Strength models of the terrestrial planets and implications for their lithospheric structure and evolution

Knowledge of lithospheric strength can help to understand the internal structure and evolution of the terrestrial planets, as surface topography and gravity fields are controlled mainly by deformational features within the lithosphere. Here, strength profiles of lithosphere were calculated for each...

Full description

Saved in:
Bibliographic Details
Published inProgress in earth and planetary science Vol. 8; no. 1; pp. 1 - 17
Main Author Katayama, Ikuo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 04.01.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Knowledge of lithospheric strength can help to understand the internal structure and evolution of the terrestrial planets, as surface topography and gravity fields are controlled mainly by deformational features within the lithosphere. Here, strength profiles of lithosphere were calculated for each planet using a recently updated flow law and taking into account the effect of water on lithospheric deformation. Strength is controlled predominantly by brittle deformation at shallow depths, whereas plastic deformation becomes dominant at greater depths through its sensitivity to temperature. Incorporation of Peierls creep, in which strain rate is exponentially dependent on stress, results in the weakening of plastic strength at higher stress levels, and the transition from brittle to ductile deformation shifts to shallower depths than those calculated using conventional power-law creep. Strength in both the brittle and ductile regimes is highly sensitive to the presence of water, with the overall strength of the lithosphere decreasing markedly under wet conditions. The markedly low frictional coefficient of clay minerals results in a further decrease in brittle strength and is attributed to expansion of the brittle field. As plastic strength is influenced by lithology, a large strength contrast can occur across the crust–mantle boundary if deformation is controlled by ductile deformation. Effective elastic thickness for the terrestrial planets calculated from the rheological models indicates its close dependence on spatiotemporal variations in temperature and the presence of water. Although application of the strength models to observed large-scale surface deformational features is subject to large extrapolation and uncertainties, I emphasize the different sensitivity of these features to temperature and water, meaning that quantifying these features (e.g., by data from orbiting satellites or rovers) should help to constrain the internal structure and evolution of the terrestrial planets.
AbstractList Knowledge of lithospheric strength can help to understand the internal structure and evolution of the terrestrial planets, as surface topography and gravity fields are controlled mainly by deformational features within the lithosphere. Here, strength profiles of lithosphere were calculated for each planet using a recently updated flow law and taking into account the effect of water on lithospheric deformation. Strength is controlled predominantly by brittle deformation at shallow depths, whereas plastic deformation becomes dominant at greater depths through its sensitivity to temperature. Incorporation of Peierls creep, in which strain rate is exponentially dependent on stress, results in the weakening of plastic strength at higher stress levels, and the transition from brittle to ductile deformation shifts to shallower depths than those calculated using conventional power-law creep. Strength in both the brittle and ductile regimes is highly sensitive to the presence of water, with the overall strength of the lithosphere decreasing markedly under wet conditions. The markedly low frictional coefficient of clay minerals results in a further decrease in brittle strength and is attributed to expansion of the brittle field. As plastic strength is influenced by lithology, a large strength contrast can occur across the crust–mantle boundary if deformation is controlled by ductile deformation. Effective elastic thickness for the terrestrial planets calculated from the rheological models indicates its close dependence on spatiotemporal variations in temperature and the presence of water. Although application of the strength models to observed large-scale surface deformational features is subject to large extrapolation and uncertainties, I emphasize the different sensitivity of these features to temperature and water, meaning that quantifying these features (e.g., by data from orbiting satellites or rovers) should help to constrain the internal structure and evolution of the terrestrial planets.
Abstract Knowledge of lithospheric strength can help to understand the internal structure and evolution of the terrestrial planets, as surface topography and gravity fields are controlled mainly by deformational features within the lithosphere. Here, strength profiles of lithosphere were calculated for each planet using a recently updated flow law and taking into account the effect of water on lithospheric deformation. Strength is controlled predominantly by brittle deformation at shallow depths, whereas plastic deformation becomes dominant at greater depths through its sensitivity to temperature. Incorporation of Peierls creep, in which strain rate is exponentially dependent on stress, results in the weakening of plastic strength at higher stress levels, and the transition from brittle to ductile deformation shifts to shallower depths than those calculated using conventional power-law creep. Strength in both the brittle and ductile regimes is highly sensitive to the presence of water, with the overall strength of the lithosphere decreasing markedly under wet conditions. The markedly low frictional coefficient of clay minerals results in a further decrease in brittle strength and is attributed to expansion of the brittle field. As plastic strength is influenced by lithology, a large strength contrast can occur across the crust–mantle boundary if deformation is controlled by ductile deformation. Effective elastic thickness for the terrestrial planets calculated from the rheological models indicates its close dependence on spatiotemporal variations in temperature and the presence of water. Although application of the strength models to observed large-scale surface deformational features is subject to large extrapolation and uncertainties, I emphasize the different sensitivity of these features to temperature and water, meaning that quantifying these features (e.g., by data from orbiting satellites or rovers) should help to constrain the internal structure and evolution of the terrestrial planets.
ArticleNumber 1
Author Katayama, Ikuo
Author_xml – sequence: 1
  givenname: Ikuo
  orcidid: 0000-0002-8664-0409
  surname: Katayama
  fullname: Katayama, Ikuo
  email: katayama@hiroshima-u.ac.jp
  organization: Department of Earth and Planetary Systems Science, Hiroshima University
BookMark eNp9kc9rFDEcxUNpobX2H-gp4Hk0vzM5SlFbKHhQzyGb-WY3S3YyJhnB_96ZHUXx0FNC8j6Px3uv0OWYR0DonpK3lPbqXRVECdkRRjpCeN937ALdMGp0J1gvLv-5X6O7Wo-ELFKhpJE36PilFRj37YBPeYBUcQ64HQA3KAVqK9ElPCU3QqvYjQOOpylF71rMY8Uhl1UcC06xHXKdDlCixws2-zYXOBPwI6d51b9GV8GlCne_z1v07eOHrw-P3fPnT08P7587L6VunecDqEEC5QYGzrzkO6WE2xmvvHO7wI0mmgdOHATF1w9wQHQwylAa-h2_RU-b75Dd0U4lnlz5abOL9vyQy9660qJPYB2XQ9CaUUKMcGxwUksKmgJjcuh7s3i92bymkr_PSyH2mOcyLvEtE1poKahii6rfVL7kWgsE62M7d9SKi8lSYteh7DaUXdq356HsirL_0D-BX4T4BtVFPO6h_E31AvULkIWphQ
CitedBy_id crossref_primary_10_1029_2021JE006952
crossref_primary_10_1007_s10853_021_06596_5
crossref_primary_10_3847_PSJ_ac562e
crossref_primary_10_1029_2021JE007058
crossref_primary_10_1007_s11356_023_30302_4
crossref_primary_10_7717_peerj_17641
crossref_primary_10_1038_s41467_025_58324_1
crossref_primary_10_1029_2022JE007460
crossref_primary_10_1016_j_icarus_2023_115594
crossref_primary_10_11728_cjss2023_03_220125010
crossref_primary_10_3389_feart_2022_988320
crossref_primary_10_1016_j_icarus_2022_115197
crossref_primary_10_1007_s11214_022_00937_9
crossref_primary_10_1029_2023JE007879
crossref_primary_10_1029_2022JE007702
crossref_primary_10_1029_2022JB026143
Cites_doi 10.1016/j.icarus.2007.08.015
10.1029/JB089iB13p11180
10.1038/nature10582
10.5026/jgeography.124.371
10.1029/2012GL054340
10.1016/j.pepi.2008.05.019
10.1029/2001GL014308
10.1029/JB086iB05p03695
10.1038/377704a0
10.1126/science.226.4671.167
10.1038/s41561-020-0539-8
10.1029/JB085iB11p06369
10.1016/j.epsl.2005.02.005
10.1029/2004JE002286
10.1126/science.1157546
10.1038/ngeo1559
10.1126/science.1148494
10.1016/j.jsg.2012.06.015
10.1029/2003GL018847
10.1029/2002JE001974
10.1029/2011JB008220
10.1080/0141861021000025829
10.1006/icar.2000.6352
10.1029/JB089iB05p03177
10.1029/2005GC001053
10.1007/BF00876528
10.1016/0012-821X(96)00154-9
10.1029/94JE00216
10.1016/0040-1951(87)90332-5
10.1016/S0031-9201(02)00037-7
10.1029/95JB01460
10.1029/2000JB900223
10.1038/35084163
10.1038/363428a0
10.1029/JB095iB07p11073
10.2113/gselements.7.3.181
10.1111/j.1365-246X.1994.tb00146.x
10.1186/s40623-018-0829-1
10.1038/srep04403
10.1146/annurev.earth.36.031207.124326
10.1007/s004100050161
10.1016/0040-1951(92)90065-E
10.1016/j.lithos.2012.10.012
10.1186/s40623-016-0593-z
10.1016/j.epsl.2010.04.035
10.1146/annurev.earth.26.1.23
10.1126/science.279.5356.1492
10.1029/2004JE002262
10.1016/S0012-821X(97)00007-1
10.1016/S0012-821X(03)00289-9
10.1016/0019-1035(87)90148-5
10.5575/geosoc.2017.0019
10.1029/94JB02770
10.1111/j.1365-246X.1979.tb02567.x
10.1093/gji/ggaa155
10.1130/0091-7613
10.1007/s11214-012-9948-3
10.1029/97JB02671
10.1029/138GM06
10.1017/CBO9780511691645
10.1016/j.icarus.2011.07.029
10.1017/CBO9780511804892
10.1126/sciadv.aav2268
10.1038/s41598-018-30174-6
10.1186/s40645-015-0063-4
10.1093/gji/ggz099
10.1186/s40645-019-0298-6
10.7312/dixo13866-011
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TG
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
KL.
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1186/s40645-020-00388-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2197-4284
EndPage 17
ExternalDocumentID oai_doaj_org_article_a35df77210094a2da5751e71e225d889
10_1186_s40645_020_00388_2
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 18H03733; 20H00200
  funderid: http://dx.doi.org/10.13039/501100001691
GroupedDBID 0R~
5VS
8FE
8FH
AAFWJ
AAJSJ
AAKKN
ABEEZ
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AEUYN
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
BCNDV
BENPR
BHPHI
BKSAR
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
IAO
IEP
IGS
ISR
ITC
KQ8
LK5
M7R
M~E
OK1
PCBAR
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
7TG
ABUWG
AZQEC
DWQXO
KL.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c557t-c3de6d5e139ed32c53b664ab9c6caabf397073f30aef634ab9eae07f96911f8b3
IEDL.DBID C24
ISSN 2197-4284
IngestDate Wed Aug 27 01:15:17 EDT 2025
Sat Jul 26 00:14:07 EDT 2025
Tue Jul 01 03:43:47 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Fri Feb 21 02:34:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Water
Terrestrial planet
Elastic thickness
Rock rheology
Strength profile
Thermal gradient
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-c3de6d5e139ed32c53b664ab9c6caabf397073f30aef634ab9eae07f96911f8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8664-0409
OpenAccessLink https://link.springer.com/10.1186/s40645-020-00388-2
PQID 2474754162
PQPubID 2034674
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_a35df77210094a2da5751e71e225d889
proquest_journals_2474754162
crossref_citationtrail_10_1186_s40645_020_00388_2
crossref_primary_10_1186_s40645_020_00388_2
springer_journals_10_1186_s40645_020_00388_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-04
PublicationDateYYYYMMDD 2021-01-04
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-04
  day: 04
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Progress in earth and planetary science
PublicationTitleAbbrev Prog Earth Planet Sci
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Hirth, Kohlstedt (CR26) 1996; 144
Johnson, Sandwell (CR28) 1994; 119
Byerlee (CR9) 1978; 116
Nimmo, Watters (CR49) 2004; 31
Reynard (CR58) 2013; 178
Katayama, Terada, Okazaki, Tanikawa (CR36) 2012; 5
CR35
Bodine, Steckler, Watt (CR5) 1981; 86
CR34
Paterson, Karato, Toriumi (CR51) 1989
CR30
Behnsen, Faulkner (CR4) 2012; 42
Hirauchi, Katayama (CR25) 2015; 124
Grott, Breuer (CR20) 2008; 193
Nimmo, McKenzie (CR48) 1998; 26
Giardini (CR16) 2020; 13
Hirth, Kohlstedt (CR27) 2003; 138
Katayama, Karato (CR33) 2008; 168
Fujie, Kodaira, Yamashita, Sato, Takahashi, Takahashi (CR15) 2013; 40
Hilairet, Reynard, Wang, Daniel, Merkel, Nishiyama, Petitgirard (CR24) 2007; 318
Petitjean, Rabinowicz, Grégoire, Chevrot (CR53) 2006; 7
Yamazaki, Karato (CR73) 2002; 131
Bürgmann, Dresen (CR7) 2008; 36
Zuber (CR75) 2001; 412
Watts, Bodine, Steckler (CR71) 1980; 85
Kohlstedt, Keppler, Rubie (CR39) 1996; 123
Watters, Schultz, Robinson, Cook (CR70) 2002; 29
Kohlstedt, Evans, Mackwell (CR38) 1995; 100
Chernak, Hirth (CR11) 2010; 296
Neumann (CR47) 2004; 109
Gueguen, Palciauskas (CR22) 1994
Phillips, Hansen (CR54) 1998; 279
Watts, Burov (CR72) 2003; 213
Pleus, Ito, Wessel, Frazer (CR56) 2020; 222
Brown, Grimm (CR6) 1997; 147
McKenzie, Jackson, Priestley (CR42) 2005; 233
Zuber, Parmentier (CR74) 1995; 377
Karato, Jung (CR31) 2003; A83
Mackwell, Zimmerman, Kohlstedt (CR40) 1998; 103
Sleep (CR64) 1994; 99
Montesi, Zuber (CR45) 2003; 108
Solomon, Head (CR65) 1990; 95
Grott (CR21) 2013; 174
Katayama, Azuma (CR32) 2017; 123
Sibson (CR63) 1992; 211
Dreibus, Wänke (CR12) 1987; 71
CR59
CR14
Tsenn, Carter (CR67) 1987; 136
Watters, Robinson, Cook (CR69) 1998; 26
CR57
Tetsuka, Katayama, Sakuma, Tamura (CR66) 2018; 70
Paterson, Wong (CR52) 2004
Hansen, Zimmerman, Kohlstedt (CR23) 2011; 116
Barnett, Nimmo, McKenzie (CR3) 2000; 146
CR50
McNutt (CR43) 1984; 89
Kirby, Kronenberg (CR37) 1984; 89
Moore, Lockner (CR46) 2007
Gregory, Vidic, Dzombak (CR18) 2011; 7
CR29
Grinspoon (CR19) 1993; 363
Rybacki, Dresen (CR60) 2000; 105
CR68
McGovern, Solomon, Smith, Zuber, Simons, Wieczorek, Phillips, Neumann, Aharonson, Head (CR41) 2004; 107
Melosh, McKinnon (CR44) 1988
Phillips (CR55) 2008; 320
Azuma, Katayama (CR1) 2017; 69
Burov, Diament (CR8) 1995; 100
CR62
Campbell, Head, Harmon, Hine (CR10) 1984; 226
CR61
Goetze, Evans (CR17) 1979; 59
Ehlmann, Mustard, Murchie, Bibring, Meunier, Fraeman, Langevin (CR13) 2011; 479
Azuma, Katayama, Nakakuki (CR2) 2014; 4
S Azuma (388_CR1) 2017; 69
DN Barnett (388_CR3) 2000; 146
DH Grinspoon (388_CR19) 1993; 363
F Nimmo (388_CR48) 1998; 26
388_CR61
388_CR62
M Grott (388_CR20) 2008; 193
I Katayama (388_CR32) 2017; 123
G Hirth (388_CR26) 1996; 144
388_CR68
A Pleus (388_CR56) 2020; 222
TR Watters (388_CR69) 1998; 26
EB Burov (388_CR8) 1995; 100
CL Johnson (388_CR28) 1994; 119
S Karato (388_CR31) 2003; A83
S Mackwell (388_CR40) 1998; 103
AB Watts (388_CR71) 1980; 85
MK McNutt (388_CR43) 1984; 89
LJ Chernak (388_CR11) 2010; 296
S Petitjean (388_CR53) 2006; 7
SH Kirby (388_CR37) 1984; 89
F Nimmo (388_CR49) 2004; 31
NH Sleep (388_CR64) 1994; 99
R Bürgmann (388_CR7) 2008; 36
N Hilairet (388_CR24) 2007; 318
LN Hansen (388_CR23) 2011; 116
K Hirauchi (388_CR25) 2015; 124
H Tetsuka (388_CR66) 2018; 70
RH Sibson (388_CR63) 1992; 211
388_CR50
J Byerlee (388_CR9) 1978; 116
D Giardini (388_CR16) 2020; 13
D Campbell (388_CR10) 1984; 226
388_CR14
K Gregory (388_CR18) 2011; 7
D Kohlstedt (388_CR38) 1995; 100
HJ Melosh (388_CR44) 1988
GA Neumann (388_CR47) 2004; 109
388_CR59
388_CR57
RJ Phillips (388_CR55) 2008; 320
DE Moore (388_CR46) 2007
MS Paterson (388_CR52) 2004
G Dreibus (388_CR12) 1987; 71
D Yamazaki (388_CR73) 2002; 131
E Rybacki (388_CR60) 2000; 105
I Katayama (388_CR36) 2012; 5
MS Paterson (388_CR51) 1989
M Grott (388_CR21) 2013; 174
DL Kohlstedt (388_CR39) 1996; 123
S Azuma (388_CR2) 2014; 4
SC Solomon (388_CR65) 1990; 95
I Katayama (388_CR33) 2008; 168
AB Watts (388_CR72) 2003; 213
PJ McGovern (388_CR41) 2004; 107
C Goetze (388_CR17) 1979; 59
388_CR29
B Reynard (388_CR58) 2013; 178
J Behnsen (388_CR4) 2012; 42
G Fujie (388_CR15) 2013; 40
J Bodine (388_CR5) 1981; 86
G Hirth (388_CR27) 2003; 138
M Zuber (388_CR74) 1995; 377
BL Ehlmann (388_CR13) 2011; 479
MC Tsenn (388_CR67) 1987; 136
LG Montesi (388_CR45) 2003; 108
RJ Phillips (388_CR54) 1998; 279
388_CR30
CD Brown (388_CR6) 1997; 147
TR Watters (388_CR70) 2002; 29
D McKenzie (388_CR42) 2005; 233
388_CR34
MT Zuber (388_CR75) 2001; 412
Y Gueguen (388_CR22) 1994
388_CR35
References_xml – volume: 193
  start-page: 503
  year: 2008
  end-page: 515
  ident: CR20
  article-title: The evolution of the Martian elastic lithosphere and implications for crustal and mantle rheology
  publication-title: Icarus
  doi: 10.1016/j.icarus.2007.08.015
– volume: 89
  start-page: 11180
  year: 1984
  end-page: 11194
  ident: CR43
  article-title: Lithospheric Flexure and Thermal Anomalies
  publication-title: J Geophys Res
  doi: 10.1029/JB089iB13p11180
– start-page: 107
  year: 1989
  end-page: 142
  ident: CR51
  article-title: The interaction of water with quartz and its influence in dislocation flow–an overview
  publication-title: Rheology of Solids and of the Earth
– ident: CR68
– volume: 479
  start-page: 53
  year: 2011
  end-page: 60
  ident: CR13
  article-title: Subsurface water and clay mineral formation during the early history of Mars
  publication-title: Nature
  doi: 10.1038/nature10582
– volume: 124
  start-page: 371
  year: 2015
  end-page: 396
  ident: CR25
  article-title: Rheological properties of serpentinite and their tectonic significance
  publication-title: J Geography
  doi: 10.5026/jgeography.124.371
– volume: 40
  start-page: 88
  year: 2013
  end-page: 93
  ident: CR15
  article-title: Systematic changes in the incoming plate structure at the Kuril trench
  publication-title: Geophys Res Lett
  doi: 10.1029/2012GL054340
– ident: CR35
– ident: CR29
– ident: CR61
– volume: 168
  start-page: 125
  year: 2008
  end-page: 133
  ident: CR33
  article-title: Low-temperature, high-stress deformation of olivine under water-saturated condition
  publication-title: Phys Earth Planet Inter
  doi: 10.1016/j.pepi.2008.05.019
– volume: 29
  start-page: 1542
  year: 2002
  ident: CR70
  article-title: The mechanical and thermal structure of Mercury's early lithosphere
  publication-title: Geophys Res Lett
  doi: 10.1029/2001GL014308
– volume: 86
  start-page: 3695
  year: 1981
  end-page: 3707
  ident: CR5
  article-title: Observations of flexure and the rheology of the oceanic lithosphere
  publication-title: J Geophys Res
  doi: 10.1029/JB086iB05p03695
– volume: 377
  start-page: 704
  year: 1995
  end-page: 707
  ident: CR74
  article-title: Formation of fold-and-thrust belts on Venus by thick-skinned deformation
  publication-title: Nature
  doi: 10.1038/377704a0
– volume: 226
  start-page: 167
  year: 1984
  end-page: 170
  ident: CR10
  article-title: Venus: Volcanism and rift formation in Beta Regio
  publication-title: Science
  doi: 10.1126/science.226.4671.167
– volume: 13
  start-page: 205
  year: 2020
  end-page: 212
  ident: CR16
  article-title: The seismicity of Mars
  publication-title: Nature Geoscience
  doi: 10.1038/s41561-020-0539-8
– volume: 85
  start-page: 5369
  year: 1980
  end-page: 6376
  ident: CR71
  article-title: Observations of flexure and the state of stress in the oceanic lithosphere
  publication-title: J Geophys Res
  doi: 10.1029/JB085iB11p06369
– volume: 233
  start-page: 337
  year: 2005
  end-page: 349
  ident: CR42
  article-title: Thermal structure of oceanic and continental lithosphere
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/j.epsl.2005.02.005
– volume: 107
  start-page: 5418
  year: 2004
  ident: CR41
  article-title: Correction to “Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution”
  publication-title: J Geophys Res
  doi: 10.1029/2004JE002286
– volume: 320
  start-page: 1182
  year: 2008
  end-page: 1185
  ident: CR55
  article-title: Mars north polar deposits: Stratigraphy, age, and geodynamical response
  publication-title: Science
  doi: 10.1126/science.1157546
– volume: 5
  start-page: 731
  year: 2012
  end-page: 734
  ident: CR36
  article-title: Episodic tremor and slow slip potentially linked to permeability contrasts at the Moho
  publication-title: Nature Geo
  doi: 10.1038/ngeo1559
– ident: CR50
– volume: 318
  start-page: 1910
  year: 2007
  end-page: 1913
  ident: CR24
  article-title: High-pressure creep of serpentine, interseismic deformation, and initiation of subduction
  publication-title: Science
  doi: 10.1126/science.1148494
– volume: 42
  start-page: 49
  year: 2012
  end-page: 61
  ident: CR4
  article-title: The effect of mineralogy and effective normal stress on frictional strength of sheet silicates
  publication-title: J Struct Geol
  doi: 10.1016/j.jsg.2012.06.015
– volume: 31
  start-page: L02701
  year: 2004
  ident: CR49
  article-title: Depth of faulting on Mercury: implications for heat flux and crustal and effective elastic thickness
  publication-title: Geophys Res Lett
  doi: 10.1029/2003GL018847
– volume: 108
  start-page: 5048
  year: 2003
  ident: CR45
  article-title: Clues to the lithospheric structure of Mars from wrinkle ridge sets and localization instability
  publication-title: J Geophys Res
  doi: 10.1029/2002JE001974
– volume: 116
  start-page: B08201
  year: 2011
  ident: CR23
  article-title: Grain-boundary sliding in San Carlos olivine: Flow-law parameters and crystallographic-preferred orientation
  publication-title: J Geophys Res
  doi: 10.1029/2011JB008220
– volume: A83
  start-page: 401
  year: 2003
  end-page: 414
  ident: CR31
  article-title: Effects of pressure on high-temperature dislocation creep in olivine
  publication-title: Phil Mag
  doi: 10.1080/0141861021000025829
– ident: CR57
– volume: 146
  start-page: 404
  year: 2000
  end-page: 419
  ident: CR3
  article-title: Elastic thickness estimates for Venus using line of sight accelerations from magellan cycle 5
  publication-title: Icarus
  doi: 10.1006/icar.2000.6352
– volume: 89
  start-page: 3177
  year: 1984
  end-page: 3192
  ident: CR37
  article-title: Deformation of clinopyroxenite: evidence for a transition in flow mechanisms and semibrittle behavior
  publication-title: J Geophys Res
  doi: 10.1029/JB089iB05p03177
– start-page: 317
  year: 2007
  end-page: 345
  ident: CR46
  publication-title: Friction of the smectite clay montmorillonite. The Seismogenic Zone of Subduction Thrust Faults, edited by Dixon T, Moore C
– volume: 7
  start-page: Q03021
  year: 2006
  ident: CR53
  article-title: Differences between Archean and Proterozoic lithospheres: Assessment of the possible major role of thermal conductivity
  publication-title: Geochem Geophys Geosyst
  doi: 10.1029/2005GC001053
– volume: 116
  start-page: 615
  year: 1978
  end-page: 626
  ident: CR9
  article-title: Friction of rocks
  publication-title: Pure Apply Geophys
  doi: 10.1007/BF00876528
– volume: 144
  start-page: 93
  year: 1996
  end-page: 108
  ident: CR26
  article-title: Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/0012-821X(96)00154-9
– volume: 99
  start-page: 5639
  year: 1994
  end-page: 5655
  ident: CR64
  article-title: Martian plate tectonics
  publication-title: J Geophys Res
  doi: 10.1029/94JE00216
– volume: 136
  start-page: 1
  year: 1987
  end-page: 26
  ident: CR67
  article-title: Upper limits of power law creep in rocks
  publication-title: Tectonophys
  doi: 10.1016/0040-1951(87)90332-5
– volume: 131
  start-page: 251
  year: 2002
  end-page: 267
  ident: CR73
  article-title: Fabric development in (Mg,Fe)O during large strain, shear deformation: Implications for seismic anisotropy in Earth’s lower mantle
  publication-title: Phys Earth Planet Int
  doi: 10.1016/S0031-9201(02)00037-7
– start-page: 296
  year: 1994
  ident: CR22
  publication-title: Introduction to the Physics of Rocks
– volume: 100
  start-page: 17587
  year: 1995
  end-page: 17602
  ident: CR38
  article-title: Strength of the lithosphere: Constraints imposed by laboratory experiments
  publication-title: J Geophys Res
  doi: 10.1029/95JB01460
– volume: 105
  start-page: 26017
  year: 2000
  end-page: 26036
  ident: CR60
  article-title: Dislocation and diffusion creep of synthetic anorthite aggregates
  publication-title: J Geophys Res
  doi: 10.1029/2000JB900223
– volume: 412
  start-page: 220
  year: 2001
  end-page: 227
  ident: CR75
  article-title: The crust and mantle of Mars
  publication-title: Nature
  doi: 10.1038/35084163
– volume: 363
  start-page: 428
  year: 1993
  end-page: 431
  ident: CR19
  article-title: Implications of the high deuterium-to-hydrogen ratio for the sources of water in Venus’ atmosphere
  publication-title: Nature
  doi: 10.1038/363428a0
– volume: 95
  start-page: 11073
  year: 1990
  end-page: 11083
  ident: CR65
  article-title: Heterogeneities in the thickness of the elastic lithosphere of Mars: Constraints on heat flow and internal dynamics
  publication-title: J Geophys Res
  doi: 10.1029/JB095iB07p11073
– volume: 7
  start-page: 181
  year: 2011
  end-page: 186
  ident: CR18
  article-title: Water management challenges associated with the production of shale gas by hydraulic fracturing
  publication-title: Elements
  doi: 10.2113/gselements.7.3.181
– ident: CR14
– start-page: 347
  year: 2004
  ident: CR52
  publication-title: Experimental Rock Deformation, The Brittle Field
– ident: CR30
– volume: 119
  start-page: 627
  year: 1994
  end-page: 647
  ident: CR28
  article-title: Lithospheric flexure on Venus
  publication-title: Geophys J Inter
  doi: 10.1111/j.1365-246X.1994.tb00146.x
– volume: 70
  start-page: 56
  year: 2018
  ident: CR66
  article-title: Effects of humidity and interlayer cations on the frictional strength of montmorillonite
  publication-title: Earth Planet Space
  doi: 10.1186/s40623-018-0829-1
– volume: 4
  start-page: 4403
  year: 2014
  ident: CR2
  article-title: Rheological decoupling at the Moho and implication to Venusian tectonics
  publication-title: Sci Rep
  doi: 10.1038/srep04403
– volume: 36
  start-page: 531
  year: 2008
  end-page: 677
  ident: CR7
  article-title: Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations
  publication-title: Annu Rev Earth Planet Sci
  doi: 10.1146/annurev.earth.36.031207.124326
– volume: 123
  start-page: 345
  year: 1996
  end-page: 357
  ident: CR39
  article-title: Solubility of water in the α, β and γ phases of (Mg,Fe) SiO
  publication-title: Contrib Mineral Petrol
  doi: 10.1007/s004100050161
– volume: 211
  start-page: 283
  year: 1992
  end-page: 293
  ident: CR63
  article-title: Implications of fault-valve behavior for rupture nucleation and recurrence
  publication-title: Tectonophys
  doi: 10.1016/0040-1951(92)90065-E
– volume: 178
  start-page: 171
  year: 2013
  end-page: 185
  ident: CR58
  article-title: Serpentine in active subduction zones
  publication-title: Lithos
  doi: 10.1016/j.lithos.2012.10.012
– volume: 69
  start-page: 8
  year: 2017
  ident: CR1
  article-title: Evolution of the rheological structure of Mars
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-016-0593-z
– volume: 296
  start-page: 23
  year: 2010
  end-page: 33
  ident: CR11
  article-title: Deformation of antigorite serpentinite at high temperature and pressure
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/j.epsl.2010.04.035
– volume: 26
  start-page: 23
  year: 1998
  end-page: 51
  ident: CR48
  article-title: Volcanism and tectonics on Venus
  publication-title: Annu Rev Earth Planet Sci
  doi: 10.1146/annurev.earth.26.1.23
– volume: 279
  start-page: 1492
  year: 1998
  end-page: 1497
  ident: CR54
  article-title: Geological evolution of Venus: Rises, plains, plumes, and plateaus
  publication-title: Science
  doi: 10.1126/science.279.5356.1492
– volume: 109
  start-page: E08002
  year: 2004
  ident: CR47
  article-title: Crustal structure of Mars from gravity and topography
  publication-title: J Geophys Res
  doi: 10.1029/2004JE002262
– volume: 147
  start-page: 1
  year: 1997
  end-page: 10
  ident: CR6
  article-title: Tessera deformation and contemporaneous thermal state of the plateau highlands, Venus
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/S0012-821X(97)00007-1
– volume: 213
  start-page: 113
  year: 2003
  end-page: 131
  ident: CR72
  article-title: Lithospheric strength and its relationship to the elastic and seismogenic layer thickness
  publication-title: Tectonophys
  doi: 10.1016/S0012-821X(03)00289-9
– volume: 71
  start-page: 225
  year: 1987
  end-page: 240
  ident: CR12
  article-title: Volatiles on Earth and Mars–A comparison
  publication-title: Icarus
  doi: 10.1016/0019-1035(87)90148-5
– start-page: 374
  year: 1988
  end-page: 400
  ident: CR44
  publication-title: The tectonics of Mercury. Mercury, edited by Vilas F, Chapman CR, Matthews MS
– volume: 123
  start-page: 365
  year: 2017
  end-page: 377
  ident: CR32
  article-title: Effect of water on rock deformation and rheological structures of continental and oceanic plates
  publication-title: J Geol Soc Japan
  doi: 10.5575/geosoc.2017.0019
– volume: 100
  start-page: 3905
  year: 1995
  end-page: 3927
  ident: CR8
  article-title: The effective elastic thickness (Te) of continental lithosphere: What does it really mean?
  publication-title: J Geophys Res
  doi: 10.1029/94JB02770
– ident: CR34
– volume: 59
  start-page: 463
  year: 1979
  end-page: 478
  ident: CR17
  article-title: Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics
  publication-title: Geophys J R
  doi: 10.1111/j.1365-246X.1979.tb02567.x
– ident: CR59
– ident: CR62
– volume: 222
  start-page: 207
  year: 2020
  end-page: 224
  ident: CR56
  article-title: Rheology and thermal structure of the lithosphere beneath the Hawaiian Ridge inferred from gravity data and models of plate flexure
  publication-title: Geophys J Inter
  doi: 10.1093/gji/ggaa155
– volume: 26
  start-page: 991
  year: 1998
  end-page: 994
  ident: CR69
  article-title: Topography of lobate scarps on Mercury: new constraints on the planet’s contraction
  publication-title: Geology
  doi: 10.1130/0091-7613
– volume: 174
  start-page: 49
  year: 2013
  end-page: 111
  ident: CR21
  article-title: Long-term evolution of the Martian crust-mantle system
  publication-title: Space Sci Rev
  doi: 10.1007/s11214-012-9948-3
– volume: 103
  start-page: 975
  year: 1998
  end-page: 984
  ident: CR40
  article-title: High-temperature deformation of dry diabase with application to tectonics on Venus
  publication-title: J Geophys Res
  doi: 10.1029/97JB02671
– volume: 138
  start-page: 83
  year: 2003
  end-page: 105
  ident: CR27
  article-title: Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists
  publication-title: Geophys Monogr
  doi: 10.1029/138GM06
– volume: 5
  start-page: 731
  year: 2012
  ident: 388_CR36
  publication-title: Nature Geo
  doi: 10.1038/ngeo1559
– start-page: 107
  volume-title: Rheology of Solids and of the Earth
  year: 1989
  ident: 388_CR51
– volume: 412
  start-page: 220
  year: 2001
  ident: 388_CR75
  publication-title: Nature
  doi: 10.1038/35084163
– volume: 42
  start-page: 49
  year: 2012
  ident: 388_CR4
  publication-title: J Struct Geol
  doi: 10.1016/j.jsg.2012.06.015
– volume: 377
  start-page: 704
  year: 1995
  ident: 388_CR74
  publication-title: Nature
  doi: 10.1038/377704a0
– volume: 99
  start-page: 5639
  year: 1994
  ident: 388_CR64
  publication-title: J Geophys Res
  doi: 10.1029/94JE00216
– volume: 29
  start-page: 1542
  year: 2002
  ident: 388_CR70
  publication-title: Geophys Res Lett
  doi: 10.1029/2001GL014308
– volume: 233
  start-page: 337
  year: 2005
  ident: 388_CR42
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/j.epsl.2005.02.005
– volume: 168
  start-page: 125
  year: 2008
  ident: 388_CR33
  publication-title: Phys Earth Planet Inter
  doi: 10.1016/j.pepi.2008.05.019
– volume: 279
  start-page: 1492
  year: 1998
  ident: 388_CR54
  publication-title: Science
  doi: 10.1126/science.279.5356.1492
– volume: 71
  start-page: 225
  year: 1987
  ident: 388_CR12
  publication-title: Icarus
  doi: 10.1016/0019-1035(87)90148-5
– volume: 89
  start-page: 3177
  year: 1984
  ident: 388_CR37
  publication-title: J Geophys Res
  doi: 10.1029/JB089iB05p03177
– volume: 123
  start-page: 365
  year: 2017
  ident: 388_CR32
  publication-title: J Geol Soc Japan
  doi: 10.5575/geosoc.2017.0019
– ident: 388_CR68
  doi: 10.1017/CBO9780511691645
– volume: 226
  start-page: 167
  year: 1984
  ident: 388_CR10
  publication-title: Science
  doi: 10.1126/science.226.4671.167
– volume: 479
  start-page: 53
  year: 2011
  ident: 388_CR13
  publication-title: Nature
  doi: 10.1038/nature10582
– volume: 116
  start-page: B08201
  year: 2011
  ident: 388_CR23
  publication-title: J Geophys Res
  doi: 10.1029/2011JB008220
– volume: 144
  start-page: 93
  year: 1996
  ident: 388_CR26
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/0012-821X(96)00154-9
– volume: 107
  start-page: 5418
  year: 2004
  ident: 388_CR41
  publication-title: J Geophys Res
  doi: 10.1029/2004JE002286
– volume: 26
  start-page: 991
  year: 1998
  ident: 388_CR69
  publication-title: Geology
  doi: 10.1130/0091-7613
– volume: 100
  start-page: 17587
  year: 1995
  ident: 388_CR38
  publication-title: J Geophys Res
  doi: 10.1029/95JB01460
– ident: 388_CR59
  doi: 10.1016/j.icarus.2011.07.029
– ident: 388_CR14
– volume: 147
  start-page: 1
  year: 1997
  ident: 388_CR6
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/S0012-821X(97)00007-1
– volume: 100
  start-page: 3905
  year: 1995
  ident: 388_CR8
  publication-title: J Geophys Res
  doi: 10.1029/94JB02770
– volume: 89
  start-page: 11180
  year: 1984
  ident: 388_CR43
  publication-title: J Geophys Res
  doi: 10.1029/JB089iB13p11180
– ident: 388_CR62
– volume: 131
  start-page: 251
  year: 2002
  ident: 388_CR73
  publication-title: Phys Earth Planet Int
  doi: 10.1016/S0031-9201(02)00037-7
– volume: 320
  start-page: 1182
  year: 2008
  ident: 388_CR55
  publication-title: Science
  doi: 10.1126/science.1157546
– ident: 388_CR29
  doi: 10.1017/CBO9780511804892
– ident: 388_CR61
  doi: 10.1126/sciadv.aav2268
– volume: 318
  start-page: 1910
  year: 2007
  ident: 388_CR24
  publication-title: Science
  doi: 10.1126/science.1148494
– volume: 105
  start-page: 26017
  year: 2000
  ident: 388_CR60
  publication-title: J Geophys Res
  doi: 10.1029/2000JB900223
– volume: 123
  start-page: 345
  year: 1996
  ident: 388_CR39
  publication-title: Contrib Mineral Petrol
  doi: 10.1007/s004100050161
– volume: 119
  start-page: 627
  year: 1994
  ident: 388_CR28
  publication-title: Geophys J Inter
  doi: 10.1111/j.1365-246X.1994.tb00146.x
– volume: 40
  start-page: 88
  year: 2013
  ident: 388_CR15
  publication-title: Geophys Res Lett
  doi: 10.1029/2012GL054340
– volume: 178
  start-page: 171
  year: 2013
  ident: 388_CR58
  publication-title: Lithos
  doi: 10.1016/j.lithos.2012.10.012
– ident: 388_CR30
  doi: 10.1038/s41598-018-30174-6
– volume: 109
  start-page: E08002
  year: 2004
  ident: 388_CR47
  publication-title: J Geophys Res
  doi: 10.1029/2004JE002262
– ident: 388_CR34
  doi: 10.1186/s40645-015-0063-4
– volume: 138
  start-page: 83
  year: 2003
  ident: 388_CR27
  publication-title: Geophys Monogr
  doi: 10.1029/138GM06
– volume: 95
  start-page: 11073
  year: 1990
  ident: 388_CR65
  publication-title: J Geophys Res
  doi: 10.1029/JB095iB07p11073
– volume: 193
  start-page: 503
  year: 2008
  ident: 388_CR20
  publication-title: Icarus
  doi: 10.1016/j.icarus.2007.08.015
– volume: 13
  start-page: 205
  year: 2020
  ident: 388_CR16
  publication-title: Nature Geoscience
  doi: 10.1038/s41561-020-0539-8
– volume: 136
  start-page: 1
  year: 1987
  ident: 388_CR67
  publication-title: Tectonophys
  doi: 10.1016/0040-1951(87)90332-5
– volume: 36
  start-page: 531
  year: 2008
  ident: 388_CR7
  publication-title: Annu Rev Earth Planet Sci
  doi: 10.1146/annurev.earth.36.031207.124326
– volume: 146
  start-page: 404
  year: 2000
  ident: 388_CR3
  publication-title: Icarus
  doi: 10.1006/icar.2000.6352
– volume: 296
  start-page: 23
  year: 2010
  ident: 388_CR11
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/j.epsl.2010.04.035
– volume: 211
  start-page: 283
  year: 1992
  ident: 388_CR63
  publication-title: Tectonophys
  doi: 10.1016/0040-1951(92)90065-E
– volume: 213
  start-page: 113
  year: 2003
  ident: 388_CR72
  publication-title: Tectonophys
  doi: 10.1016/S0012-821X(03)00289-9
– start-page: 347
  volume-title: Experimental Rock Deformation, The Brittle Field
  year: 2004
  ident: 388_CR52
– volume: 85
  start-page: 5369
  year: 1980
  ident: 388_CR71
  publication-title: J Geophys Res
  doi: 10.1029/JB085iB11p06369
– ident: 388_CR57
– volume: 70
  start-page: 56
  year: 2018
  ident: 388_CR66
  publication-title: Earth Planet Space
  doi: 10.1186/s40623-018-0829-1
– volume: 4
  start-page: 4403
  year: 2014
  ident: 388_CR2
  publication-title: Sci Rep
  doi: 10.1038/srep04403
– start-page: 296
  volume-title: Introduction to the Physics of Rocks
  year: 1994
  ident: 388_CR22
– volume: 116
  start-page: 615
  year: 1978
  ident: 388_CR9
  publication-title: Pure Apply Geophys
  doi: 10.1007/BF00876528
– volume: 7
  start-page: 181
  year: 2011
  ident: 388_CR18
  publication-title: Elements
  doi: 10.2113/gselements.7.3.181
– volume: 108
  start-page: 5048
  year: 2003
  ident: 388_CR45
  publication-title: J Geophys Res
  doi: 10.1029/2002JE001974
– volume: 103
  start-page: 975
  year: 1998
  ident: 388_CR40
  publication-title: J Geophys Res
  doi: 10.1029/97JB02671
– ident: 388_CR50
  doi: 10.1093/gji/ggz099
– volume: 31
  start-page: L02701
  year: 2004
  ident: 388_CR49
  publication-title: Geophys Res Lett
  doi: 10.1029/2003GL018847
– volume: 174
  start-page: 49
  year: 2013
  ident: 388_CR21
  publication-title: Space Sci Rev
  doi: 10.1007/s11214-012-9948-3
– volume: 59
  start-page: 463
  year: 1979
  ident: 388_CR17
  publication-title: Geophys J R
  doi: 10.1111/j.1365-246X.1979.tb02567.x
– volume: 363
  start-page: 428
  year: 1993
  ident: 388_CR19
  publication-title: Nature
  doi: 10.1038/363428a0
– volume: 26
  start-page: 23
  year: 1998
  ident: 388_CR48
  publication-title: Annu Rev Earth Planet Sci
  doi: 10.1146/annurev.earth.26.1.23
– volume: 86
  start-page: 3695
  year: 1981
  ident: 388_CR5
  publication-title: J Geophys Res
  doi: 10.1029/JB086iB05p03695
– volume: 124
  start-page: 371
  year: 2015
  ident: 388_CR25
  publication-title: J Geography
  doi: 10.5026/jgeography.124.371
– volume: 69
  start-page: 8
  year: 2017
  ident: 388_CR1
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-016-0593-z
– ident: 388_CR35
  doi: 10.1186/s40645-019-0298-6
– start-page: 374
  volume-title: The tectonics of Mercury. Mercury, edited by Vilas F, Chapman CR, Matthews MS
  year: 1988
  ident: 388_CR44
– volume: 7
  start-page: Q03021
  year: 2006
  ident: 388_CR53
  publication-title: Geochem Geophys Geosyst
  doi: 10.1029/2005GC001053
– volume: A83
  start-page: 401
  year: 2003
  ident: 388_CR31
  publication-title: Phil Mag
  doi: 10.1080/0141861021000025829
– volume: 222
  start-page: 207
  year: 2020
  ident: 388_CR56
  publication-title: Geophys J Inter
  doi: 10.1093/gji/ggaa155
– start-page: 317
  volume-title: Friction of the smectite clay montmorillonite. The Seismogenic Zone of Subduction Thrust Faults, edited by Dixon T, Moore C
  year: 2007
  ident: 388_CR46
  doi: 10.7312/dixo13866-011
SSID ssj0002046595
Score 2.2450905
SecondaryResourceType review_article
Snippet Knowledge of lithospheric strength can help to understand the internal structure and evolution of the terrestrial planets, as surface topography and gravity...
Abstract Knowledge of lithospheric strength can help to understand the internal structure and evolution of the terrestrial planets, as surface topography and...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 4. Solid earth sciences
Atmospheric Sciences
Biogeosciences
Clay minerals
Earth and Environmental Science
Earth Sciences
Elastic thickness
Evolution
Geophysics/Geodesy
Gravitational fields
Hydrogeology
Lithology
Lithosphere
Planetology
Planets
Plastics
Review
Rock rheology
Strength profile
Temperature variations
Terrestrial environments
Terrestrial planet
Terrestrial planets
Thermal gradient
Water
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA4yEHwRf-J0Sh5807KuTdLuUcU5BH1ysLeQpInbkG7YKvjfe5e2cxPUF1-bhIa7S_Jd7vIdIedcKJ0Y3g-sv7qJIhcoI0yAL34seNBhovG988OjGI7Y_ZiPV0p9YU5YRQ9cCa6rYp45gIA9zIFTUaYwUGCTngVDzNLUP92DM2_FmZr58BpDorzmlUwqugVDZrYAvSWMhoF5rJ1EnrB_DWV-C4z682awQ7ZroEivqgnukg2b75HNO1-I92OfzDCcnD-XE-pr2RR07ihgOQpiwmobaFZ0gYmsZUFVntHpSuY4BaBKfYSAAgifzAukFpgaWnHJvr1aP8K-11Z5QEaD26ebYVDXTQgM50kZmDizIuMWwJ3N4sjwWAvBlO6DEpTSDiAILGwXh8o6EWODVTZMXF_AzudSHR-SVj7P7RGh4O04G-mQmZSxLFZK9bTQRiewRYbM8TbpNTKUpiYVx9oWL9I7F6mQldwlyF16ucuoTS6WYxYVpcavva9RNcueSIftP4CRyNpI5F9G0iadRrGyXqOFjBi4UhwAKfzjslH2V_PPUzr-jymdkK0I02PwNod1SAs0bE8B35T6zJvyJ0MH9U8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSyUxEA6jMuBFdGbE50YO3pzGfukk3X0SFR0ZUEQUvIWsLkj3034K_nur8tLPBfTaWWiqKpWvllQRsiWkNqUVdeaj64axkGkrbYYvfjxY0Hlp8L3zyak8vuT_r8RVcrh1Ka2y14lRUbvWoo98h3EAvgLgA9sdPWTYNQqjq6mFxgyZAxVcgfE1t394enY-9bIwMP9ELfrXMpXc6ThWaMvQasKoGIjJhxspFu7_gDY_BUjjvXO0SBYSYKR7Ew4vkR---UV-_osNeV9-kzsMKzfX4xsae9p0tA0UMB0FcmHXDRQvOsKE1nFHdePo7bsMcgqAlcZIAQUwftN2WGLg1tJJTdmnRx9X-OcknX_I5dHhxcFxlvonZFaIcpzZwnnphAeQ513BrCiMlFybGpihtQkAReCAhyLXPsgCB7z2eRlqCRowVKZYJrNN2_gVQsHqCZ6ZnNuKc1dorYdGGmtKUJU5D2JAhj0NlU3FxbHHxb2KRkYl1YTuCuiuIt0VG5Dt6ZrRpLTGt7P3kTXTmVgWO35oH69VOmVKF8IFsBeGmDCpmdMYVfLl0IPWclVVD8h6z1iVzmqn3iRrQP72zH4b_vqXVr_fbY3MM0yAQX8NXyezwDu_AQhmbDaTmL4Cj67vOg
  priority: 102
  providerName: ProQuest
Title Strength models of the terrestrial planets and implications for their lithospheric structure and evolution
URI https://link.springer.com/article/10.1186/s40645-020-00388-2
https://www.proquest.com/docview/2474754162
https://doaj.org/article/a35df77210094a2da5751e71e225d889
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46EXwRrzidIw--abFrk7R73IYXBoqog72FJE3chnRip-C_95ysnRdU8KWFJqHlXNLv5NwIOeJC6cTwdmD90U0UuUAZYQLM-LFgQYeJxnznq2txOWD9IR-WSWFFFe1euST9Tu3VOhWnBcPSagGaO-jOAv4ukxUOtjvKda_McZh41xrDInlVhsyPS7_8hXyx_i8I85tT1P9rzjfIegkSaWfO1U2yZPMtsnrhm_C-bZMJupLzh9mI-j42BZ06CjiOAomw0waKFH3CINZZQVWe0fGnqHEKIJV67wAFAD6aFlhWYGzovI7sy7P1K-xrKZE7ZHB-dt-7DMqeCYHhPJkFJs6syLgFYGezODI81kIwpdvAAKW0A_gBSu3iUFknYhywyoaJawvY9Vyq411Sy6e53SMULB1nIx0ykzKWxUqplhba6AS2x5A5XietiobSlAXFsa_Fo_SGRSrknO4S6C493WVUJ8eLNU_zchp_zu4iaxYzsRS2fzB9fpClZkkV88yBjdDCIEkVZQo9STZpWdipsjRt10mjYqws9bOQEQMzigMYhXecVMz-GP79k_b_N_2ArEUYBINnNqxBasBLewgoZqabZKXT6d_14d49u765bXohxqvoNf3JwDvKue-C
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE-xUMAHOEHUrGM7yQEhCi1b2q4QaqXejO3YbRFKlmYB9U_xG5lxki1Forde49iyZsbjbzwvgOdSGZs7WSY-Pt1wHhLjlEso48ejBZ3mlvKd92ZqeiA-HsrDFfg95MJQWOWgE6OirhpHb-TrXCDwlQgf-Jv594S6RpF3dWih0YnFjj_7hSZb-3r7PfL3Bedbm_vvpknfVSBxUuaLxGWVV5X0CH18lXEnM6uUMLbELRpjA17QKPYhS40PKqMBb3yah1KhXgiFzXDda7AqMjRlRrC6sTn79Hn5qsPR3JSlHLJzCrXeCqoIl5CVRl44FMsLN2BsFHAB3f7jkI333NZtuNUDVPa2k6g7sOLru3D9Q2wAfHYPvpIbuz5aHLPYQ6dlTWCIIRmyh7p8kDizOQXQLlpm6oqd_BWxzhAgs-iZYAj-j5uWShqcONbVsP1x6uMM_7M_Dffh4Eoo-wBGdVP7h8DQygqe21S4QogqM8ZMrLLO5qiaUxHkGCYDDbXri5lTT41vOho1hdId3TXSXUe6az6Gl8s5866Ux6V_bxBrln9SGe74oTk90v2p1iaTVUD7ZEIBmoZXhrxYPp941JJVUZRjWBsYq3vd0OpzSR7Dq4HZ58P_39Kjy1d7Bjem-3u7end7tvMYbnIKvqG3IrEGI-Sjf4LoaWGf9iLL4MtVn5I_Ybwt4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcqvJStxTwAU4QbdaJneSAEH0sLYVVhajUm7Eduy2qkqXZgvrX-HXMOMmWItFbr3FsWfPyfJ7xDMBLIbXJrCgiF65uOPeRttJG9OLHIYKOM0PvnT9P5e5h-vFIHC3B7_4tDKVV9jYxGOqytnRHPuIpOr4C3Qc-8l1axMH25N3sR0QdpCjS2rfTaEVk313-QvjWvN3bRl6_4nyy83VrN-o6DERWiGwe2aR0shQO3SBXJtyKxEiZalPgdrU2Hg9rVAGfxNp5mdCA0y7OfCHRRvjcJLjuHVjOEBXFA1je3JkefFnc8HCEnqIQ_UudXI6alKrDRYTYKCKHInrtNAxNA655uv8EZ8OZN1mFlc5ZZe9b6XoAS656CHc_hGbAl4_gO4W0q-P5CQv9dBpWe4b-JENWUccPEm02o2TaecN0VbLTv7LXGTrLLEQpGAKBk7qh8ganlrX1bC_OXZjhfnaa8RgOb4WyT2BQ1ZVbA4aIyztu4tTmaVomWuuxkcaaDM10nHoxhHFPQ2W7wubUX-NMBYCTS9XSXSHdVaC74kN4vZgza8t63Pj3JrFm8SeV5A4f6vNj1Wm40okoPWKVMSVral5qimi5bOzQYpZ5Xgxho2es6uxEo66keghvemZfDf9_S-s3r_YC7qF2qE970_2ncJ9THg5dG6UbMEA2umfoSM3N805iGXy7bSX5A0bxMhU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strength+models+of+the+terrestrial+planets+and+implications+for+their+lithospheric+structure+and+evolution&rft.jtitle=Progress+in+earth+and+planetary+science&rft.au=Katayama%2C+Ikuo&rft.date=2021-01-04&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2197-4284&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs40645-020-00388-2&rft.externalDocID=10_1186_s40645_020_00388_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-4284&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-4284&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-4284&client=summon