Strength models of the terrestrial planets and implications for their lithospheric structure and evolution
Knowledge of lithospheric strength can help to understand the internal structure and evolution of the terrestrial planets, as surface topography and gravity fields are controlled mainly by deformational features within the lithosphere. Here, strength profiles of lithosphere were calculated for each...
Saved in:
Published in | Progress in earth and planetary science Vol. 8; no. 1; pp. 1 - 17 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
04.01.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Knowledge of lithospheric strength can help to understand the internal structure and evolution of the terrestrial planets, as surface topography and gravity fields are controlled mainly by deformational features within the lithosphere. Here, strength profiles of lithosphere were calculated for each planet using a recently updated flow law and taking into account the effect of water on lithospheric deformation. Strength is controlled predominantly by brittle deformation at shallow depths, whereas plastic deformation becomes dominant at greater depths through its sensitivity to temperature. Incorporation of Peierls creep, in which strain rate is exponentially dependent on stress, results in the weakening of plastic strength at higher stress levels, and the transition from brittle to ductile deformation shifts to shallower depths than those calculated using conventional power-law creep. Strength in both the brittle and ductile regimes is highly sensitive to the presence of water, with the overall strength of the lithosphere decreasing markedly under wet conditions. The markedly low frictional coefficient of clay minerals results in a further decrease in brittle strength and is attributed to expansion of the brittle field. As plastic strength is influenced by lithology, a large strength contrast can occur across the crust–mantle boundary if deformation is controlled by ductile deformation. Effective elastic thickness for the terrestrial planets calculated from the rheological models indicates its close dependence on spatiotemporal variations in temperature and the presence of water. Although application of the strength models to observed large-scale surface deformational features is subject to large extrapolation and uncertainties, I emphasize the different sensitivity of these features to temperature and water, meaning that quantifying these features (e.g., by data from orbiting satellites or rovers) should help to constrain the internal structure and evolution of the terrestrial planets. |
---|---|
AbstractList | Knowledge of lithospheric strength can help to understand the internal structure and evolution of the terrestrial planets, as surface topography and gravity fields are controlled mainly by deformational features within the lithosphere. Here, strength profiles of lithosphere were calculated for each planet using a recently updated flow law and taking into account the effect of water on lithospheric deformation. Strength is controlled predominantly by brittle deformation at shallow depths, whereas plastic deformation becomes dominant at greater depths through its sensitivity to temperature. Incorporation of Peierls creep, in which strain rate is exponentially dependent on stress, results in the weakening of plastic strength at higher stress levels, and the transition from brittle to ductile deformation shifts to shallower depths than those calculated using conventional power-law creep. Strength in both the brittle and ductile regimes is highly sensitive to the presence of water, with the overall strength of the lithosphere decreasing markedly under wet conditions. The markedly low frictional coefficient of clay minerals results in a further decrease in brittle strength and is attributed to expansion of the brittle field. As plastic strength is influenced by lithology, a large strength contrast can occur across the crust–mantle boundary if deformation is controlled by ductile deformation. Effective elastic thickness for the terrestrial planets calculated from the rheological models indicates its close dependence on spatiotemporal variations in temperature and the presence of water. Although application of the strength models to observed large-scale surface deformational features is subject to large extrapolation and uncertainties, I emphasize the different sensitivity of these features to temperature and water, meaning that quantifying these features (e.g., by data from orbiting satellites or rovers) should help to constrain the internal structure and evolution of the terrestrial planets. Abstract Knowledge of lithospheric strength can help to understand the internal structure and evolution of the terrestrial planets, as surface topography and gravity fields are controlled mainly by deformational features within the lithosphere. Here, strength profiles of lithosphere were calculated for each planet using a recently updated flow law and taking into account the effect of water on lithospheric deformation. Strength is controlled predominantly by brittle deformation at shallow depths, whereas plastic deformation becomes dominant at greater depths through its sensitivity to temperature. Incorporation of Peierls creep, in which strain rate is exponentially dependent on stress, results in the weakening of plastic strength at higher stress levels, and the transition from brittle to ductile deformation shifts to shallower depths than those calculated using conventional power-law creep. Strength in both the brittle and ductile regimes is highly sensitive to the presence of water, with the overall strength of the lithosphere decreasing markedly under wet conditions. The markedly low frictional coefficient of clay minerals results in a further decrease in brittle strength and is attributed to expansion of the brittle field. As plastic strength is influenced by lithology, a large strength contrast can occur across the crust–mantle boundary if deformation is controlled by ductile deformation. Effective elastic thickness for the terrestrial planets calculated from the rheological models indicates its close dependence on spatiotemporal variations in temperature and the presence of water. Although application of the strength models to observed large-scale surface deformational features is subject to large extrapolation and uncertainties, I emphasize the different sensitivity of these features to temperature and water, meaning that quantifying these features (e.g., by data from orbiting satellites or rovers) should help to constrain the internal structure and evolution of the terrestrial planets. |
ArticleNumber | 1 |
Author | Katayama, Ikuo |
Author_xml | – sequence: 1 givenname: Ikuo orcidid: 0000-0002-8664-0409 surname: Katayama fullname: Katayama, Ikuo email: katayama@hiroshima-u.ac.jp organization: Department of Earth and Planetary Systems Science, Hiroshima University |
BookMark | eNp9kc9rFDEcxUNpobX2H-gp4Hk0vzM5SlFbKHhQzyGb-WY3S3YyJhnB_96ZHUXx0FNC8j6Px3uv0OWYR0DonpK3lPbqXRVECdkRRjpCeN937ALdMGp0J1gvLv-5X6O7Wo-ELFKhpJE36PilFRj37YBPeYBUcQ64HQA3KAVqK9ElPCU3QqvYjQOOpylF71rMY8Uhl1UcC06xHXKdDlCixws2-zYXOBPwI6d51b9GV8GlCne_z1v07eOHrw-P3fPnT08P7587L6VunecDqEEC5QYGzrzkO6WE2xmvvHO7wI0mmgdOHATF1w9wQHQwylAa-h2_RU-b75Dd0U4lnlz5abOL9vyQy9660qJPYB2XQ9CaUUKMcGxwUksKmgJjcuh7s3i92bymkr_PSyH2mOcyLvEtE1poKahii6rfVL7kWgsE62M7d9SKi8lSYteh7DaUXdq356HsirL_0D-BX4T4BtVFPO6h_E31AvULkIWphQ |
CitedBy_id | crossref_primary_10_1029_2021JE006952 crossref_primary_10_1007_s10853_021_06596_5 crossref_primary_10_3847_PSJ_ac562e crossref_primary_10_1029_2021JE007058 crossref_primary_10_1007_s11356_023_30302_4 crossref_primary_10_7717_peerj_17641 crossref_primary_10_1038_s41467_025_58324_1 crossref_primary_10_1029_2022JE007460 crossref_primary_10_1016_j_icarus_2023_115594 crossref_primary_10_11728_cjss2023_03_220125010 crossref_primary_10_3389_feart_2022_988320 crossref_primary_10_1016_j_icarus_2022_115197 crossref_primary_10_1007_s11214_022_00937_9 crossref_primary_10_1029_2023JE007879 crossref_primary_10_1029_2022JE007702 crossref_primary_10_1029_2022JB026143 |
Cites_doi | 10.1016/j.icarus.2007.08.015 10.1029/JB089iB13p11180 10.1038/nature10582 10.5026/jgeography.124.371 10.1029/2012GL054340 10.1016/j.pepi.2008.05.019 10.1029/2001GL014308 10.1029/JB086iB05p03695 10.1038/377704a0 10.1126/science.226.4671.167 10.1038/s41561-020-0539-8 10.1029/JB085iB11p06369 10.1016/j.epsl.2005.02.005 10.1029/2004JE002286 10.1126/science.1157546 10.1038/ngeo1559 10.1126/science.1148494 10.1016/j.jsg.2012.06.015 10.1029/2003GL018847 10.1029/2002JE001974 10.1029/2011JB008220 10.1080/0141861021000025829 10.1006/icar.2000.6352 10.1029/JB089iB05p03177 10.1029/2005GC001053 10.1007/BF00876528 10.1016/0012-821X(96)00154-9 10.1029/94JE00216 10.1016/0040-1951(87)90332-5 10.1016/S0031-9201(02)00037-7 10.1029/95JB01460 10.1029/2000JB900223 10.1038/35084163 10.1038/363428a0 10.1029/JB095iB07p11073 10.2113/gselements.7.3.181 10.1111/j.1365-246X.1994.tb00146.x 10.1186/s40623-018-0829-1 10.1038/srep04403 10.1146/annurev.earth.36.031207.124326 10.1007/s004100050161 10.1016/0040-1951(92)90065-E 10.1016/j.lithos.2012.10.012 10.1186/s40623-016-0593-z 10.1016/j.epsl.2010.04.035 10.1146/annurev.earth.26.1.23 10.1126/science.279.5356.1492 10.1029/2004JE002262 10.1016/S0012-821X(97)00007-1 10.1016/S0012-821X(03)00289-9 10.1016/0019-1035(87)90148-5 10.5575/geosoc.2017.0019 10.1029/94JB02770 10.1111/j.1365-246X.1979.tb02567.x 10.1093/gji/ggaa155 10.1130/0091-7613 10.1007/s11214-012-9948-3 10.1029/97JB02671 10.1029/138GM06 10.1017/CBO9780511691645 10.1016/j.icarus.2011.07.029 10.1017/CBO9780511804892 10.1126/sciadv.aav2268 10.1038/s41598-018-30174-6 10.1186/s40645-015-0063-4 10.1093/gji/ggz099 10.1186/s40645-019-0298-6 10.7312/dixo13866-011 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7TG ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO HCIFZ KL. PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1186/s40645-020-00388-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2197-4284 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_a35df77210094a2da5751e71e225d889 10_1186_s40645_020_00388_2 |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 18H03733; 20H00200 funderid: http://dx.doi.org/10.13039/501100001691 |
GroupedDBID | 0R~ 5VS 8FE 8FH AAFWJ AAJSJ AAKKN ABEEZ ACACY ACGFS ACULB ADBBV ADINQ AEUYN AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG BCNDV BENPR BHPHI BKSAR C24 C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ IAO IEP IGS ISR ITC KQ8 LK5 M7R M~E OK1 PCBAR PIMPY PROAC RSV SOJ AASML AAYXX CITATION PHGZM PHGZT 7TG ABUWG AZQEC DWQXO KL. PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c557t-c3de6d5e139ed32c53b664ab9c6caabf397073f30aef634ab9eae07f96911f8b3 |
IEDL.DBID | C24 |
ISSN | 2197-4284 |
IngestDate | Wed Aug 27 01:15:17 EDT 2025 Sat Jul 26 00:14:07 EDT 2025 Tue Jul 01 03:43:47 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Fri Feb 21 02:34:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Water Terrestrial planet Elastic thickness Rock rheology Strength profile Thermal gradient |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-c3de6d5e139ed32c53b664ab9c6caabf397073f30aef634ab9eae07f96911f8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8664-0409 |
OpenAccessLink | https://link.springer.com/10.1186/s40645-020-00388-2 |
PQID | 2474754162 |
PQPubID | 2034674 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a35df77210094a2da5751e71e225d889 proquest_journals_2474754162 crossref_citationtrail_10_1186_s40645_020_00388_2 crossref_primary_10_1186_s40645_020_00388_2 springer_journals_10_1186_s40645_020_00388_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-04 |
PublicationDateYYYYMMDD | 2021-01-04 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Progress in earth and planetary science |
PublicationTitleAbbrev | Prog Earth Planet Sci |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Hirth, Kohlstedt (CR26) 1996; 144 Johnson, Sandwell (CR28) 1994; 119 Byerlee (CR9) 1978; 116 Nimmo, Watters (CR49) 2004; 31 Reynard (CR58) 2013; 178 Katayama, Terada, Okazaki, Tanikawa (CR36) 2012; 5 CR35 Bodine, Steckler, Watt (CR5) 1981; 86 CR34 Paterson, Karato, Toriumi (CR51) 1989 CR30 Behnsen, Faulkner (CR4) 2012; 42 Hirauchi, Katayama (CR25) 2015; 124 Grott, Breuer (CR20) 2008; 193 Nimmo, McKenzie (CR48) 1998; 26 Giardini (CR16) 2020; 13 Hirth, Kohlstedt (CR27) 2003; 138 Katayama, Karato (CR33) 2008; 168 Fujie, Kodaira, Yamashita, Sato, Takahashi, Takahashi (CR15) 2013; 40 Hilairet, Reynard, Wang, Daniel, Merkel, Nishiyama, Petitgirard (CR24) 2007; 318 Petitjean, Rabinowicz, Grégoire, Chevrot (CR53) 2006; 7 Yamazaki, Karato (CR73) 2002; 131 Bürgmann, Dresen (CR7) 2008; 36 Zuber (CR75) 2001; 412 Watts, Bodine, Steckler (CR71) 1980; 85 Kohlstedt, Keppler, Rubie (CR39) 1996; 123 Watters, Schultz, Robinson, Cook (CR70) 2002; 29 Kohlstedt, Evans, Mackwell (CR38) 1995; 100 Chernak, Hirth (CR11) 2010; 296 Neumann (CR47) 2004; 109 Gueguen, Palciauskas (CR22) 1994 Phillips, Hansen (CR54) 1998; 279 Watts, Burov (CR72) 2003; 213 Pleus, Ito, Wessel, Frazer (CR56) 2020; 222 Brown, Grimm (CR6) 1997; 147 McKenzie, Jackson, Priestley (CR42) 2005; 233 Zuber, Parmentier (CR74) 1995; 377 Karato, Jung (CR31) 2003; A83 Mackwell, Zimmerman, Kohlstedt (CR40) 1998; 103 Sleep (CR64) 1994; 99 Montesi, Zuber (CR45) 2003; 108 Solomon, Head (CR65) 1990; 95 Grott (CR21) 2013; 174 Katayama, Azuma (CR32) 2017; 123 Sibson (CR63) 1992; 211 Dreibus, Wänke (CR12) 1987; 71 CR59 CR14 Tsenn, Carter (CR67) 1987; 136 Watters, Robinson, Cook (CR69) 1998; 26 CR57 Tetsuka, Katayama, Sakuma, Tamura (CR66) 2018; 70 Paterson, Wong (CR52) 2004 Hansen, Zimmerman, Kohlstedt (CR23) 2011; 116 Barnett, Nimmo, McKenzie (CR3) 2000; 146 CR50 McNutt (CR43) 1984; 89 Kirby, Kronenberg (CR37) 1984; 89 Moore, Lockner (CR46) 2007 Gregory, Vidic, Dzombak (CR18) 2011; 7 CR29 Grinspoon (CR19) 1993; 363 Rybacki, Dresen (CR60) 2000; 105 CR68 McGovern, Solomon, Smith, Zuber, Simons, Wieczorek, Phillips, Neumann, Aharonson, Head (CR41) 2004; 107 Melosh, McKinnon (CR44) 1988 Phillips (CR55) 2008; 320 Azuma, Katayama (CR1) 2017; 69 Burov, Diament (CR8) 1995; 100 CR62 Campbell, Head, Harmon, Hine (CR10) 1984; 226 CR61 Goetze, Evans (CR17) 1979; 59 Ehlmann, Mustard, Murchie, Bibring, Meunier, Fraeman, Langevin (CR13) 2011; 479 Azuma, Katayama, Nakakuki (CR2) 2014; 4 S Azuma (388_CR1) 2017; 69 DN Barnett (388_CR3) 2000; 146 DH Grinspoon (388_CR19) 1993; 363 F Nimmo (388_CR48) 1998; 26 388_CR61 388_CR62 M Grott (388_CR20) 2008; 193 I Katayama (388_CR32) 2017; 123 G Hirth (388_CR26) 1996; 144 388_CR68 A Pleus (388_CR56) 2020; 222 TR Watters (388_CR69) 1998; 26 EB Burov (388_CR8) 1995; 100 CL Johnson (388_CR28) 1994; 119 S Karato (388_CR31) 2003; A83 S Mackwell (388_CR40) 1998; 103 AB Watts (388_CR71) 1980; 85 MK McNutt (388_CR43) 1984; 89 LJ Chernak (388_CR11) 2010; 296 S Petitjean (388_CR53) 2006; 7 SH Kirby (388_CR37) 1984; 89 F Nimmo (388_CR49) 2004; 31 NH Sleep (388_CR64) 1994; 99 R Bürgmann (388_CR7) 2008; 36 N Hilairet (388_CR24) 2007; 318 LN Hansen (388_CR23) 2011; 116 K Hirauchi (388_CR25) 2015; 124 H Tetsuka (388_CR66) 2018; 70 RH Sibson (388_CR63) 1992; 211 388_CR50 J Byerlee (388_CR9) 1978; 116 D Giardini (388_CR16) 2020; 13 D Campbell (388_CR10) 1984; 226 388_CR14 K Gregory (388_CR18) 2011; 7 D Kohlstedt (388_CR38) 1995; 100 HJ Melosh (388_CR44) 1988 GA Neumann (388_CR47) 2004; 109 388_CR59 388_CR57 RJ Phillips (388_CR55) 2008; 320 DE Moore (388_CR46) 2007 MS Paterson (388_CR52) 2004 G Dreibus (388_CR12) 1987; 71 D Yamazaki (388_CR73) 2002; 131 E Rybacki (388_CR60) 2000; 105 I Katayama (388_CR36) 2012; 5 MS Paterson (388_CR51) 1989 M Grott (388_CR21) 2013; 174 DL Kohlstedt (388_CR39) 1996; 123 S Azuma (388_CR2) 2014; 4 SC Solomon (388_CR65) 1990; 95 I Katayama (388_CR33) 2008; 168 AB Watts (388_CR72) 2003; 213 PJ McGovern (388_CR41) 2004; 107 C Goetze (388_CR17) 1979; 59 388_CR29 B Reynard (388_CR58) 2013; 178 J Behnsen (388_CR4) 2012; 42 G Fujie (388_CR15) 2013; 40 J Bodine (388_CR5) 1981; 86 G Hirth (388_CR27) 2003; 138 M Zuber (388_CR74) 1995; 377 BL Ehlmann (388_CR13) 2011; 479 MC Tsenn (388_CR67) 1987; 136 LG Montesi (388_CR45) 2003; 108 RJ Phillips (388_CR54) 1998; 279 388_CR30 CD Brown (388_CR6) 1997; 147 TR Watters (388_CR70) 2002; 29 D McKenzie (388_CR42) 2005; 233 388_CR34 MT Zuber (388_CR75) 2001; 412 Y Gueguen (388_CR22) 1994 388_CR35 |
References_xml | – volume: 193 start-page: 503 year: 2008 end-page: 515 ident: CR20 article-title: The evolution of the Martian elastic lithosphere and implications for crustal and mantle rheology publication-title: Icarus doi: 10.1016/j.icarus.2007.08.015 – volume: 89 start-page: 11180 year: 1984 end-page: 11194 ident: CR43 article-title: Lithospheric Flexure and Thermal Anomalies publication-title: J Geophys Res doi: 10.1029/JB089iB13p11180 – start-page: 107 year: 1989 end-page: 142 ident: CR51 article-title: The interaction of water with quartz and its influence in dislocation flow–an overview publication-title: Rheology of Solids and of the Earth – ident: CR68 – volume: 479 start-page: 53 year: 2011 end-page: 60 ident: CR13 article-title: Subsurface water and clay mineral formation during the early history of Mars publication-title: Nature doi: 10.1038/nature10582 – volume: 124 start-page: 371 year: 2015 end-page: 396 ident: CR25 article-title: Rheological properties of serpentinite and their tectonic significance publication-title: J Geography doi: 10.5026/jgeography.124.371 – volume: 40 start-page: 88 year: 2013 end-page: 93 ident: CR15 article-title: Systematic changes in the incoming plate structure at the Kuril trench publication-title: Geophys Res Lett doi: 10.1029/2012GL054340 – ident: CR35 – ident: CR29 – ident: CR61 – volume: 168 start-page: 125 year: 2008 end-page: 133 ident: CR33 article-title: Low-temperature, high-stress deformation of olivine under water-saturated condition publication-title: Phys Earth Planet Inter doi: 10.1016/j.pepi.2008.05.019 – volume: 29 start-page: 1542 year: 2002 ident: CR70 article-title: The mechanical and thermal structure of Mercury's early lithosphere publication-title: Geophys Res Lett doi: 10.1029/2001GL014308 – volume: 86 start-page: 3695 year: 1981 end-page: 3707 ident: CR5 article-title: Observations of flexure and the rheology of the oceanic lithosphere publication-title: J Geophys Res doi: 10.1029/JB086iB05p03695 – volume: 377 start-page: 704 year: 1995 end-page: 707 ident: CR74 article-title: Formation of fold-and-thrust belts on Venus by thick-skinned deformation publication-title: Nature doi: 10.1038/377704a0 – volume: 226 start-page: 167 year: 1984 end-page: 170 ident: CR10 article-title: Venus: Volcanism and rift formation in Beta Regio publication-title: Science doi: 10.1126/science.226.4671.167 – volume: 13 start-page: 205 year: 2020 end-page: 212 ident: CR16 article-title: The seismicity of Mars publication-title: Nature Geoscience doi: 10.1038/s41561-020-0539-8 – volume: 85 start-page: 5369 year: 1980 end-page: 6376 ident: CR71 article-title: Observations of flexure and the state of stress in the oceanic lithosphere publication-title: J Geophys Res doi: 10.1029/JB085iB11p06369 – volume: 233 start-page: 337 year: 2005 end-page: 349 ident: CR42 article-title: Thermal structure of oceanic and continental lithosphere publication-title: Earth Planet Sci Lett doi: 10.1016/j.epsl.2005.02.005 – volume: 107 start-page: 5418 year: 2004 ident: CR41 article-title: Correction to “Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution” publication-title: J Geophys Res doi: 10.1029/2004JE002286 – volume: 320 start-page: 1182 year: 2008 end-page: 1185 ident: CR55 article-title: Mars north polar deposits: Stratigraphy, age, and geodynamical response publication-title: Science doi: 10.1126/science.1157546 – volume: 5 start-page: 731 year: 2012 end-page: 734 ident: CR36 article-title: Episodic tremor and slow slip potentially linked to permeability contrasts at the Moho publication-title: Nature Geo doi: 10.1038/ngeo1559 – ident: CR50 – volume: 318 start-page: 1910 year: 2007 end-page: 1913 ident: CR24 article-title: High-pressure creep of serpentine, interseismic deformation, and initiation of subduction publication-title: Science doi: 10.1126/science.1148494 – volume: 42 start-page: 49 year: 2012 end-page: 61 ident: CR4 article-title: The effect of mineralogy and effective normal stress on frictional strength of sheet silicates publication-title: J Struct Geol doi: 10.1016/j.jsg.2012.06.015 – volume: 31 start-page: L02701 year: 2004 ident: CR49 article-title: Depth of faulting on Mercury: implications for heat flux and crustal and effective elastic thickness publication-title: Geophys Res Lett doi: 10.1029/2003GL018847 – volume: 108 start-page: 5048 year: 2003 ident: CR45 article-title: Clues to the lithospheric structure of Mars from wrinkle ridge sets and localization instability publication-title: J Geophys Res doi: 10.1029/2002JE001974 – volume: 116 start-page: B08201 year: 2011 ident: CR23 article-title: Grain-boundary sliding in San Carlos olivine: Flow-law parameters and crystallographic-preferred orientation publication-title: J Geophys Res doi: 10.1029/2011JB008220 – volume: A83 start-page: 401 year: 2003 end-page: 414 ident: CR31 article-title: Effects of pressure on high-temperature dislocation creep in olivine publication-title: Phil Mag doi: 10.1080/0141861021000025829 – ident: CR57 – volume: 146 start-page: 404 year: 2000 end-page: 419 ident: CR3 article-title: Elastic thickness estimates for Venus using line of sight accelerations from magellan cycle 5 publication-title: Icarus doi: 10.1006/icar.2000.6352 – volume: 89 start-page: 3177 year: 1984 end-page: 3192 ident: CR37 article-title: Deformation of clinopyroxenite: evidence for a transition in flow mechanisms and semibrittle behavior publication-title: J Geophys Res doi: 10.1029/JB089iB05p03177 – start-page: 317 year: 2007 end-page: 345 ident: CR46 publication-title: Friction of the smectite clay montmorillonite. The Seismogenic Zone of Subduction Thrust Faults, edited by Dixon T, Moore C – volume: 7 start-page: Q03021 year: 2006 ident: CR53 article-title: Differences between Archean and Proterozoic lithospheres: Assessment of the possible major role of thermal conductivity publication-title: Geochem Geophys Geosyst doi: 10.1029/2005GC001053 – volume: 116 start-page: 615 year: 1978 end-page: 626 ident: CR9 article-title: Friction of rocks publication-title: Pure Apply Geophys doi: 10.1007/BF00876528 – volume: 144 start-page: 93 year: 1996 end-page: 108 ident: CR26 article-title: Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere publication-title: Earth Planet Sci Lett doi: 10.1016/0012-821X(96)00154-9 – volume: 99 start-page: 5639 year: 1994 end-page: 5655 ident: CR64 article-title: Martian plate tectonics publication-title: J Geophys Res doi: 10.1029/94JE00216 – volume: 136 start-page: 1 year: 1987 end-page: 26 ident: CR67 article-title: Upper limits of power law creep in rocks publication-title: Tectonophys doi: 10.1016/0040-1951(87)90332-5 – volume: 131 start-page: 251 year: 2002 end-page: 267 ident: CR73 article-title: Fabric development in (Mg,Fe)O during large strain, shear deformation: Implications for seismic anisotropy in Earth’s lower mantle publication-title: Phys Earth Planet Int doi: 10.1016/S0031-9201(02)00037-7 – start-page: 296 year: 1994 ident: CR22 publication-title: Introduction to the Physics of Rocks – volume: 100 start-page: 17587 year: 1995 end-page: 17602 ident: CR38 article-title: Strength of the lithosphere: Constraints imposed by laboratory experiments publication-title: J Geophys Res doi: 10.1029/95JB01460 – volume: 105 start-page: 26017 year: 2000 end-page: 26036 ident: CR60 article-title: Dislocation and diffusion creep of synthetic anorthite aggregates publication-title: J Geophys Res doi: 10.1029/2000JB900223 – volume: 412 start-page: 220 year: 2001 end-page: 227 ident: CR75 article-title: The crust and mantle of Mars publication-title: Nature doi: 10.1038/35084163 – volume: 363 start-page: 428 year: 1993 end-page: 431 ident: CR19 article-title: Implications of the high deuterium-to-hydrogen ratio for the sources of water in Venus’ atmosphere publication-title: Nature doi: 10.1038/363428a0 – volume: 95 start-page: 11073 year: 1990 end-page: 11083 ident: CR65 article-title: Heterogeneities in the thickness of the elastic lithosphere of Mars: Constraints on heat flow and internal dynamics publication-title: J Geophys Res doi: 10.1029/JB095iB07p11073 – volume: 7 start-page: 181 year: 2011 end-page: 186 ident: CR18 article-title: Water management challenges associated with the production of shale gas by hydraulic fracturing publication-title: Elements doi: 10.2113/gselements.7.3.181 – ident: CR14 – start-page: 347 year: 2004 ident: CR52 publication-title: Experimental Rock Deformation, The Brittle Field – ident: CR30 – volume: 119 start-page: 627 year: 1994 end-page: 647 ident: CR28 article-title: Lithospheric flexure on Venus publication-title: Geophys J Inter doi: 10.1111/j.1365-246X.1994.tb00146.x – volume: 70 start-page: 56 year: 2018 ident: CR66 article-title: Effects of humidity and interlayer cations on the frictional strength of montmorillonite publication-title: Earth Planet Space doi: 10.1186/s40623-018-0829-1 – volume: 4 start-page: 4403 year: 2014 ident: CR2 article-title: Rheological decoupling at the Moho and implication to Venusian tectonics publication-title: Sci Rep doi: 10.1038/srep04403 – volume: 36 start-page: 531 year: 2008 end-page: 677 ident: CR7 article-title: Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations publication-title: Annu Rev Earth Planet Sci doi: 10.1146/annurev.earth.36.031207.124326 – volume: 123 start-page: 345 year: 1996 end-page: 357 ident: CR39 article-title: Solubility of water in the α, β and γ phases of (Mg,Fe) SiO publication-title: Contrib Mineral Petrol doi: 10.1007/s004100050161 – volume: 211 start-page: 283 year: 1992 end-page: 293 ident: CR63 article-title: Implications of fault-valve behavior for rupture nucleation and recurrence publication-title: Tectonophys doi: 10.1016/0040-1951(92)90065-E – volume: 178 start-page: 171 year: 2013 end-page: 185 ident: CR58 article-title: Serpentine in active subduction zones publication-title: Lithos doi: 10.1016/j.lithos.2012.10.012 – volume: 69 start-page: 8 year: 2017 ident: CR1 article-title: Evolution of the rheological structure of Mars publication-title: Earth Planets Space doi: 10.1186/s40623-016-0593-z – volume: 296 start-page: 23 year: 2010 end-page: 33 ident: CR11 article-title: Deformation of antigorite serpentinite at high temperature and pressure publication-title: Earth Planet Sci Lett doi: 10.1016/j.epsl.2010.04.035 – volume: 26 start-page: 23 year: 1998 end-page: 51 ident: CR48 article-title: Volcanism and tectonics on Venus publication-title: Annu Rev Earth Planet Sci doi: 10.1146/annurev.earth.26.1.23 – volume: 279 start-page: 1492 year: 1998 end-page: 1497 ident: CR54 article-title: Geological evolution of Venus: Rises, plains, plumes, and plateaus publication-title: Science doi: 10.1126/science.279.5356.1492 – volume: 109 start-page: E08002 year: 2004 ident: CR47 article-title: Crustal structure of Mars from gravity and topography publication-title: J Geophys Res doi: 10.1029/2004JE002262 – volume: 147 start-page: 1 year: 1997 end-page: 10 ident: CR6 article-title: Tessera deformation and contemporaneous thermal state of the plateau highlands, Venus publication-title: Earth Planet Sci Lett doi: 10.1016/S0012-821X(97)00007-1 – volume: 213 start-page: 113 year: 2003 end-page: 131 ident: CR72 article-title: Lithospheric strength and its relationship to the elastic and seismogenic layer thickness publication-title: Tectonophys doi: 10.1016/S0012-821X(03)00289-9 – volume: 71 start-page: 225 year: 1987 end-page: 240 ident: CR12 article-title: Volatiles on Earth and Mars–A comparison publication-title: Icarus doi: 10.1016/0019-1035(87)90148-5 – start-page: 374 year: 1988 end-page: 400 ident: CR44 publication-title: The tectonics of Mercury. Mercury, edited by Vilas F, Chapman CR, Matthews MS – volume: 123 start-page: 365 year: 2017 end-page: 377 ident: CR32 article-title: Effect of water on rock deformation and rheological structures of continental and oceanic plates publication-title: J Geol Soc Japan doi: 10.5575/geosoc.2017.0019 – volume: 100 start-page: 3905 year: 1995 end-page: 3927 ident: CR8 article-title: The effective elastic thickness (Te) of continental lithosphere: What does it really mean? publication-title: J Geophys Res doi: 10.1029/94JB02770 – ident: CR34 – volume: 59 start-page: 463 year: 1979 end-page: 478 ident: CR17 article-title: Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics publication-title: Geophys J R doi: 10.1111/j.1365-246X.1979.tb02567.x – ident: CR59 – ident: CR62 – volume: 222 start-page: 207 year: 2020 end-page: 224 ident: CR56 article-title: Rheology and thermal structure of the lithosphere beneath the Hawaiian Ridge inferred from gravity data and models of plate flexure publication-title: Geophys J Inter doi: 10.1093/gji/ggaa155 – volume: 26 start-page: 991 year: 1998 end-page: 994 ident: CR69 article-title: Topography of lobate scarps on Mercury: new constraints on the planet’s contraction publication-title: Geology doi: 10.1130/0091-7613 – volume: 174 start-page: 49 year: 2013 end-page: 111 ident: CR21 article-title: Long-term evolution of the Martian crust-mantle system publication-title: Space Sci Rev doi: 10.1007/s11214-012-9948-3 – volume: 103 start-page: 975 year: 1998 end-page: 984 ident: CR40 article-title: High-temperature deformation of dry diabase with application to tectonics on Venus publication-title: J Geophys Res doi: 10.1029/97JB02671 – volume: 138 start-page: 83 year: 2003 end-page: 105 ident: CR27 article-title: Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists publication-title: Geophys Monogr doi: 10.1029/138GM06 – volume: 5 start-page: 731 year: 2012 ident: 388_CR36 publication-title: Nature Geo doi: 10.1038/ngeo1559 – start-page: 107 volume-title: Rheology of Solids and of the Earth year: 1989 ident: 388_CR51 – volume: 412 start-page: 220 year: 2001 ident: 388_CR75 publication-title: Nature doi: 10.1038/35084163 – volume: 42 start-page: 49 year: 2012 ident: 388_CR4 publication-title: J Struct Geol doi: 10.1016/j.jsg.2012.06.015 – volume: 377 start-page: 704 year: 1995 ident: 388_CR74 publication-title: Nature doi: 10.1038/377704a0 – volume: 99 start-page: 5639 year: 1994 ident: 388_CR64 publication-title: J Geophys Res doi: 10.1029/94JE00216 – volume: 29 start-page: 1542 year: 2002 ident: 388_CR70 publication-title: Geophys Res Lett doi: 10.1029/2001GL014308 – volume: 233 start-page: 337 year: 2005 ident: 388_CR42 publication-title: Earth Planet Sci Lett doi: 10.1016/j.epsl.2005.02.005 – volume: 168 start-page: 125 year: 2008 ident: 388_CR33 publication-title: Phys Earth Planet Inter doi: 10.1016/j.pepi.2008.05.019 – volume: 279 start-page: 1492 year: 1998 ident: 388_CR54 publication-title: Science doi: 10.1126/science.279.5356.1492 – volume: 71 start-page: 225 year: 1987 ident: 388_CR12 publication-title: Icarus doi: 10.1016/0019-1035(87)90148-5 – volume: 89 start-page: 3177 year: 1984 ident: 388_CR37 publication-title: J Geophys Res doi: 10.1029/JB089iB05p03177 – volume: 123 start-page: 365 year: 2017 ident: 388_CR32 publication-title: J Geol Soc Japan doi: 10.5575/geosoc.2017.0019 – ident: 388_CR68 doi: 10.1017/CBO9780511691645 – volume: 226 start-page: 167 year: 1984 ident: 388_CR10 publication-title: Science doi: 10.1126/science.226.4671.167 – volume: 479 start-page: 53 year: 2011 ident: 388_CR13 publication-title: Nature doi: 10.1038/nature10582 – volume: 116 start-page: B08201 year: 2011 ident: 388_CR23 publication-title: J Geophys Res doi: 10.1029/2011JB008220 – volume: 144 start-page: 93 year: 1996 ident: 388_CR26 publication-title: Earth Planet Sci Lett doi: 10.1016/0012-821X(96)00154-9 – volume: 107 start-page: 5418 year: 2004 ident: 388_CR41 publication-title: J Geophys Res doi: 10.1029/2004JE002286 – volume: 26 start-page: 991 year: 1998 ident: 388_CR69 publication-title: Geology doi: 10.1130/0091-7613 – volume: 100 start-page: 17587 year: 1995 ident: 388_CR38 publication-title: J Geophys Res doi: 10.1029/95JB01460 – ident: 388_CR59 doi: 10.1016/j.icarus.2011.07.029 – ident: 388_CR14 – volume: 147 start-page: 1 year: 1997 ident: 388_CR6 publication-title: Earth Planet Sci Lett doi: 10.1016/S0012-821X(97)00007-1 – volume: 100 start-page: 3905 year: 1995 ident: 388_CR8 publication-title: J Geophys Res doi: 10.1029/94JB02770 – volume: 89 start-page: 11180 year: 1984 ident: 388_CR43 publication-title: J Geophys Res doi: 10.1029/JB089iB13p11180 – ident: 388_CR62 – volume: 131 start-page: 251 year: 2002 ident: 388_CR73 publication-title: Phys Earth Planet Int doi: 10.1016/S0031-9201(02)00037-7 – volume: 320 start-page: 1182 year: 2008 ident: 388_CR55 publication-title: Science doi: 10.1126/science.1157546 – ident: 388_CR29 doi: 10.1017/CBO9780511804892 – ident: 388_CR61 doi: 10.1126/sciadv.aav2268 – volume: 318 start-page: 1910 year: 2007 ident: 388_CR24 publication-title: Science doi: 10.1126/science.1148494 – volume: 105 start-page: 26017 year: 2000 ident: 388_CR60 publication-title: J Geophys Res doi: 10.1029/2000JB900223 – volume: 123 start-page: 345 year: 1996 ident: 388_CR39 publication-title: Contrib Mineral Petrol doi: 10.1007/s004100050161 – volume: 119 start-page: 627 year: 1994 ident: 388_CR28 publication-title: Geophys J Inter doi: 10.1111/j.1365-246X.1994.tb00146.x – volume: 40 start-page: 88 year: 2013 ident: 388_CR15 publication-title: Geophys Res Lett doi: 10.1029/2012GL054340 – volume: 178 start-page: 171 year: 2013 ident: 388_CR58 publication-title: Lithos doi: 10.1016/j.lithos.2012.10.012 – ident: 388_CR30 doi: 10.1038/s41598-018-30174-6 – volume: 109 start-page: E08002 year: 2004 ident: 388_CR47 publication-title: J Geophys Res doi: 10.1029/2004JE002262 – ident: 388_CR34 doi: 10.1186/s40645-015-0063-4 – volume: 138 start-page: 83 year: 2003 ident: 388_CR27 publication-title: Geophys Monogr doi: 10.1029/138GM06 – volume: 95 start-page: 11073 year: 1990 ident: 388_CR65 publication-title: J Geophys Res doi: 10.1029/JB095iB07p11073 – volume: 193 start-page: 503 year: 2008 ident: 388_CR20 publication-title: Icarus doi: 10.1016/j.icarus.2007.08.015 – volume: 13 start-page: 205 year: 2020 ident: 388_CR16 publication-title: Nature Geoscience doi: 10.1038/s41561-020-0539-8 – volume: 136 start-page: 1 year: 1987 ident: 388_CR67 publication-title: Tectonophys doi: 10.1016/0040-1951(87)90332-5 – volume: 36 start-page: 531 year: 2008 ident: 388_CR7 publication-title: Annu Rev Earth Planet Sci doi: 10.1146/annurev.earth.36.031207.124326 – volume: 146 start-page: 404 year: 2000 ident: 388_CR3 publication-title: Icarus doi: 10.1006/icar.2000.6352 – volume: 296 start-page: 23 year: 2010 ident: 388_CR11 publication-title: Earth Planet Sci Lett doi: 10.1016/j.epsl.2010.04.035 – volume: 211 start-page: 283 year: 1992 ident: 388_CR63 publication-title: Tectonophys doi: 10.1016/0040-1951(92)90065-E – volume: 213 start-page: 113 year: 2003 ident: 388_CR72 publication-title: Tectonophys doi: 10.1016/S0012-821X(03)00289-9 – start-page: 347 volume-title: Experimental Rock Deformation, The Brittle Field year: 2004 ident: 388_CR52 – volume: 85 start-page: 5369 year: 1980 ident: 388_CR71 publication-title: J Geophys Res doi: 10.1029/JB085iB11p06369 – ident: 388_CR57 – volume: 70 start-page: 56 year: 2018 ident: 388_CR66 publication-title: Earth Planet Space doi: 10.1186/s40623-018-0829-1 – volume: 4 start-page: 4403 year: 2014 ident: 388_CR2 publication-title: Sci Rep doi: 10.1038/srep04403 – start-page: 296 volume-title: Introduction to the Physics of Rocks year: 1994 ident: 388_CR22 – volume: 116 start-page: 615 year: 1978 ident: 388_CR9 publication-title: Pure Apply Geophys doi: 10.1007/BF00876528 – volume: 7 start-page: 181 year: 2011 ident: 388_CR18 publication-title: Elements doi: 10.2113/gselements.7.3.181 – volume: 108 start-page: 5048 year: 2003 ident: 388_CR45 publication-title: J Geophys Res doi: 10.1029/2002JE001974 – volume: 103 start-page: 975 year: 1998 ident: 388_CR40 publication-title: J Geophys Res doi: 10.1029/97JB02671 – ident: 388_CR50 doi: 10.1093/gji/ggz099 – volume: 31 start-page: L02701 year: 2004 ident: 388_CR49 publication-title: Geophys Res Lett doi: 10.1029/2003GL018847 – volume: 174 start-page: 49 year: 2013 ident: 388_CR21 publication-title: Space Sci Rev doi: 10.1007/s11214-012-9948-3 – volume: 59 start-page: 463 year: 1979 ident: 388_CR17 publication-title: Geophys J R doi: 10.1111/j.1365-246X.1979.tb02567.x – volume: 363 start-page: 428 year: 1993 ident: 388_CR19 publication-title: Nature doi: 10.1038/363428a0 – volume: 26 start-page: 23 year: 1998 ident: 388_CR48 publication-title: Annu Rev Earth Planet Sci doi: 10.1146/annurev.earth.26.1.23 – volume: 86 start-page: 3695 year: 1981 ident: 388_CR5 publication-title: J Geophys Res doi: 10.1029/JB086iB05p03695 – volume: 124 start-page: 371 year: 2015 ident: 388_CR25 publication-title: J Geography doi: 10.5026/jgeography.124.371 – volume: 69 start-page: 8 year: 2017 ident: 388_CR1 publication-title: Earth Planets Space doi: 10.1186/s40623-016-0593-z – ident: 388_CR35 doi: 10.1186/s40645-019-0298-6 – start-page: 374 volume-title: The tectonics of Mercury. Mercury, edited by Vilas F, Chapman CR, Matthews MS year: 1988 ident: 388_CR44 – volume: 7 start-page: Q03021 year: 2006 ident: 388_CR53 publication-title: Geochem Geophys Geosyst doi: 10.1029/2005GC001053 – volume: A83 start-page: 401 year: 2003 ident: 388_CR31 publication-title: Phil Mag doi: 10.1080/0141861021000025829 – volume: 222 start-page: 207 year: 2020 ident: 388_CR56 publication-title: Geophys J Inter doi: 10.1093/gji/ggaa155 – start-page: 317 volume-title: Friction of the smectite clay montmorillonite. The Seismogenic Zone of Subduction Thrust Faults, edited by Dixon T, Moore C year: 2007 ident: 388_CR46 doi: 10.7312/dixo13866-011 |
SSID | ssj0002046595 |
Score | 2.2450905 |
SecondaryResourceType | review_article |
Snippet | Knowledge of lithospheric strength can help to understand the internal structure and evolution of the terrestrial planets, as surface topography and gravity... Abstract Knowledge of lithospheric strength can help to understand the internal structure and evolution of the terrestrial planets, as surface topography and... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 4. Solid earth sciences Atmospheric Sciences Biogeosciences Clay minerals Earth and Environmental Science Earth Sciences Elastic thickness Evolution Geophysics/Geodesy Gravitational fields Hydrogeology Lithology Lithosphere Planetology Planets Plastics Review Rock rheology Strength profile Temperature variations Terrestrial environments Terrestrial planet Terrestrial planets Thermal gradient Water |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA4yEHwRf-J0Sh5807KuTdLuUcU5BH1ysLeQpInbkG7YKvjfe5e2cxPUF1-bhIa7S_Jd7vIdIedcKJ0Y3g-sv7qJIhcoI0yAL34seNBhovG988OjGI7Y_ZiPV0p9YU5YRQ9cCa6rYp45gIA9zIFTUaYwUGCTngVDzNLUP92DM2_FmZr58BpDorzmlUwqugVDZrYAvSWMhoF5rJ1EnrB_DWV-C4z682awQ7ZroEivqgnukg2b75HNO1-I92OfzDCcnD-XE-pr2RR07ihgOQpiwmobaFZ0gYmsZUFVntHpSuY4BaBKfYSAAgifzAukFpgaWnHJvr1aP8K-11Z5QEaD26ebYVDXTQgM50kZmDizIuMWwJ3N4sjwWAvBlO6DEpTSDiAILGwXh8o6EWODVTZMXF_AzudSHR-SVj7P7RGh4O04G-mQmZSxLFZK9bTQRiewRYbM8TbpNTKUpiYVx9oWL9I7F6mQldwlyF16ucuoTS6WYxYVpcavva9RNcueSIftP4CRyNpI5F9G0iadRrGyXqOFjBi4UhwAKfzjslH2V_PPUzr-jymdkK0I02PwNod1SAs0bE8B35T6zJvyJ0MH9U8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSyUxEA6jMuBFdGbE50YO3pzGfukk3X0SFR0ZUEQUvIWsLkj3034K_nur8tLPBfTaWWiqKpWvllQRsiWkNqUVdeaj64axkGkrbYYvfjxY0Hlp8L3zyak8vuT_r8RVcrh1Ka2y14lRUbvWoo98h3EAvgLgA9sdPWTYNQqjq6mFxgyZAxVcgfE1t394enY-9bIwMP9ELfrXMpXc6ThWaMvQasKoGIjJhxspFu7_gDY_BUjjvXO0SBYSYKR7Ew4vkR---UV-_osNeV9-kzsMKzfX4xsae9p0tA0UMB0FcmHXDRQvOsKE1nFHdePo7bsMcgqAlcZIAQUwftN2WGLg1tJJTdmnRx9X-OcknX_I5dHhxcFxlvonZFaIcpzZwnnphAeQ513BrCiMlFybGpihtQkAReCAhyLXPsgCB7z2eRlqCRowVKZYJrNN2_gVQsHqCZ6ZnNuKc1dorYdGGmtKUJU5D2JAhj0NlU3FxbHHxb2KRkYl1YTuCuiuIt0VG5Dt6ZrRpLTGt7P3kTXTmVgWO35oH69VOmVKF8IFsBeGmDCpmdMYVfLl0IPWclVVD8h6z1iVzmqn3iRrQP72zH4b_vqXVr_fbY3MM0yAQX8NXyezwDu_AQhmbDaTmL4Cj67vOg priority: 102 providerName: ProQuest |
Title | Strength models of the terrestrial planets and implications for their lithospheric structure and evolution |
URI | https://link.springer.com/article/10.1186/s40645-020-00388-2 https://www.proquest.com/docview/2474754162 https://doaj.org/article/a35df77210094a2da5751e71e225d889 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46EXwRrzidIw--abFrk7R73IYXBoqog72FJE3chnRip-C_95ysnRdU8KWFJqHlXNLv5NwIOeJC6cTwdmD90U0UuUAZYQLM-LFgQYeJxnznq2txOWD9IR-WSWFFFe1euST9Tu3VOhWnBcPSagGaO-jOAv4ukxUOtjvKda_McZh41xrDInlVhsyPS7_8hXyx_i8I85tT1P9rzjfIegkSaWfO1U2yZPMtsnrhm_C-bZMJupLzh9mI-j42BZ06CjiOAomw0waKFH3CINZZQVWe0fGnqHEKIJV67wAFAD6aFlhWYGzovI7sy7P1K-xrKZE7ZHB-dt-7DMqeCYHhPJkFJs6syLgFYGezODI81kIwpdvAAKW0A_gBSu3iUFknYhywyoaJawvY9Vyq411Sy6e53SMULB1nIx0ykzKWxUqplhba6AS2x5A5XietiobSlAXFsa_Fo_SGRSrknO4S6C493WVUJ8eLNU_zchp_zu4iaxYzsRS2fzB9fpClZkkV88yBjdDCIEkVZQo9STZpWdipsjRt10mjYqws9bOQEQMzigMYhXecVMz-GP79k_b_N_2ArEUYBINnNqxBasBLewgoZqabZKXT6d_14d49u765bXohxqvoNf3JwDvKue-C |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE-xUMAHOEHUrGM7yQEhCi1b2q4QaqXejO3YbRFKlmYB9U_xG5lxki1Forde49iyZsbjbzwvgOdSGZs7WSY-Pt1wHhLjlEso48ejBZ3mlvKd92ZqeiA-HsrDFfg95MJQWOWgE6OirhpHb-TrXCDwlQgf-Jv594S6RpF3dWih0YnFjj_7hSZb-3r7PfL3Bedbm_vvpknfVSBxUuaLxGWVV5X0CH18lXEnM6uUMLbELRpjA17QKPYhS40PKqMBb3yah1KhXgiFzXDda7AqMjRlRrC6sTn79Hn5qsPR3JSlHLJzCrXeCqoIl5CVRl44FMsLN2BsFHAB3f7jkI333NZtuNUDVPa2k6g7sOLru3D9Q2wAfHYPvpIbuz5aHLPYQ6dlTWCIIRmyh7p8kDizOQXQLlpm6oqd_BWxzhAgs-iZYAj-j5uWShqcONbVsP1x6uMM_7M_Dffh4Eoo-wBGdVP7h8DQygqe21S4QogqM8ZMrLLO5qiaUxHkGCYDDbXri5lTT41vOho1hdId3TXSXUe6az6Gl8s5866Ux6V_bxBrln9SGe74oTk90v2p1iaTVUD7ZEIBmoZXhrxYPp941JJVUZRjWBsYq3vd0OpzSR7Dq4HZ58P_39Kjy1d7Bjem-3u7end7tvMYbnIKvqG3IrEGI-Sjf4LoaWGf9iLL4MtVn5I_Ybwt4A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcqvJStxTwAU4QbdaJneSAEH0sLYVVhajUm7Eduy2qkqXZgvrX-HXMOMmWItFbr3FsWfPyfJ7xDMBLIbXJrCgiF65uOPeRttJG9OLHIYKOM0PvnT9P5e5h-vFIHC3B7_4tDKVV9jYxGOqytnRHPuIpOr4C3Qc-8l1axMH25N3sR0QdpCjS2rfTaEVk313-QvjWvN3bRl6_4nyy83VrN-o6DERWiGwe2aR0shQO3SBXJtyKxEiZalPgdrU2Hg9rVAGfxNp5mdCA0y7OfCHRRvjcJLjuHVjOEBXFA1je3JkefFnc8HCEnqIQ_UudXI6alKrDRYTYKCKHInrtNAxNA655uv8EZ8OZN1mFlc5ZZe9b6XoAS656CHc_hGbAl4_gO4W0q-P5CQv9dBpWe4b-JENWUccPEm02o2TaecN0VbLTv7LXGTrLLEQpGAKBk7qh8ganlrX1bC_OXZjhfnaa8RgOb4WyT2BQ1ZVbA4aIyztu4tTmaVomWuuxkcaaDM10nHoxhHFPQ2W7wubUX-NMBYCTS9XSXSHdVaC74kN4vZgza8t63Pj3JrFm8SeV5A4f6vNj1Wm40okoPWKVMSVral5qimi5bOzQYpZ5Xgxho2es6uxEo66keghvemZfDf9_S-s3r_YC7qF2qE970_2ncJ9THg5dG6UbMEA2umfoSM3N805iGXy7bSX5A0bxMhU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strength+models+of+the+terrestrial+planets+and+implications+for+their+lithospheric+structure+and+evolution&rft.jtitle=Progress+in+earth+and+planetary+science&rft.au=Katayama%2C+Ikuo&rft.date=2021-01-04&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2197-4284&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs40645-020-00388-2&rft.externalDocID=10_1186_s40645_020_00388_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-4284&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-4284&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-4284&client=summon |