Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection

Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interact...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 53; no. 3; pp. 533 - 547.e7
Main Authors Doerflinger, Marcel, Deng, Yexuan, Whitney, Paul, Salvamoser, Ranja, Engel, Sven, Kueh, Andrew J., Tai, Lin, Bachem, Annabell, Gressier, Elise, Geoghegan, Niall D., Wilcox, Stephen, Rogers, Kelly L., Garnham, Alexandra L., Dengler, Michael A., Bader, Stefanie M., Ebert, Gregor, Pearson, Jaclyn S., De Nardo, Dominic, Wang, Nancy, Yang, Chenying, Pereira, Milton, Bryant, Clare E., Strugnell, Richard A., Vince, James E., Pellegrini, Marc, Strasser, Andreas, Bedoui, Sammy, Herold, Marco J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.09.2020
Elsevier Limited
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections. [Display omitted] •Mice lacking pyroptosis and apoptosis cannot control Salmonella infection•Macrophages lacking pyroptosis and apoptosis resist Salmonella-induced killing•Caspase-1 kills Salmonella-infected cells by activating GSDMD, BID, or other caspases•Caspase-1 and -8 act as cell death executioners when all cell death effectors are lost The clearance of intracellular pathogens requires the killing of infected cells, but it remains unclear why host cells have so many different means of inducing programmed cell death. Doerflinger et al. demonstrate that interconnectivity between pyroptosis and apoptosis involving flexible deployment of caspases ensures control of Salmonella infection in mice.
AbstractList SummaryProgrammed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections.
Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections. • Mice lacking pyroptosis and apoptosis cannot control Salmonella infection • Macrophages lacking pyroptosis and apoptosis resist Salmonella -induced killing • Caspase-1 kills Salmonella -infected cells by activating GSDMD, BID, or other caspases • Caspase-1 and -8 act as cell death executioners when all cell death effectors are lost The clearance of intracellular pathogens requires the killing of infected cells, but it remains unclear why host cells have so many different means of inducing programmed cell death. Doerflinger et al. demonstrate that interconnectivity between pyroptosis and apoptosis involving flexible deployment of caspases ensures control of Salmonella infection in mice.
Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections.
Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections. [Display omitted] •Mice lacking pyroptosis and apoptosis cannot control Salmonella infection•Macrophages lacking pyroptosis and apoptosis resist Salmonella-induced killing•Caspase-1 kills Salmonella-infected cells by activating GSDMD, BID, or other caspases•Caspase-1 and -8 act as cell death executioners when all cell death effectors are lost The clearance of intracellular pathogens requires the killing of infected cells, but it remains unclear why host cells have so many different means of inducing programmed cell death. Doerflinger et al. demonstrate that interconnectivity between pyroptosis and apoptosis involving flexible deployment of caspases ensures control of Salmonella infection in mice.
Author Strasser, Andreas
Doerflinger, Marcel
Rogers, Kelly L.
Wilcox, Stephen
Pearson, Jaclyn S.
De Nardo, Dominic
Tai, Lin
Deng, Yexuan
Pellegrini, Marc
Wang, Nancy
Kueh, Andrew J.
Gressier, Elise
Geoghegan, Niall D.
Yang, Chenying
Ebert, Gregor
Salvamoser, Ranja
Bachem, Annabell
Bader, Stefanie M.
Herold, Marco J.
Bryant, Clare E.
Dengler, Michael A.
Pereira, Milton
Bedoui, Sammy
Strugnell, Richard A.
Whitney, Paul
Engel, Sven
Garnham, Alexandra L.
Vince, James E.
Author_xml – sequence: 1
  givenname: Marcel
  orcidid: 0000-0001-9159-3021
  surname: Doerflinger
  fullname: Doerflinger, Marcel
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 2
  givenname: Yexuan
  surname: Deng
  fullname: Deng, Yexuan
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 3
  givenname: Paul
  orcidid: 0000-0003-3836-7601
  surname: Whitney
  fullname: Whitney, Paul
  organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
– sequence: 4
  givenname: Ranja
  orcidid: 0000-0002-1789-9898
  surname: Salvamoser
  fullname: Salvamoser, Ranja
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 5
  givenname: Sven
  surname: Engel
  fullname: Engel, Sven
  organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
– sequence: 6
  givenname: Andrew J.
  surname: Kueh
  fullname: Kueh, Andrew J.
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 7
  givenname: Lin
  surname: Tai
  fullname: Tai, Lin
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 8
  givenname: Annabell
  surname: Bachem
  fullname: Bachem, Annabell
  organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
– sequence: 9
  givenname: Elise
  orcidid: 0000-0003-0517-1610
  surname: Gressier
  fullname: Gressier, Elise
  organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
– sequence: 10
  givenname: Niall D.
  surname: Geoghegan
  fullname: Geoghegan, Niall D.
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 11
  givenname: Stephen
  surname: Wilcox
  fullname: Wilcox, Stephen
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 12
  givenname: Kelly L.
  orcidid: 0000-0002-6755-0221
  surname: Rogers
  fullname: Rogers, Kelly L.
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 13
  givenname: Alexandra L.
  surname: Garnham
  fullname: Garnham, Alexandra L.
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 14
  givenname: Michael A.
  orcidid: 0000-0002-1693-1761
  surname: Dengler
  fullname: Dengler, Michael A.
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 15
  givenname: Stefanie M.
  surname: Bader
  fullname: Bader, Stefanie M.
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 16
  givenname: Gregor
  orcidid: 0000-0002-5318-3037
  surname: Ebert
  fullname: Ebert, Gregor
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 17
  givenname: Jaclyn S.
  surname: Pearson
  fullname: Pearson, Jaclyn S.
  organization: Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
– sequence: 18
  givenname: Dominic
  surname: De Nardo
  fullname: De Nardo, Dominic
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 19
  givenname: Nancy
  orcidid: 0000-0001-7623-1858
  surname: Wang
  fullname: Wang, Nancy
  organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
– sequence: 20
  givenname: Chenying
  surname: Yang
  fullname: Yang, Chenying
  organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
– sequence: 21
  givenname: Milton
  orcidid: 0000-0003-2977-1565
  surname: Pereira
  fullname: Pereira, Milton
  organization: Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
– sequence: 22
  givenname: Clare E.
  surname: Bryant
  fullname: Bryant, Clare E.
  organization: University of Cambridge, Cambridge, UK
– sequence: 23
  givenname: Richard A.
  surname: Strugnell
  fullname: Strugnell, Richard A.
  organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
– sequence: 24
  givenname: James E.
  surname: Vince
  fullname: Vince, James E.
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 25
  givenname: Marc
  surname: Pellegrini
  fullname: Pellegrini, Marc
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 26
  givenname: Andreas
  surname: Strasser
  fullname: Strasser, Andreas
  email: strasser@wehi.edu.au
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
– sequence: 27
  givenname: Sammy
  orcidid: 0000-0002-7443-0543
  surname: Bedoui
  fullname: Bedoui, Sammy
  email: sbedoui@unimelb.edu.au
  organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
– sequence: 28
  givenname: Marco J.
  orcidid: 0000-0001-7539-7581
  surname: Herold
  fullname: Herold, Marco J.
  email: herold@wehi.edu.au
  organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32735843$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB_wDxCyxIZNwnXsxMkGCU1pqVSJLujacuw7Uw-JXexkYP59HU0pjwUbP-TvHt9zzyk58sEjIa8ZlAxY835bunGcvSsrqKAEWQKIZ-SEQScLwVo4Ws5SFLJh_JicprQFYKLu4AU55pXkdSv4Cfl2MeBP1w9Ib5PeINXe0is_YTTBezST27lpT8OanrsdxoR0hcNAz1FPd_QmLz_0PtGbGKbMUr3RzqdpEYjaZHAedMy39SIU_EvyfK2HhK8e9zNye_Hp6-pzcf3l8mr18bowdS2nwnYom4YZy2shOm5ZL6HuZAucScM4txJardvGVp3hUuqmNn3Fe2PRaNCN5Wfkw0H3fu5HtAaXdgZ1H92o414F7dTfL97dqU3YKVkDtDXLAu8eBWL4PmOa1OjS4kd7DHNSlaiWfhpZZfTtP-g2zNFne5kSVcuB1TxT4kCZGFKKuH5qhoFa0lRbdUhTLWkqkCqnmcve_GnkqehXfL-dYh7nzmFUyTj0Bq2LeebKBvf_Hx4ABwq2Bg
CitedBy_id crossref_primary_10_1016_j_immuni_2020_08_009
crossref_primary_10_1016_j_celrep_2022_111374
crossref_primary_10_1016_j_it_2023_01_001
crossref_primary_10_1038_s41418_023_01153_w
crossref_primary_10_1042_BCJ20210602
crossref_primary_10_15252_embj_2021110468
crossref_primary_10_1038_s12276_023_01069_y
crossref_primary_10_1016_j_smim_2023_101804
crossref_primary_10_1002_cti2_1404
crossref_primary_10_1007_s10753_021_01489_w
crossref_primary_10_15252_embr_202356865
crossref_primary_10_3389_fcimb_2024_1363407
crossref_primary_10_3390_biom11060803
crossref_primary_10_1016_j_molmed_2023_10_001
crossref_primary_10_1016_j_molcel_2021_09_003
crossref_primary_10_3390_cells11091495
crossref_primary_10_1016_j_tim_2021_04_003
crossref_primary_10_1038_s41418_021_00814_y
crossref_primary_10_1126_sciimmunol_abh3567
crossref_primary_10_7554_eLife_89210_3
crossref_primary_10_1038_s41580_020_0270_8
crossref_primary_10_1042_BST20211242
crossref_primary_10_1126_sciadv_abi9471
crossref_primary_10_1126_science_abi5934
crossref_primary_10_1146_annurev_immunol_101320_011235
crossref_primary_10_4049_immunohorizons_2000097
crossref_primary_10_1126_scitranslmed_abe9887
crossref_primary_10_1186_s13008_023_00102_w
crossref_primary_10_1016_j_cell_2023_11_044
crossref_primary_10_1038_s41556_024_01429_4
crossref_primary_10_1016_j_csbj_2021_07_038
crossref_primary_10_1038_s44321_024_00074_6
crossref_primary_10_1016_j_mib_2021_09_004
crossref_primary_10_1097_CM9_0000000000002239
crossref_primary_10_1038_s41419_023_05801_4
crossref_primary_10_1111_omi_12436
crossref_primary_10_1038_s41419_021_04286_3
crossref_primary_10_1038_s41598_022_20786_4
crossref_primary_10_1371_journal_ppat_1010767
crossref_primary_10_3389_fimmu_2024_1330461
crossref_primary_10_1371_journal_pone_0247738
crossref_primary_10_3389_fimmu_2021_789610
crossref_primary_10_3389_fmicb_2022_994512
crossref_primary_10_7554_eLife_89210
crossref_primary_10_1016_j_celrep_2023_112522
crossref_primary_10_1128_spectrum_02495_22
crossref_primary_10_1016_j_tim_2021_10_007
crossref_primary_10_1126_science_abe0917
crossref_primary_10_1016_j_chom_2021_11_012
crossref_primary_10_1371_journal_ppat_1011455
crossref_primary_10_1038_s44319_023_00008_2
crossref_primary_10_1016_j_bbrc_2024_150177
crossref_primary_10_1016_j_virol_2023_109921
crossref_primary_10_1038_s41598_021_98145_y
crossref_primary_10_1016_j_immuni_2022_01_003
crossref_primary_10_1038_s41385_021_00450_2
crossref_primary_10_1016_j_jbc_2021_101461
crossref_primary_10_1016_j_phrs_2020_105408
crossref_primary_10_1038_s41423_023_01107_9
crossref_primary_10_1016_j_coi_2023_102348
crossref_primary_10_1016_j_jmb_2021_167409
crossref_primary_10_1016_j_smim_2023_101832
crossref_primary_10_1016_j_bbrc_2024_149978
crossref_primary_10_15252_embj_2020107341
crossref_primary_10_1007_s00467_023_06162_y
crossref_primary_10_3389_fimmu_2022_1029092
crossref_primary_10_1038_s41418_021_00893_x
crossref_primary_10_1016_j_coi_2023_102343
crossref_primary_10_2147_IJN_S436350
crossref_primary_10_1016_j_gene_2024_148355
crossref_primary_10_1111_odi_14726
crossref_primary_10_1126_sciimmunol_abo6294
crossref_primary_10_1155_2023_4586398
crossref_primary_10_3389_fimmu_2024_1394857
crossref_primary_10_1042_BCJ20210711
crossref_primary_10_1146_annurev_pathmechdis_051022_014433
crossref_primary_10_3390_ijms22031048
crossref_primary_10_1007_s12026_024_09491_8
crossref_primary_10_1038_s41419_022_05230_9
crossref_primary_10_1146_annurev_micro_032521_024017
crossref_primary_10_1038_s41467_021_27034_9
crossref_primary_10_3389_fphar_2022_998574
crossref_primary_10_1038_s41419_022_05066_3
crossref_primary_10_1093_lifemedi_lnad013
crossref_primary_10_1038_s41573_023_00822_2
crossref_primary_10_1038_s41589_024_01635_z
crossref_primary_10_1016_j_isci_2022_104632
crossref_primary_10_3389_fimmu_2022_847345
crossref_primary_10_4049_immunohorizons_2100118
crossref_primary_10_1155_2022_6558060
crossref_primary_10_1038_s41419_021_03883_6
crossref_primary_10_1038_s41420_022_01044_y
Cites_doi 10.1016/j.cell.2019.04.024
10.1038/srep45126
10.1016/S0092-8674(00)80430-4
10.1038/nature15514
10.1038/s41598-018-21998-3
10.1128/AEM.69.12.7480-7491.2003
10.1038/nri.2016.147
10.1016/j.celrep.2019.03.040
10.1038/nrm3722
10.1016/j.celrep.2017.11.088
10.1038/s41467-019-09753-2
10.1186/gb-2010-11-3-r25
10.1038/s41586-019-1770-6
10.26508/lsa.202000735
10.1016/j.chom.2013.06.009
10.1128/IAI.01576-14
10.1038/nbt.2800
10.1038/nature02664
10.1007/978-1-4939-3581-9_18
10.1038/nrm3683
10.1016/j.immuni.2013.06.018
10.1038/cdd.2013.37
10.1016/j.immuni.2019.06.002
10.1126/science.1257998
10.1038/nature09852
10.1016/j.immuni.2017.03.016
10.1371/journal.ppat.1006502
10.1126/science.7535475
10.1186/s12916-019-1443-1
10.1073/pnas.1808339115
10.1038/ni1346
10.1038/nature09857
10.1016/j.celrep.2017.12.018
10.1038/nature15541
10.1128/mBio.02270-19
10.1016/j.cell.2014.04.007
10.1016/j.celrep.2015.02.002
10.1073/pnas.1222047110
10.1038/ni.2195
10.1038/nrm2970
10.1007/978-1-4939-7837-3_4
10.1016/j.immuni.2016.07.016
10.1038/cdd.2012.51
10.1016/j.mib.2015.10.003
10.1038/ni.1703
10.1126/science.aac5789
10.1074/jbc.M115.652321
10.1126/science.aau2818
10.1093/bioinformatics/btp616
10.1128/IAI.02192-14
10.1146/annurev-immunol-042617-053010
10.1038/nature11419
10.1084/jem.20100257
10.1038/s41418-018-0188-2
10.1038/s41586-019-1752-8
10.1016/j.molcel.2011.06.006
10.4049/jimmunol.0902871
10.1038/ni.1960
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
2020. The Author(s)
2020 The Author(s) 2020
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2020. The Author(s)
– notice: 2020 The Author(s) 2020
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.immuni.2020.07.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 547.e7
ExternalDocumentID 10_1016_j_immuni_2020_07_004
32735843
S1074761320302843
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 108045/Z/15/Z
GroupedDBID ---
--K
-DZ
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6I.
7-5
7RV
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFRAH
AFTJW
AGGSO
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HCIFZ
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
WQ6
ZA5
0SF
AAEDT
AAMRU
ADVLN
AKAPO
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
.55
.GJ
29I
3V.
5VS
7X7
AAIKJ
AAQFI
AAQXK
AAYXX
ACRPL
ADMUD
ADNMO
AFKRA
AGHFR
AHHHB
BHPHI
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
NCXOZ
OHT
OZT
R2-
UHS
X7M
Y6R
ZGI
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c557t-d9e7661cd354493d1b7059780317c133d708aa86d29c377a65cb23bcdeca0a6d3
IEDL.DBID ABVKL
ISSN 1074-7613
IngestDate Tue Sep 17 21:12:36 EDT 2024
Thu Dec 05 23:57:00 EST 2024
Thu Oct 10 22:07:05 EDT 2024
Fri Dec 06 02:59:34 EST 2024
Sat Nov 02 12:22:34 EDT 2024
Fri Feb 23 02:49:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords pyroptosis
Salmonella
caspase-8
cell death
gasdermin D
apoptosis
caspase-11
effector caspases
caspase-1
necroptosis
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-d9e7661cd354493d1b7059780317c133d708aa86d29c377a65cb23bcdeca0a6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
Present address: Menzies Health Institute Queensland, Griffith University, QLD, Australia
ORCID 0000-0001-9159-3021
0000-0002-1789-9898
0000-0002-7443-0543
0000-0002-5318-3037
0000-0003-0517-1610
0000-0003-2977-1565
0000-0003-3836-7601
0000-0001-7623-1858
0000-0002-1693-1761
0000-0001-7539-7581
0000-0002-6755-0221
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1074761320302843
PMID 32735843
PQID 2442830153
PQPubID 2031079
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7500851
proquest_miscellaneous_2429780672
proquest_journals_2442830153
crossref_primary_10_1016_j_immuni_2020_07_004
pubmed_primary_32735843
elsevier_sciencedirect_doi_10_1016_j_immuni_2020_07_004
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Limited
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Cell Press
References Winstel, Schneewind, Missiakas (bib56) 2019; 10
Man, Karki, Briard, Burton, Gingras, Pelletier, Kanneganti (bib32) 2017; 7
Pierini, Juruj, Perret, Jones, Mangeot, Weiss, Henry (bib43) 2012; 19
Murphy, Czabotar, Hildebrand, Lucet, Zhang, Alvarez-Diaz, Lewis, Lalaoui, Metcalf, Webb (bib36) 2013; 39
Oberst, Dillon, Weinlich, McCormick, Fitzgerald, Pop, Hakem, Salvesen, Green (bib40) 2011; 471
Shi, Zhao, Wang, Shi, Wang, Huang, Zhuang, Cai, Wang, Shao (bib51) 2015; 526
Lamkanfi, Dixit (bib30) 2014; 157
Jorgensen, Rayamajhi, Miao (bib20) 2017; 17
Kuida, Lippke, Ku, Harding, Livingston, Su, Flavell (bib26) 1995; 267
Kupz, Guarda, Gebhardt, Sander, Short, Diavatopoulos, Wijburg, Cao, Waithman, Chen (bib27) 2012; 13
Korea, Balsamo, Pezzicoli, Merakou, Tavarini, Bagnoli, Serruto, Unnikrishnan (bib24) 2014; 82
Ofengeim, Yuan (bib41) 2013; 14
Zhang, Chen, Ruan, Wu, Tong, Yin, Li, David, Lu, Wang (bib57) 2015; 350
Kaiser, Upton, Long, Livingston-Rosanoff, Daley-Bauer, Hakem, Caspary, Mocarski (bib21) 2011; 471
Heilig, Dilucca, Boucher, Chen, Hancz, Demarco, Shkarina, Broz (bib19) 2020; 3
Ng, Monack (bib39) 2013; 14
Kupz, Scott, Belz, Andrews, Greyer, Lew, Brooks, Smyth, Curtiss, Bedoui, Strugnell (bib28) 2013; 110
Kayagaki, Stowe, Lee, O’Rourke, Anderson, Warming, Cuellar, Haley, Roose-Girma, Phung (bib22) 2015; 526
Tsuchiya, Nakajima, Hosojima, Thi Nguyen, Hattori, Manh Le, Hori, Mahib, Yamaguchi, Miura (bib53) 2019; 10
Koike-Yusa, Li, Tan, Velasco-Herrera, Yusa (bib23) 2014; 32
Alvarez-Diaz, Dillon, Lalaoui, Tanzer, Rodriguez, Lin, Lebois, Hakem, Josefsson, O’Reilly (bib1) 2016; 45
Dengler, Robin, Gibson, Li, Sandow, Iyer, Webb, Westphal, Dewson, Adams (bib13) 2019; 27
Green (bib17) 2019; 177
Broz, Newton, Lamkanfi, Mariathasan, Dixit, Monack (bib8) 2010; 207
Franchi, Eigenbrod, Muñoz-Planillo, Nuñez (bib15) 2009; 10
De Nardo, Kalvakolanu, Latz (bib12) 2018; 1784
Vandenabeele, Galluzzi, Vanden Berghe, Kroemer (bib55) 2010; 11
Bachem, Makhlouf, Binger, de Souza, Tull, Hochheiser, Whitney, Fernandez-Ruiz, Dahling, Kastenmuller (bib4) 2019; 51
Broz, Ruby, Belhocine, Bouley, Kayagaki, Dixit, Monack (bib9) 2012; 490
Fritsch, Günther, Schwarzer, Albert, Schorn, Werthenbach, Schiffmann, Stair, Stocks, Seeger (bib16) 2019; 575
Franchi, Amer, Body-Malapel, Kanneganti, Ozören, Jagirdar, Inohara, Vandenabeele, Bertin, Coyle (bib14) 2006; 7
Mariathasan, Newton, Monack, Vucic, French, Lee, Roose-Girma, Erickson, Dixit (bib33) 2004; 430
Bedoui, Kupz, Wijburg, Walduck, Rescigno, Strugnell (bib5) 2010; 184
Schneider, Groß, Dreier, Saller, Mishra, Gorka, Heilig, Meunier, Dick, Ćiković (bib50) 2017; 21
Browne, Kashef Hamadani, Kumaran, Rao, Longbottom, Harriss, Moore, Dunachie, Basnyat, Baker (bib7) 2020; 18
Miao, Leaf, Treuting, Mao, Dors, Sarkar, Warren, Wewers, Aderem (bib35) 2010; 11
Aubrey, Kelly, Kueh, Brennan, O’Connor, Milla, Wilcox, Tai, Strasser, Herold (bib3) 2015; 10
Kueh, Herold (bib25) 2016; 1419
Benoun, Peres, Wang, Pham, Rudisill, Fogassy, Whitney, Fernandez-Ruiz, Gebhardt, Pham (bib6) 2018; 115
Chen, Legant, Wang, Shao, Milkie, Davidson, Janetopoulos, Wu, Hammer, Liu (bib10) 2014; 346
Salvesen, Dixit (bib49) 1997; 91
Kupz, Bedoui, Strugnell (bib29) 2014; 82
Sagulenko, Thygesen, Sester, Idris, Cridland, Vajjhala, Roberts, Schroder, Vince, Hill (bib47) 2013; 20
Salvamoser, Brinkmann, O’Reilly, Whitehead, Strasser, Herold (bib48) 2019; 26
Robinson, McCarthy, Smyth (bib46) 2010; 26
Hautefort, Proença, Hinton (bib18) 2003; 69
Zhao, Shao (bib58) 2016; 29
Lee, Mirrashidi, Stowe, Kummerfeld, Watanabe, Haley, Cuellar, Reichelt, Kayagaki (bib31) 2018; 8
Nagata (bib37) 2018; 36
Newton, Wickliffe, Maltzman, Dugger, Reja, Zhang, Roose-Girma, Modrusan, Sagolla, Webster, Dixit (bib38) 2019; 575
Orning, Weng, Starheim, Ratner, Best, Lee, Brooks, Xia, Wu, Kelliher (bib42) 2018; 362
Mascarenhas, Cerqueira, Pereira, Castanheira, Fernandes, Manin, Cunha, Zamboni (bib34) 2017; 13
Tenev, Bianchi, Darding, Broemer, Langlais, Wallberg, Zachariou, Lopez, MacFarlane, Cain, Meier (bib52) 2011; 43
Antonopoulos, Russo, El Sanadi, Martin, Li, Kaiser, Mocarski, Dubyak (bib2) 2015; 290
Robinson, Oshlack (bib45) 2010; 11
Czabotar, Lessene, Strasser, Adams (bib11) 2014; 15
Rauch, Deets, Ji, von Moltke, Tenthorey, Lee, Philip, Ayres, Brodsky, Gronert, Vance (bib44) 2017; 46
Van Opdenbosch, Van Gorp, Verdonckt, Saavedra, de Vasconcelos, Gonçalves, Vande Walle, Demon, Matusiak, Van Hauwermeiren (bib54) 2017; 21
32937145 - Immunity. 2020 Sep 15;53(3):471-473
Korea (10.1016/j.immuni.2020.07.004_bib24) 2014; 82
Schneider (10.1016/j.immuni.2020.07.004_bib50) 2017; 21
Rauch (10.1016/j.immuni.2020.07.004_bib44) 2017; 46
Jorgensen (10.1016/j.immuni.2020.07.004_bib20) 2017; 17
Murphy (10.1016/j.immuni.2020.07.004_bib36) 2013; 39
Tsuchiya (10.1016/j.immuni.2020.07.004_bib53) 2019; 10
Kaiser (10.1016/j.immuni.2020.07.004_bib21) 2011; 471
Kuida (10.1016/j.immuni.2020.07.004_bib26) 1995; 267
Newton (10.1016/j.immuni.2020.07.004_bib38) 2019; 575
Benoun (10.1016/j.immuni.2020.07.004_bib6) 2018; 115
Orning (10.1016/j.immuni.2020.07.004_bib42) 2018; 362
Czabotar (10.1016/j.immuni.2020.07.004_bib11) 2014; 15
Mascarenhas (10.1016/j.immuni.2020.07.004_bib34) 2017; 13
Koike-Yusa (10.1016/j.immuni.2020.07.004_bib23) 2014; 32
Broz (10.1016/j.immuni.2020.07.004_bib9) 2012; 490
Fritsch (10.1016/j.immuni.2020.07.004_bib16) 2019; 575
Miao (10.1016/j.immuni.2020.07.004_bib35) 2010; 11
Lamkanfi (10.1016/j.immuni.2020.07.004_bib30) 2014; 157
Franchi (10.1016/j.immuni.2020.07.004_bib15) 2009; 10
Green (10.1016/j.immuni.2020.07.004_bib17) 2019; 177
Chen (10.1016/j.immuni.2020.07.004_bib10) 2014; 346
Sagulenko (10.1016/j.immuni.2020.07.004_bib47) 2013; 20
Lee (10.1016/j.immuni.2020.07.004_bib31) 2018; 8
Robinson (10.1016/j.immuni.2020.07.004_bib46) 2010; 26
Winstel (10.1016/j.immuni.2020.07.004_bib56) 2019; 10
Tenev (10.1016/j.immuni.2020.07.004_bib52) 2011; 43
Kupz (10.1016/j.immuni.2020.07.004_bib27) 2012; 13
Kayagaki (10.1016/j.immuni.2020.07.004_bib22) 2015; 526
Aubrey (10.1016/j.immuni.2020.07.004_bib3) 2015; 10
Alvarez-Diaz (10.1016/j.immuni.2020.07.004_bib1) 2016; 45
Kueh (10.1016/j.immuni.2020.07.004_bib25) 2016; 1419
Zhao (10.1016/j.immuni.2020.07.004_bib58) 2016; 29
Man (10.1016/j.immuni.2020.07.004_bib32) 2017; 7
Kupz (10.1016/j.immuni.2020.07.004_bib29) 2014; 82
Salvamoser (10.1016/j.immuni.2020.07.004_bib48) 2019; 26
Robinson (10.1016/j.immuni.2020.07.004_bib45) 2010; 11
Franchi (10.1016/j.immuni.2020.07.004_bib14) 2006; 7
Antonopoulos (10.1016/j.immuni.2020.07.004_bib2) 2015; 290
Shi (10.1016/j.immuni.2020.07.004_bib51) 2015; 526
Hautefort (10.1016/j.immuni.2020.07.004_bib18) 2003; 69
Vandenabeele (10.1016/j.immuni.2020.07.004_bib55) 2010; 11
Oberst (10.1016/j.immuni.2020.07.004_bib40) 2011; 471
Van Opdenbosch (10.1016/j.immuni.2020.07.004_bib54) 2017; 21
Browne (10.1016/j.immuni.2020.07.004_bib7) 2020; 18
Nagata (10.1016/j.immuni.2020.07.004_bib37) 2018; 36
Salvesen (10.1016/j.immuni.2020.07.004_bib49) 1997; 91
Broz (10.1016/j.immuni.2020.07.004_bib8) 2010; 207
Mariathasan (10.1016/j.immuni.2020.07.004_bib33) 2004; 430
Ofengeim (10.1016/j.immuni.2020.07.004_bib41) 2013; 14
De Nardo (10.1016/j.immuni.2020.07.004_bib12) 2018; 1784
Ng (10.1016/j.immuni.2020.07.004_bib39) 2013; 14
Bachem (10.1016/j.immuni.2020.07.004_bib4) 2019; 51
Bedoui (10.1016/j.immuni.2020.07.004_bib5) 2010; 184
Dengler (10.1016/j.immuni.2020.07.004_bib13) 2019; 27
Heilig (10.1016/j.immuni.2020.07.004_bib19) 2020; 3
Zhang (10.1016/j.immuni.2020.07.004_bib57) 2015; 350
Pierini (10.1016/j.immuni.2020.07.004_bib43) 2012; 19
Kupz (10.1016/j.immuni.2020.07.004_bib28) 2013; 110
References_xml – volume: 11
  start-page: 1136
  year: 2010
  end-page: 1142
  ident: bib35
  article-title: Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria
  publication-title: Nat. Immunol.
  contributor:
    fullname: Aderem
– volume: 10
  start-page: 1422
  year: 2015
  end-page: 1432
  ident: bib3
  article-title: An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo
  publication-title: Cell Rep.
  contributor:
    fullname: Herold
– volume: 115
  start-page: 10416
  year: 2018
  end-page: 10421
  ident: bib6
  article-title: Optimal protection against
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Pham
– volume: 7
  start-page: 576
  year: 2006
  end-page: 582
  ident: bib14
  article-title: Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages
  publication-title: Nat. Immunol.
  contributor:
    fullname: Coyle
– volume: 575
  start-page: 683
  year: 2019
  end-page: 687
  ident: bib16
  article-title: Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis
  publication-title: Nature
  contributor:
    fullname: Seeger
– volume: 14
  start-page: 9
  year: 2013
  end-page: 14
  ident: bib39
  article-title: Revisiting caspase-11 function in host defense
  publication-title: Cell Host Microbe
  contributor:
    fullname: Monack
– volume: 526
  start-page: 666
  year: 2015
  end-page: 671
  ident: bib22
  article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling
  publication-title: Nature
  contributor:
    fullname: Phung
– volume: 20
  start-page: 1149
  year: 2013
  end-page: 1160
  ident: bib47
  article-title: AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC
  publication-title: Cell Death Differ.
  contributor:
    fullname: Hill
– volume: 346
  start-page: 1257998
  year: 2014
  ident: bib10
  article-title: Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution
  publication-title: Science
  contributor:
    fullname: Liu
– volume: 207
  start-page: 1745
  year: 2010
  end-page: 1755
  ident: bib8
  article-title: Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella
  publication-title: J. Exp. Med.
  contributor:
    fullname: Monack
– volume: 36
  start-page: 489
  year: 2018
  end-page: 517
  ident: bib37
  article-title: Apoptosis and Clearance of Apoptotic Cells
  publication-title: Annu. Rev. Immunol.
  contributor:
    fullname: Nagata
– volume: 27
  start-page: 359
  year: 2019
  end-page: 373.e6
  ident: bib13
  article-title: BAX Activation: Mutations Near Its Proposed Non-canonical BH3 Binding Site Reveal Allosteric Changes Controlling Mitochondrial Association
  publication-title: Cell Rep.
  contributor:
    fullname: Adams
– volume: 430
  start-page: 213
  year: 2004
  end-page: 218
  ident: bib33
  article-title: Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf
  publication-title: Nature
  contributor:
    fullname: Dixit
– volume: 13
  start-page: e1006502
  year: 2017
  ident: bib34
  article-title: Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome
  publication-title: PLoS Pathog.
  contributor:
    fullname: Zamboni
– volume: 17
  start-page: 151
  year: 2017
  end-page: 164
  ident: bib20
  article-title: Programmed cell death as a defence against infection
  publication-title: Nat. Rev. Immunol.
  contributor:
    fullname: Miao
– volume: 91
  start-page: 443
  year: 1997
  end-page: 446
  ident: bib49
  article-title: Caspases: intracellular signaling by proteolysis
  publication-title: Cell
  contributor:
    fullname: Dixit
– volume: 82
  start-page: 4144
  year: 2014
  end-page: 4153
  ident: bib24
  article-title: Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells
  publication-title: Infect. Immun.
  contributor:
    fullname: Unnikrishnan
– volume: 51
  start-page: 285
  year: 2019
  end-page: 297.e5
  ident: bib4
  article-title: Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8(+) T Cells
  publication-title: Immunity
  contributor:
    fullname: Kastenmuller
– volume: 1784
  start-page: 35
  year: 2018
  end-page: 49
  ident: bib12
  article-title: Immortalization of Murine Bone Marrow-Derived Macrophages
  publication-title: Methods Mol. Biol.
  contributor:
    fullname: Latz
– volume: 29
  start-page: 37
  year: 2016
  end-page: 42
  ident: bib58
  article-title: Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence
  publication-title: Curr. Opin. Microbiol.
  contributor:
    fullname: Shao
– volume: 46
  start-page: 649
  year: 2017
  end-page: 659
  ident: bib44
  article-title: NAIP-NLRC4 Inflammasomes Coordinate Intestinal Epithelial Cell Expulsion with Eicosanoid and IL-18 Release via Activation of Caspase-1 and -8
  publication-title: Immunity
  contributor:
    fullname: Vance
– volume: 32
  start-page: 267
  year: 2014
  end-page: 273
  ident: bib23
  article-title: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library
  publication-title: Nat. Biotechnol.
  contributor:
    fullname: Yusa
– volume: 1419
  start-page: 253
  year: 2016
  end-page: 264
  ident: bib25
  article-title: Using CRISPR/Cas9 Technology for Manipulating Cell Death Regulators
  publication-title: Methods Mol. Biol.
  contributor:
    fullname: Herold
– volume: 10
  year: 2019
  ident: bib56
  article-title: Staphylococcus aureus Exploits the Host Apoptotic Pathway To Persist during Infection
  publication-title: MBio
  contributor:
    fullname: Missiakas
– volume: 350
  start-page: 404
  year: 2015
  end-page: 409
  ident: bib57
  article-title: Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization
  publication-title: Science
  contributor:
    fullname: Wang
– volume: 11
  start-page: R25
  year: 2010
  ident: bib45
  article-title: A scaling normalization method for differential expression analysis of RNA-seq data
  publication-title: Genome Biol.
  contributor:
    fullname: Oshlack
– volume: 110
  start-page: 2252
  year: 2013
  end-page: 2257
  ident: bib28
  article-title: Contribution of Thy1+ NK cells to protective IFN-γ production during Salmonella typhimurium infections
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Strugnell
– volume: 15
  start-page: 49
  year: 2014
  end-page: 63
  ident: bib11
  article-title: Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy
  publication-title: Nat. Rev. Mol. Cell Biol.
  contributor:
    fullname: Adams
– volume: 3
  year: 2020
  ident: bib19
  article-title: Caspase-1 cleaves Bid to release mitochondrial SMAC and drive secondary necrosis in the absence of GSDMD
  publication-title: Life Sci. Alliance
  contributor:
    fullname: Broz
– volume: 13
  start-page: 162
  year: 2012
  end-page: 169
  ident: bib27
  article-title: NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8
  publication-title: Nat. Immunol.
  contributor:
    fullname: Chen
– volume: 526
  start-page: 660
  year: 2015
  end-page: 665
  ident: bib51
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
  contributor:
    fullname: Shao
– volume: 11
  start-page: 700
  year: 2010
  end-page: 714
  ident: bib55
  article-title: Molecular mechanisms of necroptosis: an ordered cellular explosion
  publication-title: Nat. Rev. Mol. Cell Biol.
  contributor:
    fullname: Kroemer
– volume: 290
  start-page: 20167
  year: 2015
  end-page: 20184
  ident: bib2
  article-title: Caspase-8 as an Effector and Regulator of NLRP3 Inflammasome Signaling
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Dubyak
– volume: 18
  start-page: 1
  year: 2020
  ident: bib7
  article-title: Drug-resistant enteric fever worldwide, 1990 to 2018: a systematic review and meta-analysis
  publication-title: BMC Med.
  contributor:
    fullname: Baker
– volume: 8
  start-page: 3788
  year: 2018
  ident: bib31
  article-title: ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages
  publication-title: Sci. Rep.
  contributor:
    fullname: Kayagaki
– volume: 7
  start-page: 45126
  year: 2017
  ident: bib32
  article-title: Differential roles of caspase-1 and caspase-11 in infection and inflammation
  publication-title: Sci. Rep.
  contributor:
    fullname: Kanneganti
– volume: 19
  start-page: 1709
  year: 2012
  end-page: 1721
  ident: bib43
  article-title: AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages
  publication-title: Cell Death Differ.
  contributor:
    fullname: Henry
– volume: 490
  start-page: 288
  year: 2012
  end-page: 291
  ident: bib9
  article-title: Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1
  publication-title: Nature
  contributor:
    fullname: Monack
– volume: 21
  start-page: 3427
  year: 2017
  end-page: 3444
  ident: bib54
  article-title: Caspase-1 Engagement and TLR-Induced c-FLIP Expression Suppress ASC/Caspase-8-Dependent Apoptosis by Inflammasome Sensors NLRP1b and NLRC4
  publication-title: Cell Rep.
  contributor:
    fullname: Van Hauwermeiren
– volume: 362
  start-page: 1064
  year: 2018
  end-page: 1069
  ident: bib42
  article-title: Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death
  publication-title: Science
  contributor:
    fullname: Kelliher
– volume: 21
  start-page: 3846
  year: 2017
  end-page: 3859
  ident: bib50
  article-title: The Inflammasome Drives GSDMD-Independent Secondary Pyroptosis and IL-1 Release in the Absence of Caspase-1 Protease Activity
  publication-title: Cell Rep.
  contributor:
    fullname: Ćiković
– volume: 69
  start-page: 7480
  year: 2003
  end-page: 7491
  ident: bib18
  article-title: Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells
  publication-title: Appl. Environ. Microbiol.
  contributor:
    fullname: Hinton
– volume: 471
  start-page: 363
  year: 2011
  end-page: 367
  ident: bib40
  article-title: Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis
  publication-title: Nature
  contributor:
    fullname: Green
– volume: 10
  start-page: 241
  year: 2009
  end-page: 247
  ident: bib15
  article-title: The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis
  publication-title: Nat. Immunol.
  contributor:
    fullname: Nuñez
– volume: 177
  start-page: 1094
  year: 2019
  end-page: 1107
  ident: bib17
  article-title: The Coming Decade of Cell Death Research: Five Riddles
  publication-title: Cell
  contributor:
    fullname: Green
– volume: 471
  start-page: 368
  year: 2011
  end-page: 372
  ident: bib21
  article-title: RIP3 mediates the embryonic lethality of caspase-8-deficient mice
  publication-title: Nature
  contributor:
    fullname: Mocarski
– volume: 575
  start-page: 679
  year: 2019
  end-page: 682
  ident: bib38
  article-title: Activity of caspase-8 determines plasticity between cell death pathways
  publication-title: Nature
  contributor:
    fullname: Dixit
– volume: 157
  start-page: 1013
  year: 2014
  end-page: 1022
  ident: bib30
  article-title: Mechanisms and functions of inflammasomes
  publication-title: Cell
  contributor:
    fullname: Dixit
– volume: 10
  start-page: 2091
  year: 2019
  ident: bib53
  article-title: Caspase-1 initiates apoptosis in the absence of gasdermin D
  publication-title: Nat. Commun.
  contributor:
    fullname: Miura
– volume: 184
  start-page: 2237
  year: 2010
  end-page: 2242
  ident: bib5
  article-title: Different bacterial pathogens, different strategies, yet the aim is the same: evasion of intestinal dendritic cell recognition
  publication-title: J. Immunol.
  contributor:
    fullname: Strugnell
– volume: 26
  start-page: 1124
  year: 2019
  end-page: 1137
  ident: bib48
  article-title: Characterisation of mice lacking the inflammatory caspases-1/11/12 reveals no contribution of caspase-12 to cell death and sepsis
  publication-title: Cell Death Differ.
  contributor:
    fullname: Herold
– volume: 43
  start-page: 432
  year: 2011
  end-page: 448
  ident: bib52
  article-title: The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs
  publication-title: Mol. Cell
  contributor:
    fullname: Meier
– volume: 267
  start-page: 2000
  year: 1995
  end-page: 2003
  ident: bib26
  article-title: Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme
  publication-title: Science
  contributor:
    fullname: Flavell
– volume: 82
  start-page: 4997
  year: 2014
  end-page: 5004
  ident: bib29
  article-title: Cellular requirements for systemic control of Salmonella enterica serovar Typhimurium infections in mice
  publication-title: Infect. Immun.
  contributor:
    fullname: Strugnell
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: bib46
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  contributor:
    fullname: Smyth
– volume: 45
  start-page: 513
  year: 2016
  end-page: 526
  ident: bib1
  article-title: The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis
  publication-title: Immunity
  contributor:
    fullname: O’Reilly
– volume: 39
  start-page: 443
  year: 2013
  end-page: 453
  ident: bib36
  article-title: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism
  publication-title: Immunity
  contributor:
    fullname: Webb
– volume: 14
  start-page: 727
  year: 2013
  end-page: 736
  ident: bib41
  article-title: Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death
  publication-title: Nat. Rev. Mol. Cell Biol.
  contributor:
    fullname: Yuan
– volume: 177
  start-page: 1094
  year: 2019
  ident: 10.1016/j.immuni.2020.07.004_bib17
  article-title: The Coming Decade of Cell Death Research: Five Riddles
  publication-title: Cell
  doi: 10.1016/j.cell.2019.04.024
  contributor:
    fullname: Green
– volume: 7
  start-page: 45126
  year: 2017
  ident: 10.1016/j.immuni.2020.07.004_bib32
  article-title: Differential roles of caspase-1 and caspase-11 in infection and inflammation
  publication-title: Sci. Rep.
  doi: 10.1038/srep45126
  contributor:
    fullname: Man
– volume: 91
  start-page: 443
  year: 1997
  ident: 10.1016/j.immuni.2020.07.004_bib49
  article-title: Caspases: intracellular signaling by proteolysis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80430-4
  contributor:
    fullname: Salvesen
– volume: 526
  start-page: 660
  year: 2015
  ident: 10.1016/j.immuni.2020.07.004_bib51
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
  doi: 10.1038/nature15514
  contributor:
    fullname: Shi
– volume: 8
  start-page: 3788
  year: 2018
  ident: 10.1016/j.immuni.2020.07.004_bib31
  article-title: ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21998-3
  contributor:
    fullname: Lee
– volume: 69
  start-page: 7480
  year: 2003
  ident: 10.1016/j.immuni.2020.07.004_bib18
  article-title: Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.12.7480-7491.2003
  contributor:
    fullname: Hautefort
– volume: 17
  start-page: 151
  year: 2017
  ident: 10.1016/j.immuni.2020.07.004_bib20
  article-title: Programmed cell death as a defence against infection
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.147
  contributor:
    fullname: Jorgensen
– volume: 27
  start-page: 359
  year: 2019
  ident: 10.1016/j.immuni.2020.07.004_bib13
  article-title: BAX Activation: Mutations Near Its Proposed Non-canonical BH3 Binding Site Reveal Allosteric Changes Controlling Mitochondrial Association
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.03.040
  contributor:
    fullname: Dengler
– volume: 15
  start-page: 49
  year: 2014
  ident: 10.1016/j.immuni.2020.07.004_bib11
  article-title: Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3722
  contributor:
    fullname: Czabotar
– volume: 21
  start-page: 3427
  year: 2017
  ident: 10.1016/j.immuni.2020.07.004_bib54
  article-title: Caspase-1 Engagement and TLR-Induced c-FLIP Expression Suppress ASC/Caspase-8-Dependent Apoptosis by Inflammasome Sensors NLRP1b and NLRC4
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.11.088
  contributor:
    fullname: Van Opdenbosch
– volume: 10
  start-page: 2091
  year: 2019
  ident: 10.1016/j.immuni.2020.07.004_bib53
  article-title: Caspase-1 initiates apoptosis in the absence of gasdermin D
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09753-2
  contributor:
    fullname: Tsuchiya
– volume: 11
  start-page: R25
  year: 2010
  ident: 10.1016/j.immuni.2020.07.004_bib45
  article-title: A scaling normalization method for differential expression analysis of RNA-seq data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-3-r25
  contributor:
    fullname: Robinson
– volume: 575
  start-page: 683
  year: 2019
  ident: 10.1016/j.immuni.2020.07.004_bib16
  article-title: Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis
  publication-title: Nature
  doi: 10.1038/s41586-019-1770-6
  contributor:
    fullname: Fritsch
– volume: 3
  year: 2020
  ident: 10.1016/j.immuni.2020.07.004_bib19
  article-title: Caspase-1 cleaves Bid to release mitochondrial SMAC and drive secondary necrosis in the absence of GSDMD
  publication-title: Life Sci. Alliance
  doi: 10.26508/lsa.202000735
  contributor:
    fullname: Heilig
– volume: 14
  start-page: 9
  year: 2013
  ident: 10.1016/j.immuni.2020.07.004_bib39
  article-title: Revisiting caspase-11 function in host defense
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.06.009
  contributor:
    fullname: Ng
– volume: 82
  start-page: 4144
  year: 2014
  ident: 10.1016/j.immuni.2020.07.004_bib24
  article-title: Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.01576-14
  contributor:
    fullname: Korea
– volume: 32
  start-page: 267
  year: 2014
  ident: 10.1016/j.immuni.2020.07.004_bib23
  article-title: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2800
  contributor:
    fullname: Koike-Yusa
– volume: 430
  start-page: 213
  year: 2004
  ident: 10.1016/j.immuni.2020.07.004_bib33
  article-title: Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf
  publication-title: Nature
  doi: 10.1038/nature02664
  contributor:
    fullname: Mariathasan
– volume: 1419
  start-page: 253
  year: 2016
  ident: 10.1016/j.immuni.2020.07.004_bib25
  article-title: Using CRISPR/Cas9 Technology for Manipulating Cell Death Regulators
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-3581-9_18
  contributor:
    fullname: Kueh
– volume: 14
  start-page: 727
  year: 2013
  ident: 10.1016/j.immuni.2020.07.004_bib41
  article-title: Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3683
  contributor:
    fullname: Ofengeim
– volume: 39
  start-page: 443
  year: 2013
  ident: 10.1016/j.immuni.2020.07.004_bib36
  article-title: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.06.018
  contributor:
    fullname: Murphy
– volume: 20
  start-page: 1149
  year: 2013
  ident: 10.1016/j.immuni.2020.07.004_bib47
  article-title: AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2013.37
  contributor:
    fullname: Sagulenko
– volume: 51
  start-page: 285
  year: 2019
  ident: 10.1016/j.immuni.2020.07.004_bib4
  article-title: Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8(+) T Cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.06.002
  contributor:
    fullname: Bachem
– volume: 346
  start-page: 1257998
  year: 2014
  ident: 10.1016/j.immuni.2020.07.004_bib10
  article-title: Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution
  publication-title: Science
  doi: 10.1126/science.1257998
  contributor:
    fullname: Chen
– volume: 471
  start-page: 363
  year: 2011
  ident: 10.1016/j.immuni.2020.07.004_bib40
  article-title: Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis
  publication-title: Nature
  doi: 10.1038/nature09852
  contributor:
    fullname: Oberst
– volume: 46
  start-page: 649
  year: 2017
  ident: 10.1016/j.immuni.2020.07.004_bib44
  article-title: NAIP-NLRC4 Inflammasomes Coordinate Intestinal Epithelial Cell Expulsion with Eicosanoid and IL-18 Release via Activation of Caspase-1 and -8
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.03.016
  contributor:
    fullname: Rauch
– volume: 13
  start-page: e1006502
  year: 2017
  ident: 10.1016/j.immuni.2020.07.004_bib34
  article-title: Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006502
  contributor:
    fullname: Mascarenhas
– volume: 267
  start-page: 2000
  year: 1995
  ident: 10.1016/j.immuni.2020.07.004_bib26
  article-title: Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme
  publication-title: Science
  doi: 10.1126/science.7535475
  contributor:
    fullname: Kuida
– volume: 18
  start-page: 1
  year: 2020
  ident: 10.1016/j.immuni.2020.07.004_bib7
  article-title: Drug-resistant enteric fever worldwide, 1990 to 2018: a systematic review and meta-analysis
  publication-title: BMC Med.
  doi: 10.1186/s12916-019-1443-1
  contributor:
    fullname: Browne
– volume: 115
  start-page: 10416
  year: 2018
  ident: 10.1016/j.immuni.2020.07.004_bib6
  article-title: Optimal protection against Salmonella infection requires noncirculating memory
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1808339115
  contributor:
    fullname: Benoun
– volume: 7
  start-page: 576
  year: 2006
  ident: 10.1016/j.immuni.2020.07.004_bib14
  article-title: Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1346
  contributor:
    fullname: Franchi
– volume: 471
  start-page: 368
  year: 2011
  ident: 10.1016/j.immuni.2020.07.004_bib21
  article-title: RIP3 mediates the embryonic lethality of caspase-8-deficient mice
  publication-title: Nature
  doi: 10.1038/nature09857
  contributor:
    fullname: Kaiser
– volume: 21
  start-page: 3846
  year: 2017
  ident: 10.1016/j.immuni.2020.07.004_bib50
  article-title: The Inflammasome Drives GSDMD-Independent Secondary Pyroptosis and IL-1 Release in the Absence of Caspase-1 Protease Activity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.12.018
  contributor:
    fullname: Schneider
– volume: 526
  start-page: 666
  year: 2015
  ident: 10.1016/j.immuni.2020.07.004_bib22
  article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling
  publication-title: Nature
  doi: 10.1038/nature15541
  contributor:
    fullname: Kayagaki
– volume: 10
  year: 2019
  ident: 10.1016/j.immuni.2020.07.004_bib56
  article-title: Staphylococcus aureus Exploits the Host Apoptotic Pathway To Persist during Infection
  publication-title: MBio
  doi: 10.1128/mBio.02270-19
  contributor:
    fullname: Winstel
– volume: 157
  start-page: 1013
  year: 2014
  ident: 10.1016/j.immuni.2020.07.004_bib30
  article-title: Mechanisms and functions of inflammasomes
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.007
  contributor:
    fullname: Lamkanfi
– volume: 10
  start-page: 1422
  year: 2015
  ident: 10.1016/j.immuni.2020.07.004_bib3
  article-title: An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.02.002
  contributor:
    fullname: Aubrey
– volume: 110
  start-page: 2252
  year: 2013
  ident: 10.1016/j.immuni.2020.07.004_bib28
  article-title: Contribution of Thy1+ NK cells to protective IFN-γ production during Salmonella typhimurium infections
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1222047110
  contributor:
    fullname: Kupz
– volume: 13
  start-page: 162
  year: 2012
  ident: 10.1016/j.immuni.2020.07.004_bib27
  article-title: NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8+ T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2195
  contributor:
    fullname: Kupz
– volume: 11
  start-page: 700
  year: 2010
  ident: 10.1016/j.immuni.2020.07.004_bib55
  article-title: Molecular mechanisms of necroptosis: an ordered cellular explosion
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2970
  contributor:
    fullname: Vandenabeele
– volume: 1784
  start-page: 35
  year: 2018
  ident: 10.1016/j.immuni.2020.07.004_bib12
  article-title: Immortalization of Murine Bone Marrow-Derived Macrophages
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7837-3_4
  contributor:
    fullname: De Nardo
– volume: 45
  start-page: 513
  year: 2016
  ident: 10.1016/j.immuni.2020.07.004_bib1
  article-title: The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.07.016
  contributor:
    fullname: Alvarez-Diaz
– volume: 19
  start-page: 1709
  year: 2012
  ident: 10.1016/j.immuni.2020.07.004_bib43
  article-title: AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2012.51
  contributor:
    fullname: Pierini
– volume: 29
  start-page: 37
  year: 2016
  ident: 10.1016/j.immuni.2020.07.004_bib58
  article-title: Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2015.10.003
  contributor:
    fullname: Zhao
– volume: 10
  start-page: 241
  year: 2009
  ident: 10.1016/j.immuni.2020.07.004_bib15
  article-title: The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1703
  contributor:
    fullname: Franchi
– volume: 350
  start-page: 404
  year: 2015
  ident: 10.1016/j.immuni.2020.07.004_bib57
  article-title: Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization
  publication-title: Science
  doi: 10.1126/science.aac5789
  contributor:
    fullname: Zhang
– volume: 290
  start-page: 20167
  year: 2015
  ident: 10.1016/j.immuni.2020.07.004_bib2
  article-title: Caspase-8 as an Effector and Regulator of NLRP3 Inflammasome Signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.652321
  contributor:
    fullname: Antonopoulos
– volume: 362
  start-page: 1064
  year: 2018
  ident: 10.1016/j.immuni.2020.07.004_bib42
  article-title: Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death
  publication-title: Science
  doi: 10.1126/science.aau2818
  contributor:
    fullname: Orning
– volume: 26
  start-page: 139
  year: 2010
  ident: 10.1016/j.immuni.2020.07.004_bib46
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
  contributor:
    fullname: Robinson
– volume: 82
  start-page: 4997
  year: 2014
  ident: 10.1016/j.immuni.2020.07.004_bib29
  article-title: Cellular requirements for systemic control of Salmonella enterica serovar Typhimurium infections in mice
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.02192-14
  contributor:
    fullname: Kupz
– volume: 36
  start-page: 489
  year: 2018
  ident: 10.1016/j.immuni.2020.07.004_bib37
  article-title: Apoptosis and Clearance of Apoptotic Cells
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-042617-053010
  contributor:
    fullname: Nagata
– volume: 490
  start-page: 288
  year: 2012
  ident: 10.1016/j.immuni.2020.07.004_bib9
  article-title: Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1
  publication-title: Nature
  doi: 10.1038/nature11419
  contributor:
    fullname: Broz
– volume: 207
  start-page: 1745
  year: 2010
  ident: 10.1016/j.immuni.2020.07.004_bib8
  article-title: Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20100257
  contributor:
    fullname: Broz
– volume: 26
  start-page: 1124
  year: 2019
  ident: 10.1016/j.immuni.2020.07.004_bib48
  article-title: Characterisation of mice lacking the inflammatory caspases-1/11/12 reveals no contribution of caspase-12 to cell death and sepsis
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-018-0188-2
  contributor:
    fullname: Salvamoser
– volume: 575
  start-page: 679
  year: 2019
  ident: 10.1016/j.immuni.2020.07.004_bib38
  article-title: Activity of caspase-8 determines plasticity between cell death pathways
  publication-title: Nature
  doi: 10.1038/s41586-019-1752-8
  contributor:
    fullname: Newton
– volume: 43
  start-page: 432
  year: 2011
  ident: 10.1016/j.immuni.2020.07.004_bib52
  article-title: The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.06.006
  contributor:
    fullname: Tenev
– volume: 184
  start-page: 2237
  year: 2010
  ident: 10.1016/j.immuni.2020.07.004_bib5
  article-title: Different bacterial pathogens, different strategies, yet the aim is the same: evasion of intestinal dendritic cell recognition
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0902871
  contributor:
    fullname: Bedoui
– volume: 11
  start-page: 1136
  year: 2010
  ident: 10.1016/j.immuni.2020.07.004_bib35
  article-title: Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1960
  contributor:
    fullname: Miao
SSID ssj0014590
Score 2.648254
Snippet Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during...
SummaryProgrammed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 533
SubjectTerms Animals
Apoptosis
Apoptosis - immunology
Bacteria
Caspase 1 - deficiency
Caspase 1 - genetics
Caspase 12 - deficiency
Caspase 12 - genetics
Caspase 8 - genetics
caspase-1
caspase-11
Caspase-8
Caspases, Initiator - deficiency
Caspases, Initiator - genetics
Cell death
Crosstalk
Defects
Defense
Defense programs
effector caspases
Effectors
Fail safe systems
gasdermin D
Infections
Initiators
Intracellular
Investigations
Kinases
Macrophages
Macrophages - immunology
Mice
Mice, Inbred C57BL
Mice, Knockout
Mortality
Necroptosis
Necroptosis - immunology
Pathogens
Phosphorylation
Protein-serine/threonine kinase
Pyroptosis
Pyroptosis - immunology
Receptor-Interacting Protein Serine-Threonine Kinases - deficiency
Receptor-Interacting Protein Serine-Threonine Kinases - genetics
Salmonella
Salmonella - immunology
Salmonella Infections - immunology
Typhoid
Title Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection
URI https://dx.doi.org/10.1016/j.immuni.2020.07.004
https://www.ncbi.nlm.nih.gov/pubmed/32735843
https://www.proquest.com/docview/2442830153
https://search.proquest.com/docview/2429780672
https://pubmed.ncbi.nlm.nih.gov/PMC7500851
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQyBeEIyvwjYZideoWezE7uPWUW0U0AQU-mY5tjOyVem0dUL777mLnYgCEhIvSRzHke07n3-2fz4DvFGZtKmyRVI65RNhK3wqrUrcyGTCWykK2xJkPxYnM_Funs83YNzthSFaZbT9waa31jq-GcbaHF7V9fAzUQlxEM4z1FM0snwTtsmXOar29uHR1-n7fjFB5KO0px5igm4HXUvzqtttGDhQzNLWi2c8se0vPdSfCPR3IuUvPdPkETyMkJIdhlw_hg3f7MC9cMjk3Q7c_xCXz5_A5YTcX5YLz2bEJ2OmcaydErREd7HhIAm2rNhxy9bwbOwXC3ZMKJGd4eWHubthZ8GzAzPnpkZsST-4NjT_T4RWDAVyV_MUZpO3X8YnSTxtIbF5LlcoHS-xs7aO50KMuDsoJUIvqbDVS4sjWSdTZYwqXDayXEpT5LbMeGmdtyY1hePPYKtZNv4FMCcdIiuH6EdWwvu8TG2FQI0rlH9lCjWApKthfRWcauiObXahg0Q0SUSntDouBiA7Meg15dBo9_-RcreTmo6N80YjoiG3Z2jrB_C6j8ZmRXVlGr-8pW8yKnshswE8D0Lus8oR8iFuw9RyTfz9B-Syez2mqb-3rrsRnxHGffnfBXoFDyhEjJWDfBe2Vte3fg9h0arcj2pP9-mnb9N92DydH_0EBXIQkQ
link.rule.ids 230,314,780,784,885,3506,27569,27924,27925,45663,45874
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIRgvCAaMsgFG4jVqFtux-8i6VR1s0yRWqW-WYzsjUKXT1gntv-fO-SE6kJB4iZLYiWyf7_zZ_nwH8FFnyqXa5UnhdUiEK_GucDrxI5uJ4JTIXSTInuXTmfg8l_MNGHdnYYhW2dr-xqZHa92-GbatObyqquFXohLiJJxn2E_RyPIH8FBIrciB_vH8oN9KEHKU9sRDzN6dn4skryoewsBpYpZGH55tvLa_jE9_4s_7NMrfxqXJM3jaAkr2qSnzc9gI9TY8akJM3m3D49N28_wF_JiQ88tiEdiM2GTM1p7FBUFHZBfXhJFgy5IdRq5GYOOwWLBDwojsHC8_7d0NO2_8OjB7aStElvSDa0ur_0RnxaeG2lW_hNnk6GI8TdpYC4mTUq1QNkHhUO08l0KMuN8vFAIvpVHnlcN5rFeptlbnPhs5rpTNpSsyXjgfnE1t7vkr2KyXdXgNzCuPuMoj9lGlCEEWqSsRpnGN0i9trgeQdC1srhqXGqbjmn03jUQMScSktDcuBqA6MZi1rmHQ6v_jy71OaqZVzRuDeIacnqGlH8CHPhmVitrK1mF5S3kyqnuusgHsNELui8oR8CFqw6_Vmvj7DOSwez2lrr5Fx92IzgjhvvnvCr2HrenF6Yk5OT77sgtPKIW4K_tyDzZX17fhLQKkVfEuKsAv2TYPtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Usage+and+Interconnectivity+of+Diverse+Cell+Death+Pathways+Protect+against+Intracellular+Infection&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Doerflinger%2C+Marcel&rft.au=Deng%2C+Yexuan&rft.au=Whitney%2C+Paul&rft.au=Salvamoser%2C+Ranja&rft.date=2020-09-15&rft.issn=1074-7613&rft.volume=53&rft.issue=3&rft.spage=533&rft.epage=547.e7&rft_id=info:doi/10.1016%2Fj.immuni.2020.07.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_immuni_2020_07_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon