Accurate Determination of Blood–Brain Barrier Permeability Using Dynamic Contrast-Enhanced T1-Weighted MRI: A Simulation and in vivo Study on Healthy Subjects and Multiple Sclerosis Patients
Dynamic contrast-enhanced magnetic resonance imaging (DCE–MRI) is increasingly used to estimate permeability in situations with subtle blood–brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selec...
Saved in:
Published in | Journal of cerebral blood flow and metabolism Vol. 34; no. 10; pp. 1655 - 1665 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.10.2014
Sage Publications Ltd Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dynamic contrast-enhanced magnetic resonance imaging (DCE–MRI) is increasingly used to estimate permeability in situations with subtle blood–brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection of total measurement duration, temporal resolution, and modeling approach under varying physiologic circumstances. To estimate accuracy and precision of the DCE–MRI method we generated simulated data using a two-compartment model and progressively down-sampled and truncated the data to mimic low temporal resolution and short total measurement duration. Model fit was performed with the Patlak, the extended Tofts, and the Tikhonov two-compartment (Tik-2CM) models. Overall, 17 healthy controls were scanned to obtain in vivo data. Long total measurement duration (15 minutes) and high temporal resolution (1.25 seconds) greatly improved accuracy and precision for all three models, enabling us to differentiate values of permeability as low as 0.1 ml/100 g/min from zero. The Patlak model yielded highest accuracy and precision for permeability values <0.3 ml/100 g/min, but for higher values the Tik-2CM performed best. Our results emphasize the importance of optimal parameter setup and model selection when characterizing low BBB permeability. |
---|---|
AbstractList | Dynamic contrast-enhanced magnetic resonance imaging (DCE–MRI) is increasingly used to estimate permeability in situations with subtle blood–brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection of total measurement duration, temporal resolution, and modeling approach under varying physiologic circumstances. To estimate accuracy and precision of the DCE–MRI method we generated simulated data using a two-compartment model and progressively down-sampled and truncated the data to mimic low temporal resolution and short total measurement duration. Model fit was performed with the Patlak, the extended Tofts, and the Tikhonov two-compartment (Tik-2CM) models. Overall, 17 healthy controls were scanned to obtain in vivo data. Long total measurement duration (15 minutes) and high temporal resolution (1.25 seconds) greatly improved accuracy and precision for all three models, enabling us to differentiate values of permeability as low as 0.1 ml/100 g/min from zero. The Patlak model yielded highest accuracy and precision for permeability values <0.3 ml/100 g/min, but for higher values the Tik-2CM performed best. Our results emphasize the importance of optimal parameter setup and model selection when characterizing low BBB permeability. Dynamic contrast-enhanced magnetic resonance imaging (DCE–MRI) is increasingly used to estimate permeability in situations with subtle blood–brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection of total measurement duration, temporal resolution, and modeling approach under varying physiologic circumstances. To estimate accuracy and precision of the DCE–MRI method we generated simulated data using a two-compartment model and progressively down-sampled and truncated the data to mimic low temporal resolution and short total measurement duration. Model fit was performed with the Patlak, the extended Tofts, and the Tikhonov two-compartment (Tik-2CM) models. Overall, 17 healthy controls were scanned to obtain in vivo data. Long total measurement duration (15 minutes) and high temporal resolution (1.25 seconds) greatly improved accuracy and precision for all three models, enabling us to differentiate values of permeability as low as 0.1 ml/100 g/min from zero. The Patlak model yielded highest accuracy and precision for permeability values <0.3 ml/100 g/min, but for higher values the Tik-2CM performed best. Our results emphasize the importance of optimal parameter setup and model selection when characterizing low BBB permeability. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used to estimate permeability in situations with subtle blood-brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection of total measurement duration, temporal resolution, and modeling approach under varying physiologic circumstances. To estimate accuracy and precision of the DCE-MRI method we generated simulated data using a two-compartment model and progressively down-sampled and truncated the data to mimic low temporal resolution and short total measurement duration. Model fit was performed with the Patlak, the extended Tofts, and the Tikhonov two-compartment (Tik-2CM) models. Overall, 17 healthy controls were scanned to obtain in vivo data. Long total measurement duration (15 minutes) and high temporal resolution (1.25 seconds) greatly improved accuracy and precision for all three models, enabling us to differentiate values of permeability as low as 0.1ml/100g/min from zero. The Patlak model yielded highest accuracy and precision for permeability values <0.3ml/100g/min, but for higher values the Tik-2CM performed best. Our results emphasize the importance of optimal parameter setup and model selection when characterizing low BBB permeability. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used to estimate permeability in situations with subtle blood-brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection of total measurement duration, temporal resolution, and modeling approach under varying physiologic circumstances. To estimate accuracy and precision of the DCE-MRI method we generated simulated data using a two-compartment model and progressively down-sampled and truncated the data to mimic low temporal resolution and short total measurement duration. Model fit was performed with the Patlak, the extended Tofts, and the Tikhonov two-compartment (Tik-2CM) models. Overall, 17 healthy controls were scanned to obtain in vivo data. Long total measurement duration (15 minutes) and high temporal resolution (1.25 seconds) greatly improved accuracy and precision for all three models, enabling us to differentiate values of permeability as low as 0.1 ml/100 g/min from zero. The Patlak model yielded highest accuracy and precision for permeability values <0.3 ml/100 g/min, but for higher values the Tik-2CM performed best. Our results emphasize the importance of optimal parameter setup and model selection when characterizing low BBB permeability.Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used to estimate permeability in situations with subtle blood-brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection of total measurement duration, temporal resolution, and modeling approach under varying physiologic circumstances. To estimate accuracy and precision of the DCE-MRI method we generated simulated data using a two-compartment model and progressively down-sampled and truncated the data to mimic low temporal resolution and short total measurement duration. Model fit was performed with the Patlak, the extended Tofts, and the Tikhonov two-compartment (Tik-2CM) models. Overall, 17 healthy controls were scanned to obtain in vivo data. Long total measurement duration (15 minutes) and high temporal resolution (1.25 seconds) greatly improved accuracy and precision for all three models, enabling us to differentiate values of permeability as low as 0.1 ml/100 g/min from zero. The Patlak model yielded highest accuracy and precision for permeability values <0.3 ml/100 g/min, but for higher values the Tik-2CM performed best. Our results emphasize the importance of optimal parameter setup and model selection when characterizing low BBB permeability. |
Author | Cramer, Stig P Larsson, Henrik BW |
Author_xml | – sequence: 1 givenname: Stig P surname: Cramer fullname: Cramer, Stig P – sequence: 2 givenname: Henrik BW surname: Larsson fullname: Larsson, Henrik BW email: henrik.larsson@regionh.dk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25074746$$D View this record in MEDLINE/PubMed |
BookMark | eNqFktFu0zAUhiM0xLrBLZfIEjdIKMV2YifhAqntBpu0iYlugrvIcezWlWMX26mUO96BF-JZeBLcdkxjAnFly_7-3-cc_0fJgbFGJMlzBMcIZuWbFW9kN8YQ5WOE6aNkhAip0gIiepCMIC5QSovyy2Fy5P0KQlhmhDxJDjGBRV7kdJT8mHDeOxYEOBFBuE4ZFpQ1wEow1da2P799nzqmDJgy55Rw4CpCgjVKqzCAG6_MApwMhnWKg5k1wTEf0lOzZIaLFlyj9LNQi2WI-8tP52_BBMxV1-v9G8y0IDpv1MaCeejbAcTDM8F0WA5g3jcrwYPfUZe9DmqtBZhzLZz1yoOr6CFM8E-Tx5JpL57drsfJzfvT69lZevHxw_lscpFyQoqQtpK3rcQVbUklG0kY51krMBW5ZJUscMVIVkkkm6qEGDEsc0JYwVk8bpushNlx8m7vu-6bTrRcbHvV9dqpjrmhtkzVf94YtawXdlPnmFYFzqPBq1sDZ7_2woe6U54LrZkRtvc1ohhTiHFW_h8ltIAEZrCI6MsH6Mr2zsRJbClKcU7LreGL-8XfVf07BxEY7wEep-udkHcIgvU2aPUuaPU2aHUMWhTkDwRchd23xuaV_rfs9V7m2ULcK_Xv9C-nOOsa |
CitedBy_id | crossref_primary_10_1118_1_4932218 crossref_primary_10_1002_nbm_4570 crossref_primary_10_1016_j_mri_2021_07_005 crossref_primary_10_1093_brain_awaa140 crossref_primary_10_1016_j_mri_2015_06_021 crossref_primary_10_1097_RLI_0000000000000320 crossref_primary_10_1227_neu_0000000000003159 crossref_primary_10_3348_kjr_2020_0816 crossref_primary_10_1002_mp_13885 crossref_primary_10_1515_med_2020_0100 crossref_primary_10_1002_mrm_25793 crossref_primary_10_1016_j_neuroimage_2021_117786 crossref_primary_10_1007_s11357_020_00282_1 crossref_primary_10_1016_j_neuroimage_2018_04_069 crossref_primary_10_1016_j_cpet_2021_06_009 crossref_primary_10_1097_QAD_0000000000002300 crossref_primary_10_1371_journal_pone_0299764 crossref_primary_10_1113_JP276887 crossref_primary_10_1162_imag_a_00324 crossref_primary_10_3389_fnins_2025_1546236 crossref_primary_10_1186_s12880_015_0062_3 crossref_primary_10_1002_mrm_28629 crossref_primary_10_1016_j_neuroimage_2015_10_018 crossref_primary_10_1016_j_jalz_2019_01_013 crossref_primary_10_1093_neuros_nyx357 crossref_primary_10_1148_radiol_230701 crossref_primary_10_1007_s10334_016_0579_7 crossref_primary_10_1016_j_ejrad_2015_09_007 crossref_primary_10_1007_s11936_017_0555_1 crossref_primary_10_2967_jnumed_117_203109 crossref_primary_10_13104_imri_2022_26_4_256 crossref_primary_10_1007_s00415_017_8727_1 crossref_primary_10_1016_j_bbi_2017_10_014 crossref_primary_10_3348_jksr_2020_81_3_488 crossref_primary_10_1186_s12987_020_00228_x crossref_primary_10_1002_mrm_27524 crossref_primary_10_1007_s00062_021_01015_3 crossref_primary_10_3348_kjr_2020_0016 crossref_primary_10_1097_RLI_0000000000000723 crossref_primary_10_1212_WNL_0000000000003566 crossref_primary_10_1093_noajnl_vdae196 crossref_primary_10_1177_0271678X231212173 crossref_primary_10_1007_s11357_020_00211_2 crossref_primary_10_1016_j_neurobiolaging_2016_06_006 crossref_primary_10_1093_brain_awv203 crossref_primary_10_1007_s12035_020_02134_7 crossref_primary_10_1002_alz_14529 crossref_primary_10_1016_j_athoracsur_2016_10_043 crossref_primary_10_3389_fncel_2022_922181 crossref_primary_10_1002_mrm_26540 crossref_primary_10_1002_mp_12328 crossref_primary_10_1002_mrm_29054 crossref_primary_10_1007_s00418_018_1665_x crossref_primary_10_1016_j_ejrad_2020_109049 crossref_primary_10_1016_j_nicl_2021_102883 crossref_primary_10_1148_radiol_2017162578 crossref_primary_10_1155_2017_2945712 crossref_primary_10_1111_jon_12894 crossref_primary_10_1016_j_mri_2016_07_003 crossref_primary_10_1016_j_neuropharm_2017_10_034 crossref_primary_10_1007_s11357_022_00712_2 crossref_primary_10_1007_s11011_021_00694_8 crossref_primary_10_1016_j_jns_2021_117419 crossref_primary_10_1118_1_4944736 crossref_primary_10_1186_s40809_016_0015_4 crossref_primary_10_1148_radiol_2016152244 crossref_primary_10_3389_fneur_2020_00402 crossref_primary_10_1002_jmri_27495 crossref_primary_10_1177_0271678X20952012 crossref_primary_10_3390_ijms18010070 crossref_primary_10_1002_jmri_28380 crossref_primary_10_1152_physrev_00050_2017 crossref_primary_10_1016_j_msard_2022_103891 crossref_primary_10_1002_jmri_25540 crossref_primary_10_1016_j_mri_2023_04_004 crossref_primary_10_1016_j_mvr_2020_104102 crossref_primary_10_1111_ene_13341 crossref_primary_10_1118_1_4898202 crossref_primary_10_1021_acscentsci_9b01299 crossref_primary_10_3389_fneur_2024_1350848 crossref_primary_10_1016_j_jtbi_2021_110920 crossref_primary_10_31083_j_jin2307130 crossref_primary_10_1002_mrm_28833 crossref_primary_10_1016_j_molimm_2018_06_267 crossref_primary_10_1016_j_mri_2023_11_002 crossref_primary_10_1016_j_neuroimage_2016_07_017 crossref_primary_10_1093_brain_awx089 crossref_primary_10_1016_j_neurobiolaging_2024_11_002 crossref_primary_10_1002_ana_25219 crossref_primary_10_1007_s00401_016_1570_0 |
Cites_doi | 10.1002/mrm.1910170208 10.1002/mrm.22136 10.1002/mrm.22728 10.1002/mrm.20161 10.1016/j.pscychresns.2008.04.003 10.1155/2011/615829 10.1016/j.neuron.2010.09.043 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S 10.1002/mrm.1910360510 10.1016/j.msard.2012.09.003 10.1111/j.1468-2982.2008.01675.x 10.1097/00004424-200007000-00002 10.1177/135245850100700201 10.1038/jcbfm.1983.1 10.1161/STROKEAHA.110.611731 10.1002/mrm.1188 10.1111/j.1528-1167.2006.00817.x 10.1111/j.1528-1167.2012.03699.x 10.1002/jmri.21328 10.1002/mrm.1910160111 10.1371/journal.pone.0056375 10.1002/mrm.10524 10.1002/jmri.23866 10.1002/mrm.22861 10.1097/00004728-198705000-00004 10.1002/jmri.22565 10.1002/mrm.22005 10.1111/j.1528-1167.2012.03701.x 10.1002/jmri.21080 10.1002/mrm.22098 10.1088/0031-9155/56/17/013 10.1097/RLI.0b013e31823bfc97 10.1016/j.nicl.2013.12.001 |
ContentType | Journal Article |
Copyright | 2014 ISCBFM Copyright Nature Publishing Group Oct 2014 Copyright © 2014 International Society for Cerebral Blood Flow & Metabolism, Inc. 2014 International Society for Cerebral Blood Flow & Metabolism, Inc. |
Copyright_xml | – notice: 2014 ISCBFM – notice: Copyright Nature Publishing Group Oct 2014 – notice: Copyright © 2014 International Society for Cerebral Blood Flow & Metabolism, Inc. 2014 International Society for Cerebral Blood Flow & Metabolism, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7TK 5PM |
DOI | 10.1038/jcbfm.2014.126 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | CrossRef ProQuest Central Student MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Accurate determination of permeability using MRI |
EISSN | 1559-7016 |
EndPage | 1665 |
ExternalDocumentID | PMC4269724 3448102811 25074746 10_1038_jcbfm_2014_126 10.1038_jcbfm.2014.126 |
Genre | Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -Q- -TM .55 .GJ 0R~ 29K 2WC 36B 39C 3O- 4.4 53G 54M 5GY 5RE 5VS 70F 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AABMB AACKU AACMV AADUE AAEWN AAGGD AAGMC AAJIQ AAJPV AAKGS AANSI AAPEO AAQGT AAQXH AAQXI AARDL AARIX AATAA AATBZ AAUAS AAVDI AAXOT AAYTG AAZBJ ABAWP ABAWZ ABCCA ABCJG ABDWY ABEIX ABFWQ ABHKI ABJNI ABJZC ABKRH ABLUO ABNCE ABPGX ABPNF ABQKF ABQNX ABQXT ABRHV ABUJY ABUWG ABVFX ABXGC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFO ACGFS ACGZU ACJER ACJTF ACLFY ACLHI ACNXM ACOFE ACOXC ACPRK ACROE ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADEBD ADEIA ADMPF ADNON ADRRZ ADTBJ ADUKL ADVBO ADZZY AECGH AENEX AEPTA AEQLS AESZF AEUHG AEWDL AEWHI AEXFG AEXNY AFEET AFFNX AFFZS AFKRA AFKRG AFMOU AFOSN AFQAA AFUIA AFVCE AGHKR AGKLV AGNHF AGPXR AGWFA AHDMH AHMBA AIGRN AJABX AJEFB AJMMQ AJSCY AJUZI AJXAJ AJXGE ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS AMCVQ ANDLU AOIJS ARTOV AUTPY AYAKG B8M BAWUL BBNVY BBRGL BDDNI BENPR BHPHI BKIIM BKSCU BPACV BPHCQ BSEHC BVXVI BWJAD C45 CAG CBRKF CCPQU CDWPY CFDXU COF CORYS CQQTX CS3 CUTAK D-I DC- DC. DIK DOPDO DV7 E3Z EBS EE. EJD EMOBN F5P FHBDP FYUFA GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 H13 HCIFZ HMCUK HYE HZ~ J8X JSO K.F KQ8 LK8 M1P M7P O9- OK1 OVD P2P P6G PHGZM PHGZT PQQKQ PROAC PSQYO Q1R Q2X RNS RNTTT ROL RPM SASJQ SAUOL SCNPE SFC SHG SPQ SPV TEORI TR2 UKHRP W2D X7M YFH YOC ZGI ZONMY ZPPRI ZRKOI ZSSAH ZXP AAPII AAYXX AJGYC AJHME AJVBE CITATION PJZUB PPXIY PQGLB ALTZF CGR CUY CVF ECM EIF M4V NPM 3V. 7XB 88A 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c557t-dfcddf296d59fbf5acc3de26e4fa9f729a539f1fb98021a2f455a7caa53db3803 |
IEDL.DBID | 7X7 |
ISSN | 0271-678X 1559-7016 |
IngestDate | Thu Aug 21 17:18:26 EDT 2025 Thu Jul 10 23:47:18 EDT 2025 Fri Jul 11 07:32:26 EDT 2025 Wed Aug 13 06:52:42 EDT 2025 Thu Apr 03 07:09:10 EDT 2025 Thu Apr 24 23:03:10 EDT 2025 Wed Aug 20 07:44:39 EDT 2025 Tue Jun 17 22:40:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | blood–brain barrier perfusion-weighted MRI MRI multiple sclerosis cerebral hemodynamics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-dfcddf296d59fbf5acc3de26e4fa9f729a539f1fb98021a2f455a7caa53db3803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | https://journals.sagepub.com/doi/pdf/10.1038/jcbfm.2014.126 |
PMID | 25074746 |
PQID | 1566624688 |
PQPubID | 31524 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4269724 proquest_miscellaneous_1622602238 proquest_miscellaneous_1567050307 proquest_journals_1566624688 pubmed_primary_25074746 crossref_primary_10_1038_jcbfm_2014_126 crossref_citationtrail_10_1038_jcbfm_2014_126 sage_journals_10_1038_jcbfm_2014_126 |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: United States – name: London |
PublicationTitle | Journal of cerebral blood flow and metabolism |
PublicationTitleAlternate | J Cereb Blood Flow Metab |
PublicationYear | 2014 |
Publisher | SAGE Publications Sage Publications Ltd Nature Publishing Group |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: Nature Publishing Group |
References | Larsson, Hansen, Berg, Rostrup, Haraldseth 2008; 27 Iannotti, Fieschi, Alfano, Picozzi, Mansi, Pozzilli 1987; 11 Larsson, Rosenbaum, Fritz-Hansen 2001; 46 Singh, Haris, Rathore, Purwar, Sarma, Bayu 2007; 26 Gao, Le, Zhang, Chen, Tian, Zhang 2010; 123 Oby, Janigro 2006; 47 Tofts, Brix, Buckley, Evelhoch, Henderson, Knopp 1999; 10 Patlak, Blasberg, Fenstermacher 1983; 3 Larsson, Courivaud, Rostrup, Hansen 2009; 62 Taheri, Gasparovic, Huisa, Adair, Edmonds, Prestopnik 2011; 42 Luypaert, Sourbron, de Mey 2010; 65 Anderson, Lenar, Quinn, Rooney 2011; 2011 Aerts, Jaspers, Backes 2011; 56 Sourbron, Buckley 2011; 66 Jelescu, Leppert, Narayanan, Araújo, Arnold, Pike 2011; 33 Winkler, Chassidim, Lublinsky, Revankar, Major, Kang 2012; 53 Tofts, Kermode 1991; 17 Cramer, Simonsen, Frederiksen, Rostrup, Larsson 2013; 4 Moody, Martel, Kenton, Allder, Horsfield, Delay 2000; 35 Larsson, Kleppestø, Rasmussen, Salo, Vardal, Brandal 2013; 37 Hansen, Pedersen, Rostrup, Larsson 2009; 62 Silver, Tofts, Symms, Barker, Thompson, Miller 2001; 7 Lund, Krakauer, Skimminge, Sellebjerg, Garde, Siebner 2013; 8 Bell, Winkler, Sagare, Singh, LaRue, Deane 2010; 68 Taheri, Rosenberg, Ford 2013; 2 Starr, Farrall, Armitage, McGurn, Wardlaw 2009; 171 Kim, Buckwalter, Soreq, Vezzani, Kaufer 2012; 53 Edvinsson, Tfelt-Hansen 2008; 28 Brix, Kiessling, Lucht, Darai, Wasser, Delorme 2004; 52 Sourbron, Ingrisch, Siefert, Reiser, Herrmann 2009; 62 Ostergaard, Weisskoff, Chesler, Gyldensted, Rosen 1996; 36 Larsson, Stubgaard, Frederiksen, Jensen, Henriksen, Paulson 1990; 16 Ingrisch, Sourbron, Morhard, Ertl-Wagner, Kümpfel, Hohlfeld 2012; 47 Ewing, Knight, Nagaraja, Yee, Nagesh, Whitton 2003; 50 bibr1-jcbfm.2014.126 bibr19-jcbfm.2014.126 bibr14-jcbfm.2014.126 bibr31-jcbfm.2014.126 bibr6-jcbfm.2014.126 bibr27-jcbfm.2014.126 bibr10-jcbfm.2014.126 bibr23-jcbfm.2014.126 bibr32-jcbfm.2014.126 bibr2-jcbfm.2014.126 bibr11-jcbfm.2014.126 bibr29-jcbfm.2014.126 bibr16-jcbfm.2014.126 bibr7-jcbfm.2014.126 bibr15-jcbfm.2014.126 bibr28-jcbfm.2014.126 bibr24-jcbfm.2014.126 bibr20-jcbfm.2014.126 Gao H-M (bibr25-jcbfm.2014.126) 2010; 123 bibr12-jcbfm.2014.126 bibr33-jcbfm.2014.126 bibr8-jcbfm.2014.126 bibr17-jcbfm.2014.126 bibr34-jcbfm.2014.126 bibr3-jcbfm.2014.126 bibr21-jcbfm.2014.126 bibr18-jcbfm.2014.126 bibr13-jcbfm.2014.126 bibr26-jcbfm.2014.126 bibr5-jcbfm.2014.126 bibr30-jcbfm.2014.126 bibr4-jcbfm.2014.126 bibr9-jcbfm.2014.126 bibr22-jcbfm.2014.126 19449435 - Magn Reson Med. 2009 Jul;62(1):205-17 21500273 - Magn Reson Med. 2011 May;65(5):1491-7 11424635 - Mult Scler. 2001 Apr;7(2):75-82 2062210 - Magn Reson Med. 1991 Feb;17(2):357-67 15282828 - Magn Reson Med. 2004 Aug;52(2):420-9 8916022 - Magn Reson Med. 1996 Nov;36(5):715-25 2255233 - Magn Reson Med. 1990 Oct;16(1):117-31 23134494 - Epilepsia. 2012 Nov;53 Suppl 6:37-44 21034616 - Chin Med J (Engl). 2010 Sep;123(18):2559-61 23134492 - Epilepsia. 2012 Nov;53 Suppl 6:22-30 18727638 - Cephalalgia. 2008 Dec;28(12):1245-58 6822610 - J Cereb Blood Flow Metab. 1983 Mar;3(1):1-7 21040844 - Neuron. 2010 Nov 4;68(3):409-27 19672948 - Magn Reson Med. 2009 Oct;62(4):1055-9 10901101 - Invest Radiol. 2000 Jul;35(7):401-11 21590997 - J Magn Reson Imaging. 2011 Jun;33(6):1291-300 23086710 - J Magn Reson Imaging. 2013 Apr;37(4):818-29 12876704 - Magn Reson Med. 2003 Aug;50(2):283-92 21384424 - Magn Reson Med. 2011 Sep;66(3):735-45 23441184 - PLoS One. 2013;8(2):e56375 24371801 - Neuroimage Clin. 2014;4:182-9 18383268 - J Magn Reson Imaging. 2008 Apr;27(4):754-62 19780145 - Magn Reson Med. 2009 Nov;62(5):1270-81 19211227 - Psychiatry Res. 2009 Mar 31;171(3):232-41 10508281 - J Magn Reson Imaging. 1999 Sep;10(3):223-32 21687589 - Cardiovasc Psychiatry Neurol. 2011;2011:615829 21828909 - Phys Med Biol. 2011 Sep 7;56(17):5665-78 3106433 - J Comput Assist Tomogr. 1987 May-Jun;11(3):390-7 17896358 - J Magn Reson Imaging. 2007 Oct;26(4):871-80 11477630 - Magn Reson Med. 2001 Aug;46(2):272-81 21719768 - Stroke. 2011 Aug;42(8):2158-63 17116015 - Epilepsia. 2006 Nov;47(11):1761-74 25877634 - Mult Scler Relat Disord. 2013 Apr;2(2):124-32 22373532 - Invest Radiol. 2012 Apr;47(4):252-8 |
References_xml | – volume: 47 start-page: 1761 year: 2006 end-page: 1774 article-title: The blood-brain barrier and epilepsy publication-title: Epilepsia – volume: 27 start-page: 754 year: 2008 end-page: 762 article-title: Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T1-weighted MRI at 3T publication-title: J Magn Reson Imaging – volume: 36 start-page: 715 year: 1996 end-page: 725 article-title: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis publication-title: Magn Reson Med – volume: 66 start-page: 735 year: 2011 end-page: 745 article-title: On the scope and interpretation of the Tofts models for DCE-MRI publication-title: Magn Reson Med – volume: 62 start-page: 1055 year: 2009 end-page: 1059 article-title: Partial volume effect (PVE) on the arterial input function (AIF) in T1-weighted perfusion imaging and limitations of the multiplicative rescaling approach publication-title: Magn Reson Med – volume: 53 start-page: 22 year: 2012 end-page: 30 article-title: Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: possible link to blood-brain barrier dysfunction publication-title: Epilepsia – volume: 42 start-page: 2158 year: 2011 end-page: 2163 article-title: Blood-brain barrier permeability abnormalities in vascular cognitive impairment publication-title: Stroke – volume: 50 start-page: 283 year: 2003 end-page: 292 article-title: Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening publication-title: Magn Reson Med – volume: 16 start-page: 117 year: 1990 end-page: 131 article-title: Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors publication-title: Magn Reson Med – volume: 53 start-page: 37 year: 2012 end-page: 44 article-title: Blood-brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis publication-title: Epilepsia – volume: 46 start-page: 272 year: 2001 end-page: 281 article-title: Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart publication-title: Magn Reson Med – volume: 56 start-page: 5665 year: 2011 end-page: 5678 article-title: The precision of pharmacokinetic parameters in dynamic contrast-enhanced magnetic resonance imaging: the effect of sampling frequency and duration publication-title: Phys Med Biol – volume: 26 start-page: 871 year: 2007 end-page: 880 article-title: Quantification of physiological and hemodynamic indices using T(1) dynamic contrast-enhanced MRI in intracranial mass lesions publication-title: J Magn Reson Imaging – volume: 37 start-page: 818 year: 2013 end-page: 829 article-title: Sampling requirements in DCE-MRI based analysis of high grade gliomas: simulations and clinical results publication-title: J Magn Reson Imaging – volume: 33 start-page: 1291 year: 2011 end-page: 1300 article-title: Dual-temporal resolution dynamic contrast-enhanced MRI protocol for blood-brain barrier permeability measurement in enhancing multiple sclerosis lesions publication-title: J Magn Reson Imaging – volume: 62 start-page: 1270 year: 2009 end-page: 1281 article-title: Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T1-weighted MRI at 3 tesla publication-title: Magn Reson Med – volume: 2011 start-page: 1 year: 2011 end-page: 9 article-title: The blood-brain barrier and microvascular water exchange in alzheimer's disease publication-title: Cardiovasc Psychiatry Neurol – volume: 2 start-page: 124 year: 2013 end-page: 132 article-title: Quantification of blood-to-brain transfer rate in multiple sclerosis publication-title: Mult Scler Relat Disord – volume: 3 start-page: 1 year: 1983 end-page: 7 article-title: Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data publication-title: J Cereb Blood Flow Metab – volume: 123 start-page: 2559 year: 2010 end-page: 2561 article-title: Impact of migraine attacks on the blood-brain barrier publication-title: Chin Med J (Engl) – volume: 17 start-page: 357 year: 1991 end-page: 367 article-title: Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts publication-title: Magn Reson Med – volume: 52 start-page: 420 year: 2004 end-page: 429 article-title: Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series publication-title: Magn Reson Med – volume: 47 start-page: 252 year: 2012 end-page: 258 article-title: Quantification of perfusion and permeability in multiple sclerosis publication-title: Invest Radiol – volume: 171 start-page: 232 year: 2009 end-page: 241 article-title: Blood-brain barrier permeability in Alzheimer's disease: a case-control MRI study publication-title: Psychiatry Res – volume: 11 start-page: 390 year: 1987 end-page: 397 article-title: Simplified, noninvasive PET measurement of blood-brain barrier permeability publication-title: J Comput Assist Tomogr – volume: 4 start-page: 182 year: 2013 end-page: 189 article-title: Abnormal blood–brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI publication-title: Neuroimage Clin – volume: 28 start-page: 1245 year: 2008 end-page: 1258 article-title: The blood-brain barrier in migraine treatment publication-title: Cephalalgia – volume: 62 start-page: 205 year: 2009 end-page: 217 article-title: Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI publication-title: Magn Reson Med – volume: 35 start-page: 401 year: 2000 end-page: 411 article-title: Contrast-reduced imaging of tissue concentration and arterial level (CRITICAL) for assessment of cerebral hemodynamics in acute stroke by magnetic resonance publication-title: Invest Radiol – volume: 68 start-page: 409 year: 2010 end-page: 427 article-title: Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging publication-title: Neuron – volume: 8 start-page: e56375 year: 2013 article-title: Blood-brain barrier permeability of normal appearing white matter in relapsing-remitting multiple sclerosis publication-title: PLoS ONE – volume: 7 start-page: 75 year: 2001 end-page: 82 article-title: Quantitative contrast-enhanced magnetic resonance imaging to evaluate blood-brain barrier integrity in multiple sclerosis: a preliminary study publication-title: Mult Scler – volume: 65 start-page: 1491 year: 2010 end-page: 1497 article-title: Validity of perfusion parameters obtained using the modified Tofts model: a simulation study publication-title: Magn Reson Med – volume: 10 start-page: 223 year: 1999 end-page: 232 article-title: Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols publication-title: J Magn Reson Imaging – ident: bibr2-jcbfm.2014.126 doi: 10.1002/mrm.1910170208 – ident: bibr7-jcbfm.2014.126 doi: 10.1002/mrm.22136 – ident: bibr5-jcbfm.2014.126 doi: 10.1002/mrm.22728 – ident: bibr15-jcbfm.2014.126 doi: 10.1002/mrm.20161 – ident: bibr21-jcbfm.2014.126 doi: 10.1016/j.pscychresns.2008.04.003 – ident: bibr22-jcbfm.2014.126 doi: 10.1155/2011/615829 – ident: bibr27-jcbfm.2014.126 doi: 10.1016/j.neuron.2010.09.043 – ident: bibr3-jcbfm.2014.126 doi: 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S – ident: bibr34-jcbfm.2014.126 doi: 10.1002/mrm.1910360510 – ident: bibr30-jcbfm.2014.126 doi: 10.1016/j.msard.2012.09.003 – ident: bibr24-jcbfm.2014.126 doi: 10.1111/j.1468-2982.2008.01675.x – ident: bibr9-jcbfm.2014.126 doi: 10.1097/00004424-200007000-00002 – ident: bibr18-jcbfm.2014.126 doi: 10.1177/135245850100700201 – ident: bibr6-jcbfm.2014.126 doi: 10.1038/jcbfm.1983.1 – ident: bibr23-jcbfm.2014.126 doi: 10.1161/STROKEAHA.110.611731 – ident: bibr8-jcbfm.2014.126 doi: 10.1002/mrm.1188 – ident: bibr20-jcbfm.2014.126 doi: 10.1111/j.1528-1167.2006.00817.x – volume: 123 start-page: 2559 year: 2010 ident: bibr25-jcbfm.2014.126 publication-title: Chin Med J (Engl) – ident: bibr26-jcbfm.2014.126 doi: 10.1111/j.1528-1167.2012.03699.x – ident: bibr11-jcbfm.2014.126 doi: 10.1002/jmri.21328 – ident: bibr1-jcbfm.2014.126 doi: 10.1002/mrm.1910160111 – ident: bibr17-jcbfm.2014.126 doi: 10.1371/journal.pone.0056375 – ident: bibr31-jcbfm.2014.126 doi: 10.1002/mrm.10524 – ident: bibr33-jcbfm.2014.126 doi: 10.1002/jmri.23866 – ident: bibr4-jcbfm.2014.126 doi: 10.1002/mrm.22861 – ident: bibr28-jcbfm.2014.126 doi: 10.1097/00004728-198705000-00004 – ident: bibr14-jcbfm.2014.126 doi: 10.1002/jmri.22565 – ident: bibr12-jcbfm.2014.126 doi: 10.1002/mrm.22005 – ident: bibr19-jcbfm.2014.126 doi: 10.1111/j.1528-1167.2012.03701.x – ident: bibr10-jcbfm.2014.126 doi: 10.1002/jmri.21080 – ident: bibr13-jcbfm.2014.126 doi: 10.1002/mrm.22098 – ident: bibr32-jcbfm.2014.126 doi: 10.1088/0031-9155/56/17/013 – ident: bibr29-jcbfm.2014.126 doi: 10.1097/RLI.0b013e31823bfc97 – ident: bibr16-jcbfm.2014.126 doi: 10.1016/j.nicl.2013.12.001 – reference: 18727638 - Cephalalgia. 2008 Dec;28(12):1245-58 – reference: 17896358 - J Magn Reson Imaging. 2007 Oct;26(4):871-80 – reference: 2062210 - Magn Reson Med. 1991 Feb;17(2):357-67 – reference: 21034616 - Chin Med J (Engl). 2010 Sep;123(18):2559-61 – reference: 11424635 - Mult Scler. 2001 Apr;7(2):75-82 – reference: 21384424 - Magn Reson Med. 2011 Sep;66(3):735-45 – reference: 23134492 - Epilepsia. 2012 Nov;53 Suppl 6:22-30 – reference: 21590997 - J Magn Reson Imaging. 2011 Jun;33(6):1291-300 – reference: 21040844 - Neuron. 2010 Nov 4;68(3):409-27 – reference: 19211227 - Psychiatry Res. 2009 Mar 31;171(3):232-41 – reference: 21687589 - Cardiovasc Psychiatry Neurol. 2011;2011:615829 – reference: 19780145 - Magn Reson Med. 2009 Nov;62(5):1270-81 – reference: 23134494 - Epilepsia. 2012 Nov;53 Suppl 6:37-44 – reference: 3106433 - J Comput Assist Tomogr. 1987 May-Jun;11(3):390-7 – reference: 19449435 - Magn Reson Med. 2009 Jul;62(1):205-17 – reference: 22373532 - Invest Radiol. 2012 Apr;47(4):252-8 – reference: 21828909 - Phys Med Biol. 2011 Sep 7;56(17):5665-78 – reference: 2255233 - Magn Reson Med. 1990 Oct;16(1):117-31 – reference: 25877634 - Mult Scler Relat Disord. 2013 Apr;2(2):124-32 – reference: 6822610 - J Cereb Blood Flow Metab. 1983 Mar;3(1):1-7 – reference: 10508281 - J Magn Reson Imaging. 1999 Sep;10(3):223-32 – reference: 21500273 - Magn Reson Med. 2011 May;65(5):1491-7 – reference: 15282828 - Magn Reson Med. 2004 Aug;52(2):420-9 – reference: 23086710 - J Magn Reson Imaging. 2013 Apr;37(4):818-29 – reference: 19672948 - Magn Reson Med. 2009 Oct;62(4):1055-9 – reference: 21719768 - Stroke. 2011 Aug;42(8):2158-63 – reference: 24371801 - Neuroimage Clin. 2014;4:182-9 – reference: 11477630 - Magn Reson Med. 2001 Aug;46(2):272-81 – reference: 10901101 - Invest Radiol. 2000 Jul;35(7):401-11 – reference: 23441184 - PLoS One. 2013;8(2):e56375 – reference: 18383268 - J Magn Reson Imaging. 2008 Apr;27(4):754-62 – reference: 8916022 - Magn Reson Med. 1996 Nov;36(5):715-25 – reference: 12876704 - Magn Reson Med. 2003 Aug;50(2):283-92 – reference: 17116015 - Epilepsia. 2006 Nov;47(11):1761-74 |
SSID | ssj0008355 |
Score | 2.4502852 |
Snippet | Dynamic contrast-enhanced magnetic resonance imaging (DCE–MRI) is increasingly used to estimate permeability in situations with subtle blood–brain barrier... Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used to estimate permeability in situations with subtle blood-brain barrier... |
SourceID | pubmedcentral proquest pubmed crossref sage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1655 |
SubjectTerms | Adult Algorithms Blood-Brain Barrier - metabolism Blood-Brain Barrier - pathology Computer Simulation Female Humans Magnetic Resonance Imaging - methods Male Models, Biological Multiple Sclerosis - metabolism Multiple Sclerosis - pathology Original Permeability Sensitivity and Specificity Young Adult |
Title | Accurate Determination of Blood–Brain Barrier Permeability Using Dynamic Contrast-Enhanced T1-Weighted MRI: A Simulation and in vivo Study on Healthy Subjects and Multiple Sclerosis Patients |
URI | https://journals.sagepub.com/doi/full/10.1038/jcbfm.2014.126 https://www.ncbi.nlm.nih.gov/pubmed/25074746 https://www.proquest.com/docview/1566624688 https://www.proquest.com/docview/1567050307 https://www.proquest.com/docview/1622602238 https://pubmed.ncbi.nlm.nih.gov/PMC4269724 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAFQctjoVSDVMHJtHnZCRe0VK0KEhWqWmlvkZ_tIposzW7R_jl-GzPOg60KvUXxKLIzE-fz-PM3jO1EOtJJoR33sfU8dcJyLUzKpTcC2wpZmMDyPRZHZ-mXSTbpEm5NR6vs58QwUdvaUI58l9YZIk5Fnn-c_eRUNYp2V7sSGvfZOkmXEaVLToYFF6GLQGGMZcRxUp70oo1JvvvdaE8H0aP0fUTCCqs_pVtI8zZhcoX1FX5Eh4_Zow5Bwrh1-RN2z1UbbHNc4er5cglvIXA6Q7J8gz3Y7-u5bbLfY2MWJAwBtqfAkFOg9tCy1zVViwCtrqiIHczQxLUi3ksgdvw52LZ6PQR6u2rm3FUXgUAApxH_FXKseP315PMHUNBML7vKYKAqC_jk6-l1DUHOFvBmewBzCc1CUyqoCVY9vREaHBq-qmkDnfBr85SdHR6c7h_xrnoDN1km59x6Y62PC2GzwmufKWMS62LhUq8Kj5heZUnhI6-LHHGGin2aZUoahbetTvK95Blbq-rKvWAQcAVtGFoEPGil80TYKNMI9lLnhRgx3ruvNJ20OVXY-FGGLfYkL4O7S3J3ie4esXeD_awV9fiv5VYfDWX3cTfl31AcsTdDM3qT9lpU5epFsJEktbMn77ARiH0RQyX4nOdtgA3dQWSKC70UOyBvhN5gQLLgN1uq6UWQB6fDyTJOR2yHgnSl2_8c4cu7R_iKPSTLlr64xdbmVwv3GmHYXG-Hb22brX86OP528gfb4zj9 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLVKuigbBC2PQIGLVGBl2nl5ZpAQCqVVQtsIVamU3dRPGkQmoZO0yk_xCXwb154HqQrddReNbyx77h372D4-l5AtT3giSIWmxleGhpopKpgMaWwkw7I0TqVj-fZZ9yT8MoyGK-RXfRfG0irrMdEN1Goi7R75tl1nMD9kSfJx-pParFH2dLVOoVGGxYFeXOKSrfjQ-4z-fe37-3uD3S6tsgpQGUXxjCojlTJ-ylSUGmEiLmWgtM90aHhqEGvyKEiNZ0Sa4PzHfRNGEY8lx8dKBMlOgPXeIathgEuZFln9tNf_etyM_YhnHGnSjz2K08CwlokMku3vUhh79d0L33lWymF5GryGba9TNJd4Zm7q279P7lWYFTplkD0gKzpfJxudHNfr4wW8Acciddvz62Rtt84gt0F-d6ScWykKUDXpxoYBTAyUfHlh81OA4Oc2bR5M0USXsuELsHz8b6AWOR-PJDhCPS9mVOdnjrIAA49eul1d_H103HsPHIrRuMpFBjxXgDVfjC4m4AR0AR-WVz4XUMyF3XwqnFVNqIQCu4avalRAJTVbPCQnt-LZR6SVT3L9hIBDMvaIUiHEQiuRBEx5kUB4GWrDWJvQ2n2ZrMTUbU6PH5k71A-SzLk7s-7O0N1t8raxn5YyIv-13KyjIauGkyL7G_xt8qopRm_a0x2e68nc2cRW3GcnvsGGIdpG1BZgPY_LAGuag1gYl5YhNiC-EnqNgRUiv1qSj86cILm9Dh37YZts2SBdavY_e_j05h6-JGvdwdFhdtjrHzwjd-2_SvLkJmnNzuf6OYLAmXhRfXlATm_7Y_8DeXJ4Jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+determination+of+blood-brain+barrier+permeability+using+dynamic+contrast-enhanced+T1-weighted+MRI%3A+a+simulation+and+in+vivo+study+on+healthy+subjects+and+multiple+sclerosis+patients&rft.jtitle=Journal+of+cerebral+blood+flow+and+metabolism&rft.au=Cramer%2C+Stig+P&rft.au=Larsson%2C+Henrik+B+W&rft.date=2014-10-01&rft.pub=Sage+Publications+Ltd&rft.issn=0271-678X&rft.eissn=1559-7016&rft.volume=34&rft.issue=10&rft.spage=1655&rft_id=info:doi/10.1038%2Fjcbfm.2014.126&rft.externalDocID=3448102811 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-678X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-678X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-678X&client=summon |