Accurate Determination of Blood–Brain Barrier Permeability Using Dynamic Contrast-Enhanced T1-Weighted MRI: A Simulation and in vivo Study on Healthy Subjects and Multiple Sclerosis Patients

Dynamic contrast-enhanced magnetic resonance imaging (DCE–MRI) is increasingly used to estimate permeability in situations with subtle blood–brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selec...

Full description

Saved in:
Bibliographic Details
Published inJournal of cerebral blood flow and metabolism Vol. 34; no. 10; pp. 1655 - 1665
Main Authors Cramer, Stig P, Larsson, Henrik BW
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.10.2014
Sage Publications Ltd
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dynamic contrast-enhanced magnetic resonance imaging (DCE–MRI) is increasingly used to estimate permeability in situations with subtle blood–brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection of total measurement duration, temporal resolution, and modeling approach under varying physiologic circumstances. To estimate accuracy and precision of the DCE–MRI method we generated simulated data using a two-compartment model and progressively down-sampled and truncated the data to mimic low temporal resolution and short total measurement duration. Model fit was performed with the Patlak, the extended Tofts, and the Tikhonov two-compartment (Tik-2CM) models. Overall, 17 healthy controls were scanned to obtain in vivo data. Long total measurement duration (15 minutes) and high temporal resolution (1.25 seconds) greatly improved accuracy and precision for all three models, enabling us to differentiate values of permeability as low as 0.1 ml/100 g/min from zero. The Patlak model yielded highest accuracy and precision for permeability values <0.3 ml/100 g/min, but for higher values the Tik-2CM performed best. Our results emphasize the importance of optimal parameter setup and model selection when characterizing low BBB permeability.
AbstractList Dynamic contrast-enhanced magnetic resonance imaging (DCE–MRI) is increasingly used to estimate permeability in situations with subtle blood–brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection of total measurement duration, temporal resolution, and modeling approach under varying physiologic circumstances. To estimate accuracy and precision of the DCE–MRI method we generated simulated data using a two-compartment model and progressively down-sampled and truncated the data to mimic low temporal resolution and short total measurement duration. Model fit was performed with the Patlak, the extended Tofts, and the Tikhonov two-compartment (Tik-2CM) models. Overall, 17 healthy controls were scanned to obtain in vivo data. Long total measurement duration (15 minutes) and high temporal resolution (1.25 seconds) greatly improved accuracy and precision for all three models, enabling us to differentiate values of permeability as low as 0.1 ml/100 g/min from zero. The Patlak model yielded highest accuracy and precision for permeability values <0.3 ml/100 g/min, but for higher values the Tik-2CM performed best. Our results emphasize the importance of optimal parameter setup and model selection when characterizing low BBB permeability.
Dynamic contrast-enhanced magnetic resonance imaging (DCE–MRI) is increasingly used to estimate permeability in situations with subtle blood–brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection of total measurement duration, temporal resolution, and modeling approach under varying physiologic circumstances. To estimate accuracy and precision of the DCE–MRI method we generated simulated data using a two-compartment model and progressively down-sampled and truncated the data to mimic low temporal resolution and short total measurement duration. Model fit was performed with the Patlak, the extended Tofts, and the Tikhonov two-compartment (Tik-2CM) models. Overall, 17 healthy controls were scanned to obtain in vivo data. Long total measurement duration (15 minutes) and high temporal resolution (1.25 seconds) greatly improved accuracy and precision for all three models, enabling us to differentiate values of permeability as low as 0.1 ml/100 g/min from zero. The Patlak model yielded highest accuracy and precision for permeability values <0.3 ml/100 g/min, but for higher values the Tik-2CM performed best. Our results emphasize the importance of optimal parameter setup and model selection when characterizing low BBB permeability.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used to estimate permeability in situations with subtle blood-brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection of total measurement duration, temporal resolution, and modeling approach under varying physiologic circumstances. To estimate accuracy and precision of the DCE-MRI method we generated simulated data using a two-compartment model and progressively down-sampled and truncated the data to mimic low temporal resolution and short total measurement duration. Model fit was performed with the Patlak, the extended Tofts, and the Tikhonov two-compartment (Tik-2CM) models. Overall, 17 healthy controls were scanned to obtain in vivo data. Long total measurement duration (15 minutes) and high temporal resolution (1.25 seconds) greatly improved accuracy and precision for all three models, enabling us to differentiate values of permeability as low as 0.1ml/100g/min from zero. The Patlak model yielded highest accuracy and precision for permeability values <0.3ml/100g/min, but for higher values the Tik-2CM performed best. Our results emphasize the importance of optimal parameter setup and model selection when characterizing low BBB permeability.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used to estimate permeability in situations with subtle blood-brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection of total measurement duration, temporal resolution, and modeling approach under varying physiologic circumstances. To estimate accuracy and precision of the DCE-MRI method we generated simulated data using a two-compartment model and progressively down-sampled and truncated the data to mimic low temporal resolution and short total measurement duration. Model fit was performed with the Patlak, the extended Tofts, and the Tikhonov two-compartment (Tik-2CM) models. Overall, 17 healthy controls were scanned to obtain in vivo data. Long total measurement duration (15 minutes) and high temporal resolution (1.25 seconds) greatly improved accuracy and precision for all three models, enabling us to differentiate values of permeability as low as 0.1 ml/100 g/min from zero. The Patlak model yielded highest accuracy and precision for permeability values <0.3 ml/100 g/min, but for higher values the Tik-2CM performed best. Our results emphasize the importance of optimal parameter setup and model selection when characterizing low BBB permeability.Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used to estimate permeability in situations with subtle blood-brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection of total measurement duration, temporal resolution, and modeling approach under varying physiologic circumstances. To estimate accuracy and precision of the DCE-MRI method we generated simulated data using a two-compartment model and progressively down-sampled and truncated the data to mimic low temporal resolution and short total measurement duration. Model fit was performed with the Patlak, the extended Tofts, and the Tikhonov two-compartment (Tik-2CM) models. Overall, 17 healthy controls were scanned to obtain in vivo data. Long total measurement duration (15 minutes) and high temporal resolution (1.25 seconds) greatly improved accuracy and precision for all three models, enabling us to differentiate values of permeability as low as 0.1 ml/100 g/min from zero. The Patlak model yielded highest accuracy and precision for permeability values <0.3 ml/100 g/min, but for higher values the Tik-2CM performed best. Our results emphasize the importance of optimal parameter setup and model selection when characterizing low BBB permeability.
Author Cramer, Stig P
Larsson, Henrik BW
Author_xml – sequence: 1
  givenname: Stig P
  surname: Cramer
  fullname: Cramer, Stig P
– sequence: 2
  givenname: Henrik BW
  surname: Larsson
  fullname: Larsson, Henrik BW
  email: henrik.larsson@regionh.dk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25074746$$D View this record in MEDLINE/PubMed
BookMark eNqFktFu0zAUhiM0xLrBLZfIEjdIKMV2YifhAqntBpu0iYlugrvIcezWlWMX26mUO96BF-JZeBLcdkxjAnFly_7-3-cc_0fJgbFGJMlzBMcIZuWbFW9kN8YQ5WOE6aNkhAip0gIiepCMIC5QSovyy2Fy5P0KQlhmhDxJDjGBRV7kdJT8mHDeOxYEOBFBuE4ZFpQ1wEow1da2P799nzqmDJgy55Rw4CpCgjVKqzCAG6_MApwMhnWKg5k1wTEf0lOzZIaLFlyj9LNQi2WI-8tP52_BBMxV1-v9G8y0IDpv1MaCeejbAcTDM8F0WA5g3jcrwYPfUZe9DmqtBZhzLZz1yoOr6CFM8E-Tx5JpL57drsfJzfvT69lZevHxw_lscpFyQoqQtpK3rcQVbUklG0kY51krMBW5ZJUscMVIVkkkm6qEGDEsc0JYwVk8bpushNlx8m7vu-6bTrRcbHvV9dqpjrmhtkzVf94YtawXdlPnmFYFzqPBq1sDZ7_2woe6U54LrZkRtvc1ohhTiHFW_h8ltIAEZrCI6MsH6Mr2zsRJbClKcU7LreGL-8XfVf07BxEY7wEep-udkHcIgvU2aPUuaPU2aHUMWhTkDwRchd23xuaV_rfs9V7m2ULcK_Xv9C-nOOsa
CitedBy_id crossref_primary_10_1118_1_4932218
crossref_primary_10_1002_nbm_4570
crossref_primary_10_1016_j_mri_2021_07_005
crossref_primary_10_1093_brain_awaa140
crossref_primary_10_1016_j_mri_2015_06_021
crossref_primary_10_1097_RLI_0000000000000320
crossref_primary_10_1227_neu_0000000000003159
crossref_primary_10_3348_kjr_2020_0816
crossref_primary_10_1002_mp_13885
crossref_primary_10_1515_med_2020_0100
crossref_primary_10_1002_mrm_25793
crossref_primary_10_1016_j_neuroimage_2021_117786
crossref_primary_10_1007_s11357_020_00282_1
crossref_primary_10_1016_j_neuroimage_2018_04_069
crossref_primary_10_1016_j_cpet_2021_06_009
crossref_primary_10_1097_QAD_0000000000002300
crossref_primary_10_1371_journal_pone_0299764
crossref_primary_10_1113_JP276887
crossref_primary_10_1162_imag_a_00324
crossref_primary_10_3389_fnins_2025_1546236
crossref_primary_10_1186_s12880_015_0062_3
crossref_primary_10_1002_mrm_28629
crossref_primary_10_1016_j_neuroimage_2015_10_018
crossref_primary_10_1016_j_jalz_2019_01_013
crossref_primary_10_1093_neuros_nyx357
crossref_primary_10_1148_radiol_230701
crossref_primary_10_1007_s10334_016_0579_7
crossref_primary_10_1016_j_ejrad_2015_09_007
crossref_primary_10_1007_s11936_017_0555_1
crossref_primary_10_2967_jnumed_117_203109
crossref_primary_10_13104_imri_2022_26_4_256
crossref_primary_10_1007_s00415_017_8727_1
crossref_primary_10_1016_j_bbi_2017_10_014
crossref_primary_10_3348_jksr_2020_81_3_488
crossref_primary_10_1186_s12987_020_00228_x
crossref_primary_10_1002_mrm_27524
crossref_primary_10_1007_s00062_021_01015_3
crossref_primary_10_3348_kjr_2020_0016
crossref_primary_10_1097_RLI_0000000000000723
crossref_primary_10_1212_WNL_0000000000003566
crossref_primary_10_1093_noajnl_vdae196
crossref_primary_10_1177_0271678X231212173
crossref_primary_10_1007_s11357_020_00211_2
crossref_primary_10_1016_j_neurobiolaging_2016_06_006
crossref_primary_10_1093_brain_awv203
crossref_primary_10_1007_s12035_020_02134_7
crossref_primary_10_1002_alz_14529
crossref_primary_10_1016_j_athoracsur_2016_10_043
crossref_primary_10_3389_fncel_2022_922181
crossref_primary_10_1002_mrm_26540
crossref_primary_10_1002_mp_12328
crossref_primary_10_1002_mrm_29054
crossref_primary_10_1007_s00418_018_1665_x
crossref_primary_10_1016_j_ejrad_2020_109049
crossref_primary_10_1016_j_nicl_2021_102883
crossref_primary_10_1148_radiol_2017162578
crossref_primary_10_1155_2017_2945712
crossref_primary_10_1111_jon_12894
crossref_primary_10_1016_j_mri_2016_07_003
crossref_primary_10_1016_j_neuropharm_2017_10_034
crossref_primary_10_1007_s11357_022_00712_2
crossref_primary_10_1007_s11011_021_00694_8
crossref_primary_10_1016_j_jns_2021_117419
crossref_primary_10_1118_1_4944736
crossref_primary_10_1186_s40809_016_0015_4
crossref_primary_10_1148_radiol_2016152244
crossref_primary_10_3389_fneur_2020_00402
crossref_primary_10_1002_jmri_27495
crossref_primary_10_1177_0271678X20952012
crossref_primary_10_3390_ijms18010070
crossref_primary_10_1002_jmri_28380
crossref_primary_10_1152_physrev_00050_2017
crossref_primary_10_1016_j_msard_2022_103891
crossref_primary_10_1002_jmri_25540
crossref_primary_10_1016_j_mri_2023_04_004
crossref_primary_10_1016_j_mvr_2020_104102
crossref_primary_10_1111_ene_13341
crossref_primary_10_1118_1_4898202
crossref_primary_10_1021_acscentsci_9b01299
crossref_primary_10_3389_fneur_2024_1350848
crossref_primary_10_1016_j_jtbi_2021_110920
crossref_primary_10_31083_j_jin2307130
crossref_primary_10_1002_mrm_28833
crossref_primary_10_1016_j_molimm_2018_06_267
crossref_primary_10_1016_j_mri_2023_11_002
crossref_primary_10_1016_j_neuroimage_2016_07_017
crossref_primary_10_1093_brain_awx089
crossref_primary_10_1016_j_neurobiolaging_2024_11_002
crossref_primary_10_1002_ana_25219
crossref_primary_10_1007_s00401_016_1570_0
Cites_doi 10.1002/mrm.1910170208
10.1002/mrm.22136
10.1002/mrm.22728
10.1002/mrm.20161
10.1016/j.pscychresns.2008.04.003
10.1155/2011/615829
10.1016/j.neuron.2010.09.043
10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
10.1002/mrm.1910360510
10.1016/j.msard.2012.09.003
10.1111/j.1468-2982.2008.01675.x
10.1097/00004424-200007000-00002
10.1177/135245850100700201
10.1038/jcbfm.1983.1
10.1161/STROKEAHA.110.611731
10.1002/mrm.1188
10.1111/j.1528-1167.2006.00817.x
10.1111/j.1528-1167.2012.03699.x
10.1002/jmri.21328
10.1002/mrm.1910160111
10.1371/journal.pone.0056375
10.1002/mrm.10524
10.1002/jmri.23866
10.1002/mrm.22861
10.1097/00004728-198705000-00004
10.1002/jmri.22565
10.1002/mrm.22005
10.1111/j.1528-1167.2012.03701.x
10.1002/jmri.21080
10.1002/mrm.22098
10.1088/0031-9155/56/17/013
10.1097/RLI.0b013e31823bfc97
10.1016/j.nicl.2013.12.001
ContentType Journal Article
Copyright 2014 ISCBFM
Copyright Nature Publishing Group Oct 2014
Copyright © 2014 International Society for Cerebral Blood Flow & Metabolism, Inc. 2014 International Society for Cerebral Blood Flow & Metabolism, Inc.
Copyright_xml – notice: 2014 ISCBFM
– notice: Copyright Nature Publishing Group Oct 2014
– notice: Copyright © 2014 International Society for Cerebral Blood Flow & Metabolism, Inc. 2014 International Society for Cerebral Blood Flow & Metabolism, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7TK
5PM
DOI 10.1038/jcbfm.2014.126
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList CrossRef

ProQuest Central Student

MEDLINE - Academic
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Accurate determination of permeability using MRI
EISSN 1559-7016
EndPage 1665
ExternalDocumentID PMC4269724
3448102811
25074746
10_1038_jcbfm_2014_126
10.1038_jcbfm.2014.126
Genre Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-Q-
-TM
.55
.GJ
0R~
29K
2WC
36B
39C
3O-
4.4
53G
54M
5GY
5RE
5VS
70F
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AABMB
AACKU
AACMV
AADUE
AAEWN
AAGGD
AAGMC
AAJIQ
AAJPV
AAKGS
AANSI
AAPEO
AAQGT
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAUAS
AAVDI
AAXOT
AAYTG
AAZBJ
ABAWP
ABAWZ
ABCCA
ABCJG
ABDWY
ABEIX
ABFWQ
ABHKI
ABJNI
ABJZC
ABKRH
ABLUO
ABNCE
ABPGX
ABPNF
ABQKF
ABQNX
ABQXT
ABRHV
ABUJY
ABUWG
ABVFX
ABXGC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFO
ACGFS
ACGZU
ACJER
ACJTF
ACLFY
ACLHI
ACNXM
ACOFE
ACOXC
ACPRK
ACROE
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADEBD
ADEIA
ADMPF
ADNON
ADRRZ
ADTBJ
ADUKL
ADVBO
ADZZY
AECGH
AENEX
AEPTA
AEQLS
AESZF
AEUHG
AEWDL
AEWHI
AEXFG
AEXNY
AFEET
AFFNX
AFFZS
AFKRA
AFKRG
AFMOU
AFOSN
AFQAA
AFUIA
AFVCE
AGHKR
AGKLV
AGNHF
AGPXR
AGWFA
AHDMH
AHMBA
AIGRN
AJABX
AJEFB
AJMMQ
AJSCY
AJUZI
AJXAJ
AJXGE
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
AOIJS
ARTOV
AUTPY
AYAKG
B8M
BAWUL
BBNVY
BBRGL
BDDNI
BENPR
BHPHI
BKIIM
BKSCU
BPACV
BPHCQ
BSEHC
BVXVI
BWJAD
C45
CAG
CBRKF
CCPQU
CDWPY
CFDXU
COF
CORYS
CQQTX
CS3
CUTAK
D-I
DC-
DC.
DIK
DOPDO
DV7
E3Z
EBS
EE.
EJD
EMOBN
F5P
FHBDP
FYUFA
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
H13
HCIFZ
HMCUK
HYE
HZ~
J8X
JSO
K.F
KQ8
LK8
M1P
M7P
O9-
OK1
OVD
P2P
P6G
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q1R
Q2X
RNS
RNTTT
ROL
RPM
SASJQ
SAUOL
SCNPE
SFC
SHG
SPQ
SPV
TEORI
TR2
UKHRP
W2D
X7M
YFH
YOC
ZGI
ZONMY
ZPPRI
ZRKOI
ZSSAH
ZXP
AAPII
AAYXX
AJGYC
AJHME
AJVBE
CITATION
PJZUB
PPXIY
PQGLB
ALTZF
CGR
CUY
CVF
ECM
EIF
M4V
NPM
3V.
7XB
88A
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7TK
5PM
ID FETCH-LOGICAL-c557t-dfcddf296d59fbf5acc3de26e4fa9f729a539f1fb98021a2f455a7caa53db3803
IEDL.DBID 7X7
ISSN 0271-678X
1559-7016
IngestDate Thu Aug 21 17:18:26 EDT 2025
Thu Jul 10 23:47:18 EDT 2025
Fri Jul 11 07:32:26 EDT 2025
Wed Aug 13 06:52:42 EDT 2025
Thu Apr 03 07:09:10 EDT 2025
Thu Apr 24 23:03:10 EDT 2025
Wed Aug 20 07:44:39 EDT 2025
Tue Jun 17 22:40:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords blood–brain barrier
perfusion-weighted MRI
MRI
multiple sclerosis
cerebral hemodynamics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-dfcddf296d59fbf5acc3de26e4fa9f729a539f1fb98021a2f455a7caa53db3803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://journals.sagepub.com/doi/pdf/10.1038/jcbfm.2014.126
PMID 25074746
PQID 1566624688
PQPubID 31524
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4269724
proquest_miscellaneous_1622602238
proquest_miscellaneous_1567050307
proquest_journals_1566624688
pubmed_primary_25074746
crossref_primary_10_1038_jcbfm_2014_126
crossref_citationtrail_10_1038_jcbfm_2014_126
sage_journals_10_1038_jcbfm_2014_126
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: United States
– name: London
PublicationTitle Journal of cerebral blood flow and metabolism
PublicationTitleAlternate J Cereb Blood Flow Metab
PublicationYear 2014
Publisher SAGE Publications
Sage Publications Ltd
Nature Publishing Group
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: Nature Publishing Group
References Larsson, Hansen, Berg, Rostrup, Haraldseth 2008; 27
Iannotti, Fieschi, Alfano, Picozzi, Mansi, Pozzilli 1987; 11
Larsson, Rosenbaum, Fritz-Hansen 2001; 46
Singh, Haris, Rathore, Purwar, Sarma, Bayu 2007; 26
Gao, Le, Zhang, Chen, Tian, Zhang 2010; 123
Oby, Janigro 2006; 47
Tofts, Brix, Buckley, Evelhoch, Henderson, Knopp 1999; 10
Patlak, Blasberg, Fenstermacher 1983; 3
Larsson, Courivaud, Rostrup, Hansen 2009; 62
Taheri, Gasparovic, Huisa, Adair, Edmonds, Prestopnik 2011; 42
Luypaert, Sourbron, de Mey 2010; 65
Anderson, Lenar, Quinn, Rooney 2011; 2011
Aerts, Jaspers, Backes 2011; 56
Sourbron, Buckley 2011; 66
Jelescu, Leppert, Narayanan, Araújo, Arnold, Pike 2011; 33
Winkler, Chassidim, Lublinsky, Revankar, Major, Kang 2012; 53
Tofts, Kermode 1991; 17
Cramer, Simonsen, Frederiksen, Rostrup, Larsson 2013; 4
Moody, Martel, Kenton, Allder, Horsfield, Delay 2000; 35
Larsson, Kleppestø, Rasmussen, Salo, Vardal, Brandal 2013; 37
Hansen, Pedersen, Rostrup, Larsson 2009; 62
Silver, Tofts, Symms, Barker, Thompson, Miller 2001; 7
Lund, Krakauer, Skimminge, Sellebjerg, Garde, Siebner 2013; 8
Bell, Winkler, Sagare, Singh, LaRue, Deane 2010; 68
Taheri, Rosenberg, Ford 2013; 2
Starr, Farrall, Armitage, McGurn, Wardlaw 2009; 171
Kim, Buckwalter, Soreq, Vezzani, Kaufer 2012; 53
Edvinsson, Tfelt-Hansen 2008; 28
Brix, Kiessling, Lucht, Darai, Wasser, Delorme 2004; 52
Sourbron, Ingrisch, Siefert, Reiser, Herrmann 2009; 62
Ostergaard, Weisskoff, Chesler, Gyldensted, Rosen 1996; 36
Larsson, Stubgaard, Frederiksen, Jensen, Henriksen, Paulson 1990; 16
Ingrisch, Sourbron, Morhard, Ertl-Wagner, Kümpfel, Hohlfeld 2012; 47
Ewing, Knight, Nagaraja, Yee, Nagesh, Whitton 2003; 50
bibr1-jcbfm.2014.126
bibr19-jcbfm.2014.126
bibr14-jcbfm.2014.126
bibr31-jcbfm.2014.126
bibr6-jcbfm.2014.126
bibr27-jcbfm.2014.126
bibr10-jcbfm.2014.126
bibr23-jcbfm.2014.126
bibr32-jcbfm.2014.126
bibr2-jcbfm.2014.126
bibr11-jcbfm.2014.126
bibr29-jcbfm.2014.126
bibr16-jcbfm.2014.126
bibr7-jcbfm.2014.126
bibr15-jcbfm.2014.126
bibr28-jcbfm.2014.126
bibr24-jcbfm.2014.126
bibr20-jcbfm.2014.126
Gao H-M (bibr25-jcbfm.2014.126) 2010; 123
bibr12-jcbfm.2014.126
bibr33-jcbfm.2014.126
bibr8-jcbfm.2014.126
bibr17-jcbfm.2014.126
bibr34-jcbfm.2014.126
bibr3-jcbfm.2014.126
bibr21-jcbfm.2014.126
bibr18-jcbfm.2014.126
bibr13-jcbfm.2014.126
bibr26-jcbfm.2014.126
bibr5-jcbfm.2014.126
bibr30-jcbfm.2014.126
bibr4-jcbfm.2014.126
bibr9-jcbfm.2014.126
bibr22-jcbfm.2014.126
19449435 - Magn Reson Med. 2009 Jul;62(1):205-17
21500273 - Magn Reson Med. 2011 May;65(5):1491-7
11424635 - Mult Scler. 2001 Apr;7(2):75-82
2062210 - Magn Reson Med. 1991 Feb;17(2):357-67
15282828 - Magn Reson Med. 2004 Aug;52(2):420-9
8916022 - Magn Reson Med. 1996 Nov;36(5):715-25
2255233 - Magn Reson Med. 1990 Oct;16(1):117-31
23134494 - Epilepsia. 2012 Nov;53 Suppl 6:37-44
21034616 - Chin Med J (Engl). 2010 Sep;123(18):2559-61
23134492 - Epilepsia. 2012 Nov;53 Suppl 6:22-30
18727638 - Cephalalgia. 2008 Dec;28(12):1245-58
6822610 - J Cereb Blood Flow Metab. 1983 Mar;3(1):1-7
21040844 - Neuron. 2010 Nov 4;68(3):409-27
19672948 - Magn Reson Med. 2009 Oct;62(4):1055-9
10901101 - Invest Radiol. 2000 Jul;35(7):401-11
21590997 - J Magn Reson Imaging. 2011 Jun;33(6):1291-300
23086710 - J Magn Reson Imaging. 2013 Apr;37(4):818-29
12876704 - Magn Reson Med. 2003 Aug;50(2):283-92
21384424 - Magn Reson Med. 2011 Sep;66(3):735-45
23441184 - PLoS One. 2013;8(2):e56375
24371801 - Neuroimage Clin. 2014;4:182-9
18383268 - J Magn Reson Imaging. 2008 Apr;27(4):754-62
19780145 - Magn Reson Med. 2009 Nov;62(5):1270-81
19211227 - Psychiatry Res. 2009 Mar 31;171(3):232-41
10508281 - J Magn Reson Imaging. 1999 Sep;10(3):223-32
21687589 - Cardiovasc Psychiatry Neurol. 2011;2011:615829
21828909 - Phys Med Biol. 2011 Sep 7;56(17):5665-78
3106433 - J Comput Assist Tomogr. 1987 May-Jun;11(3):390-7
17896358 - J Magn Reson Imaging. 2007 Oct;26(4):871-80
11477630 - Magn Reson Med. 2001 Aug;46(2):272-81
21719768 - Stroke. 2011 Aug;42(8):2158-63
17116015 - Epilepsia. 2006 Nov;47(11):1761-74
25877634 - Mult Scler Relat Disord. 2013 Apr;2(2):124-32
22373532 - Invest Radiol. 2012 Apr;47(4):252-8
References_xml – volume: 47
  start-page: 1761
  year: 2006
  end-page: 1774
  article-title: The blood-brain barrier and epilepsy
  publication-title: Epilepsia
– volume: 27
  start-page: 754
  year: 2008
  end-page: 762
  article-title: Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T1-weighted MRI at 3T
  publication-title: J Magn Reson Imaging
– volume: 36
  start-page: 715
  year: 1996
  end-page: 725
  article-title: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis
  publication-title: Magn Reson Med
– volume: 66
  start-page: 735
  year: 2011
  end-page: 745
  article-title: On the scope and interpretation of the Tofts models for DCE-MRI
  publication-title: Magn Reson Med
– volume: 62
  start-page: 1055
  year: 2009
  end-page: 1059
  article-title: Partial volume effect (PVE) on the arterial input function (AIF) in T1-weighted perfusion imaging and limitations of the multiplicative rescaling approach
  publication-title: Magn Reson Med
– volume: 53
  start-page: 22
  year: 2012
  end-page: 30
  article-title: Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: possible link to blood-brain barrier dysfunction
  publication-title: Epilepsia
– volume: 42
  start-page: 2158
  year: 2011
  end-page: 2163
  article-title: Blood-brain barrier permeability abnormalities in vascular cognitive impairment
  publication-title: Stroke
– volume: 50
  start-page: 283
  year: 2003
  end-page: 292
  article-title: Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening
  publication-title: Magn Reson Med
– volume: 16
  start-page: 117
  year: 1990
  end-page: 131
  article-title: Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors
  publication-title: Magn Reson Med
– volume: 53
  start-page: 37
  year: 2012
  end-page: 44
  article-title: Blood-brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis
  publication-title: Epilepsia
– volume: 46
  start-page: 272
  year: 2001
  end-page: 281
  article-title: Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart
  publication-title: Magn Reson Med
– volume: 56
  start-page: 5665
  year: 2011
  end-page: 5678
  article-title: The precision of pharmacokinetic parameters in dynamic contrast-enhanced magnetic resonance imaging: the effect of sampling frequency and duration
  publication-title: Phys Med Biol
– volume: 26
  start-page: 871
  year: 2007
  end-page: 880
  article-title: Quantification of physiological and hemodynamic indices using T(1) dynamic contrast-enhanced MRI in intracranial mass lesions
  publication-title: J Magn Reson Imaging
– volume: 37
  start-page: 818
  year: 2013
  end-page: 829
  article-title: Sampling requirements in DCE-MRI based analysis of high grade gliomas: simulations and clinical results
  publication-title: J Magn Reson Imaging
– volume: 33
  start-page: 1291
  year: 2011
  end-page: 1300
  article-title: Dual-temporal resolution dynamic contrast-enhanced MRI protocol for blood-brain barrier permeability measurement in enhancing multiple sclerosis lesions
  publication-title: J Magn Reson Imaging
– volume: 62
  start-page: 1270
  year: 2009
  end-page: 1281
  article-title: Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T1-weighted MRI at 3 tesla
  publication-title: Magn Reson Med
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 9
  article-title: The blood-brain barrier and microvascular water exchange in alzheimer's disease
  publication-title: Cardiovasc Psychiatry Neurol
– volume: 2
  start-page: 124
  year: 2013
  end-page: 132
  article-title: Quantification of blood-to-brain transfer rate in multiple sclerosis
  publication-title: Mult Scler Relat Disord
– volume: 3
  start-page: 1
  year: 1983
  end-page: 7
  article-title: Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data
  publication-title: J Cereb Blood Flow Metab
– volume: 123
  start-page: 2559
  year: 2010
  end-page: 2561
  article-title: Impact of migraine attacks on the blood-brain barrier
  publication-title: Chin Med J (Engl)
– volume: 17
  start-page: 357
  year: 1991
  end-page: 367
  article-title: Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts
  publication-title: Magn Reson Med
– volume: 52
  start-page: 420
  year: 2004
  end-page: 429
  article-title: Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series
  publication-title: Magn Reson Med
– volume: 47
  start-page: 252
  year: 2012
  end-page: 258
  article-title: Quantification of perfusion and permeability in multiple sclerosis
  publication-title: Invest Radiol
– volume: 171
  start-page: 232
  year: 2009
  end-page: 241
  article-title: Blood-brain barrier permeability in Alzheimer's disease: a case-control MRI study
  publication-title: Psychiatry Res
– volume: 11
  start-page: 390
  year: 1987
  end-page: 397
  article-title: Simplified, noninvasive PET measurement of blood-brain barrier permeability
  publication-title: J Comput Assist Tomogr
– volume: 4
  start-page: 182
  year: 2013
  end-page: 189
  article-title: Abnormal blood–brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI
  publication-title: Neuroimage Clin
– volume: 28
  start-page: 1245
  year: 2008
  end-page: 1258
  article-title: The blood-brain barrier in migraine treatment
  publication-title: Cephalalgia
– volume: 62
  start-page: 205
  year: 2009
  end-page: 217
  article-title: Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI
  publication-title: Magn Reson Med
– volume: 35
  start-page: 401
  year: 2000
  end-page: 411
  article-title: Contrast-reduced imaging of tissue concentration and arterial level (CRITICAL) for assessment of cerebral hemodynamics in acute stroke by magnetic resonance
  publication-title: Invest Radiol
– volume: 68
  start-page: 409
  year: 2010
  end-page: 427
  article-title: Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging
  publication-title: Neuron
– volume: 8
  start-page: e56375
  year: 2013
  article-title: Blood-brain barrier permeability of normal appearing white matter in relapsing-remitting multiple sclerosis
  publication-title: PLoS ONE
– volume: 7
  start-page: 75
  year: 2001
  end-page: 82
  article-title: Quantitative contrast-enhanced magnetic resonance imaging to evaluate blood-brain barrier integrity in multiple sclerosis: a preliminary study
  publication-title: Mult Scler
– volume: 65
  start-page: 1491
  year: 2010
  end-page: 1497
  article-title: Validity of perfusion parameters obtained using the modified Tofts model: a simulation study
  publication-title: Magn Reson Med
– volume: 10
  start-page: 223
  year: 1999
  end-page: 232
  article-title: Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols
  publication-title: J Magn Reson Imaging
– ident: bibr2-jcbfm.2014.126
  doi: 10.1002/mrm.1910170208
– ident: bibr7-jcbfm.2014.126
  doi: 10.1002/mrm.22136
– ident: bibr5-jcbfm.2014.126
  doi: 10.1002/mrm.22728
– ident: bibr15-jcbfm.2014.126
  doi: 10.1002/mrm.20161
– ident: bibr21-jcbfm.2014.126
  doi: 10.1016/j.pscychresns.2008.04.003
– ident: bibr22-jcbfm.2014.126
  doi: 10.1155/2011/615829
– ident: bibr27-jcbfm.2014.126
  doi: 10.1016/j.neuron.2010.09.043
– ident: bibr3-jcbfm.2014.126
  doi: 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
– ident: bibr34-jcbfm.2014.126
  doi: 10.1002/mrm.1910360510
– ident: bibr30-jcbfm.2014.126
  doi: 10.1016/j.msard.2012.09.003
– ident: bibr24-jcbfm.2014.126
  doi: 10.1111/j.1468-2982.2008.01675.x
– ident: bibr9-jcbfm.2014.126
  doi: 10.1097/00004424-200007000-00002
– ident: bibr18-jcbfm.2014.126
  doi: 10.1177/135245850100700201
– ident: bibr6-jcbfm.2014.126
  doi: 10.1038/jcbfm.1983.1
– ident: bibr23-jcbfm.2014.126
  doi: 10.1161/STROKEAHA.110.611731
– ident: bibr8-jcbfm.2014.126
  doi: 10.1002/mrm.1188
– ident: bibr20-jcbfm.2014.126
  doi: 10.1111/j.1528-1167.2006.00817.x
– volume: 123
  start-page: 2559
  year: 2010
  ident: bibr25-jcbfm.2014.126
  publication-title: Chin Med J (Engl)
– ident: bibr26-jcbfm.2014.126
  doi: 10.1111/j.1528-1167.2012.03699.x
– ident: bibr11-jcbfm.2014.126
  doi: 10.1002/jmri.21328
– ident: bibr1-jcbfm.2014.126
  doi: 10.1002/mrm.1910160111
– ident: bibr17-jcbfm.2014.126
  doi: 10.1371/journal.pone.0056375
– ident: bibr31-jcbfm.2014.126
  doi: 10.1002/mrm.10524
– ident: bibr33-jcbfm.2014.126
  doi: 10.1002/jmri.23866
– ident: bibr4-jcbfm.2014.126
  doi: 10.1002/mrm.22861
– ident: bibr28-jcbfm.2014.126
  doi: 10.1097/00004728-198705000-00004
– ident: bibr14-jcbfm.2014.126
  doi: 10.1002/jmri.22565
– ident: bibr12-jcbfm.2014.126
  doi: 10.1002/mrm.22005
– ident: bibr19-jcbfm.2014.126
  doi: 10.1111/j.1528-1167.2012.03701.x
– ident: bibr10-jcbfm.2014.126
  doi: 10.1002/jmri.21080
– ident: bibr13-jcbfm.2014.126
  doi: 10.1002/mrm.22098
– ident: bibr32-jcbfm.2014.126
  doi: 10.1088/0031-9155/56/17/013
– ident: bibr29-jcbfm.2014.126
  doi: 10.1097/RLI.0b013e31823bfc97
– ident: bibr16-jcbfm.2014.126
  doi: 10.1016/j.nicl.2013.12.001
– reference: 18727638 - Cephalalgia. 2008 Dec;28(12):1245-58
– reference: 17896358 - J Magn Reson Imaging. 2007 Oct;26(4):871-80
– reference: 2062210 - Magn Reson Med. 1991 Feb;17(2):357-67
– reference: 21034616 - Chin Med J (Engl). 2010 Sep;123(18):2559-61
– reference: 11424635 - Mult Scler. 2001 Apr;7(2):75-82
– reference: 21384424 - Magn Reson Med. 2011 Sep;66(3):735-45
– reference: 23134492 - Epilepsia. 2012 Nov;53 Suppl 6:22-30
– reference: 21590997 - J Magn Reson Imaging. 2011 Jun;33(6):1291-300
– reference: 21040844 - Neuron. 2010 Nov 4;68(3):409-27
– reference: 19211227 - Psychiatry Res. 2009 Mar 31;171(3):232-41
– reference: 21687589 - Cardiovasc Psychiatry Neurol. 2011;2011:615829
– reference: 19780145 - Magn Reson Med. 2009 Nov;62(5):1270-81
– reference: 23134494 - Epilepsia. 2012 Nov;53 Suppl 6:37-44
– reference: 3106433 - J Comput Assist Tomogr. 1987 May-Jun;11(3):390-7
– reference: 19449435 - Magn Reson Med. 2009 Jul;62(1):205-17
– reference: 22373532 - Invest Radiol. 2012 Apr;47(4):252-8
– reference: 21828909 - Phys Med Biol. 2011 Sep 7;56(17):5665-78
– reference: 2255233 - Magn Reson Med. 1990 Oct;16(1):117-31
– reference: 25877634 - Mult Scler Relat Disord. 2013 Apr;2(2):124-32
– reference: 6822610 - J Cereb Blood Flow Metab. 1983 Mar;3(1):1-7
– reference: 10508281 - J Magn Reson Imaging. 1999 Sep;10(3):223-32
– reference: 21500273 - Magn Reson Med. 2011 May;65(5):1491-7
– reference: 15282828 - Magn Reson Med. 2004 Aug;52(2):420-9
– reference: 23086710 - J Magn Reson Imaging. 2013 Apr;37(4):818-29
– reference: 19672948 - Magn Reson Med. 2009 Oct;62(4):1055-9
– reference: 21719768 - Stroke. 2011 Aug;42(8):2158-63
– reference: 24371801 - Neuroimage Clin. 2014;4:182-9
– reference: 11477630 - Magn Reson Med. 2001 Aug;46(2):272-81
– reference: 10901101 - Invest Radiol. 2000 Jul;35(7):401-11
– reference: 23441184 - PLoS One. 2013;8(2):e56375
– reference: 18383268 - J Magn Reson Imaging. 2008 Apr;27(4):754-62
– reference: 8916022 - Magn Reson Med. 1996 Nov;36(5):715-25
– reference: 12876704 - Magn Reson Med. 2003 Aug;50(2):283-92
– reference: 17116015 - Epilepsia. 2006 Nov;47(11):1761-74
SSID ssj0008355
Score 2.4502852
Snippet Dynamic contrast-enhanced magnetic resonance imaging (DCE–MRI) is increasingly used to estimate permeability in situations with subtle blood–brain barrier...
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used to estimate permeability in situations with subtle blood-brain barrier...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1655
SubjectTerms Adult
Algorithms
Blood-Brain Barrier - metabolism
Blood-Brain Barrier - pathology
Computer Simulation
Female
Humans
Magnetic Resonance Imaging - methods
Male
Models, Biological
Multiple Sclerosis - metabolism
Multiple Sclerosis - pathology
Original
Permeability
Sensitivity and Specificity
Young Adult
Title Accurate Determination of Blood–Brain Barrier Permeability Using Dynamic Contrast-Enhanced T1-Weighted MRI: A Simulation and in vivo Study on Healthy Subjects and Multiple Sclerosis Patients
URI https://journals.sagepub.com/doi/full/10.1038/jcbfm.2014.126
https://www.ncbi.nlm.nih.gov/pubmed/25074746
https://www.proquest.com/docview/1566624688
https://www.proquest.com/docview/1567050307
https://www.proquest.com/docview/1622602238
https://pubmed.ncbi.nlm.nih.gov/PMC4269724
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAFQctjoVSDVMHJtHnZCRe0VK0KEhWqWmlvkZ_tIposzW7R_jl-GzPOg60KvUXxKLIzE-fz-PM3jO1EOtJJoR33sfU8dcJyLUzKpTcC2wpZmMDyPRZHZ-mXSTbpEm5NR6vs58QwUdvaUI58l9YZIk5Fnn-c_eRUNYp2V7sSGvfZOkmXEaVLToYFF6GLQGGMZcRxUp70oo1JvvvdaE8H0aP0fUTCCqs_pVtI8zZhcoX1FX5Eh4_Zow5Bwrh1-RN2z1UbbHNc4er5cglvIXA6Q7J8gz3Y7-u5bbLfY2MWJAwBtqfAkFOg9tCy1zVViwCtrqiIHczQxLUi3ksgdvw52LZ6PQR6u2rm3FUXgUAApxH_FXKseP315PMHUNBML7vKYKAqC_jk6-l1DUHOFvBmewBzCc1CUyqoCVY9vREaHBq-qmkDnfBr85SdHR6c7h_xrnoDN1km59x6Y62PC2GzwmufKWMS62LhUq8Kj5heZUnhI6-LHHGGin2aZUoahbetTvK95Blbq-rKvWAQcAVtGFoEPGil80TYKNMI9lLnhRgx3ruvNJ20OVXY-FGGLfYkL4O7S3J3ie4esXeD_awV9fiv5VYfDWX3cTfl31AcsTdDM3qT9lpU5epFsJEktbMn77ARiH0RQyX4nOdtgA3dQWSKC70UOyBvhN5gQLLgN1uq6UWQB6fDyTJOR2yHgnSl2_8c4cu7R_iKPSTLlr64xdbmVwv3GmHYXG-Hb22brX86OP528gfb4zj9
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLVKuigbBC2PQIGLVGBl2nl5ZpAQCqVVQtsIVamU3dRPGkQmoZO0yk_xCXwb154HqQrddReNbyx77h372D4-l5AtT3giSIWmxleGhpopKpgMaWwkw7I0TqVj-fZZ9yT8MoyGK-RXfRfG0irrMdEN1Goi7R75tl1nMD9kSfJx-pParFH2dLVOoVGGxYFeXOKSrfjQ-4z-fe37-3uD3S6tsgpQGUXxjCojlTJ-ylSUGmEiLmWgtM90aHhqEGvyKEiNZ0Sa4PzHfRNGEY8lx8dKBMlOgPXeIathgEuZFln9tNf_etyM_YhnHGnSjz2K08CwlokMku3vUhh79d0L33lWymF5GryGba9TNJd4Zm7q279P7lWYFTplkD0gKzpfJxudHNfr4wW8Acciddvz62Rtt84gt0F-d6ScWykKUDXpxoYBTAyUfHlh81OA4Oc2bR5M0USXsuELsHz8b6AWOR-PJDhCPS9mVOdnjrIAA49eul1d_H103HsPHIrRuMpFBjxXgDVfjC4m4AR0AR-WVz4XUMyF3XwqnFVNqIQCu4avalRAJTVbPCQnt-LZR6SVT3L9hIBDMvaIUiHEQiuRBEx5kUB4GWrDWJvQ2n2ZrMTUbU6PH5k71A-SzLk7s-7O0N1t8raxn5YyIv-13KyjIauGkyL7G_xt8qopRm_a0x2e68nc2cRW3GcnvsGGIdpG1BZgPY_LAGuag1gYl5YhNiC-EnqNgRUiv1qSj86cILm9Dh37YZts2SBdavY_e_j05h6-JGvdwdFhdtjrHzwjd-2_SvLkJmnNzuf6OYLAmXhRfXlATm_7Y_8DeXJ4Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+determination+of+blood-brain+barrier+permeability+using+dynamic+contrast-enhanced+T1-weighted+MRI%3A+a+simulation+and+in+vivo+study+on+healthy+subjects+and+multiple+sclerosis+patients&rft.jtitle=Journal+of+cerebral+blood+flow+and+metabolism&rft.au=Cramer%2C+Stig+P&rft.au=Larsson%2C+Henrik+B+W&rft.date=2014-10-01&rft.pub=Sage+Publications+Ltd&rft.issn=0271-678X&rft.eissn=1559-7016&rft.volume=34&rft.issue=10&rft.spage=1655&rft_id=info:doi/10.1038%2Fjcbfm.2014.126&rft.externalDocID=3448102811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-678X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-678X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-678X&client=summon