primary_10_3390_fermentation9080775 crossref_primary_10_1016_j_biortech_2013_03_033 crossref_primary_10_1016_j_biombioe_2016_03_012 crossref_primary_10_1016_j_biortech_2013_04_103 crossref_primary_10_1186_s13568_016_0196_x crossref_primary_10_1016_j_indcrop_2022_114654 crossref_primary_10_1016_j_renene_2024_120281 crossref_primary_10_1016_j_biortech_2019_122240 crossref_primary_10_1016_j_renene_2019_06_120 crossref_primary_10_1016_j_enconman_2014_09_029 crossref_primary_10_1007_s10570_016_1117_5 crossref_primary_10_1007_s12649_018_0218_9 crossref_primary_10_1016_j_biortech_2013_07_124 crossref_primary_10_1039_C5GC01748C crossref_primary_10_1089_ind_2020_0009 crossref_primary_10_1007_s12010_014_1140_7 crossref_primary_10_1042_BCJ20200083 crossref_primary_10_1186_s13068_020_01697_w crossref_primary_10_1186_s13068_019_1417_8 crossref_primary_10_1007_s10163_024_02016_3 crossref_primary_10_1007_s12155_024_10745_4 crossref_primary_10_1016_j_carbpol_2022_119221 crossref_primary_10_1016_j_indcrop_2015_05_050 crossref_primary_10_1002_elsc_202100053 crossref_primary_10_1016_j_biombioe_2014_01_011 crossref_primary_10_1002_slct_202200423 crossref_primary_10_1021_acssuschemeng_7b02361 crossref_primary_10_1016_j_biombioe_2015_03_020 crossref_primary_10_3390_ma13225062 crossref_primary_10_1016_j_biombioe_2025_107693 crossref_primary_10_1016_j_biortech_2017_04_040 crossref_primary_10_1016_j_biortech_2017_08_184 crossref_primary_10_1007_s00253_016_7562_0 crossref_primary_10_1007_s13197_018_3499_x crossref_primary_10_1186_s13068_017_0970_2 crossref_primary_10_1186_s13068_015_0282_3 crossref_primary_10_1016_j_fuel_2015_08_045 crossref_primary_10_1016_j_biortech_2024_130460 crossref_primary_10_1007_s10529_014_1705_0 crossref_primary_10_1016_j_biortech_2014_07_097 crossref_primary_10_1007_s12602_019_09617_7 crossref_primary_10_3390_pr8070860 crossref_primary_10_1007_s12010_024_04922_6 crossref_primary_10_1186_s12934_021_01619_x crossref_primary_10_1007_s10570_016_1098_4 crossref_primary_10_1186_s13068_014_0185_8 crossref_primary_10_1016_j_bej_2016_10_004 crossref_primary_10_1016_j_indcrop_2018_12_077 crossref_primary_10_1016_j_cej_2018_04_057 crossref_primary_10_3390_pr9060969 crossref_primary_10_1016_j_biombioe_2017_12_005 crossref_primary_10_1002_bbb_2008 crossref_primary_10_1016_j_fuel_2019_02_043 crossref_primary_10_1016_j_jclepro_2022_132351 crossref_primary_10_1007_s11694_021_00815_y crossref_primary_10_1016_j_renene_2019_04_131 crossref_primary_10_1016_j_indcrop_2024_118840 crossref_primary_10_1007_s00253_020_10427_z crossref_primary_10_1016_j_biombioe_2024_107375 crossref_primary_10_1021_acs_energyfuels_8b01424 crossref_primary_10_1002_btpr_2306 crossref_primary_10_1021_acssuschemeng_6b00481 crossref_primary_10_1021_acs_biomac_9b01694 crossref_primary_10_5897_AJAR2015_9487 crossref_primary_10_1007_s10570_019_02650_3 crossref_primary_10_1016_j_biombioe_2020_105623 crossref_primary_10_1016_j_biortech_2022_127966 crossref_primary_10_1016_j_eti_2021_101882 crossref_primary_10_1007_s00226_015_0757_1 crossref_primary_10_1016_j_enconman_2017_10_089 crossref_primary_10_1016_j_rser_2021_110996 crossref_primary_10_3390_en12091606 crossref_primary_10_1007_s10570_021_03688_y crossref_primary_10_1186_1754_6834_6_135 crossref_primary_10_1016_j_indcrop_2018_02_011 crossref_primary_10_1080_10826068_2020_1734939 |
Cites_doi | 10.1021/bm200437m 10.1016/j.jbiotec.2003.09.011 10.1016/j.carbpol.2006.09.006 10.1016/j.biortech.2007.09.064 10.1016/S0141-0229(03)00176-5 10.1016/j.biortech.2011.06.059 10.1002/bit.20043 10.1016/0076-6879(88)60106-6 10.1515/HF.2001.104 10.1002/(SICI)1097-0290(19980905)59:5<621::AID-BIT13>3.0.CO;2-C 10.1111/j.1438-8677.1993.tb00692.x 10.1016/j.biortech.2012.04.072 10.1016/S0021-9258(19)52451-6 10.1007/s10570-008-9209-5 10.1016/j.biortech.2010.06.137 10.1016/j.biortech.2008.11.057 10.1016/j.biortech.2011.06.085 10.1007/BF02936472 10.1016/0014-5793(82)81092-2 10.1016/j.biortech.2006.09.003 10.1021/la0341355 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd Copyright © 2012 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: Copyright © 2012 Elsevier Ltd. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 |
DOI | 10.1016/j.biortech.2012.07.010 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic MEDLINE Civil Engineering Abstracts AGRICOLA Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 12 |
ExternalDocumentID | 22858461 10_1016_j_biortech_2012_07_010 US201400189665 S0960852412010577 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 |
ID | FETCH-LOGICAL-c557t-e94d55a4ed12495a81c2751e42a6d70dedf898f4d6c72137ab17bf3ef619ec983 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Thu Jul 10 23:47:07 EDT 2025 Fri Jul 11 15:28:17 EDT 2025 Fri Jul 11 11:37:25 EDT 2025 Fri Jul 11 02:38:47 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Tue Jul 01 02:42:59 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 Wed Dec 27 19:16:55 EST 2023 Fri Feb 23 02:34:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | EG MUL Enzymatic hydrolysis Cellulose CBH Xylan DM CEL HPAEC-PAD βG Cellulase Inhibition XOS |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-e94d55a4ed12495a81c2751e42a6d70dedf898f4d6c72137ab17bf3ef619ec983 |
Notes | http://dx.doi.org/10.1016/j.biortech.2012.07.010 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22858461 |
PQID | 1038068731 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1671620198 proquest_miscellaneous_1500777116 proquest_miscellaneous_1365037360 proquest_miscellaneous_1038068731 pubmed_primary_22858461 crossref_citationtrail_10_1016_j_biortech_2012_07_010 crossref_primary_10_1016_j_biortech_2012_07_010 fao_agris_US201400189665 elsevier_sciencedirect_doi_10_1016_j_biortech_2012_07_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-01 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ryan, Nolan, Thompson, Gubitz, Savage, Tuohy (b0065) 2003; 33 Schönberg, Oksanen, Suurnäkki, Kettunen, Buchert (b0070) 2001; 55 van Tilbeurgh, Claeyssens, de Bruyne (b0085) 1982; 149 Qing, Yang, Wyman (b0060) 2010; 101 Kabel, van den Borne, Vincken, Voragen, Schols (b0010) 2007; 69 Medve, Karlsson, Lee, Tjerneld (b0045) 1998; 59 Várnai, Huikko, Pere, Siika-aho, Viikari (b0095) 2011; 102 Köhnke, Pujolras, Roubroeks, Gatenholm (b0015) 2008; 15 Zhang, Viikari (b0110) 2012; 117 Linder, Bergman, Bodin, Gatenholm (b0035) 2003; 19 Selig, Knoshaug, Adney, Himmel, Decker (b0075) 2008; 99 Köhnke, T., 2010. Adsorption of xylans on cellulosic fibres- Influence of xylan composition on adsorption characteristics and kraft pulp properties. Chalmers University of Technology, Ph.D. theses. Lowry, Roseborough, Farr, Randall (b0040) 1951; 193 Kumar, Wyman (b0030) 2009; 100 Yang, Wyman (b0100) 2004; 86 Palonen, Tjerneld, Zacchi, Tenkanen (b0055) 2004; 107 Taylor, Haigler (b0080) 1993; 42 Öhgren, Bura, Saddler, Zacchi (b0050) 2007; 98 van Tilbeurgh, Loontiens, de Bruyne, Claeyssens (b0090) 1988; 160 Zhang, Tuomainen, Siika-aho, Viikari (b0105) 2011; 102 Köhnke, Östlund, Brelid (b0025) 2011; 12 Grohmann, Mitchell, Himmel, Dale, Schroeder (b0005) 1989; 20 Öhgren (10.1016/j.biortech.2012.07.010_b0050) 2007; 98 Kumar (10.1016/j.biortech.2012.07.010_b0030) 2009; 100 van Tilbeurgh (10.1016/j.biortech.2012.07.010_b0090) 1988; 160 Linder (10.1016/j.biortech.2012.07.010_b0035) 2003; 19 Palonen (10.1016/j.biortech.2012.07.010_b0055) 2004; 107 Selig (10.1016/j.biortech.2012.07.010_b0075) 2008; 99 Köhnke (10.1016/j.biortech.2012.07.010_b0015) 2008; 15 Yang (10.1016/j.biortech.2012.07.010_b0100) 2004; 86 van Tilbeurgh (10.1016/j.biortech.2012.07.010_b0085) 1982; 149 Ryan (10.1016/j.biortech.2012.07.010_b0065) 2003; 33 Zhang (10.1016/j.biortech.2012.07.010_b0110) 2012; 117 Qing (10.1016/j.biortech.2012.07.010_b0060) 2010; 101 Lowry (10.1016/j.biortech.2012.07.010_b0040) 1951; 193 10.1016/j.biortech.2012.07.010_b0020 Schönberg (10.1016/j.biortech.2012.07.010_b0070) 2001; 55 Várnai (10.1016/j.biortech.2012.07.010_b0095) 2011; 102 Medve (10.1016/j.biortech.2012.07.010_b0045) 1998; 59 Kabel (10.1016/j.biortech.2012.07.010_b0010) 2007; 69 Köhnke (10.1016/j.biortech.2012.07.010_b0025) 2011; 12 Taylor (10.1016/j.biortech.2012.07.010_b0080) 1993; 42 Zhang (10.1016/j.biortech.2012.07.010_b0105) 2011; 102 Grohmann (10.1016/j.biortech.2012.07.010_b0005) 1989; 20 |
References_xml | – volume: 19 start-page: 5072 year: 2003 end-page: 5077 ident: b0035 article-title: Mechanism of assembly of xylan onto cellulose surfaces publication-title: Langmuir – volume: 98 start-page: 2503 year: 2007 end-page: 2510 ident: b0050 article-title: Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover publication-title: Bioresour. Technol. – volume: 149 start-page: 152 year: 1982 end-page: 156 ident: b0085 article-title: The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes publication-title: FEBS Lett. – volume: 86 start-page: 88 year: 2004 end-page: 95 ident: b0100 article-title: Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose publication-title: Biotechnol. Bioeng. – volume: 69 start-page: 94 year: 2007 end-page: 105 ident: b0010 article-title: Structural differences of xylans affect their interaction with cellulose publication-title: Carbohydr. Polym. – volume: 193 start-page: 265 year: 1951 end-page: 275 ident: b0040 article-title: Protein measurement with the folin phenol reagent publication-title: J. Biol. Chem. – volume: 33 start-page: 775 year: 2003 end-page: 785 ident: b0065 article-title: Purification and characterization of a new low molecular weight endoxylanase from publication-title: Enzyme Microb. Technol. – volume: 20 start-page: 45 year: 1989 end-page: 61 ident: b0005 article-title: The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis publication-title: Appl. Biochem. Biotechnol. – volume: 99 start-page: 4997 year: 2008 end-page: 5005 ident: b0075 article-title: Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities publication-title: Bioresour. Technol. – volume: 107 start-page: 65 year: 2004 end-page: 72 ident: b0055 article-title: Adsorption of publication-title: J. Biotechnol. – volume: 15 start-page: 537 year: 2008 end-page: 546 ident: b0015 article-title: The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres publication-title: Cellulose – volume: 101 start-page: 9624 year: 2010 end-page: 9630 ident: b0060 article-title: Xylooligosaccharides are strong inhibitors of cellulose hydrolysis by enzymes publication-title: Bioresour. Technol. – volume: 102 start-page: 9096 year: 2011 end-page: 9104 ident: b0095 article-title: Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood publication-title: Bioresour. Technol. – volume: 55 start-page: 639 year: 2001 end-page: 644 ident: b0070 article-title: The importance of xylan for the strength properties of spruce kraft pulp fibre publication-title: Holzforschung – reference: Köhnke, T., 2010. Adsorption of xylans on cellulosic fibres- Influence of xylan composition on adsorption characteristics and kraft pulp properties. Chalmers University of Technology, Ph.D. theses. – volume: 12 start-page: 2633 year: 2011 end-page: 2641 ident: b0025 article-title: Adsorption of arabinoxylan on cellulosic surface. Influence of degree of substitution and substitution pattern on adsorption characteristics publication-title: Biomacromolecules – volume: 160 start-page: 45 year: 1988 end-page: 59 ident: b0090 article-title: Fluorogenic and chromogenic glycosides as substrates and ligands of carbohydrases publication-title: Methods Enzymol. – volume: 117 start-page: 286 year: 2012 end-page: 291 ident: b0110 article-title: Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from publication-title: Bioresour. Technol. – volume: 59 start-page: 621 year: 1998 end-page: 634 ident: b0045 article-title: Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from publication-title: Biotechnol. Bioeng. – volume: 100 start-page: 4203 year: 2009 end-page: 4213 ident: b0030 article-title: Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies publication-title: Bioresour. Technol. – volume: 42 start-page: 153 year: 1993 end-page: 163 ident: b0080 article-title: Patterned secondary cell-wall assembly occurs in a self-perpetuating cascade publication-title: Acta Bot. Neerl. – volume: 102 start-page: 9090 year: 2011 end-page: 9095 ident: b0105 article-title: Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis publication-title: Bioresour. Technol. – ident: 10.1016/j.biortech.2012.07.010_b0020 – volume: 12 start-page: 2633 year: 2011 ident: 10.1016/j.biortech.2012.07.010_b0025 article-title: Adsorption of arabinoxylan on cellulosic surface. Influence of degree of substitution and substitution pattern on adsorption characteristics publication-title: Biomacromolecules doi: 10.1021/bm200437m – volume: 107 start-page: 65 year: 2004 ident: 10.1016/j.biortech.2012.07.010_b0055 article-title: Adsorption of Trichoderma reesei CBHI and EGII and their catalytic domains on steam pretreated softwood and isolated lignin publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2003.09.011 – volume: 69 start-page: 94 year: 2007 ident: 10.1016/j.biortech.2012.07.010_b0010 article-title: Structural differences of xylans affect their interaction with cellulose publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2006.09.006 – volume: 99 start-page: 4997 year: 2008 ident: 10.1016/j.biortech.2012.07.010_b0075 article-title: Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.09.064 – volume: 33 start-page: 775 year: 2003 ident: 10.1016/j.biortech.2012.07.010_b0065 article-title: Purification and characterization of a new low molecular weight endoxylanase from Penicillium capsulatum publication-title: Enzyme Microb. Technol. doi: 10.1016/S0141-0229(03)00176-5 – volume: 102 start-page: 9096 year: 2011 ident: 10.1016/j.biortech.2012.07.010_b0095 article-title: Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.06.059 – volume: 86 start-page: 88 year: 2004 ident: 10.1016/j.biortech.2012.07.010_b0100 article-title: Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20043 – volume: 160 start-page: 45 year: 1988 ident: 10.1016/j.biortech.2012.07.010_b0090 article-title: Fluorogenic and chromogenic glycosides as substrates and ligands of carbohydrases publication-title: Methods Enzymol. doi: 10.1016/0076-6879(88)60106-6 – volume: 55 start-page: 639 year: 2001 ident: 10.1016/j.biortech.2012.07.010_b0070 article-title: The importance of xylan for the strength properties of spruce kraft pulp fibre publication-title: Holzforschung doi: 10.1515/HF.2001.104 – volume: 59 start-page: 621 year: 1998 ident: 10.1016/j.biortech.2012.07.010_b0045 article-title: Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes publication-title: Biotechnol. Bioeng. doi: 10.1002/(SICI)1097-0290(19980905)59:5<621::AID-BIT13>3.0.CO;2-C – volume: 42 start-page: 153 year: 1993 ident: 10.1016/j.biortech.2012.07.010_b0080 article-title: Patterned secondary cell-wall assembly occurs in a self-perpetuating cascade publication-title: Acta Bot. Neerl. doi: 10.1111/j.1438-8677.1993.tb00692.x – volume: 117 start-page: 286 year: 2012 ident: 10.1016/j.biortech.2012.07.010_b0110 article-title: Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.04.072 – volume: 193 start-page: 265 year: 1951 ident: 10.1016/j.biortech.2012.07.010_b0040 article-title: Protein measurement with the folin phenol reagent publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)52451-6 – volume: 15 start-page: 537 year: 2008 ident: 10.1016/j.biortech.2012.07.010_b0015 article-title: The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres publication-title: Cellulose doi: 10.1007/s10570-008-9209-5 – volume: 101 start-page: 9624 year: 2010 ident: 10.1016/j.biortech.2012.07.010_b0060 article-title: Xylooligosaccharides are strong inhibitors of cellulose hydrolysis by enzymes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.137 – volume: 100 start-page: 4203 year: 2009 ident: 10.1016/j.biortech.2012.07.010_b0030 article-title: Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.11.057 – volume: 102 start-page: 9090 year: 2011 ident: 10.1016/j.biortech.2012.07.010_b0105 article-title: Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.06.085 – volume: 20 start-page: 45 issue: 21 year: 1989 ident: 10.1016/j.biortech.2012.07.010_b0005 article-title: The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/BF02936472 – volume: 149 start-page: 152 year: 1982 ident: 10.1016/j.biortech.2012.07.010_b0085 article-title: The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes publication-title: FEBS Lett. doi: 10.1016/0014-5793(82)81092-2 – volume: 98 start-page: 2503 year: 2007 ident: 10.1016/j.biortech.2012.07.010_b0050 article-title: Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.09.003 – volume: 19 start-page: 5072 year: 2003 ident: 10.1016/j.biortech.2012.07.010_b0035 article-title: Mechanism of assembly of xylan onto cellulose surfaces publication-title: Langmuir doi: 10.1021/la0341355 |
SSID | ssj0003172 |
Score | 2.4740498 |
Snippet | [Display omitted]
► Xylan clearly inhibited the enzymatic hydrolysis of cellulose by cellulase. ► Xylan clearly inhibited the cellulose hydrolysis by... Hemicelluloses have been found to be physical barriers in the hydrolysis of cellulose, and prevent the access of enzymes to cellulose surface. In addition,... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8 |
SubjectTerms | antagonists & inhibitors Betula Betula - chemistry cellobiose Cellulase Cellulases Cellulases - antagonists & inhibitors Cellulose Cellulose - metabolism cellulose 1,4-beta-cellobiosidase chemistry Chromatography, Ion Exchange drug effects endo-1,4-beta-glucanase Endoglucanase Enzymatic hydrolysis enzymology Hydrolysis Hydrolysis - drug effects Hypocrea jecorina Inhibition Lignin Lignin - metabolism Lignocellulose metabolism oats pharmacology Straw Surface chemistry Thermoascus Thermoascus - enzymology Trichoderma Trichoderma - enzymology Trichoderma reesei Triticum Triticum - metabolism wheat straw Xylan Xylans Xylans - pharmacology |
Title | Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases |
URI | https://dx.doi.org/10.1016/j.biortech.2012.07.010 https://www.ncbi.nlm.nih.gov/pubmed/22858461 https://www.proquest.com/docview/1038068731 https://www.proquest.com/docview/1365037360 https://www.proquest.com/docview/1500777116 https://www.proquest.com/docview/1671620198 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbSdGg7FGn6iNskYIGuskVRfGg0jAZuinpJDXgjKJFMFBhS4MfgDv3tvdMjTYHWGTpaPkLCfRTvO_H4HSGfgHSGQmYyCkL6KIUUA945qyIZOwWrITCSpovCt5mcztPLhVgckEl_FgbLKru1v13Tm9W6uzLqvDm6K8vRFZJvLSAC4YauUHiiPE0VzvLhz99lHhAfm50EMI7Q-sEp4dthXmJFa7Mpgd8E1TDGk7R_D1BPgq3_TUObcHRxRF52PJKO20d9RQ58dUxejK9XnZaGPybPJn0zN_jnge7gazJb7JYQomhZ3ZR5uaG--rFrpFvpzc6t6kalhNaBLsvrqsZP-9tlDWhSsGknLM13tL0OQXD9hswvPn-fTKOusUJUCKE2kc9SJ4RNvWtaT1vNikQJ5tPESqdi513QmQ6pkwUkiFzZnKk8cB8g2_JFpvlbcljVlT8htGCZ8CKo1EJ6y4PICs6ZZarQLji4wYCI3pum6FTHsfnF0vTlZbemR8EgCiZWBlAYkNH9uLtWd-PREVkPlvljBhkIDo-OPQF0jQWQ1mZ-lWDaGTMNqaAYkI895AYwQ9_aytfbtUFp-VhqxdkeGw4MmCsu4z02AjWVFGNyj41EpS-g43pA3rXz7t4tSaKRRbL3_-GAD-Q5_mqrFE_J4Wa19WfAtjb5efM6nZOn4y9fp7NfJVInhg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED4k6ZB2KNr0EffJAl1li6L40BgYDdw28ZIY8EZQIpkoMKTAj8Ed-tt71CNNgdYZukpH2LiP5H0nHr8D-Iyk0xciE5HnwkUpphi45oyMRGwl7obISJouCudTMZml3-Z8vgfj_i5MKKvs9v52T2926-7JqPPm6LYsRxeBfCuOESgc6HIp9-FRiss3tDEY_vxd54EBsjlKQOsomN-7JnwzzMtQ0tqcSoSPgnIYh6u0f49Q-97U_-ahTTw6fQZPOyJJTtr_-hz2XHUET06ulp2YhjuCw3HfzQ3f3BMefAHT-XaBMYqU1XWZl2viqh_bRruVXG_tsm5kSkjtyaK8qurwbX-zqBFOgjbtjCX5lrTPMQquXsLs9MvleBJ1nRWignO5jlyWWs5N6mzTe9ooWiSSU5cmRlgZW2e9ypRPrSgwQ2TS5FTmnjmP6ZYrMsVewUFVV-4YSEEz7riXqcH8lnmeFYxRQ2WhrLf4AwPgvTd10cmOh-4XC93Xl93oHgUdUNCx1IjCAEZ3425b4Y0HR2Q9WPqPKaQxOjw49hjR1QZBWunZRRLyzpgqzAX5AD71kGvELPjWVK7erHTQlo-FkozusGFIgZlkIt5hw4OokqRU7LARQeoL-bgawOt23t25JUlUoJH0zX844CMcTi7Pz_TZ1-n3t_A4vGlLFt_BwXq5ce-Req3zD83S-gWlXCkU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Xylans+inhibit+enzymatic+hydrolysis+of+lignocellulosic+materials+by+cellulases&rft.jtitle=Bioresource+technology&rft.au=Zhang%2C+Junhua&rft.au=Tang%2C+Ming&rft.au=Viikari%2C+Liisa&rft.date=2012-10-01&rft.issn=0960-8524&rft.volume=121&rft.spage=8&rft.epage=12&rft_id=info:doi/10.1016%2Fj.biortech.2012.07.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2012_07_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |