Human Antibodies Targeting Influenza B Virus Neuraminidase Active Site Are Broadly Protective

Influenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV compared to influenza A viruses (IAV). Neuraminidase (NA), the second major surface protein on the influenza virus, is emerging as a target...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 53; no. 4; pp. 852 - 863.e7
Main Authors Madsen, Anders, Dai, Ya-Nan, McMahon, Meagan, Schmitz, Aaron J., Turner, Jackson S., Tan, Jessica, Lei, Tingting, Alsoussi, Wafaa B., Strohmeier, Shirin, Amor, Mostafa, Mohammed, Bassem M., Mudd, Philip A., Simon, Viviana, Cox, Rebecca J., Fremont, Daved H., Krammer, Florian, Ellebedy, Ali H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.10.2020
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Influenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV compared to influenza A viruses (IAV). Neuraminidase (NA), the second major surface protein on the influenza virus, is emerging as a target of broadly protective antibodies that recognize the NA active site of IAVs. However, similarly broadly protective antibodies against IBV NA have not been identified. Here, we isolated and characterized human monoclonal antibodies (mAbs) that target IBV NA from an IBV-infected patient. Two mAbs displayed broad and potent capacity to inhibit IBV NA enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings. These mAbs inserted long CDR-H3 loops into the NA active site, engaging residues highly conserved among IBV NAs. These mAbs provide a blueprint for the development of improved vaccines and therapeutics against IBVs. [Display omitted] •Generation of seven human monoclonal antibodies to influenza B virus neuraminidase•Two antibodies, 1G05 and 2E01, are broadly cross-reactive•1G05 and 2E01 are potently protective against lethal Influenza B infection in mice•1G05 and 2E01 bind conserved residues in the Influenza B neuraminidase active site Influenza B virus (IBV) infections cause severe disease. Madsen et al. develop and characterize human monoclonal antibodies that possess broad and potent capacities to inhibit IBV neuraminidase enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings.
AbstractList Influenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV compared to influenza A viruses (IAV). Neuraminidase (NA), the second major surface protein on the influenza virus, is emerging as a target of broadly protective antibodies that recognize the NA active site of IAVs. However, similarly broadly protective antibodies against IBV NA have not been identified. Here, we isolated and characterized human monoclonal antibodies (mAbs) that target IBV NA from an IBV-infected patient. Two mAbs displayed broad and potent capacity to inhibit IBV NA enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings. These mAbs inserted long CDR-H3 loops into the NA active site, engaging residues highly conserved among IBV NAs. These mAbs provide a blueprint for the development of improved vaccines and therapeutics against IBVs.Influenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV compared to influenza A viruses (IAV). Neuraminidase (NA), the second major surface protein on the influenza virus, is emerging as a target of broadly protective antibodies that recognize the NA active site of IAVs. However, similarly broadly protective antibodies against IBV NA have not been identified. Here, we isolated and characterized human monoclonal antibodies (mAbs) that target IBV NA from an IBV-infected patient. Two mAbs displayed broad and potent capacity to inhibit IBV NA enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings. These mAbs inserted long CDR-H3 loops into the NA active site, engaging residues highly conserved among IBV NAs. These mAbs provide a blueprint for the development of improved vaccines and therapeutics against IBVs.
Influenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV compared to influenza A viruses (IAV). Neuraminidase (NA), the second major surface protein on the influenza virus, is emerging as a target of broadly protective antibodies that recognize the NA active site of IAVs. However, similarly broadly protective antibodies against IBV NA have not been identified. Here, we isolated and characterized human monoclonal antibodies (mAbs) that target IBV NA from an IBV-infected patient. Two mAbs displayed broad and potent capacity to inhibit IBV NA enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings. These mAbs inserted long CDR-H3 loops into the NA active site, engaging residues highly conserved among IBV NAs. These mAbs provide a blueprint for the development of improved vaccines and therapeutics against IBVs. [Display omitted] •Generation of seven human monoclonal antibodies to influenza B virus neuraminidase•Two antibodies, 1G05 and 2E01, are broadly cross-reactive•1G05 and 2E01 are potently protective against lethal Influenza B infection in mice•1G05 and 2E01 bind conserved residues in the Influenza B neuraminidase active site Influenza B virus (IBV) infections cause severe disease. Madsen et al. develop and characterize human monoclonal antibodies that possess broad and potent capacities to inhibit IBV neuraminidase enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings.
Influenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV compared to influenza A viruses (IAV). Neuraminidase (NA), the second major surface protein on the influenza virus, is emerging as a target of broadly protective antibodies that recognize the NA active site of IAVs. However, similarly broadly protective antibodies against IBV NA have not been identified. Here, we isolated and characterized human monoclonal antibodies (mAbs) that target IBV NA from an IBV-infected patient. Two mAbs displayed broad and potent capacity to inhibit IBV NA enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings. These mAbs inserted long CDR-H3 loops into the NA active site, engaging residues highly conserved among IBV NAs. These mAbs provide a blueprint for the development of improved vaccines and therapeutics against IBVs.
SummaryInfluenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV compared to influenza A viruses (IAV). Neuraminidase (NA), the second major surface protein on the influenza virus, is emerging as a target of broadly protective antibodies that recognize the NA active site of IAVs. However, similarly broadly protective antibodies against IBV NA have not been identified. Here, we isolated and characterized human monoclonal antibodies (mAbs) that target IBV NA from an IBV-infected patient. Two mAbs displayed broad and potent capacity to inhibit IBV NA enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings. These mAbs inserted long CDR-H3 loops into the NA active site, engaging residues highly conserved among IBV NAs. These mAbs provide a blueprint for the development of improved vaccines and therapeutics against IBVs.
Influenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV compared to influenza A viruses (IAV). Neuraminidase (NA), the second major surface protein on the influenza virus, is emerging as a target of broadly protective antibodies that recognize the NA active site of IAVs. However, similarly broadly protective antibodies against IBV NA have not been identified. Here, we isolated and characterized human monoclonal antibodies (mAbs) that target IBV NA from an IBV-infected patient. Two mAbs displayed broad and potent capacity to inhibit IBV NA enzymatic activity, neutralize the virus in vitro , and protect against lethal IBV infection in mice in prophylactic and therapeutic settings. These mAbs inserted long CDR-H3 loops into the NA active site, engaging residues highly conserved amongst IBV NAs. These mAbs provide a blueprint for the development of improved vaccines and therapeutics against IBVs. Influenza B virus (IBV) infections cause severe disease. Madsen et al. develop and characterize human monoclonal antibodies that possess broad and potent capacities to inhibit IBV neuraminidase enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings.
Author Krammer, Florian
Ellebedy, Ali H.
Cox, Rebecca J.
Alsoussi, Wafaa B.
Tan, Jessica
Madsen, Anders
Mudd, Philip A.
Strohmeier, Shirin
Schmitz, Aaron J.
Amor, Mostafa
Mohammed, Bassem M.
Simon, Viviana
Fremont, Daved H.
Dai, Ya-Nan
McMahon, Meagan
Lei, Tingting
Turner, Jackson S.
AuthorAffiliation 10 Lead contact
6 Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
5 Department of Microbiology, Haukeland University Hospital, 5021 Bergen, Norway
9 Equal contribution
3 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
8 The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
1 Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
4 Division of Emergency Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
2 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
7 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
AuthorAffiliation_xml – name: 4 Division of Emergency Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 9 Equal contribution
– name: 8 The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 1 Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
– name: 3 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
– name: 10 Lead contact
– name: 6 Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 2 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 5 Department of Microbiology, Haukeland University Hospital, 5021 Bergen, Norway
– name: 7 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
Author_xml – sequence: 1
  givenname: Anders
  orcidid: 0000-0002-0626-5443
  surname: Madsen
  fullname: Madsen, Anders
  organization: Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
– sequence: 2
  givenname: Ya-Nan
  orcidid: 0000-0003-1618-3043
  surname: Dai
  fullname: Dai, Ya-Nan
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 3
  givenname: Meagan
  surname: McMahon
  fullname: McMahon, Meagan
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
– sequence: 4
  givenname: Aaron J.
  surname: Schmitz
  fullname: Schmitz, Aaron J.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 5
  givenname: Jackson S.
  surname: Turner
  fullname: Turner, Jackson S.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 6
  givenname: Jessica
  surname: Tan
  fullname: Tan, Jessica
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
– sequence: 7
  givenname: Tingting
  surname: Lei
  fullname: Lei, Tingting
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 8
  givenname: Wafaa B.
  surname: Alsoussi
  fullname: Alsoussi, Wafaa B.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 9
  givenname: Shirin
  surname: Strohmeier
  fullname: Strohmeier, Shirin
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
– sequence: 10
  givenname: Mostafa
  surname: Amor
  fullname: Amor, Mostafa
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 11
  givenname: Bassem M.
  surname: Mohammed
  fullname: Mohammed, Bassem M.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 12
  givenname: Philip A.
  orcidid: 0000-0002-3860-5473
  surname: Mudd
  fullname: Mudd, Philip A.
  organization: Division of Emergency Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 13
  givenname: Viviana
  surname: Simon
  fullname: Simon, Viviana
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
– sequence: 14
  givenname: Rebecca J.
  surname: Cox
  fullname: Cox, Rebecca J.
  organization: Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
– sequence: 15
  givenname: Daved H.
  surname: Fremont
  fullname: Fremont, Daved H.
  email: fremont@wustl.edu
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 16
  givenname: Florian
  surname: Krammer
  fullname: Krammer, Florian
  email: florian.krammer@mssm.edu
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
– sequence: 17
  givenname: Ali H.
  surname: Ellebedy
  fullname: Ellebedy, Ali H.
  email: ellebedy@wustl.edu
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32976769$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URP_AN0AoEhcuCePEjhMOSNsKaKUKkCjckOW1J8usEru1k5XKpyfbXSroAU4z0vzmad68Y3bgg0fGnnMoOPD69bqgYZg8FSWUUEBTAJeP2BGHVuWCN3Cw7ZXIVc2rQ3ac0hqAC9nCE3ZYla2qVd0ese_n02B8tvAjLYMjTNmViSscya-yC9_1E_qfJjvNvlGcUvYRp2gG8uRMwmxhR9pg9oXGuY-YncZgXH-bfY5hxLvZU_a4M33CZ_t6wr6-f3d1dp5ffvpwcba4zK2UasyddVAueVfXXJYNCGtASIsOa6lAQNuJbilbLp2qFHfGlV2tVGuUEVUHyGV1wt7udK-n5YDOoh-j6fV1pMHEWx0M6b8nnn7oVdhoJVXZ8GoWeLUXiOFmwjTqgZLFvjcew5R0KURdK65UM6MvH6DrMEU_25spCUpKyduZevHnRfen_P78DIgdYGNIKWJ3j3DQ24D1Wu8C1tuANTQa7py-ebBmaTQjha0v6v-3vH8TzllsCKNOltDPn6Y4B6ZdoH8L_AJ6EsQ1
CitedBy_id crossref_primary_10_3389_fimmu_2021_786617
crossref_primary_10_3390_vaccines9040404
crossref_primary_10_1016_j_immuni_2023_07_004
crossref_primary_10_1016_j_bbadis_2025_167772
crossref_primary_10_1002_jmv_28106
crossref_primary_10_1111_nyas_14915
crossref_primary_10_1126_science_2020_5_53_twil
crossref_primary_10_1016_j_coviro_2022_101207
crossref_primary_10_1128_jvi_01186_24
crossref_primary_10_1016_j_scitotenv_2024_177077
crossref_primary_10_1038_s41467_024_53301_6
crossref_primary_10_1128_jvi_01646_22
crossref_primary_10_1016_j_antiviral_2023_105785
crossref_primary_10_1128_JVI_01421_21
crossref_primary_10_3389_fimmu_2022_944907
crossref_primary_10_1128_msphere_00927_21
crossref_primary_10_1016_j_virol_2022_02_004
crossref_primary_10_1038_s41586_023_06136_y
crossref_primary_10_3390_molecules27051640
crossref_primary_10_1080_14760584_2021_1964961
crossref_primary_10_1111_irv_13276
crossref_primary_10_3390_v13060973
crossref_primary_10_1146_annurev_immunol_042718_041309
crossref_primary_10_1016_j_immuni_2024_02_003
crossref_primary_10_1016_j_vaccine_2025_126994
crossref_primary_10_3390_v13091710
crossref_primary_10_1016_j_jaut_2021_102596
crossref_primary_10_1080_21645515_2024_2421096
crossref_primary_10_1071_MA21033
crossref_primary_10_1126_sciimmunol_abf4907
crossref_primary_10_3390_vaccines9080846
crossref_primary_10_1016_j_immuni_2023_10_005
crossref_primary_10_1038_s41423_020_00617_0
crossref_primary_10_1016_j_indcrop_2022_114524
crossref_primary_10_1038_s41467_022_29416_z
crossref_primary_10_1016_j_heliyon_2024_e37661
crossref_primary_10_1128_mBio_02241_21
crossref_primary_10_1016_j_immuni_2024_05_002
crossref_primary_10_1016_j_it_2023_11_001
crossref_primary_10_1038_s41467_022_32149_8
crossref_primary_10_3390_vaccines9020125
crossref_primary_10_1080_14760584_2023_2290691
crossref_primary_10_3390_v13101893
crossref_primary_10_3390_v15010200
crossref_primary_10_3390_v16010077
crossref_primary_10_1038_s41467_021_26409_2
crossref_primary_10_1371_journal_pone_0280825
crossref_primary_10_17776_csj_1375105
crossref_primary_10_1038_s41467_022_34521_0
crossref_primary_10_1038_s41541_022_00486_w
Cites_doi 10.1021/jm00031a011
10.1021/bi00391a020
10.1073/pnas.1916585116
10.1107/S0907444909052925
10.1002/pro.3235
10.1016/j.chom.2017.07.013
10.1016/j.ultramic.2013.06.004
10.1002/(SICI)1097-0134(19980201)30:2<144::AID-PROT4>3.0.CO;2-N
10.1016/j.chom.2019.10.003
10.1073/pnas.1906613117
10.1016/j.jsb.2015.11.003
10.1038/s41594-018-0025-9
10.1111/j.1432-1033.1992.tb17055.x
10.1056/NEJMp1714916
10.7554/eLife.42166
10.1016/j.coi.2018.03.025
10.1038/nmeth.2727
10.1128/mBio.00560-19
10.1128/mBio.00066-19
10.1038/s41564-017-0011-8
10.1038/ni.3533
10.1016/j.jim.2016.09.001
10.1038/nm.3443
10.1086/505868
10.1128/mBio.02332-17
10.3389/fimmu.2012.00053
10.1128/mBio.02556-14
10.2105/AJPH.2012.301137
10.1086/509925
10.1126/science.aay0678
10.1084/jem.20101352
10.3201/eid2510.190607
10.1038/s41564-019-0392-y
10.1093/nar/gkn316
10.1093/molbev/mst197
10.1016/j.antiviral.2013.08.023
10.1086/314440
10.1371/journal.ppat.1006749
10.1016/j.cell.2018.03.030
10.1007/978-1-62703-646-7_6
10.1016/j.immuni.2017.09.007
10.1128/JVI.00959-08
10.1086/500465
10.1016/j.vaccine.2009.08.038
10.1107/S0907444904019158
10.1038/s41426-018-0115-0
10.1107/S0907444909042073
10.1038/s42003-019-0437-z
10.1038/nri3285
10.1038/nmeth.4193
10.1620/tjem.214.113
10.1016/0042-6822(90)90186-U
10.1093/infdis/jiy103
10.1016/j.coi.2018.04.002
10.1016/j.chom.2019.10.002
10.1038/nprot.2009.3
10.1002/jcc.20084
10.1016/0969-2126(93)90005-2
10.1038/s41577-019-0143-6
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
2020. Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: 2020. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.immuni.2020.08.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 863.e7
ExternalDocumentID PMC7572813
32976769
10_1016_j_immuni_2020_08_015
S1074761320303721
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations New York
Thailand
United States--US
Phuket Thailand
GeographicLocations_xml – name: New York
– name: Phuket Thailand
– name: Thailand
– name: United States--US
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: HHSN272201400008C
– fundername: NIAID NIH HHS
  grantid: HHSN272201700060C
– fundername: NIAID NIH HHS
  grantid: HHSN272201400006C
– fundername: NIAID NIH HHS
  grantid: R01 AI117287
– fundername: NCATS NIH HHS
  grantid: UL1 TR002345
– fundername: NIAID NIH HHS
  grantid: 75N93019C00051
– fundername: NIAID NIH HHS
  grantid: R21 AI139813
– fundername: NIAID NIH HHS
  grantid: U01 AI141990
– fundername: NIAID NIH HHS
  grantid: R01 AI128821
– fundername: NCI NIH HHS
  grantid: T32 CA009547
GroupedDBID ---
--K
-DZ
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
7-5
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFRAH
AFTJW
AGGSO
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
N9A
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
WQ6
ZA5
.55
.GJ
29I
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AHHHB
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
RIG
UHS
X7M
Y6R
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c557t-dcd02b1f66152804ca045cede6570409f4fb5915d7371dad2f6779a7a43f0e153
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Thu Aug 21 14:13:12 EDT 2025
Thu Jul 10 23:34:39 EDT 2025
Fri Jul 25 11:12:24 EDT 2025
Thu Apr 03 07:02:35 EDT 2025
Thu Apr 24 23:12:50 EDT 2025
Tue Jul 01 01:58:43 EDT 2025
Fri Feb 23 02:44:47 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Human
Infection
Plasmablasts
Neuraminidase
Monoclonal antibodies
Influenza B virus
B cells
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-dcd02b1f66152804ca045cede6570409f4fb5915d7371dad2f6779a7a43f0e153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
A.M., Y.D., M.M., A.J.S., J.T., T.L., W.A.B., S.S., M.A., B.M.M., and V.S. characterized the antibodies; A.J.S., J.S.T., and P.A.M. isolated the antibodies; and A.M., Y.D., R.J.C., D.H.F., F.K., and A.H.E. conceptualized the study and wrote the manuscript.
AUTHOR CONTRIBUTIONS
ORCID 0000-0003-1618-3043
0000-0002-3860-5473
0000-0002-0626-5443
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7572813
PMID 32976769
PQID 2450755519
PQPubID 2031079
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7572813
proquest_miscellaneous_2446671778
proquest_journals_2450755519
pubmed_primary_32976769
crossref_primary_10_1016_j_immuni_2020_08_015
crossref_citationtrail_10_1016_j_immuni_2020_08_015
elsevier_sciencedirect_doi_10_1016_j_immuni_2020_08_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-13
PublicationDateYYYYMMDD 2020-10-13
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Taylor, von Itzstein (bib50) 1994; 37
Rota, Wallis, Harmon, Rota, Kendal, Nerome (bib41) 1990; 175
Sato, Saito, Sato, Tanabe, Shobugawa, Sasaki, Li, Suzuki, Sato, Sakai (bib42) 2008; 214
Chong, Pegg, Taylor, von Itzstein (bib8) 1992; 207
Sievers, Higgins (bib43) 2014; 1079
Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib1) 2010; 66
Burmeister, Henrissat, Bosso, Cusack, Ruigrok (bib3) 1993; 1
Goddard, Huang, Meng, Pettersen, Couch, Morris, Ferrin (bib20) 2018; 27
Lentz, Webster, Air (bib31) 1987; 26
Stadlbauer, Amanat, Strohmeier, Nachbagauer, Krammer (bib45) 2018; 7
Chen, Arendall, Headd, Keedy, Immormino, Kapral, Murray, Richardson, Richardson (bib5) 2010; 66
Ison, Gubareva, Atmar, Treanor, Hayden (bib25) 2006; 193
Burnham, Baranovich, Govorkova (bib4) 2013; 100
Giudicelli, Brochet, Lefranc (bib19) 2011; 2011
Gubareva, Matrosovich, Brenner, Bethell, Webster (bib22) 1998; 178
Margine, Palese, Krammer (bib32) 2013; 6
Emsley, Cowtan (bib16) 2004; 60
Ellebedy, Webby (bib13) 2009; 27
Zheng, Palovcak, Armache, Verba, Cheng, Agard (bib60) 2017; 14
Hayward, Berendsen (bib23) 1998; 30
Wagner, Merino, Stabrin, Moriya, Antoni, Apelbaum, Hagel, Sitsel, Raisch, Prumbaum (bib52) 2019; 2
Virk, Jayakumar, Mendenhall, Moorthy, Lam, Linster, Lim, Lin, Oon, Lee (bib51) 2020; 117
Tan, Asthagiri Arunkumar, Krammer (bib49) 2018; 53
Mishin, Patel, Chesnokov, De La Cruz, Nguyen, Lollis, Hodges, Jang, Barnes, Uyeki (bib34) 2019; 25
Piepenbrink, Nogales, Basu, Fucile, Liesveld, Keefer, Rosenberg, Martinez-Sobrido, Kobie (bib40) 2019; 10
Zhu, Turner, Lang, McBride, Bangaru, Gilchuk, Yu, Paulson, Crowe, Ward, Wilson (bib61) 2019; 26
Paul Glezen, Schmier, Kuehn, Ryan, Oxford (bib36) 2013; 103
Murin, Wilson, Ward (bib35) 2019; 4
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib39) 2004; 25
Chen, McMullan, Faruqi, Murshudov, Short, Scheres, Henderson (bib6) 2013; 135
Ellebedy, Jackson, Kissick, Nakaya, Davis, Roskin, McElroy, Oshansky, Elbein, Thomas (bib14) 2016; 17
Kawai, Ikematsu, Iwaki, Maeda, Satoh, Hirotsu, Kashiwagi (bib26) 2006; 43
Sugaya, Mitamura, Yamazaki, Tamura, Ichikawa, Kimura, Kawakami, Kiso, Ito, Hatakeyama, Kawaoka (bib47) 2007; 44
Zivanov, Nakane, Forsberg, Kimanius, Hagen, Lindahl, Scheres (bib62) 2018; 7
Wu, Wilson (bib57) 2018; 25
Gilchuk, Bangaru, Gilchuk, Irving, Kose, Bombardi, Thornburg, Creech, Edwards, Li (bib18) 2019; 26
Eichelberger, Morens, Taubenberger (bib11) 2018; 53
Krammer (bib27) 2019; 19
Brochet, Lefranc, Giudicelli (bib2) 2008; 36
Tamura, Stecher, Peterson, Filipski, Kumar (bib48) 2013; 30
Kucukelbir, Sigworth, Tagare (bib29) 2014; 11
Smith, Garman, Wrammert, Zheng, Capra, Ahmed, Wilson (bib44) 2009; 4
Ho, Bunker, Erickson, Neu, Huang, Cortese, Pulendran, Wilson (bib24) 2016; 438
Paules, Marston, Eisinger, Baltimore, Fauci (bib37) 2017; 47
Erbelding, Post, Stemmy, Roberts, Augustine, Ferguson, Paules, Graham, Fauci (bib17) 2018; 218
Wohlbold, Podolsky, Chromikova, Kirkpatrick, Falconieri, Meade, Amanat, Tan, tenOever, Tan (bib55) 2017; 2
DiLillo, Tan, Palese, Ravetch (bib10) 2014; 20
Langat, Raghwani, Dudas, Bowden, Edwards, Gall, Bedford, Rambaut, Daniels, Russell (bib30) 2017; 13
Chen, Wohlbold, Zheng, Huang, Huang, Neu, Lee, Wan, Rojas, Kirkpatrick (bib7) 2018; 173
Ellebedy, Nachbagauer, Jackson, Dai, Han, Alsoussi, Davis, Stadlbauer, Rouphael, Chromikova (bib15) 2020; 117
McMahon, Kirkpatrick, Stadlbauer, Strohmeier, Bouvier, Krammer (bib33) 2019; 10
Ellebedy, Ahmed (bib12) 2012; 3
Krammer, Fouchier, Eichelberger, Webby, Shaw-Saliba, Wan, Wilson, Compans, Skountzou, Monto (bib28) 2018; 9
Wohlbold, Nachbagauer, Xu, Tan, Hirsh, Brokstad, Cox, Palese, Krammer (bib54) 2015; 6
Wrammert, Koutsonanos, Li, Edupuganti, Sui, Morrissey, McCausland, Skountzou, Hornig, Lipkin (bib56) 2011; 208
Paules, Sullivan, Subbarao, Fauci (bib38) 2018; 378
Zhang (bib59) 2016; 193
Crowe (bib9) 2017; 22
Stadlbauer, Zhu, McMahon, Turner, Wohlbold, Schmitz, Strohmeier, Yu, Nachbagauer, Mudd (bib46) 2019; 366
Govorkova, McCullers (bib21) 2013; 370
Xu, Zhu, Dwek, Stevens, Wilson (bib58) 2008; 82
Wilson, Andrews (bib53) 2012; 12
Ellebedy (10.1016/j.immuni.2020.08.015_bib14) 2016; 17
Lentz (10.1016/j.immuni.2020.08.015_bib31) 1987; 26
Krammer (10.1016/j.immuni.2020.08.015_bib28) 2018; 9
Paules (10.1016/j.immuni.2020.08.015_bib37) 2017; 47
Stadlbauer (10.1016/j.immuni.2020.08.015_bib45) 2018; 7
Gilchuk (10.1016/j.immuni.2020.08.015_bib18) 2019; 26
Zivanov (10.1016/j.immuni.2020.08.015_bib62) 2018; 7
Sato (10.1016/j.immuni.2020.08.015_bib42) 2008; 214
Chen (10.1016/j.immuni.2020.08.015_bib7) 2018; 173
Zhu (10.1016/j.immuni.2020.08.015_bib61) 2019; 26
Krammer (10.1016/j.immuni.2020.08.015_bib27) 2019; 19
Pettersen (10.1016/j.immuni.2020.08.015_bib39) 2004; 25
Rota (10.1016/j.immuni.2020.08.015_bib41) 1990; 175
Sugaya (10.1016/j.immuni.2020.08.015_bib47) 2007; 44
Govorkova (10.1016/j.immuni.2020.08.015_bib21) 2013; 370
Langat (10.1016/j.immuni.2020.08.015_bib30) 2017; 13
Eichelberger (10.1016/j.immuni.2020.08.015_bib11) 2018; 53
Ellebedy (10.1016/j.immuni.2020.08.015_bib12) 2012; 3
Ellebedy (10.1016/j.immuni.2020.08.015_bib13) 2009; 27
Wagner (10.1016/j.immuni.2020.08.015_bib52) 2019; 2
Ison (10.1016/j.immuni.2020.08.015_bib25) 2006; 193
Kucukelbir (10.1016/j.immuni.2020.08.015_bib29) 2014; 11
Zheng (10.1016/j.immuni.2020.08.015_bib60) 2017; 14
Giudicelli (10.1016/j.immuni.2020.08.015_bib19) 2011; 2011
Paules (10.1016/j.immuni.2020.08.015_bib38) 2018; 378
Emsley (10.1016/j.immuni.2020.08.015_bib16) 2004; 60
Burmeister (10.1016/j.immuni.2020.08.015_bib3) 1993; 1
Wohlbold (10.1016/j.immuni.2020.08.015_bib55) 2017; 2
Gubareva (10.1016/j.immuni.2020.08.015_bib22) 1998; 178
Piepenbrink (10.1016/j.immuni.2020.08.015_bib40) 2019; 10
Tamura (10.1016/j.immuni.2020.08.015_bib48) 2013; 30
Stadlbauer (10.1016/j.immuni.2020.08.015_bib46) 2019; 366
Smith (10.1016/j.immuni.2020.08.015_bib44) 2009; 4
Ho (10.1016/j.immuni.2020.08.015_bib24) 2016; 438
Zhang (10.1016/j.immuni.2020.08.015_bib59) 2016; 193
Wilson (10.1016/j.immuni.2020.08.015_bib53) 2012; 12
Mishin (10.1016/j.immuni.2020.08.015_bib34) 2019; 25
Erbelding (10.1016/j.immuni.2020.08.015_bib17) 2018; 218
Taylor (10.1016/j.immuni.2020.08.015_bib50) 1994; 37
Adams (10.1016/j.immuni.2020.08.015_bib1) 2010; 66
Xu (10.1016/j.immuni.2020.08.015_bib58) 2008; 82
Chen (10.1016/j.immuni.2020.08.015_bib6) 2013; 135
Hayward (10.1016/j.immuni.2020.08.015_bib23) 1998; 30
Brochet (10.1016/j.immuni.2020.08.015_bib2) 2008; 36
Paul Glezen (10.1016/j.immuni.2020.08.015_bib36) 2013; 103
Goddard (10.1016/j.immuni.2020.08.015_bib20) 2018; 27
Crowe (10.1016/j.immuni.2020.08.015_bib9) 2017; 22
Margine (10.1016/j.immuni.2020.08.015_bib32) 2013; 6
McMahon (10.1016/j.immuni.2020.08.015_bib33) 2019; 10
Chong (10.1016/j.immuni.2020.08.015_bib8) 1992; 207
Wu (10.1016/j.immuni.2020.08.015_bib57) 2018; 25
Ellebedy (10.1016/j.immuni.2020.08.015_bib15) 2020; 117
Virk (10.1016/j.immuni.2020.08.015_bib51) 2020; 117
DiLillo (10.1016/j.immuni.2020.08.015_bib10) 2014; 20
Murin (10.1016/j.immuni.2020.08.015_bib35) 2019; 4
Sievers (10.1016/j.immuni.2020.08.015_bib43) 2014; 1079
Wrammert (10.1016/j.immuni.2020.08.015_bib56) 2011; 208
Burnham (10.1016/j.immuni.2020.08.015_bib4) 2013; 100
Wohlbold (10.1016/j.immuni.2020.08.015_bib54) 2015; 6
Chen (10.1016/j.immuni.2020.08.015_bib5) 2010; 66
Kawai (10.1016/j.immuni.2020.08.015_bib26) 2006; 43
Tan (10.1016/j.immuni.2020.08.015_bib49) 2018; 53
33446888 - Cell Mol Immunol. 2021 Jul;18(7):1615-1617
33158977 - Sci Immunol. 2020 Nov 6;5(53)
References_xml – volume: 2011
  start-page: 695
  year: 2011
  end-page: 715
  ident: bib19
  article-title: IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences
  publication-title: Cold Spring Harb. Protoc.
– volume: 1079
  start-page: 105
  year: 2014
  end-page: 116
  ident: bib43
  article-title: Clustal Omega, accurate alignment of very large numbers of sequences
  publication-title: Methods Mol. Biol.
– volume: 30
  start-page: 2725
  year: 2013
  end-page: 2729
  ident: bib48
  article-title: MEGA6: Molecular Evolutionary Genetics Analysis version 6.0
  publication-title: Mol. Biol. Evol.
– volume: 66
  start-page: 12
  year: 2010
  end-page: 21
  ident: bib5
  article-title: MolProbity: all-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 19
  start-page: 383
  year: 2019
  end-page: 397
  ident: bib27
  article-title: The human antibody response to influenza A virus infection and vaccination
  publication-title: Nat. Rev. Immunol.
– volume: 13
  start-page: e1006749
  year: 2017
  ident: bib30
  article-title: Genome-wide evolutionary dynamics of influenza B viruses on a global scale
  publication-title: PLoS Pathog.
– volume: 25
  start-page: 115
  year: 2018
  end-page: 121
  ident: bib57
  article-title: Structural insights into the design of novel anti-influenza therapies
  publication-title: Nat. Struct. Mol. Biol.
– volume: 25
  start-page: 1969
  year: 2019
  end-page: 1972
  ident: bib34
  article-title: Susceptibility of influenza A, B, C, and D viruses to baloxavir1
  publication-title: Emerg. Infect. Dis.
– volume: 22
  start-page: 193
  year: 2017
  end-page: 206
  ident: bib9
  article-title: Principles of broad and potent antiviral human antibodies: insights for vaccine design
  publication-title: Cell Host Microbe
– volume: 193
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib59
  article-title: Gctf: Real-time CTF determination and correction
  publication-title: J. Struct. Biol.
– volume: 178
  start-page: 1257
  year: 1998
  end-page: 1262
  ident: bib22
  article-title: Evidence for zanamivir resistance in an immunocompromised child infected with influenza B virus
  publication-title: J. Infect. Dis.
– volume: 26
  start-page: 5351
  year: 1987
  end-page: 5358
  ident: bib31
  article-title: Site-directed mutation of the active site of influenza neuraminidase and implications for the catalytic mechanism
  publication-title: Biochemistry
– volume: 207
  start-page: 335
  year: 1992
  end-page: 343
  ident: bib8
  article-title: Evidence for a sialosyl cation transition-state complex in the reaction of sialidase from influenza virus
  publication-title: Eur. J. Biochem.
– volume: 117
  start-page: 619
  year: 2020
  end-page: 628
  ident: bib51
  article-title: Divergent evolutionary trajectories of influenza B viruses underlie their contemporaneous epidemic activity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 36
  start-page: W503
  year: 2008
  end-page: W508
  ident: bib2
  article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 709
  year: 2012
  end-page: 719
  ident: bib53
  article-title: Tools to therapeutically harness the human antibody response
  publication-title: Nat. Rev. Immunol.
– volume: 20
  start-page: 143
  year: 2014
  end-page: 151
  ident: bib10
  article-title: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo
  publication-title: Nat. Med.
– volume: 370
  start-page: 273
  year: 2013
  end-page: 300
  ident: bib21
  article-title: Therapeutics against influenza
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 10
  year: 2019
  ident: bib40
  article-title: Broad and Protective Influenza B Virus Neuraminidase Antibodies in Humans after Vaccination and their Clonal Persistence as Plasma Cells
  publication-title: MBio
– volume: 53
  start-page: 38
  year: 2018
  end-page: 44
  ident: bib11
  article-title: Neuraminidase as an influenza vaccine antigen: a low hanging fruit, ready for picking to improve vaccine effectiveness
  publication-title: Curr. Opin. Immunol.
– volume: 3
  start-page: 53
  year: 2012
  ident: bib12
  article-title: Re-engaging cross-reactive memory B cells: the influenza puzzle
  publication-title: Front. Immunol.
– volume: 214
  start-page: 113
  year: 2008
  end-page: 120
  ident: bib42
  article-title: Effectiveness of oseltamivir treatment among children with influenza A or B virus infections during four successive winters in Niigata City, Japan
  publication-title: Tohoku J. Exp. Med.
– volume: 103
  start-page: e43
  year: 2013
  end-page: e51
  ident: bib36
  article-title: The burden of influenza B: a structured literature review
  publication-title: Am. J. Public Health
– volume: 1
  start-page: 19
  year: 1993
  end-page: 26
  ident: bib3
  article-title: Influenza B virus neuraminidase can synthesize its own inhibitor
  publication-title: Structure
– volume: 4
  start-page: 372
  year: 2009
  end-page: 384
  ident: bib44
  article-title: Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen
  publication-title: Nat. Protoc.
– volume: 193
  start-page: 760
  year: 2006
  end-page: 764
  ident: bib25
  article-title: Recovery of drug-resistant influenza virus from immunocompromised patients: a case series
  publication-title: J. Infect. Dis.
– volume: 4
  start-page: 734
  year: 2019
  end-page: 747
  ident: bib35
  article-title: Antibody responses to viral infections: a structural perspective across three different enveloped viruses
  publication-title: Nat. Microbiol.
– volume: 117
  start-page: 17957
  year: 2020
  end-page: 17964
  ident: bib15
  article-title: Adjuvanted H5N1 influenza vaccine enhances both cross-reactive memory B cell and strain-specific naive B cell responses in humans
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 173
  start-page: 417
  year: 2018
  end-page: 429.e10
  ident: bib7
  article-title: Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies
  publication-title: Cell
– volume: 7
  year: 2018
  ident: bib62
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: eLife
– volume: 26
  start-page: 715
  year: 2019
  end-page: 728.e8
  ident: bib18
  article-title: Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice
  publication-title: Cell Host Microbe
– volume: 6
  start-page: e02556
  year: 2015
  ident: bib54
  article-title: Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice
  publication-title: MBio
– volume: 30
  start-page: 144
  year: 1998
  end-page: 154
  ident: bib23
  article-title: Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme
  publication-title: Proteins
– volume: 53
  start-page: 45
  year: 2018
  end-page: 50
  ident: bib49
  article-title: Universal influenza virus vaccines and therapeutics: where do we stand with influenza B virus?
  publication-title: Curr. Opin. Immunol.
– volume: 218
  start-page: 347
  year: 2018
  end-page: 354
  ident: bib17
  article-title: A universal influenza vaccine: the strategic plan for the national institute of allergy and infectious diseases
  publication-title: J. Infect. Dis.
– volume: 9
  year: 2018
  ident: bib28
  article-title: NAction! How Can Neuraminidase-Based Immunity Contribute to Better Influenza Virus Vaccines?
  publication-title: MBio
– volume: 6
  start-page: e51112
  year: 2013
  ident: bib32
  article-title: Expression of functional recombinant hemagglutinin and neuraminidase proteins from the novel H7N9 influenza virus using the baculovirus expression system
  publication-title: J. Vis. Exp.
– volume: 135
  start-page: 24
  year: 2013
  end-page: 35
  ident: bib6
  article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy
  publication-title: Ultramicroscopy
– volume: 438
  start-page: 67
  year: 2016
  end-page: 70
  ident: bib24
  article-title: Refined protocol for generating monoclonal antibodies from single human and murine B cells
  publication-title: J. Immunol. Methods
– volume: 26
  start-page: 729
  year: 2019
  end-page: 738.e4
  ident: bib61
  article-title: Structural Basis of Protection against H7N9 Influenza Virus by Human Anti-N9 Neuraminidase Antibodies
  publication-title: Cell Host Microbe
– volume: 17
  start-page: 1226
  year: 2016
  end-page: 1234
  ident: bib14
  article-title: Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination
  publication-title: Nat. Immunol.
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: bib1
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 7
  start-page: 110
  year: 2018
  ident: bib45
  article-title: Cross-reactive mouse monoclonal antibodies raised against the hemagglutinin of A/Shanghai/1/2013 (H7N9) protect against novel H7 virus isolates in the mouse model
  publication-title: Emerg. Microbes Infect.
– volume: 10
  year: 2019
  ident: bib33
  article-title: Mucosal Immunity against Neuraminidase Prevents Influenza B Virus Transmission in Guinea Pigs
  publication-title: MBio
– volume: 27
  start-page: D65
  year: 2009
  end-page: D68
  ident: bib13
  article-title: Influenza vaccines
  publication-title: Vaccine
– volume: 43
  start-page: 439
  year: 2006
  end-page: 444
  ident: bib26
  article-title: A comparison of the effectiveness of oseltamivir for the treatment of influenza A and influenza B: a Japanese multicenter study of the 2003-2004 and 2004-2005 influenza seasons
  publication-title: Clin. Infect. Dis.
– volume: 2
  start-page: 1415
  year: 2017
  end-page: 1424
  ident: bib55
  article-title: Broadly protective murine monoclonal antibodies against influenza B virus target highly conserved neuraminidase epitopes
  publication-title: Nat. Microbiol.
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bib39
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 208
  start-page: 181
  year: 2011
  end-page: 193
  ident: bib56
  article-title: Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection
  publication-title: J. Exp. Med.
– volume: 100
  start-page: 520
  year: 2013
  end-page: 534
  ident: bib4
  article-title: Neuraminidase inhibitors for influenza B virus infection: efficacy and resistance
  publication-title: Antiviral Res.
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: bib16
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 2
  start-page: 218
  year: 2019
  ident: bib52
  article-title: SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM
  publication-title: Commun Biol
– volume: 47
  start-page: 599
  year: 2017
  end-page: 603
  ident: bib37
  article-title: The pathway to a universal influenza vaccine
  publication-title: Immunity
– volume: 44
  start-page: 197
  year: 2007
  end-page: 202
  ident: bib47
  article-title: Lower clinical effectiveness of oseltamivir against influenza B contrasted with influenza A infection in children
  publication-title: Clin. Infect. Dis.
– volume: 27
  start-page: 14
  year: 2018
  end-page: 25
  ident: bib20
  article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
– volume: 366
  start-page: 499
  year: 2019
  end-page: 504
  ident: bib46
  article-title: Broadly protective human antibodies that target the active site of influenza virus neuraminidase
  publication-title: Science
– volume: 82
  start-page: 10493
  year: 2008
  end-page: 10501
  ident: bib58
  article-title: Structural characterization of the 1918 influenza virus H1N1 neuraminidase
  publication-title: J. Virol.
– volume: 175
  start-page: 59
  year: 1990
  end-page: 68
  ident: bib41
  article-title: Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983
  publication-title: Virology
– volume: 378
  start-page: 7
  year: 2018
  end-page: 9
  ident: bib38
  article-title: Chasing Seasonal Influenza - The Need for a Universal Influenza Vaccine
  publication-title: N. Engl. J. Med.
– volume: 14
  start-page: 331
  year: 2017
  end-page: 332
  ident: bib60
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
– volume: 11
  start-page: 63
  year: 2014
  end-page: 65
  ident: bib29
  article-title: Quantifying the local resolution of cryo-EM density maps
  publication-title: Nat. Methods
– volume: 37
  start-page: 616
  year: 1994
  end-page: 624
  ident: bib50
  article-title: Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis
  publication-title: J. Med. Chem.
– volume: 37
  start-page: 616
  year: 1994
  ident: 10.1016/j.immuni.2020.08.015_bib50
  article-title: Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00031a011
– volume: 2011
  start-page: 695
  year: 2011
  ident: 10.1016/j.immuni.2020.08.015_bib19
  article-title: IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences
  publication-title: Cold Spring Harb. Protoc.
– volume: 26
  start-page: 5351
  year: 1987
  ident: 10.1016/j.immuni.2020.08.015_bib31
  article-title: Site-directed mutation of the active site of influenza neuraminidase and implications for the catalytic mechanism
  publication-title: Biochemistry
  doi: 10.1021/bi00391a020
– volume: 117
  start-page: 619
  year: 2020
  ident: 10.1016/j.immuni.2020.08.015_bib51
  article-title: Divergent evolutionary trajectories of influenza B viruses underlie their contemporaneous epidemic activity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1916585116
– volume: 66
  start-page: 213
  year: 2010
  ident: 10.1016/j.immuni.2020.08.015_bib1
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909052925
– volume: 27
  start-page: 14
  year: 2018
  ident: 10.1016/j.immuni.2020.08.015_bib20
  article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
  doi: 10.1002/pro.3235
– volume: 22
  start-page: 193
  year: 2017
  ident: 10.1016/j.immuni.2020.08.015_bib9
  article-title: Principles of broad and potent antiviral human antibodies: insights for vaccine design
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.07.013
– volume: 135
  start-page: 24
  year: 2013
  ident: 10.1016/j.immuni.2020.08.015_bib6
  article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2013.06.004
– volume: 30
  start-page: 144
  year: 1998
  ident: 10.1016/j.immuni.2020.08.015_bib23
  article-title: Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(19980201)30:2<144::AID-PROT4>3.0.CO;2-N
– volume: 26
  start-page: 715
  year: 2019
  ident: 10.1016/j.immuni.2020.08.015_bib18
  article-title: Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.10.003
– volume: 370
  start-page: 273
  year: 2013
  ident: 10.1016/j.immuni.2020.08.015_bib21
  article-title: Therapeutics against influenza
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 117
  start-page: 17957
  year: 2020
  ident: 10.1016/j.immuni.2020.08.015_bib15
  article-title: Adjuvanted H5N1 influenza vaccine enhances both cross-reactive memory B cell and strain-specific naive B cell responses in humans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1906613117
– volume: 193
  start-page: 1
  year: 2016
  ident: 10.1016/j.immuni.2020.08.015_bib59
  article-title: Gctf: Real-time CTF determination and correction
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.11.003
– volume: 25
  start-page: 115
  year: 2018
  ident: 10.1016/j.immuni.2020.08.015_bib57
  article-title: Structural insights into the design of novel anti-influenza therapies
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-018-0025-9
– volume: 207
  start-page: 335
  year: 1992
  ident: 10.1016/j.immuni.2020.08.015_bib8
  article-title: Evidence for a sialosyl cation transition-state complex in the reaction of sialidase from influenza virus
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1992.tb17055.x
– volume: 378
  start-page: 7
  year: 2018
  ident: 10.1016/j.immuni.2020.08.015_bib38
  article-title: Chasing Seasonal Influenza - The Need for a Universal Influenza Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1714916
– volume: 7
  year: 2018
  ident: 10.1016/j.immuni.2020.08.015_bib62
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: eLife
  doi: 10.7554/eLife.42166
– volume: 6
  start-page: e51112
  year: 2013
  ident: 10.1016/j.immuni.2020.08.015_bib32
  article-title: Expression of functional recombinant hemagglutinin and neuraminidase proteins from the novel H7N9 influenza virus using the baculovirus expression system
  publication-title: J. Vis. Exp.
– volume: 53
  start-page: 38
  year: 2018
  ident: 10.1016/j.immuni.2020.08.015_bib11
  article-title: Neuraminidase as an influenza vaccine antigen: a low hanging fruit, ready for picking to improve vaccine effectiveness
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2018.03.025
– volume: 11
  start-page: 63
  year: 2014
  ident: 10.1016/j.immuni.2020.08.015_bib29
  article-title: Quantifying the local resolution of cryo-EM density maps
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2727
– volume: 10
  year: 2019
  ident: 10.1016/j.immuni.2020.08.015_bib33
  article-title: Mucosal Immunity against Neuraminidase Prevents Influenza B Virus Transmission in Guinea Pigs
  publication-title: MBio
  doi: 10.1128/mBio.00560-19
– volume: 10
  year: 2019
  ident: 10.1016/j.immuni.2020.08.015_bib40
  article-title: Broad and Protective Influenza B Virus Neuraminidase Antibodies in Humans after Vaccination and their Clonal Persistence as Plasma Cells
  publication-title: MBio
  doi: 10.1128/mBio.00066-19
– volume: 2
  start-page: 1415
  year: 2017
  ident: 10.1016/j.immuni.2020.08.015_bib55
  article-title: Broadly protective murine monoclonal antibodies against influenza B virus target highly conserved neuraminidase epitopes
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-017-0011-8
– volume: 17
  start-page: 1226
  year: 2016
  ident: 10.1016/j.immuni.2020.08.015_bib14
  article-title: Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3533
– volume: 438
  start-page: 67
  year: 2016
  ident: 10.1016/j.immuni.2020.08.015_bib24
  article-title: Refined protocol for generating monoclonal antibodies from single human and murine B cells
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2016.09.001
– volume: 20
  start-page: 143
  year: 2014
  ident: 10.1016/j.immuni.2020.08.015_bib10
  article-title: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo
  publication-title: Nat. Med.
  doi: 10.1038/nm.3443
– volume: 43
  start-page: 439
  year: 2006
  ident: 10.1016/j.immuni.2020.08.015_bib26
  article-title: A comparison of the effectiveness of oseltamivir for the treatment of influenza A and influenza B: a Japanese multicenter study of the 2003-2004 and 2004-2005 influenza seasons
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/505868
– volume: 9
  year: 2018
  ident: 10.1016/j.immuni.2020.08.015_bib28
  article-title: NAction! How Can Neuraminidase-Based Immunity Contribute to Better Influenza Virus Vaccines?
  publication-title: MBio
  doi: 10.1128/mBio.02332-17
– volume: 3
  start-page: 53
  year: 2012
  ident: 10.1016/j.immuni.2020.08.015_bib12
  article-title: Re-engaging cross-reactive memory B cells: the influenza puzzle
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2012.00053
– volume: 6
  start-page: e02556
  year: 2015
  ident: 10.1016/j.immuni.2020.08.015_bib54
  article-title: Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice
  publication-title: MBio
  doi: 10.1128/mBio.02556-14
– volume: 103
  start-page: e43
  year: 2013
  ident: 10.1016/j.immuni.2020.08.015_bib36
  article-title: The burden of influenza B: a structured literature review
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.2012.301137
– volume: 44
  start-page: 197
  year: 2007
  ident: 10.1016/j.immuni.2020.08.015_bib47
  article-title: Lower clinical effectiveness of oseltamivir against influenza B contrasted with influenza A infection in children
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/509925
– volume: 366
  start-page: 499
  year: 2019
  ident: 10.1016/j.immuni.2020.08.015_bib46
  article-title: Broadly protective human antibodies that target the active site of influenza virus neuraminidase
  publication-title: Science
  doi: 10.1126/science.aay0678
– volume: 208
  start-page: 181
  year: 2011
  ident: 10.1016/j.immuni.2020.08.015_bib56
  article-title: Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101352
– volume: 25
  start-page: 1969
  year: 2019
  ident: 10.1016/j.immuni.2020.08.015_bib34
  article-title: Susceptibility of influenza A, B, C, and D viruses to baloxavir1
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2510.190607
– volume: 4
  start-page: 734
  year: 2019
  ident: 10.1016/j.immuni.2020.08.015_bib35
  article-title: Antibody responses to viral infections: a structural perspective across three different enveloped viruses
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-019-0392-y
– volume: 36
  start-page: W503
  year: 2008
  ident: 10.1016/j.immuni.2020.08.015_bib2
  article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn316
– volume: 30
  start-page: 2725
  year: 2013
  ident: 10.1016/j.immuni.2020.08.015_bib48
  article-title: MEGA6: Molecular Evolutionary Genetics Analysis version 6.0
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst197
– volume: 100
  start-page: 520
  year: 2013
  ident: 10.1016/j.immuni.2020.08.015_bib4
  article-title: Neuraminidase inhibitors for influenza B virus infection: efficacy and resistance
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2013.08.023
– volume: 178
  start-page: 1257
  year: 1998
  ident: 10.1016/j.immuni.2020.08.015_bib22
  article-title: Evidence for zanamivir resistance in an immunocompromised child infected with influenza B virus
  publication-title: J. Infect. Dis.
  doi: 10.1086/314440
– volume: 13
  start-page: e1006749
  year: 2017
  ident: 10.1016/j.immuni.2020.08.015_bib30
  article-title: Genome-wide evolutionary dynamics of influenza B viruses on a global scale
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006749
– volume: 173
  start-page: 417
  year: 2018
  ident: 10.1016/j.immuni.2020.08.015_bib7
  article-title: Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.030
– volume: 1079
  start-page: 105
  year: 2014
  ident: 10.1016/j.immuni.2020.08.015_bib43
  article-title: Clustal Omega, accurate alignment of very large numbers of sequences
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-646-7_6
– volume: 47
  start-page: 599
  year: 2017
  ident: 10.1016/j.immuni.2020.08.015_bib37
  article-title: The pathway to a universal influenza vaccine
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.09.007
– volume: 82
  start-page: 10493
  year: 2008
  ident: 10.1016/j.immuni.2020.08.015_bib58
  article-title: Structural characterization of the 1918 influenza virus H1N1 neuraminidase
  publication-title: J. Virol.
  doi: 10.1128/JVI.00959-08
– volume: 193
  start-page: 760
  year: 2006
  ident: 10.1016/j.immuni.2020.08.015_bib25
  article-title: Recovery of drug-resistant influenza virus from immunocompromised patients: a case series
  publication-title: J. Infect. Dis.
  doi: 10.1086/500465
– volume: 27
  start-page: D65
  issue: Suppl 4
  year: 2009
  ident: 10.1016/j.immuni.2020.08.015_bib13
  article-title: Influenza vaccines
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2009.08.038
– volume: 60
  start-page: 2126
  year: 2004
  ident: 10.1016/j.immuni.2020.08.015_bib16
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904019158
– volume: 7
  start-page: 110
  year: 2018
  ident: 10.1016/j.immuni.2020.08.015_bib45
  article-title: Cross-reactive mouse monoclonal antibodies raised against the hemagglutinin of A/Shanghai/1/2013 (H7N9) protect against novel H7 virus isolates in the mouse model
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/s41426-018-0115-0
– volume: 66
  start-page: 12
  year: 2010
  ident: 10.1016/j.immuni.2020.08.015_bib5
  article-title: MolProbity: all-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909042073
– volume: 2
  start-page: 218
  year: 2019
  ident: 10.1016/j.immuni.2020.08.015_bib52
  article-title: SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM
  publication-title: Commun Biol
  doi: 10.1038/s42003-019-0437-z
– volume: 12
  start-page: 709
  year: 2012
  ident: 10.1016/j.immuni.2020.08.015_bib53
  article-title: Tools to therapeutically harness the human antibody response
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3285
– volume: 14
  start-page: 331
  year: 2017
  ident: 10.1016/j.immuni.2020.08.015_bib60
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 214
  start-page: 113
  year: 2008
  ident: 10.1016/j.immuni.2020.08.015_bib42
  article-title: Effectiveness of oseltamivir treatment among children with influenza A or B virus infections during four successive winters in Niigata City, Japan
  publication-title: Tohoku J. Exp. Med.
  doi: 10.1620/tjem.214.113
– volume: 175
  start-page: 59
  year: 1990
  ident: 10.1016/j.immuni.2020.08.015_bib41
  article-title: Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983
  publication-title: Virology
  doi: 10.1016/0042-6822(90)90186-U
– volume: 218
  start-page: 347
  year: 2018
  ident: 10.1016/j.immuni.2020.08.015_bib17
  article-title: A universal influenza vaccine: the strategic plan for the national institute of allergy and infectious diseases
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiy103
– volume: 53
  start-page: 45
  year: 2018
  ident: 10.1016/j.immuni.2020.08.015_bib49
  article-title: Universal influenza virus vaccines and therapeutics: where do we stand with influenza B virus?
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2018.04.002
– volume: 26
  start-page: 729
  year: 2019
  ident: 10.1016/j.immuni.2020.08.015_bib61
  article-title: Structural Basis of Protection against H7N9 Influenza Virus by Human Anti-N9 Neuraminidase Antibodies
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.10.002
– volume: 4
  start-page: 372
  year: 2009
  ident: 10.1016/j.immuni.2020.08.015_bib44
  article-title: Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.3
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.immuni.2020.08.015_bib39
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 1
  start-page: 19
  year: 1993
  ident: 10.1016/j.immuni.2020.08.015_bib3
  article-title: Influenza B virus neuraminidase can synthesize its own inhibitor
  publication-title: Structure
  doi: 10.1016/0969-2126(93)90005-2
– volume: 19
  start-page: 383
  year: 2019
  ident: 10.1016/j.immuni.2020.08.015_bib27
  article-title: The human antibody response to influenza A virus infection and vaccination
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0143-6
– reference: 33158977 - Sci Immunol. 2020 Nov 6;5(53):
– reference: 33446888 - Cell Mol Immunol. 2021 Jul;18(7):1615-1617
SSID ssj0014590
Score 2.5495958
Snippet Influenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV...
SummaryInfluenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 852
SubjectTerms Animals
Antibodies
Antibodies, Monoclonal - immunology
Antibodies, Viral - immunology
Antiviral agents
Antiviral drugs
B cells
Catalytic Domain - immunology
Cell Line
Dogs
Drug dosages
Enzymatic activity
Enzymes
Exo-a-sialidase
Female
HEK293 Cells
Human
Humans
Infection
Infections
Influenza
Influenza A
Influenza A virus - immunology
Influenza B
Influenza B virus
Influenza B virus - immunology
Influenza, Human - immunology
Leukocytes, Mononuclear - immunology
Madin Darby Canine Kidney Cells
Mice
Mice, Inbred BALB C
Middle Aged
Monoclonal antibodies
Neuraminidase
Neuraminidase - immunology
Orthomyxoviridae Infections - immunology
Plasmablasts
Proteins
Vaccines
Viral Proteins - immunology
Viruses
Title Human Antibodies Targeting Influenza B Virus Neuraminidase Active Site Are Broadly Protective
URI https://dx.doi.org/10.1016/j.immuni.2020.08.015
https://www.ncbi.nlm.nih.gov/pubmed/32976769
https://www.proquest.com/docview/2450755519
https://www.proquest.com/docview/2446671778
https://pubmed.ncbi.nlm.nih.gov/PMC7572813
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC5EMeQSEk3iJkY64HXY6ffMcRXFKIYQH9lLaHpmunFEZkV3D-bXp7rnQdYIgsfd7mZn-1H11fRXXwHs-gx9slNFgr7eJYJRkeTxll3alJVBsb0MCc6n39XRhTieyukK7Pe5MIFW2dn-1qZHa919M-5mc3xb1-OzQCXEIJwz3Kdcx2RyLrKYxDfdG24ShMzTgXeIvfv0ucjxqmMOBkaJLI1CnqE47tPu6X_4-ZhF-Y9bOnwLbzo8SSbtI7-DFddswHpbYfJhA16ddnfnm_A7vq8nk2ZeF7PAHSTnkQWOvot8a0uV_LFkj1zWd4t7EkQ7bNAdqdDNkUm0iuQM8Sn-lCMYvNvq5oH8aFUesO09XBwenO8fJV1xhaSUUs-TqqxSVlCP_lmyLBWlRXCHk-4CFwaDPi98IXMqK801rWzFvNI6t9oK7lOHdvIDrDazxm0BoQxBoaVKOeWFpVWRM18KVXpmJVoMPgLez6kpO-XxUADjxvQUs2vTroQJK2FCXUwqR5AMo25b5Y1n-ut-uczSDjLoHJ4Zud2vrulO8L1hApGyRDyZj-Dr0IxnL1yo2MbNFqGPUArjYZ2N4GO7GYZH5QyBnlY4Wi9tk6FD0PVebmnqq6jvraVmGeWfXvyHPsPr8Cm4WMq3YXV-t3BfEDvNix1Ym5z8_HWyEw_JX4KXGN8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRTwuCAqUhQJGgmPU2LHjzYHDLlDt0m6F1C3aCzJO4oigKlvtQ2j5W_xBZpyHWECqhNRrbCuJZzzzjebzDMCroo8-2cVpgL7eBVJwGSQ-y65sKDKq2J7RBefJaTw6lx9marYDP9u7MESrbGx_bdO9tW6eHDa7eXhZlodnRCXEIDwSqKcRBjINs_LYbb5j3LZ8M36HQn4txNH76dtR0LQWCDKl9CrIszwUKS_QOynRD2VmEdrgKx0xQTDkKWSRqoSrXEea5zYXRax1YrWVURE6Tq0i0O7fQPShyRqMZ8MudSFVEnZER_y89r6eJ5WV_tIHhqUi9JVDqRvvv_3h33j3T9rmb37w6B7cbQAsG9R7dB92XLUHN-uWlps9uDVpkvUP4LNPELBBtSrTOZEV2dTTztFZsnHdG-WHZUP2qVysl4yqhFgqdJKjX2UDb4bZGQJifJVjw8Xc5hcb9rEuK4FjD-H8Wrb8EexW88o9BsYFolDL49jFhbQ8TxNRZDLOCmEVmqioB1G7pyZrSp1Tx40L03LavplaEoYkYagRJ1c9CLpVl3Wpjyvm61ZcZktlDXqjK1YetNI1jclYGiERmisEsEkPXnbDeNgpg2MrN1_THBmjxmnd78F-rQzdp0YCkaWOcbXeUpNuAhUS3x6pyq--oLhWWvR59OS_f-gF3B5NJyfmZHx6_BTu0Aj5dx4dwO5qsXbPELit0uf-oDD4ct0n8xdCjFPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Antibodies+Targeting+Influenza+B+Virus+Neuraminidase+Active+Site+Are+Broadly+Protective&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Madsen%2C+Anders&rft.au=Dai%2C+Ya-Nan&rft.au=McMahon%2C+Meagan&rft.au=Schmitz%2C+Aaron+J.&rft.date=2020-10-13&rft.pub=Elsevier+Inc&rft.issn=1074-7613&rft.eissn=1097-4180&rft.volume=53&rft.issue=4&rft.spage=852&rft.epage=863.e7&rft_id=info:doi/10.1016%2Fj.immuni.2020.08.015&rft.externalDocID=S1074761320303721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon