Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection
Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interact...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 53; no. 3; pp. 533 - 547.e7 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.09.2020
Elsevier Limited Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections.
[Display omitted]
•Mice lacking pyroptosis and apoptosis cannot control Salmonella infection•Macrophages lacking pyroptosis and apoptosis resist Salmonella-induced killing•Caspase-1 kills Salmonella-infected cells by activating GSDMD, BID, or other caspases•Caspase-1 and -8 act as cell death executioners when all cell death effectors are lost
The clearance of intracellular pathogens requires the killing of infected cells, but it remains unclear why host cells have so many different means of inducing programmed cell death. Doerflinger et al. demonstrate that interconnectivity between pyroptosis and apoptosis involving flexible deployment of caspases ensures control of Salmonella infection in mice. |
---|---|
AbstractList | SummaryProgrammed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections. Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections. • Mice lacking pyroptosis and apoptosis cannot control Salmonella infection • Macrophages lacking pyroptosis and apoptosis resist Salmonella -induced killing • Caspase-1 kills Salmonella -infected cells by activating GSDMD, BID, or other caspases • Caspase-1 and -8 act as cell death executioners when all cell death effectors are lost The clearance of intracellular pathogens requires the killing of infected cells, but it remains unclear why host cells have so many different means of inducing programmed cell death. Doerflinger et al. demonstrate that interconnectivity between pyroptosis and apoptosis involving flexible deployment of caspases ensures control of Salmonella infection in mice. Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections. Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections. [Display omitted] •Mice lacking pyroptosis and apoptosis cannot control Salmonella infection•Macrophages lacking pyroptosis and apoptosis resist Salmonella-induced killing•Caspase-1 kills Salmonella-infected cells by activating GSDMD, BID, or other caspases•Caspase-1 and -8 act as cell death executioners when all cell death effectors are lost The clearance of intracellular pathogens requires the killing of infected cells, but it remains unclear why host cells have so many different means of inducing programmed cell death. Doerflinger et al. demonstrate that interconnectivity between pyroptosis and apoptosis involving flexible deployment of caspases ensures control of Salmonella infection in mice. |
Author | Strasser, Andreas Doerflinger, Marcel Rogers, Kelly L. Wilcox, Stephen Pearson, Jaclyn S. De Nardo, Dominic Tai, Lin Deng, Yexuan Pellegrini, Marc Wang, Nancy Kueh, Andrew J. Gressier, Elise Geoghegan, Niall D. Yang, Chenying Ebert, Gregor Salvamoser, Ranja Bachem, Annabell Bader, Stefanie M. Herold, Marco J. Bryant, Clare E. Dengler, Michael A. Pereira, Milton Bedoui, Sammy Strugnell, Richard A. Whitney, Paul Engel, Sven Garnham, Alexandra L. Vince, James E. |
Author_xml | – sequence: 1 givenname: Marcel orcidid: 0000-0001-9159-3021 surname: Doerflinger fullname: Doerflinger, Marcel organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 2 givenname: Yexuan surname: Deng fullname: Deng, Yexuan organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 3 givenname: Paul orcidid: 0000-0003-3836-7601 surname: Whitney fullname: Whitney, Paul organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia – sequence: 4 givenname: Ranja orcidid: 0000-0002-1789-9898 surname: Salvamoser fullname: Salvamoser, Ranja organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 5 givenname: Sven surname: Engel fullname: Engel, Sven organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia – sequence: 6 givenname: Andrew J. surname: Kueh fullname: Kueh, Andrew J. organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 7 givenname: Lin surname: Tai fullname: Tai, Lin organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 8 givenname: Annabell surname: Bachem fullname: Bachem, Annabell organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia – sequence: 9 givenname: Elise orcidid: 0000-0003-0517-1610 surname: Gressier fullname: Gressier, Elise organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia – sequence: 10 givenname: Niall D. surname: Geoghegan fullname: Geoghegan, Niall D. organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 11 givenname: Stephen surname: Wilcox fullname: Wilcox, Stephen organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 12 givenname: Kelly L. orcidid: 0000-0002-6755-0221 surname: Rogers fullname: Rogers, Kelly L. organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 13 givenname: Alexandra L. surname: Garnham fullname: Garnham, Alexandra L. organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 14 givenname: Michael A. orcidid: 0000-0002-1693-1761 surname: Dengler fullname: Dengler, Michael A. organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 15 givenname: Stefanie M. surname: Bader fullname: Bader, Stefanie M. organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 16 givenname: Gregor orcidid: 0000-0002-5318-3037 surname: Ebert fullname: Ebert, Gregor organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 17 givenname: Jaclyn S. surname: Pearson fullname: Pearson, Jaclyn S. organization: Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia – sequence: 18 givenname: Dominic surname: De Nardo fullname: De Nardo, Dominic organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 19 givenname: Nancy orcidid: 0000-0001-7623-1858 surname: Wang fullname: Wang, Nancy organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia – sequence: 20 givenname: Chenying surname: Yang fullname: Yang, Chenying organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia – sequence: 21 givenname: Milton orcidid: 0000-0003-2977-1565 surname: Pereira fullname: Pereira, Milton organization: Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA – sequence: 22 givenname: Clare E. surname: Bryant fullname: Bryant, Clare E. organization: University of Cambridge, Cambridge, UK – sequence: 23 givenname: Richard A. surname: Strugnell fullname: Strugnell, Richard A. organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia – sequence: 24 givenname: James E. surname: Vince fullname: Vince, James E. organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 25 givenname: Marc surname: Pellegrini fullname: Pellegrini, Marc organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 26 givenname: Andreas surname: Strasser fullname: Strasser, Andreas email: strasser@wehi.edu.au organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia – sequence: 27 givenname: Sammy orcidid: 0000-0002-7443-0543 surname: Bedoui fullname: Bedoui, Sammy email: sbedoui@unimelb.edu.au organization: Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia – sequence: 28 givenname: Marco J. orcidid: 0000-0001-7539-7581 surname: Herold fullname: Herold, Marco J. email: herold@wehi.edu.au organization: The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32735843$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS1URB_wDxCyxIZNwnXsxMkGCU1pqVSJLujacuw7Uw-JXexkYP59HU0pjwUbP-TvHt9zzyk58sEjIa8ZlAxY835bunGcvSsrqKAEWQKIZ-SEQScLwVo4Ws5SFLJh_JicprQFYKLu4AU55pXkdSv4Cfl2MeBP1w9Ib5PeINXe0is_YTTBezST27lpT8OanrsdxoR0hcNAz1FPd_QmLz_0PtGbGKbMUr3RzqdpEYjaZHAedMy39SIU_EvyfK2HhK8e9zNye_Hp6-pzcf3l8mr18bowdS2nwnYom4YZy2shOm5ZL6HuZAucScM4txJardvGVp3hUuqmNn3Fe2PRaNCN5Wfkw0H3fu5HtAaXdgZ1H92o414F7dTfL97dqU3YKVkDtDXLAu8eBWL4PmOa1OjS4kd7DHNSlaiWfhpZZfTtP-g2zNFne5kSVcuB1TxT4kCZGFKKuH5qhoFa0lRbdUhTLWkqkCqnmcve_GnkqehXfL-dYh7nzmFUyTj0Bq2LeebKBvf_Hx4ABwq2Bg |
CitedBy_id | crossref_primary_10_1016_j_immuni_2020_08_009 crossref_primary_10_1016_j_celrep_2022_111374 crossref_primary_10_1016_j_it_2023_01_001 crossref_primary_10_1038_s41418_023_01153_w crossref_primary_10_1042_BCJ20210602 crossref_primary_10_15252_embj_2021110468 crossref_primary_10_1038_s12276_023_01069_y crossref_primary_10_1016_j_smim_2023_101804 crossref_primary_10_1002_cti2_1404 crossref_primary_10_1007_s10753_021_01489_w crossref_primary_10_15252_embr_202356865 crossref_primary_10_3389_fcimb_2024_1363407 crossref_primary_10_3390_biom11060803 crossref_primary_10_1016_j_molmed_2023_10_001 crossref_primary_10_1016_j_molcel_2021_09_003 crossref_primary_10_3390_cells11091495 crossref_primary_10_1016_j_tim_2021_04_003 crossref_primary_10_1038_s41418_021_00814_y crossref_primary_10_1126_sciimmunol_abh3567 crossref_primary_10_7554_eLife_89210_3 crossref_primary_10_1038_s41580_020_0270_8 crossref_primary_10_1042_BST20211242 crossref_primary_10_1126_sciadv_abi9471 crossref_primary_10_1126_science_abi5934 crossref_primary_10_1146_annurev_immunol_101320_011235 crossref_primary_10_4049_immunohorizons_2000097 crossref_primary_10_1126_scitranslmed_abe9887 crossref_primary_10_1186_s13008_023_00102_w crossref_primary_10_1016_j_cell_2023_11_044 crossref_primary_10_1038_s41556_024_01429_4 crossref_primary_10_1016_j_csbj_2021_07_038 crossref_primary_10_1038_s44321_024_00074_6 crossref_primary_10_1016_j_mib_2021_09_004 crossref_primary_10_1097_CM9_0000000000002239 crossref_primary_10_1038_s41419_023_05801_4 crossref_primary_10_1111_omi_12436 crossref_primary_10_1038_s41419_021_04286_3 crossref_primary_10_1038_s41598_022_20786_4 crossref_primary_10_1371_journal_ppat_1010767 crossref_primary_10_3389_fimmu_2024_1330461 crossref_primary_10_1371_journal_pone_0247738 crossref_primary_10_3389_fimmu_2021_789610 crossref_primary_10_3389_fmicb_2022_994512 crossref_primary_10_7554_eLife_89210 crossref_primary_10_1016_j_celrep_2023_112522 crossref_primary_10_1128_spectrum_02495_22 crossref_primary_10_1016_j_tim_2021_10_007 crossref_primary_10_1126_science_abe0917 crossref_primary_10_1016_j_chom_2021_11_012 crossref_primary_10_1371_journal_ppat_1011455 crossref_primary_10_1038_s44319_023_00008_2 crossref_primary_10_1016_j_bbrc_2024_150177 crossref_primary_10_1016_j_virol_2023_109921 crossref_primary_10_1038_s41598_021_98145_y crossref_primary_10_1016_j_immuni_2022_01_003 crossref_primary_10_1038_s41385_021_00450_2 crossref_primary_10_1016_j_jbc_2021_101461 crossref_primary_10_1016_j_phrs_2020_105408 crossref_primary_10_1038_s41423_023_01107_9 crossref_primary_10_1016_j_coi_2023_102348 crossref_primary_10_1016_j_jmb_2021_167409 crossref_primary_10_1016_j_smim_2023_101832 crossref_primary_10_1016_j_bbrc_2024_149978 crossref_primary_10_15252_embj_2020107341 crossref_primary_10_1007_s00467_023_06162_y crossref_primary_10_3389_fimmu_2022_1029092 crossref_primary_10_1038_s41418_021_00893_x crossref_primary_10_1016_j_coi_2023_102343 crossref_primary_10_2147_IJN_S436350 crossref_primary_10_1016_j_gene_2024_148355 crossref_primary_10_1111_odi_14726 crossref_primary_10_1126_sciimmunol_abo6294 crossref_primary_10_1155_2023_4586398 crossref_primary_10_3389_fimmu_2024_1394857 crossref_primary_10_1042_BCJ20210711 crossref_primary_10_1146_annurev_pathmechdis_051022_014433 crossref_primary_10_3390_ijms22031048 crossref_primary_10_1007_s12026_024_09491_8 crossref_primary_10_1038_s41419_022_05230_9 crossref_primary_10_1146_annurev_micro_032521_024017 crossref_primary_10_1038_s41467_021_27034_9 crossref_primary_10_3389_fphar_2022_998574 crossref_primary_10_1038_s41419_022_05066_3 crossref_primary_10_1093_lifemedi_lnad013 crossref_primary_10_1038_s41573_023_00822_2 crossref_primary_10_1038_s41589_024_01635_z crossref_primary_10_1016_j_isci_2022_104632 crossref_primary_10_3389_fimmu_2022_847345 crossref_primary_10_4049_immunohorizons_2100118 crossref_primary_10_1155_2022_6558060 crossref_primary_10_1038_s41419_021_03883_6 crossref_primary_10_1038_s41420_022_01044_y |
Cites_doi | 10.1016/j.cell.2019.04.024 10.1038/srep45126 10.1016/S0092-8674(00)80430-4 10.1038/nature15514 10.1038/s41598-018-21998-3 10.1128/AEM.69.12.7480-7491.2003 10.1038/nri.2016.147 10.1016/j.celrep.2019.03.040 10.1038/nrm3722 10.1016/j.celrep.2017.11.088 10.1038/s41467-019-09753-2 10.1186/gb-2010-11-3-r25 10.1038/s41586-019-1770-6 10.26508/lsa.202000735 10.1016/j.chom.2013.06.009 10.1128/IAI.01576-14 10.1038/nbt.2800 10.1038/nature02664 10.1007/978-1-4939-3581-9_18 10.1038/nrm3683 10.1016/j.immuni.2013.06.018 10.1038/cdd.2013.37 10.1016/j.immuni.2019.06.002 10.1126/science.1257998 10.1038/nature09852 10.1016/j.immuni.2017.03.016 10.1371/journal.ppat.1006502 10.1126/science.7535475 10.1186/s12916-019-1443-1 10.1073/pnas.1808339115 10.1038/ni1346 10.1038/nature09857 10.1016/j.celrep.2017.12.018 10.1038/nature15541 10.1128/mBio.02270-19 10.1016/j.cell.2014.04.007 10.1016/j.celrep.2015.02.002 10.1073/pnas.1222047110 10.1038/ni.2195 10.1038/nrm2970 10.1007/978-1-4939-7837-3_4 10.1016/j.immuni.2016.07.016 10.1038/cdd.2012.51 10.1016/j.mib.2015.10.003 10.1038/ni.1703 10.1126/science.aac5789 10.1074/jbc.M115.652321 10.1126/science.aau2818 10.1093/bioinformatics/btp616 10.1128/IAI.02192-14 10.1146/annurev-immunol-042617-053010 10.1038/nature11419 10.1084/jem.20100257 10.1038/s41418-018-0188-2 10.1038/s41586-019-1752-8 10.1016/j.molcel.2011.06.006 10.4049/jimmunol.0902871 10.1038/ni.1960 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. 2020. The Author(s) 2020 The Author(s) 2020 |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2020. The Author(s) – notice: 2020 The Author(s) 2020 |
DBID | 6I. AAFTH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.immuni.2020.07.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 547.e7 |
ExternalDocumentID | 10_1016_j_immuni_2020_07_004 32735843 S1074761320302843 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 108045/Z/15/Z |
GroupedDBID | --- --K -DZ 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6I. 7-5 7RV 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFRAH AFTJW AGGSO AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A O-L O9- OK1 OVD P2P PQQKQ PROAC RCE ROL RPZ SCP SES SSZ TEORI TR2 WQ6 ZA5 0SF AAEDT AAMRU ADVLN AKAPO AKRWK CGR CUY CVF ECM EIF NPM RIG .55 .GJ 29I 3V. 5VS 7X7 AAIKJ AAQFI AAQXK AAYXX ACRPL ADMUD ADNMO AFKRA AGHFR AHHHB BHPHI CITATION FEDTE FGOYB G-2 HVGLF HZ~ NCXOZ OHT OZT R2- UHS X7M Y6R ZGI 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c557t-d9e7661cd354493d1b7059780317c133d708aa86d29c377a65cb23bcdeca0a6d3 |
IEDL.DBID | ABVKL |
ISSN | 1074-7613 |
IngestDate | Tue Sep 17 21:12:36 EDT 2024 Thu Dec 05 23:57:00 EST 2024 Thu Oct 10 22:07:05 EDT 2024 Fri Dec 06 02:59:34 EST 2024 Sat Nov 02 12:22:34 EDT 2024 Fri Feb 23 02:49:27 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | pyroptosis Salmonella caspase-8 cell death gasdermin D apoptosis caspase-11 effector caspases caspase-1 necroptosis |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-d9e7661cd354493d1b7059780317c133d708aa86d29c377a65cb23bcdeca0a6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally Present address: Menzies Health Institute Queensland, Griffith University, QLD, Australia |
ORCID | 0000-0001-9159-3021 0000-0002-1789-9898 0000-0002-7443-0543 0000-0002-5318-3037 0000-0003-0517-1610 0000-0003-2977-1565 0000-0003-3836-7601 0000-0001-7623-1858 0000-0002-1693-1761 0000-0001-7539-7581 0000-0002-6755-0221 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1074761320302843 |
PMID | 32735843 |
PQID | 2442830153 |
PQPubID | 2031079 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7500851 proquest_miscellaneous_2429780672 proquest_journals_2442830153 crossref_primary_10_1016_j_immuni_2020_07_004 pubmed_primary_32735843 elsevier_sciencedirect_doi_10_1016_j_immuni_2020_07_004 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-15 |
PublicationDateYYYYMMDD | 2020-09-15 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier Limited Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Cell Press |
References | Winstel, Schneewind, Missiakas (bib56) 2019; 10 Man, Karki, Briard, Burton, Gingras, Pelletier, Kanneganti (bib32) 2017; 7 Pierini, Juruj, Perret, Jones, Mangeot, Weiss, Henry (bib43) 2012; 19 Murphy, Czabotar, Hildebrand, Lucet, Zhang, Alvarez-Diaz, Lewis, Lalaoui, Metcalf, Webb (bib36) 2013; 39 Oberst, Dillon, Weinlich, McCormick, Fitzgerald, Pop, Hakem, Salvesen, Green (bib40) 2011; 471 Shi, Zhao, Wang, Shi, Wang, Huang, Zhuang, Cai, Wang, Shao (bib51) 2015; 526 Lamkanfi, Dixit (bib30) 2014; 157 Jorgensen, Rayamajhi, Miao (bib20) 2017; 17 Kuida, Lippke, Ku, Harding, Livingston, Su, Flavell (bib26) 1995; 267 Kupz, Guarda, Gebhardt, Sander, Short, Diavatopoulos, Wijburg, Cao, Waithman, Chen (bib27) 2012; 13 Korea, Balsamo, Pezzicoli, Merakou, Tavarini, Bagnoli, Serruto, Unnikrishnan (bib24) 2014; 82 Ofengeim, Yuan (bib41) 2013; 14 Zhang, Chen, Ruan, Wu, Tong, Yin, Li, David, Lu, Wang (bib57) 2015; 350 Kaiser, Upton, Long, Livingston-Rosanoff, Daley-Bauer, Hakem, Caspary, Mocarski (bib21) 2011; 471 Heilig, Dilucca, Boucher, Chen, Hancz, Demarco, Shkarina, Broz (bib19) 2020; 3 Ng, Monack (bib39) 2013; 14 Kupz, Scott, Belz, Andrews, Greyer, Lew, Brooks, Smyth, Curtiss, Bedoui, Strugnell (bib28) 2013; 110 Kayagaki, Stowe, Lee, O’Rourke, Anderson, Warming, Cuellar, Haley, Roose-Girma, Phung (bib22) 2015; 526 Tsuchiya, Nakajima, Hosojima, Thi Nguyen, Hattori, Manh Le, Hori, Mahib, Yamaguchi, Miura (bib53) 2019; 10 Koike-Yusa, Li, Tan, Velasco-Herrera, Yusa (bib23) 2014; 32 Alvarez-Diaz, Dillon, Lalaoui, Tanzer, Rodriguez, Lin, Lebois, Hakem, Josefsson, O’Reilly (bib1) 2016; 45 Dengler, Robin, Gibson, Li, Sandow, Iyer, Webb, Westphal, Dewson, Adams (bib13) 2019; 27 Green (bib17) 2019; 177 Broz, Newton, Lamkanfi, Mariathasan, Dixit, Monack (bib8) 2010; 207 Franchi, Eigenbrod, Muñoz-Planillo, Nuñez (bib15) 2009; 10 De Nardo, Kalvakolanu, Latz (bib12) 2018; 1784 Vandenabeele, Galluzzi, Vanden Berghe, Kroemer (bib55) 2010; 11 Bachem, Makhlouf, Binger, de Souza, Tull, Hochheiser, Whitney, Fernandez-Ruiz, Dahling, Kastenmuller (bib4) 2019; 51 Broz, Ruby, Belhocine, Bouley, Kayagaki, Dixit, Monack (bib9) 2012; 490 Fritsch, Günther, Schwarzer, Albert, Schorn, Werthenbach, Schiffmann, Stair, Stocks, Seeger (bib16) 2019; 575 Franchi, Amer, Body-Malapel, Kanneganti, Ozören, Jagirdar, Inohara, Vandenabeele, Bertin, Coyle (bib14) 2006; 7 Mariathasan, Newton, Monack, Vucic, French, Lee, Roose-Girma, Erickson, Dixit (bib33) 2004; 430 Bedoui, Kupz, Wijburg, Walduck, Rescigno, Strugnell (bib5) 2010; 184 Schneider, Groß, Dreier, Saller, Mishra, Gorka, Heilig, Meunier, Dick, Ćiković (bib50) 2017; 21 Browne, Kashef Hamadani, Kumaran, Rao, Longbottom, Harriss, Moore, Dunachie, Basnyat, Baker (bib7) 2020; 18 Miao, Leaf, Treuting, Mao, Dors, Sarkar, Warren, Wewers, Aderem (bib35) 2010; 11 Aubrey, Kelly, Kueh, Brennan, O’Connor, Milla, Wilcox, Tai, Strasser, Herold (bib3) 2015; 10 Kueh, Herold (bib25) 2016; 1419 Benoun, Peres, Wang, Pham, Rudisill, Fogassy, Whitney, Fernandez-Ruiz, Gebhardt, Pham (bib6) 2018; 115 Chen, Legant, Wang, Shao, Milkie, Davidson, Janetopoulos, Wu, Hammer, Liu (bib10) 2014; 346 Salvesen, Dixit (bib49) 1997; 91 Kupz, Bedoui, Strugnell (bib29) 2014; 82 Sagulenko, Thygesen, Sester, Idris, Cridland, Vajjhala, Roberts, Schroder, Vince, Hill (bib47) 2013; 20 Salvamoser, Brinkmann, O’Reilly, Whitehead, Strasser, Herold (bib48) 2019; 26 Robinson, McCarthy, Smyth (bib46) 2010; 26 Hautefort, Proença, Hinton (bib18) 2003; 69 Zhao, Shao (bib58) 2016; 29 Lee, Mirrashidi, Stowe, Kummerfeld, Watanabe, Haley, Cuellar, Reichelt, Kayagaki (bib31) 2018; 8 Nagata (bib37) 2018; 36 Newton, Wickliffe, Maltzman, Dugger, Reja, Zhang, Roose-Girma, Modrusan, Sagolla, Webster, Dixit (bib38) 2019; 575 Orning, Weng, Starheim, Ratner, Best, Lee, Brooks, Xia, Wu, Kelliher (bib42) 2018; 362 Mascarenhas, Cerqueira, Pereira, Castanheira, Fernandes, Manin, Cunha, Zamboni (bib34) 2017; 13 Tenev, Bianchi, Darding, Broemer, Langlais, Wallberg, Zachariou, Lopez, MacFarlane, Cain, Meier (bib52) 2011; 43 Antonopoulos, Russo, El Sanadi, Martin, Li, Kaiser, Mocarski, Dubyak (bib2) 2015; 290 Robinson, Oshlack (bib45) 2010; 11 Czabotar, Lessene, Strasser, Adams (bib11) 2014; 15 Rauch, Deets, Ji, von Moltke, Tenthorey, Lee, Philip, Ayres, Brodsky, Gronert, Vance (bib44) 2017; 46 Van Opdenbosch, Van Gorp, Verdonckt, Saavedra, de Vasconcelos, Gonçalves, Vande Walle, Demon, Matusiak, Van Hauwermeiren (bib54) 2017; 21 32937145 - Immunity. 2020 Sep 15;53(3):471-473 Korea (10.1016/j.immuni.2020.07.004_bib24) 2014; 82 Schneider (10.1016/j.immuni.2020.07.004_bib50) 2017; 21 Rauch (10.1016/j.immuni.2020.07.004_bib44) 2017; 46 Jorgensen (10.1016/j.immuni.2020.07.004_bib20) 2017; 17 Murphy (10.1016/j.immuni.2020.07.004_bib36) 2013; 39 Tsuchiya (10.1016/j.immuni.2020.07.004_bib53) 2019; 10 Kaiser (10.1016/j.immuni.2020.07.004_bib21) 2011; 471 Kuida (10.1016/j.immuni.2020.07.004_bib26) 1995; 267 Newton (10.1016/j.immuni.2020.07.004_bib38) 2019; 575 Benoun (10.1016/j.immuni.2020.07.004_bib6) 2018; 115 Orning (10.1016/j.immuni.2020.07.004_bib42) 2018; 362 Czabotar (10.1016/j.immuni.2020.07.004_bib11) 2014; 15 Mascarenhas (10.1016/j.immuni.2020.07.004_bib34) 2017; 13 Koike-Yusa (10.1016/j.immuni.2020.07.004_bib23) 2014; 32 Broz (10.1016/j.immuni.2020.07.004_bib9) 2012; 490 Fritsch (10.1016/j.immuni.2020.07.004_bib16) 2019; 575 Miao (10.1016/j.immuni.2020.07.004_bib35) 2010; 11 Lamkanfi (10.1016/j.immuni.2020.07.004_bib30) 2014; 157 Franchi (10.1016/j.immuni.2020.07.004_bib15) 2009; 10 Green (10.1016/j.immuni.2020.07.004_bib17) 2019; 177 Chen (10.1016/j.immuni.2020.07.004_bib10) 2014; 346 Sagulenko (10.1016/j.immuni.2020.07.004_bib47) 2013; 20 Lee (10.1016/j.immuni.2020.07.004_bib31) 2018; 8 Robinson (10.1016/j.immuni.2020.07.004_bib46) 2010; 26 Winstel (10.1016/j.immuni.2020.07.004_bib56) 2019; 10 Tenev (10.1016/j.immuni.2020.07.004_bib52) 2011; 43 Kupz (10.1016/j.immuni.2020.07.004_bib27) 2012; 13 Kayagaki (10.1016/j.immuni.2020.07.004_bib22) 2015; 526 Aubrey (10.1016/j.immuni.2020.07.004_bib3) 2015; 10 Alvarez-Diaz (10.1016/j.immuni.2020.07.004_bib1) 2016; 45 Kueh (10.1016/j.immuni.2020.07.004_bib25) 2016; 1419 Zhao (10.1016/j.immuni.2020.07.004_bib58) 2016; 29 Man (10.1016/j.immuni.2020.07.004_bib32) 2017; 7 Kupz (10.1016/j.immuni.2020.07.004_bib29) 2014; 82 Salvamoser (10.1016/j.immuni.2020.07.004_bib48) 2019; 26 Robinson (10.1016/j.immuni.2020.07.004_bib45) 2010; 11 Franchi (10.1016/j.immuni.2020.07.004_bib14) 2006; 7 Antonopoulos (10.1016/j.immuni.2020.07.004_bib2) 2015; 290 Shi (10.1016/j.immuni.2020.07.004_bib51) 2015; 526 Hautefort (10.1016/j.immuni.2020.07.004_bib18) 2003; 69 Vandenabeele (10.1016/j.immuni.2020.07.004_bib55) 2010; 11 Oberst (10.1016/j.immuni.2020.07.004_bib40) 2011; 471 Van Opdenbosch (10.1016/j.immuni.2020.07.004_bib54) 2017; 21 Browne (10.1016/j.immuni.2020.07.004_bib7) 2020; 18 Nagata (10.1016/j.immuni.2020.07.004_bib37) 2018; 36 Salvesen (10.1016/j.immuni.2020.07.004_bib49) 1997; 91 Broz (10.1016/j.immuni.2020.07.004_bib8) 2010; 207 Mariathasan (10.1016/j.immuni.2020.07.004_bib33) 2004; 430 Ofengeim (10.1016/j.immuni.2020.07.004_bib41) 2013; 14 De Nardo (10.1016/j.immuni.2020.07.004_bib12) 2018; 1784 Ng (10.1016/j.immuni.2020.07.004_bib39) 2013; 14 Bachem (10.1016/j.immuni.2020.07.004_bib4) 2019; 51 Bedoui (10.1016/j.immuni.2020.07.004_bib5) 2010; 184 Dengler (10.1016/j.immuni.2020.07.004_bib13) 2019; 27 Heilig (10.1016/j.immuni.2020.07.004_bib19) 2020; 3 Zhang (10.1016/j.immuni.2020.07.004_bib57) 2015; 350 Pierini (10.1016/j.immuni.2020.07.004_bib43) 2012; 19 Kupz (10.1016/j.immuni.2020.07.004_bib28) 2013; 110 |
References_xml | – volume: 11 start-page: 1136 year: 2010 end-page: 1142 ident: bib35 article-title: Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria publication-title: Nat. Immunol. contributor: fullname: Aderem – volume: 10 start-page: 1422 year: 2015 end-page: 1432 ident: bib3 article-title: An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo publication-title: Cell Rep. contributor: fullname: Herold – volume: 115 start-page: 10416 year: 2018 end-page: 10421 ident: bib6 article-title: Optimal protection against publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Pham – volume: 7 start-page: 576 year: 2006 end-page: 582 ident: bib14 article-title: Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages publication-title: Nat. Immunol. contributor: fullname: Coyle – volume: 575 start-page: 683 year: 2019 end-page: 687 ident: bib16 article-title: Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis publication-title: Nature contributor: fullname: Seeger – volume: 14 start-page: 9 year: 2013 end-page: 14 ident: bib39 article-title: Revisiting caspase-11 function in host defense publication-title: Cell Host Microbe contributor: fullname: Monack – volume: 526 start-page: 666 year: 2015 end-page: 671 ident: bib22 article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling publication-title: Nature contributor: fullname: Phung – volume: 20 start-page: 1149 year: 2013 end-page: 1160 ident: bib47 article-title: AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC publication-title: Cell Death Differ. contributor: fullname: Hill – volume: 346 start-page: 1257998 year: 2014 ident: bib10 article-title: Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution publication-title: Science contributor: fullname: Liu – volume: 207 start-page: 1745 year: 2010 end-page: 1755 ident: bib8 article-title: Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella publication-title: J. Exp. Med. contributor: fullname: Monack – volume: 36 start-page: 489 year: 2018 end-page: 517 ident: bib37 article-title: Apoptosis and Clearance of Apoptotic Cells publication-title: Annu. Rev. Immunol. contributor: fullname: Nagata – volume: 27 start-page: 359 year: 2019 end-page: 373.e6 ident: bib13 article-title: BAX Activation: Mutations Near Its Proposed Non-canonical BH3 Binding Site Reveal Allosteric Changes Controlling Mitochondrial Association publication-title: Cell Rep. contributor: fullname: Adams – volume: 430 start-page: 213 year: 2004 end-page: 218 ident: bib33 article-title: Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf publication-title: Nature contributor: fullname: Dixit – volume: 13 start-page: e1006502 year: 2017 ident: bib34 article-title: Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome publication-title: PLoS Pathog. contributor: fullname: Zamboni – volume: 17 start-page: 151 year: 2017 end-page: 164 ident: bib20 article-title: Programmed cell death as a defence against infection publication-title: Nat. Rev. Immunol. contributor: fullname: Miao – volume: 91 start-page: 443 year: 1997 end-page: 446 ident: bib49 article-title: Caspases: intracellular signaling by proteolysis publication-title: Cell contributor: fullname: Dixit – volume: 82 start-page: 4144 year: 2014 end-page: 4153 ident: bib24 article-title: Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells publication-title: Infect. Immun. contributor: fullname: Unnikrishnan – volume: 51 start-page: 285 year: 2019 end-page: 297.e5 ident: bib4 article-title: Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8(+) T Cells publication-title: Immunity contributor: fullname: Kastenmuller – volume: 1784 start-page: 35 year: 2018 end-page: 49 ident: bib12 article-title: Immortalization of Murine Bone Marrow-Derived Macrophages publication-title: Methods Mol. Biol. contributor: fullname: Latz – volume: 29 start-page: 37 year: 2016 end-page: 42 ident: bib58 article-title: Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence publication-title: Curr. Opin. Microbiol. contributor: fullname: Shao – volume: 46 start-page: 649 year: 2017 end-page: 659 ident: bib44 article-title: NAIP-NLRC4 Inflammasomes Coordinate Intestinal Epithelial Cell Expulsion with Eicosanoid and IL-18 Release via Activation of Caspase-1 and -8 publication-title: Immunity contributor: fullname: Vance – volume: 32 start-page: 267 year: 2014 end-page: 273 ident: bib23 article-title: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library publication-title: Nat. Biotechnol. contributor: fullname: Yusa – volume: 1419 start-page: 253 year: 2016 end-page: 264 ident: bib25 article-title: Using CRISPR/Cas9 Technology for Manipulating Cell Death Regulators publication-title: Methods Mol. Biol. contributor: fullname: Herold – volume: 10 year: 2019 ident: bib56 article-title: Staphylococcus aureus Exploits the Host Apoptotic Pathway To Persist during Infection publication-title: MBio contributor: fullname: Missiakas – volume: 350 start-page: 404 year: 2015 end-page: 409 ident: bib57 article-title: Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization publication-title: Science contributor: fullname: Wang – volume: 11 start-page: R25 year: 2010 ident: bib45 article-title: A scaling normalization method for differential expression analysis of RNA-seq data publication-title: Genome Biol. contributor: fullname: Oshlack – volume: 110 start-page: 2252 year: 2013 end-page: 2257 ident: bib28 article-title: Contribution of Thy1+ NK cells to protective IFN-γ production during Salmonella typhimurium infections publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Strugnell – volume: 15 start-page: 49 year: 2014 end-page: 63 ident: bib11 article-title: Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy publication-title: Nat. Rev. Mol. Cell Biol. contributor: fullname: Adams – volume: 3 year: 2020 ident: bib19 article-title: Caspase-1 cleaves Bid to release mitochondrial SMAC and drive secondary necrosis in the absence of GSDMD publication-title: Life Sci. Alliance contributor: fullname: Broz – volume: 13 start-page: 162 year: 2012 end-page: 169 ident: bib27 article-title: NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8 publication-title: Nat. Immunol. contributor: fullname: Chen – volume: 526 start-page: 660 year: 2015 end-page: 665 ident: bib51 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature contributor: fullname: Shao – volume: 11 start-page: 700 year: 2010 end-page: 714 ident: bib55 article-title: Molecular mechanisms of necroptosis: an ordered cellular explosion publication-title: Nat. Rev. Mol. Cell Biol. contributor: fullname: Kroemer – volume: 290 start-page: 20167 year: 2015 end-page: 20184 ident: bib2 article-title: Caspase-8 as an Effector and Regulator of NLRP3 Inflammasome Signaling publication-title: J. Biol. Chem. contributor: fullname: Dubyak – volume: 18 start-page: 1 year: 2020 ident: bib7 article-title: Drug-resistant enteric fever worldwide, 1990 to 2018: a systematic review and meta-analysis publication-title: BMC Med. contributor: fullname: Baker – volume: 8 start-page: 3788 year: 2018 ident: bib31 article-title: ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages publication-title: Sci. Rep. contributor: fullname: Kayagaki – volume: 7 start-page: 45126 year: 2017 ident: bib32 article-title: Differential roles of caspase-1 and caspase-11 in infection and inflammation publication-title: Sci. Rep. contributor: fullname: Kanneganti – volume: 19 start-page: 1709 year: 2012 end-page: 1721 ident: bib43 article-title: AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages publication-title: Cell Death Differ. contributor: fullname: Henry – volume: 490 start-page: 288 year: 2012 end-page: 291 ident: bib9 article-title: Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1 publication-title: Nature contributor: fullname: Monack – volume: 21 start-page: 3427 year: 2017 end-page: 3444 ident: bib54 article-title: Caspase-1 Engagement and TLR-Induced c-FLIP Expression Suppress ASC/Caspase-8-Dependent Apoptosis by Inflammasome Sensors NLRP1b and NLRC4 publication-title: Cell Rep. contributor: fullname: Van Hauwermeiren – volume: 362 start-page: 1064 year: 2018 end-page: 1069 ident: bib42 article-title: Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death publication-title: Science contributor: fullname: Kelliher – volume: 21 start-page: 3846 year: 2017 end-page: 3859 ident: bib50 article-title: The Inflammasome Drives GSDMD-Independent Secondary Pyroptosis and IL-1 Release in the Absence of Caspase-1 Protease Activity publication-title: Cell Rep. contributor: fullname: Ćiković – volume: 69 start-page: 7480 year: 2003 end-page: 7491 ident: bib18 article-title: Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells publication-title: Appl. Environ. Microbiol. contributor: fullname: Hinton – volume: 471 start-page: 363 year: 2011 end-page: 367 ident: bib40 article-title: Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis publication-title: Nature contributor: fullname: Green – volume: 10 start-page: 241 year: 2009 end-page: 247 ident: bib15 article-title: The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis publication-title: Nat. Immunol. contributor: fullname: Nuñez – volume: 177 start-page: 1094 year: 2019 end-page: 1107 ident: bib17 article-title: The Coming Decade of Cell Death Research: Five Riddles publication-title: Cell contributor: fullname: Green – volume: 471 start-page: 368 year: 2011 end-page: 372 ident: bib21 article-title: RIP3 mediates the embryonic lethality of caspase-8-deficient mice publication-title: Nature contributor: fullname: Mocarski – volume: 575 start-page: 679 year: 2019 end-page: 682 ident: bib38 article-title: Activity of caspase-8 determines plasticity between cell death pathways publication-title: Nature contributor: fullname: Dixit – volume: 157 start-page: 1013 year: 2014 end-page: 1022 ident: bib30 article-title: Mechanisms and functions of inflammasomes publication-title: Cell contributor: fullname: Dixit – volume: 10 start-page: 2091 year: 2019 ident: bib53 article-title: Caspase-1 initiates apoptosis in the absence of gasdermin D publication-title: Nat. Commun. contributor: fullname: Miura – volume: 184 start-page: 2237 year: 2010 end-page: 2242 ident: bib5 article-title: Different bacterial pathogens, different strategies, yet the aim is the same: evasion of intestinal dendritic cell recognition publication-title: J. Immunol. contributor: fullname: Strugnell – volume: 26 start-page: 1124 year: 2019 end-page: 1137 ident: bib48 article-title: Characterisation of mice lacking the inflammatory caspases-1/11/12 reveals no contribution of caspase-12 to cell death and sepsis publication-title: Cell Death Differ. contributor: fullname: Herold – volume: 43 start-page: 432 year: 2011 end-page: 448 ident: bib52 article-title: The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs publication-title: Mol. Cell contributor: fullname: Meier – volume: 267 start-page: 2000 year: 1995 end-page: 2003 ident: bib26 article-title: Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme publication-title: Science contributor: fullname: Flavell – volume: 82 start-page: 4997 year: 2014 end-page: 5004 ident: bib29 article-title: Cellular requirements for systemic control of Salmonella enterica serovar Typhimurium infections in mice publication-title: Infect. Immun. contributor: fullname: Strugnell – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: bib46 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics contributor: fullname: Smyth – volume: 45 start-page: 513 year: 2016 end-page: 526 ident: bib1 article-title: The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis publication-title: Immunity contributor: fullname: O’Reilly – volume: 39 start-page: 443 year: 2013 end-page: 453 ident: bib36 article-title: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism publication-title: Immunity contributor: fullname: Webb – volume: 14 start-page: 727 year: 2013 end-page: 736 ident: bib41 article-title: Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death publication-title: Nat. Rev. Mol. Cell Biol. contributor: fullname: Yuan – volume: 177 start-page: 1094 year: 2019 ident: 10.1016/j.immuni.2020.07.004_bib17 article-title: The Coming Decade of Cell Death Research: Five Riddles publication-title: Cell doi: 10.1016/j.cell.2019.04.024 contributor: fullname: Green – volume: 7 start-page: 45126 year: 2017 ident: 10.1016/j.immuni.2020.07.004_bib32 article-title: Differential roles of caspase-1 and caspase-11 in infection and inflammation publication-title: Sci. Rep. doi: 10.1038/srep45126 contributor: fullname: Man – volume: 91 start-page: 443 year: 1997 ident: 10.1016/j.immuni.2020.07.004_bib49 article-title: Caspases: intracellular signaling by proteolysis publication-title: Cell doi: 10.1016/S0092-8674(00)80430-4 contributor: fullname: Salvesen – volume: 526 start-page: 660 year: 2015 ident: 10.1016/j.immuni.2020.07.004_bib51 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature doi: 10.1038/nature15514 contributor: fullname: Shi – volume: 8 start-page: 3788 year: 2018 ident: 10.1016/j.immuni.2020.07.004_bib31 article-title: ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages publication-title: Sci. Rep. doi: 10.1038/s41598-018-21998-3 contributor: fullname: Lee – volume: 69 start-page: 7480 year: 2003 ident: 10.1016/j.immuni.2020.07.004_bib18 article-title: Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.12.7480-7491.2003 contributor: fullname: Hautefort – volume: 17 start-page: 151 year: 2017 ident: 10.1016/j.immuni.2020.07.004_bib20 article-title: Programmed cell death as a defence against infection publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.147 contributor: fullname: Jorgensen – volume: 27 start-page: 359 year: 2019 ident: 10.1016/j.immuni.2020.07.004_bib13 article-title: BAX Activation: Mutations Near Its Proposed Non-canonical BH3 Binding Site Reveal Allosteric Changes Controlling Mitochondrial Association publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.03.040 contributor: fullname: Dengler – volume: 15 start-page: 49 year: 2014 ident: 10.1016/j.immuni.2020.07.004_bib11 article-title: Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3722 contributor: fullname: Czabotar – volume: 21 start-page: 3427 year: 2017 ident: 10.1016/j.immuni.2020.07.004_bib54 article-title: Caspase-1 Engagement and TLR-Induced c-FLIP Expression Suppress ASC/Caspase-8-Dependent Apoptosis by Inflammasome Sensors NLRP1b and NLRC4 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.11.088 contributor: fullname: Van Opdenbosch – volume: 10 start-page: 2091 year: 2019 ident: 10.1016/j.immuni.2020.07.004_bib53 article-title: Caspase-1 initiates apoptosis in the absence of gasdermin D publication-title: Nat. Commun. doi: 10.1038/s41467-019-09753-2 contributor: fullname: Tsuchiya – volume: 11 start-page: R25 year: 2010 ident: 10.1016/j.immuni.2020.07.004_bib45 article-title: A scaling normalization method for differential expression analysis of RNA-seq data publication-title: Genome Biol. doi: 10.1186/gb-2010-11-3-r25 contributor: fullname: Robinson – volume: 575 start-page: 683 year: 2019 ident: 10.1016/j.immuni.2020.07.004_bib16 article-title: Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis publication-title: Nature doi: 10.1038/s41586-019-1770-6 contributor: fullname: Fritsch – volume: 3 year: 2020 ident: 10.1016/j.immuni.2020.07.004_bib19 article-title: Caspase-1 cleaves Bid to release mitochondrial SMAC and drive secondary necrosis in the absence of GSDMD publication-title: Life Sci. Alliance doi: 10.26508/lsa.202000735 contributor: fullname: Heilig – volume: 14 start-page: 9 year: 2013 ident: 10.1016/j.immuni.2020.07.004_bib39 article-title: Revisiting caspase-11 function in host defense publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.06.009 contributor: fullname: Ng – volume: 82 start-page: 4144 year: 2014 ident: 10.1016/j.immuni.2020.07.004_bib24 article-title: Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells publication-title: Infect. Immun. doi: 10.1128/IAI.01576-14 contributor: fullname: Korea – volume: 32 start-page: 267 year: 2014 ident: 10.1016/j.immuni.2020.07.004_bib23 article-title: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2800 contributor: fullname: Koike-Yusa – volume: 430 start-page: 213 year: 2004 ident: 10.1016/j.immuni.2020.07.004_bib33 article-title: Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf publication-title: Nature doi: 10.1038/nature02664 contributor: fullname: Mariathasan – volume: 1419 start-page: 253 year: 2016 ident: 10.1016/j.immuni.2020.07.004_bib25 article-title: Using CRISPR/Cas9 Technology for Manipulating Cell Death Regulators publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-3581-9_18 contributor: fullname: Kueh – volume: 14 start-page: 727 year: 2013 ident: 10.1016/j.immuni.2020.07.004_bib41 article-title: Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3683 contributor: fullname: Ofengeim – volume: 39 start-page: 443 year: 2013 ident: 10.1016/j.immuni.2020.07.004_bib36 article-title: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism publication-title: Immunity doi: 10.1016/j.immuni.2013.06.018 contributor: fullname: Murphy – volume: 20 start-page: 1149 year: 2013 ident: 10.1016/j.immuni.2020.07.004_bib47 article-title: AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC publication-title: Cell Death Differ. doi: 10.1038/cdd.2013.37 contributor: fullname: Sagulenko – volume: 51 start-page: 285 year: 2019 ident: 10.1016/j.immuni.2020.07.004_bib4 article-title: Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8(+) T Cells publication-title: Immunity doi: 10.1016/j.immuni.2019.06.002 contributor: fullname: Bachem – volume: 346 start-page: 1257998 year: 2014 ident: 10.1016/j.immuni.2020.07.004_bib10 article-title: Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution publication-title: Science doi: 10.1126/science.1257998 contributor: fullname: Chen – volume: 471 start-page: 363 year: 2011 ident: 10.1016/j.immuni.2020.07.004_bib40 article-title: Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis publication-title: Nature doi: 10.1038/nature09852 contributor: fullname: Oberst – volume: 46 start-page: 649 year: 2017 ident: 10.1016/j.immuni.2020.07.004_bib44 article-title: NAIP-NLRC4 Inflammasomes Coordinate Intestinal Epithelial Cell Expulsion with Eicosanoid and IL-18 Release via Activation of Caspase-1 and -8 publication-title: Immunity doi: 10.1016/j.immuni.2017.03.016 contributor: fullname: Rauch – volume: 13 start-page: e1006502 year: 2017 ident: 10.1016/j.immuni.2020.07.004_bib34 article-title: Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006502 contributor: fullname: Mascarenhas – volume: 267 start-page: 2000 year: 1995 ident: 10.1016/j.immuni.2020.07.004_bib26 article-title: Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme publication-title: Science doi: 10.1126/science.7535475 contributor: fullname: Kuida – volume: 18 start-page: 1 year: 2020 ident: 10.1016/j.immuni.2020.07.004_bib7 article-title: Drug-resistant enteric fever worldwide, 1990 to 2018: a systematic review and meta-analysis publication-title: BMC Med. doi: 10.1186/s12916-019-1443-1 contributor: fullname: Browne – volume: 115 start-page: 10416 year: 2018 ident: 10.1016/j.immuni.2020.07.004_bib6 article-title: Optimal protection against Salmonella infection requires noncirculating memory publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1808339115 contributor: fullname: Benoun – volume: 7 start-page: 576 year: 2006 ident: 10.1016/j.immuni.2020.07.004_bib14 article-title: Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages publication-title: Nat. Immunol. doi: 10.1038/ni1346 contributor: fullname: Franchi – volume: 471 start-page: 368 year: 2011 ident: 10.1016/j.immuni.2020.07.004_bib21 article-title: RIP3 mediates the embryonic lethality of caspase-8-deficient mice publication-title: Nature doi: 10.1038/nature09857 contributor: fullname: Kaiser – volume: 21 start-page: 3846 year: 2017 ident: 10.1016/j.immuni.2020.07.004_bib50 article-title: The Inflammasome Drives GSDMD-Independent Secondary Pyroptosis and IL-1 Release in the Absence of Caspase-1 Protease Activity publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.12.018 contributor: fullname: Schneider – volume: 526 start-page: 666 year: 2015 ident: 10.1016/j.immuni.2020.07.004_bib22 article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling publication-title: Nature doi: 10.1038/nature15541 contributor: fullname: Kayagaki – volume: 10 year: 2019 ident: 10.1016/j.immuni.2020.07.004_bib56 article-title: Staphylococcus aureus Exploits the Host Apoptotic Pathway To Persist during Infection publication-title: MBio doi: 10.1128/mBio.02270-19 contributor: fullname: Winstel – volume: 157 start-page: 1013 year: 2014 ident: 10.1016/j.immuni.2020.07.004_bib30 article-title: Mechanisms and functions of inflammasomes publication-title: Cell doi: 10.1016/j.cell.2014.04.007 contributor: fullname: Lamkanfi – volume: 10 start-page: 1422 year: 2015 ident: 10.1016/j.immuni.2020.07.004_bib3 article-title: An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.02.002 contributor: fullname: Aubrey – volume: 110 start-page: 2252 year: 2013 ident: 10.1016/j.immuni.2020.07.004_bib28 article-title: Contribution of Thy1+ NK cells to protective IFN-γ production during Salmonella typhimurium infections publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1222047110 contributor: fullname: Kupz – volume: 13 start-page: 162 year: 2012 ident: 10.1016/j.immuni.2020.07.004_bib27 article-title: NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8+ T cells publication-title: Nat. Immunol. doi: 10.1038/ni.2195 contributor: fullname: Kupz – volume: 11 start-page: 700 year: 2010 ident: 10.1016/j.immuni.2020.07.004_bib55 article-title: Molecular mechanisms of necroptosis: an ordered cellular explosion publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2970 contributor: fullname: Vandenabeele – volume: 1784 start-page: 35 year: 2018 ident: 10.1016/j.immuni.2020.07.004_bib12 article-title: Immortalization of Murine Bone Marrow-Derived Macrophages publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7837-3_4 contributor: fullname: De Nardo – volume: 45 start-page: 513 year: 2016 ident: 10.1016/j.immuni.2020.07.004_bib1 article-title: The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis publication-title: Immunity doi: 10.1016/j.immuni.2016.07.016 contributor: fullname: Alvarez-Diaz – volume: 19 start-page: 1709 year: 2012 ident: 10.1016/j.immuni.2020.07.004_bib43 article-title: AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages publication-title: Cell Death Differ. doi: 10.1038/cdd.2012.51 contributor: fullname: Pierini – volume: 29 start-page: 37 year: 2016 ident: 10.1016/j.immuni.2020.07.004_bib58 article-title: Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2015.10.003 contributor: fullname: Zhao – volume: 10 start-page: 241 year: 2009 ident: 10.1016/j.immuni.2020.07.004_bib15 article-title: The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis publication-title: Nat. Immunol. doi: 10.1038/ni.1703 contributor: fullname: Franchi – volume: 350 start-page: 404 year: 2015 ident: 10.1016/j.immuni.2020.07.004_bib57 article-title: Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization publication-title: Science doi: 10.1126/science.aac5789 contributor: fullname: Zhang – volume: 290 start-page: 20167 year: 2015 ident: 10.1016/j.immuni.2020.07.004_bib2 article-title: Caspase-8 as an Effector and Regulator of NLRP3 Inflammasome Signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.652321 contributor: fullname: Antonopoulos – volume: 362 start-page: 1064 year: 2018 ident: 10.1016/j.immuni.2020.07.004_bib42 article-title: Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death publication-title: Science doi: 10.1126/science.aau2818 contributor: fullname: Orning – volume: 26 start-page: 139 year: 2010 ident: 10.1016/j.immuni.2020.07.004_bib46 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 contributor: fullname: Robinson – volume: 82 start-page: 4997 year: 2014 ident: 10.1016/j.immuni.2020.07.004_bib29 article-title: Cellular requirements for systemic control of Salmonella enterica serovar Typhimurium infections in mice publication-title: Infect. Immun. doi: 10.1128/IAI.02192-14 contributor: fullname: Kupz – volume: 36 start-page: 489 year: 2018 ident: 10.1016/j.immuni.2020.07.004_bib37 article-title: Apoptosis and Clearance of Apoptotic Cells publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-042617-053010 contributor: fullname: Nagata – volume: 490 start-page: 288 year: 2012 ident: 10.1016/j.immuni.2020.07.004_bib9 article-title: Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1 publication-title: Nature doi: 10.1038/nature11419 contributor: fullname: Broz – volume: 207 start-page: 1745 year: 2010 ident: 10.1016/j.immuni.2020.07.004_bib8 article-title: Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella publication-title: J. Exp. Med. doi: 10.1084/jem.20100257 contributor: fullname: Broz – volume: 26 start-page: 1124 year: 2019 ident: 10.1016/j.immuni.2020.07.004_bib48 article-title: Characterisation of mice lacking the inflammatory caspases-1/11/12 reveals no contribution of caspase-12 to cell death and sepsis publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0188-2 contributor: fullname: Salvamoser – volume: 575 start-page: 679 year: 2019 ident: 10.1016/j.immuni.2020.07.004_bib38 article-title: Activity of caspase-8 determines plasticity between cell death pathways publication-title: Nature doi: 10.1038/s41586-019-1752-8 contributor: fullname: Newton – volume: 43 start-page: 432 year: 2011 ident: 10.1016/j.immuni.2020.07.004_bib52 article-title: The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.06.006 contributor: fullname: Tenev – volume: 184 start-page: 2237 year: 2010 ident: 10.1016/j.immuni.2020.07.004_bib5 article-title: Different bacterial pathogens, different strategies, yet the aim is the same: evasion of intestinal dendritic cell recognition publication-title: J. Immunol. doi: 10.4049/jimmunol.0902871 contributor: fullname: Bedoui – volume: 11 start-page: 1136 year: 2010 ident: 10.1016/j.immuni.2020.07.004_bib35 article-title: Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria publication-title: Nat. Immunol. doi: 10.1038/ni.1960 contributor: fullname: Miao |
SSID | ssj0014590 |
Score | 2.648254 |
Snippet | Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during... SummaryProgrammed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis... |
SourceID | pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 533 |
SubjectTerms | Animals Apoptosis Apoptosis - immunology Bacteria Caspase 1 - deficiency Caspase 1 - genetics Caspase 12 - deficiency Caspase 12 - genetics Caspase 8 - genetics caspase-1 caspase-11 Caspase-8 Caspases, Initiator - deficiency Caspases, Initiator - genetics Cell death Crosstalk Defects Defense Defense programs effector caspases Effectors Fail safe systems gasdermin D Infections Initiators Intracellular Investigations Kinases Macrophages Macrophages - immunology Mice Mice, Inbred C57BL Mice, Knockout Mortality Necroptosis Necroptosis - immunology Pathogens Phosphorylation Protein-serine/threonine kinase Pyroptosis Pyroptosis - immunology Receptor-Interacting Protein Serine-Threonine Kinases - deficiency Receptor-Interacting Protein Serine-Threonine Kinases - genetics Salmonella Salmonella - immunology Salmonella Infections - immunology Typhoid |
Title | Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection |
URI | https://dx.doi.org/10.1016/j.immuni.2020.07.004 https://www.ncbi.nlm.nih.gov/pubmed/32735843 https://www.proquest.com/docview/2442830153 https://search.proquest.com/docview/2429780672 https://pubmed.ncbi.nlm.nih.gov/PMC7500851 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQyBeEIyvwjYZideoWezE7uPWUW0U0AQU-mY5tjOyVem0dUL777mLnYgCEhIvSRzHke07n3-2fz4DvFGZtKmyRVI65RNhK3wqrUrcyGTCWykK2xJkPxYnM_Funs83YNzthSFaZbT9waa31jq-GcbaHF7V9fAzUQlxEM4z1FM0snwTtsmXOar29uHR1-n7fjFB5KO0px5igm4HXUvzqtttGDhQzNLWi2c8se0vPdSfCPR3IuUvPdPkETyMkJIdhlw_hg3f7MC9cMjk3Q7c_xCXz5_A5YTcX5YLz2bEJ2OmcaydErREd7HhIAm2rNhxy9bwbOwXC3ZMKJGd4eWHubthZ8GzAzPnpkZsST-4NjT_T4RWDAVyV_MUZpO3X8YnSTxtIbF5LlcoHS-xs7aO50KMuDsoJUIvqbDVS4sjWSdTZYwqXDayXEpT5LbMeGmdtyY1hePPYKtZNv4FMCcdIiuH6EdWwvu8TG2FQI0rlH9lCjWApKthfRWcauiObXahg0Q0SUSntDouBiA7Meg15dBo9_-RcreTmo6N80YjoiG3Z2jrB_C6j8ZmRXVlGr-8pW8yKnshswE8D0Lus8oR8iFuw9RyTfz9B-Syez2mqb-3rrsRnxHGffnfBXoFDyhEjJWDfBe2Vte3fg9h0arcj2pP9-mnb9N92DydH_0EBXIQkQ |
link.rule.ids | 230,314,780,784,885,3506,27569,27924,27925,45663,45874 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIRgvCAaMsgFG4jVqFtux-8i6VR1s0yRWqW-WYzsjUKXT1gntv-fO-SE6kJB4iZLYiWyf7_zZ_nwH8FFnyqXa5UnhdUiEK_GucDrxI5uJ4JTIXSTInuXTmfg8l_MNGHdnYYhW2dr-xqZHa92-GbatObyqquFXohLiJJxn2E_RyPIH8FBIrciB_vH8oN9KEHKU9sRDzN6dn4skryoewsBpYpZGH55tvLa_jE9_4s_7NMrfxqXJM3jaAkr2qSnzc9gI9TY8akJM3m3D49N28_wF_JiQ88tiEdiM2GTM1p7FBUFHZBfXhJFgy5IdRq5GYOOwWLBDwojsHC8_7d0NO2_8OjB7aStElvSDa0ur_0RnxaeG2lW_hNnk6GI8TdpYC4mTUq1QNkHhUO08l0KMuN8vFAIvpVHnlcN5rFeptlbnPhs5rpTNpSsyXjgfnE1t7vkr2KyXdXgNzCuPuMoj9lGlCEEWqSsRpnGN0i9trgeQdC1srhqXGqbjmn03jUQMScSktDcuBqA6MZi1rmHQ6v_jy71OaqZVzRuDeIacnqGlH8CHPhmVitrK1mF5S3kyqnuusgHsNELui8oR8CFqw6_Vmvj7DOSwez2lrr5Fx92IzgjhvvnvCr2HrenF6Yk5OT77sgtPKIW4K_tyDzZX17fhLQKkVfEuKsAv2TYPtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Usage+and+Interconnectivity+of+Diverse+Cell+Death+Pathways+Protect+against+Intracellular+Infection&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Doerflinger%2C+Marcel&rft.au=Deng%2C+Yexuan&rft.au=Whitney%2C+Paul&rft.au=Salvamoser%2C+Ranja&rft.date=2020-09-15&rft.issn=1074-7613&rft.volume=53&rft.issue=3&rft.spage=533&rft.epage=547.e7&rft_id=info:doi/10.1016%2Fj.immuni.2020.07.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_immuni_2020_07_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |