Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells
Highlights A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber is described. A promising efficiency of 13.82% was obtained based on the formamidinium tin iodide (FASnI 3 ) perovskite solar cel...
Saved in:
Published in | Nano-micro letters Vol. 14; no. 1; pp. 99 - 14 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
08.04.2022
Springer Nature B.V Springer Singapore SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber is described.
A promising efficiency of 13.82% was obtained based on the formamidinium tin iodide (FASnI
3
) perovskite solar cells with a vertical Sn
2+
gradient and an enhanced electric field.
The solar cell with a heterogeneous FASnI
3
absorber is ultrastable, maintaining over 13% efficiency after operation under 1-sun illumination for 1,000 h in air.
Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI
3
) perovskite absorber with a vertical Sn
2+
gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn
2+
content from the bottom to the top in this heterogeneous FASnI
3
film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn
2+
-gradient FASnI
3
absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h. |
---|---|
AbstractList | A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber is described.
A promising efficiency of 13.82% was obtained based on the formamidinium tin iodide (FASnI
3
) perovskite solar cells with a vertical Sn
2+
gradient and an enhanced electric field.
The solar cell with a heterogeneous FASnI
3
absorber is ultrastable, maintaining over 13% efficiency after operation under 1-sun illumination for 1,000 h in air.
Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI
3
) perovskite absorber with a vertical Sn
2+
gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn
2+
content from the bottom to the top in this heterogeneous FASnI
3
film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn
2+
-gradient FASnI
3
absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h. Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI3) perovskite absorber with a vertical Sn2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn2+ content from the bottom to the top in this heterogeneous FASnI3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn2+-gradient FASnI3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h.Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI3) perovskite absorber with a vertical Sn2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn2+ content from the bottom to the top in this heterogeneous FASnI3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn2+-gradient FASnI3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h. HighlightsA novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber is described.A promising efficiency of 13.82% was obtained based on the formamidinium tin iodide (FASnI3) perovskite solar cells with a vertical Sn2+ gradient and an enhanced electric field.The solar cell with a heterogeneous FASnI3 absorber is ultrastable, maintaining over 13% efficiency after operation under 1-sun illumination for 1,000 h in air.Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI3) perovskite absorber with a vertical Sn2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn2+ content from the bottom to the top in this heterogeneous FASnI3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn2+-gradient FASnI3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h. Abstract Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI3) perovskite absorber with a vertical Sn2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn2+ content from the bottom to the top in this heterogeneous FASnI3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn2+-gradient FASnI3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h. Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI 3 ) perovskite absorber with a vertical Sn 2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn 2+ content from the bottom to the top in this heterogeneous FASnI 3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn 2+ -gradient FASnI 3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h. Highlights A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber is described. A promising efficiency of 13.82% was obtained based on the formamidinium tin iodide (FASnI 3 ) perovskite solar cells with a vertical Sn 2+ gradient and an enhanced electric field. The solar cell with a heterogeneous FASnI 3 absorber is ultrastable, maintaining over 13% efficiency after operation under 1-sun illumination for 1,000 h in air. Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI 3 ) perovskite absorber with a vertical Sn 2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn 2+ content from the bottom to the top in this heterogeneous FASnI 3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn 2+ -gradient FASnI 3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h. |
ArticleNumber | 99 |
Author | Segawa, Hiroshi Wu, Tianhao Han, Liyuan Ono, Luis K. Qi, Yabing Luo, Xinhui Tong, Guoqing Liu, Xiao Zhang, Yiqiang |
Author_xml | – sequence: 1 givenname: Tianhao surname: Wu fullname: Wu, Tianhao organization: State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST) – sequence: 2 givenname: Xiao surname: Liu fullname: Liu, Xiao email: liu.xiao@mail.u-tokyo.ac.jp organization: Special Division of Environmental and Energy Science, Komaba Organization for Educational Excellence (KOMEX), College of Arts and Sciences, University of Tokyo – sequence: 3 givenname: Xinhui surname: Luo fullname: Luo, Xinhui organization: State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University – sequence: 4 givenname: Hiroshi surname: Segawa fullname: Segawa, Hiroshi organization: Special Division of Environmental and Energy Science, Komaba Organization for Educational Excellence (KOMEX), College of Arts and Sciences, University of Tokyo – sequence: 5 givenname: Guoqing surname: Tong fullname: Tong, Guoqing organization: Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST) – sequence: 6 givenname: Yiqiang surname: Zhang fullname: Zhang, Yiqiang organization: School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University – sequence: 7 givenname: Luis K. surname: Ono fullname: Ono, Luis K. organization: Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST) – sequence: 8 givenname: Yabing surname: Qi fullname: Qi, Yabing organization: Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST) – sequence: 9 givenname: Liyuan surname: Han fullname: Han, Liyuan email: han.liyuan@sjtu.edu.cn organization: State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Special Division of Environmental and Energy Science, Komaba Organization for Educational Excellence (KOMEX), College of Arts and Sciences, University of Tokyo |
BookMark | eNp9Uk1vEzEQXaEiWkr_ACdLXLgs-HNtX5CiKCGRIoFUOFteezZx2ayDvWnFv8fJFqH20JNHM--9GT-9t9XFEAeoqvcEfyIYy8-ZY0VxjSmtMVac1vxVdUWJwLUQglyUmhFSNxI3l9VNzqHFgnJJpeBvqksmmOaiUVfVYQUjpLiFAeIxo-XsdlgzNGtzTC0k9BDGHVoMOzs48GjRgxtTcGgZoPeoiwmtwnZXf4dU6v0JhDZgfb1MAKh0433-FUZAt7G3Cc2h7_O76nVn-ww3j-919XO5-DFf1ZtvX9fz2aZ2QsixbjHxjgoNYDurm1ZKqSluvSAgW840A6I8brltsHNc6g4YAcCMW0e8VJZdV-tJ10d7Zw4p7G36Y6IN5tyIaWtsGoPrwbTKd6RsIlq3nNNOMd104DxgIjzlrGh9mbQOx3YP3sEwJts_EX06GcLObOO9UVozrWQR-PgokOLvI-TR7EN2xQ57tt3QhiulmcJNgX54Br2LxzQUq84oRhshTxepCeVSzDlBZ1wY7RjiaX_oDcHmlBIzpcSUlJhzSgwvVPqM-u8fL5LYRMoFPGwh_b_qBdZfCc3QMA |
CitedBy_id | crossref_primary_10_1016_j_mtchem_2023_101572 crossref_primary_10_1016_j_rser_2023_114002 crossref_primary_10_1002_zaac_202300045 crossref_primary_10_1016_j_inoche_2025_114114 crossref_primary_10_1016_j_cej_2023_142635 crossref_primary_10_1039_D4CP03184A crossref_primary_10_1002_adts_202400353 crossref_primary_10_1039_D3EE00601H crossref_primary_10_15541_jim20220710 crossref_primary_10_1002_anie_202419183 crossref_primary_10_1007_s12648_024_03350_w crossref_primary_10_1021_acsami_2c20885 crossref_primary_10_1002_aenm_202203313 crossref_primary_10_1088_2631_8695_ad2f83 crossref_primary_10_1016_j_jcat_2024_115877 crossref_primary_10_1007_s12596_024_01879_x crossref_primary_10_1039_D2SC06499E crossref_primary_10_3390_mi14040806 crossref_primary_10_1002_aenm_202203190 crossref_primary_10_1021_acsenergylett_2c01624 crossref_primary_10_1039_D2EE01801B crossref_primary_10_1002_smtd_202300029 crossref_primary_10_1016_j_cej_2023_142302 crossref_primary_10_1021_acsami_4c21442 crossref_primary_10_1007_s40820_023_01088_4 crossref_primary_10_1016_j_nanoen_2022_107818 crossref_primary_10_1007_s12633_023_02717_8 crossref_primary_10_1007_s11426_022_1445_2 crossref_primary_10_1002_aesr_202200160 crossref_primary_10_1002_smll_202208119 crossref_primary_10_1002_slct_202405119 crossref_primary_10_1016_j_rio_2025_100783 crossref_primary_10_1021_acsaem_3c01651 crossref_primary_10_3390_nano13020249 crossref_primary_10_1039_D3SE00571B crossref_primary_10_1002_adfm_202300693 crossref_primary_10_1016_j_solener_2024_113144 crossref_primary_10_1016_j_jssc_2025_125293 crossref_primary_10_1039_D4TC01556H crossref_primary_10_1021_acsenergylett_4c02700 crossref_primary_10_1088_1402_4896_acff28 crossref_primary_10_1002_adfm_202404792 crossref_primary_10_1016_j_solener_2023_111805 crossref_primary_10_35848_1347_4065_acc6d8 crossref_primary_10_1002_adfm_202207713 crossref_primary_10_1016_j_jpcs_2024_112139 crossref_primary_10_1039_D2EE02510H crossref_primary_10_1016_j_optmat_2023_113822 crossref_primary_10_1038_s41467_025_56571_w crossref_primary_10_1021_acsami_3c06538 crossref_primary_10_1039_D3QM00956D crossref_primary_10_1002_solr_202300754 crossref_primary_10_1002_aenm_202200305 crossref_primary_10_1002_adts_202200652 crossref_primary_10_1098_rsos_230331 crossref_primary_10_1002_smll_202302418 crossref_primary_10_1002_ange_202419183 crossref_primary_10_1002_advs_202304811 crossref_primary_10_1007_s40820_022_00918_1 crossref_primary_10_1016_j_optmat_2022_112517 crossref_primary_10_1016_j_mseb_2024_117209 crossref_primary_10_3390_nano12224055 |
Cites_doi | 10.1021/acs.jpclett.0c00923 10.1002/adma.201804835 10.1038/nenergy.2016.178 10.1021/acsenergylett.0c00526 10.1021/acs.jpclett.9b02024 10.1039/C5TA00190K 10.1002/adfm.202100931 10.1021/acsenergylett.7b00976 10.1039/C7TA02662E 10.1002/aenm.202101085 10.1002/adfm.201503338 10.1002/adfm.202106560 10.1021/cm503122j 10.1002/adma.202102055 10.1002/adma.202103394 10.1039/c3ee24453a 10.1038/s41560-019-0466-3 10.1002/aenm.201701038 10.1021/acsenergylett.0c02305 10.1016/j.joule.2019.08.023 10.1039/C8EE00162F 10.1021/jacs.1c03032 10.1039/D0EE04007J 10.1016/j.nanoen.2018.05.006 10.1016/j.jechem.2020.05.050 10.1039/d0ee01845g 10.1002/adma.201602992 10.1002/adfm.201808059 10.1016/j.joule.2021.03.001 10.1002/adma.201401991 10.1002/solr.202100034 10.1002/adfm.202007447 10.1002/solr.202000240 10.1002/smll.201704007 10.1021/jacs.7b01815 10.1039/c6ee03182j 10.1007/s11426-019-9653-8 10.1002/aenm.201702019 10.1002/cssc.202101573 10.1016/j.joule.2020.03.007 10.1038/nenergy.2016.142 10.1021/acsenergylett.9b01179 10.1021/acsenergylett.0c00888 10.1021/accountsmr.0c00111 10.1002/anie.201811539 10.1039/C8EE00956B 10.1021/acsenergylett.1c00342 10.1126/science.aax8018 10.1002/adma.201900605 10.1039/c3ee42110d 10.1021/acsenergylett.8b00383 10.1016/j.nanoen.2020.104858 10.1002/solr.201900057 10.1007/s40820-021-00672-w 10.1039/C9TA13159K 10.1038/s41467-020-16561-6 10.1002/solr.201900213 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-022-00842-4 |
DatabaseName | Springer Nature OA/Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_b8df19ee199b442f8396fecde015d243 PMC8993987 10_1007_s40820_022_00842_4 |
GrantInformation_xml | – fundername: Shanghai Jiao Tong University – fundername: ; |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c557t-b01dc259eeafa96b777920bd51e7b4393e18d0b4a60cc479fe31ee034ac1d78a3 |
IEDL.DBID | DOA |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 00:56:18 EDT 2025 Thu Aug 21 18:40:29 EDT 2025 Fri Jul 11 03:46:49 EDT 2025 Wed Aug 13 10:03:58 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Tue Jul 01 00:55:47 EDT 2025 Fri Feb 21 02:45:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | absorber Bulk charge recombination Gradient FASnI Built-in electric field Lead-free perovskite solar cell |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-b01dc259eeafa96b777920bd51e7b4393e18d0b4a60cc479fe31ee034ac1d78a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/b8df19ee199b442f8396fecde015d243 |
PMID | 35394568 |
PQID | 2648326573 |
PQPubID | 2044332 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b8df19ee199b442f8396fecde015d243 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8993987 proquest_miscellaneous_2648893806 proquest_journals_2648326573 crossref_citationtrail_10_1007_s40820_022_00842_4 crossref_primary_10_1007_s40820_022_00842_4 springer_journals_10_1007_s40820_022_00842_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220408 |
PublicationDateYYYYMMDD | 2022-04-08 |
PublicationDate_xml | – month: 4 year: 2022 text: 20220408 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationYear | 2022 |
Publisher | Springer Nature Singapore Springer Nature B.V Springer Singapore SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: Springer Singapore – name: SpringerOpen |
References | Jiang, Li, Zhou, Wei, Wei (CR7) 2021; 143 Zhang, Hägglund, Johansson (CR33) 2016; 26 Wu, Li, Qi, Zhang, Han (CR55) 2021; 14 Wang, Tai, Guo, Cao, Liu (CR31) 2020; 5 Diau, Jokar, Rameez (CR22) 2019; 4 Wang, Wu, Barbaud, Kong, Cui (CR51) 2019; 365 Yang, Zhang, Zhang, Liu, Qin (CR36) 2013; 6 Ran, Gao, Li, Xi, Li (CR13) 2019; 3 Gu, Zhao, Wang, Rao, Zhao (CR3) 2019; 3 Koh, Krishnamoorthy, Yantara, Shi, Leong (CR50) 2015; 3 Lin, Xiao, Qin, Han, Zhang (CR5) 2019; 4 Wu, Qin, Wang, Wu, Chen (CR4) 2021; 13 Kamarudin, Hirotani, Wang, Hamada, Nishimura (CR30) 2019; 10 Bai, Xiao, Hu, Zhang, Meng (CR44) 2017; 7 Marshall, Walker, Walton, Hatton (CR39) 2016; 1 Chen, Chen, Hou, Xu, Teale (CR46) 2021; 33 Zhang, Song, Hu, Xiang, He (CR56) 2018; 14 Jiang, Zang, Zhou, Li, Wei (CR1) 2021; 2 Liao, Liu, Zhou, Yang, Shang (CR12) 2017; 139 Meng, Wang, Lin, Liu, He (CR17) 2020; 4 Chen, Dong, Eickemeyer, Liu, Dai (CR27) 2020; 5 Wu, Liu, He, Wang, Meng (CR48) 2020; 63 Jokar, Chien, Fathi, Rameez, Chang (CR47) 2018; 11 Jokar, Cheng, Lin, Narra, Shahbazi (CR15) 2021; 6 Yu, Chen, Zhu, Wang, Han (CR10) 2021; 33 Wu, Wang, Dai, Cui, Wang (CR53) 2019; 31 Liu, Wang, Wu, He, Meng (CR43) 2020; 11 He, Wu, Liu, Wang, Meng (CR19) 2020; 8 Wu, Cui, Liu, Luo, Su (CR49) 2021; 5 Cho, Paek, Grancini, Roldan-Carmona, Gao (CR45) 2017; 10 Zhang, Yang, Numata, Han (CR37) 2013; 6 Chen, Wu, Yang, Su, Luo (CR24) 2018; 49 Cao, Yan (CR2) 2021; 14 Jokar, Chien, Tsai, Fathi, Diau (CR16) 2019; 31 Tai, Guo, Tang, You, Ng (CR20) 2019; 58 Lee, Kim, Kim, Shin, Jeong (CR34) 2018; 11 Bi, Yi, Luo, Décoppet, Zhang (CR54) 2016; 1 Sahare, Pham, Angmo, Ghoderao, MacLeod (CR6) 2021; 11 Wu, Liu, Luo, Lin, Cui (CR26) 2021; 5 Xu, Chen, Xiang, Gong, Wei (CR57) 2014; 26 Liu, Wang, Xie, Yang, Han (CR42) 2018; 3 Meng, Wu, Liu, He, Noda (CR21) 2020; 11 Wu, Cui, Liu, Meng, Wang (CR11) 2020; 4 Shao, Liu, Portale, Fang, Blake (CR23) 2018; 8 Liu, Tu, Hu, Huang, Meng (CR32) 2019; 29 Zhang, Yuan, Chen (CR35) 2019; 3 Li, Di, Chang, Yin, Fu (CR25) 2021; 31 Kumar, Dharani, Leong, Boix, Prabhakar (CR38) 2014; 26 Shi, Zhang, Meng, Teng, Liu (CR40) 2017; 5 Liu, Wu, Zhang, Zhang, Segawa (CR29) 2021; 31 Saianand, Sonar, Wilson, Gopalan, Roy (CR52) 2021; 54 Liu, Wu, Chen, Meng, He (CR14) 2020; 13 Nishimura, Kamarudin, Hirotani, Hamada, Shen (CR8) 2020; 74 Liao, Zhao, Yu, Grice, Wang (CR18) 2016; 28 Ye, Wang, Wang, Ma, Yang (CR28) 2021; 6 Lee, Shin, Im, Ahn, Noh (CR41) 2018; 3 Cui, Liu, Wu, Lin, Luo (CR9) 2021; 31 T Wu (842_CR11) 2020; 4 X He (842_CR19) 2020; 8 T Shi (842_CR40) 2017; 5 T Wu (842_CR53) 2019; 31 T Wang (842_CR31) 2020; 5 B Li (842_CR25) 2021; 31 EW-G Diau (842_CR22) 2019; 4 X Zhang (842_CR35) 2019; 3 D Cui (842_CR9) 2021; 31 T Ye (842_CR28) 2021; 6 MH Kumar (842_CR38) 2014; 26 W Liao (842_CR18) 2016; 28 X Liu (842_CR14) 2020; 13 E Jokar (842_CR47) 2018; 11 S Zhang (842_CR37) 2013; 6 B Chen (842_CR46) 2021; 33 T Wu (842_CR49) 2021; 5 S Sahare (842_CR6) 2021; 11 G Saianand (842_CR52) 2021; 54 T Wu (842_CR26) 2021; 5 F Gu (842_CR3) 2019; 3 T Wu (842_CR48) 2020; 63 D Bi (842_CR54) 2016; 1 F Zhang (842_CR56) 2018; 14 SJ Lee (842_CR41) 2018; 3 K Nishimura (842_CR8) 2020; 74 M Chen (842_CR27) 2020; 5 T Wu (842_CR55) 2021; 14 J-H Lee (842_CR34) 2018; 11 X Jiang (842_CR7) 2021; 143 C Liu (842_CR32) 2019; 29 X Jiang (842_CR1) 2021; 2 KP Marshall (842_CR39) 2016; 1 P Xu (842_CR57) 2014; 26 B-B Yu (842_CR10) 2021; 33 E Jokar (842_CR16) 2019; 31 MA Kamarudin (842_CR30) 2019; 10 C Ran (842_CR13) 2019; 3 X Meng (842_CR17) 2020; 4 Y Liao (842_CR12) 2017; 139 X Yang (842_CR36) 2013; 6 Y Wang (842_CR51) 2019; 365 K Chen (842_CR24) 2018; 49 J Cao (842_CR2) 2021; 14 TM Koh (842_CR50) 2015; 3 X Liu (842_CR29) 2021; 31 X Liu (842_CR43) 2020; 11 Y Bai (842_CR44) 2017; 7 R Lin (842_CR5) 2019; 4 X Meng (842_CR21) 2020; 11 Q Tai (842_CR20) 2019; 58 S Shao (842_CR23) 2018; 8 T Wu (842_CR4) 2021; 13 X Liu (842_CR42) 2018; 3 X Zhang (842_CR33) 2016; 26 E Jokar (842_CR15) 2021; 6 KT Cho (842_CR45) 2017; 10 |
References_xml | – volume: 11 start-page: 2965 issue: 8 year: 2020 end-page: 2971 ident: CR21 article-title: Highly reproducible and efficient FASnI perovskite solar cells fabricated with volatilizable reducing solvent publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c00923 – volume: 31 start-page: 1804835 issue: 2 year: 2019 ident: CR16 article-title: Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10% publication-title: Adv. Mater. doi: 10.1002/adma.201804835 – volume: 1 start-page: 16178 year: 2016 ident: CR39 article-title: Enhanced stability and efficiency in hole-transport-layer-free CsSnI perovskite photovoltaics publication-title: Nat. Energy doi: 10.1038/nenergy.2016.178 – volume: 5 start-page: 1741 issue: 6 year: 2020 end-page: 1749 ident: CR31 article-title: Highly air-stable tin-based perovskite solar cells through grain-surface protection by gallic acid publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00526 – volume: 10 start-page: 5277 issue: 17 year: 2019 end-page: 5283 ident: CR30 article-title: Suppression of charge carrier recombination in lead-free tin halide perovskite via Lewis base post-treatment publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02024 – volume: 3 start-page: 14996 issue: 29 year: 2015 end-page: 15000 ident: CR50 article-title: Formamidinium tin-based perovskite with low E for photovoltaic applications publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00190K – volume: 31 start-page: 2100931 issue: 25 year: 2021 ident: CR9 article-title: Making room for growing oriented FASnI with large grains via cold precursor solution publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100931 – volume: 3 start-page: 46 issue: 1 year: 2018 end-page: 53 ident: CR41 article-title: Reducing carrier density in formamidinium tin perovskites and its beneficial effects on stability and efficiency of perovskite solar cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00976 – volume: 5 start-page: 15124 issue: 29 year: 2017 end-page: 15129 ident: CR40 article-title: Effects of organic cations on the defect physics of tin halide perovskites publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02662E – volume: 11 start-page: 2101085 issue: 42 year: 2021 ident: CR6 article-title: Emerging perovskite solar cell technology: Remedial actions for the foremost challenges publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101085 – volume: 26 start-page: 1253 issue: 8 year: 2016 end-page: 1260 ident: CR33 article-title: Electro-optics of colloidal quantum dot solids for thin-film solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503338 – volume: 31 start-page: 2106560 issue: 50 year: 2021 ident: CR29 article-title: Interface energy-level management toward efficient tin perovskite solar cells with hole-transport-layer-free structure publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106560 – volume: 26 start-page: 6068 issue: 20 year: 2014 end-page: 6072 ident: CR57 article-title: Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI publication-title: Chem. Mater. doi: 10.1021/cm503122j – volume: 33 start-page: 2102055 issue: 36 year: 2021 ident: CR10 article-title: Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14% publication-title: Adv. Mater. doi: 10.1002/adma.202102055 – volume: 33 start-page: 2103394 issue: 41 year: 2021 ident: CR46 article-title: Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers publication-title: Adv. Mater. doi: 10.1002/adma.202103394 – volume: 6 start-page: 1443 issue: 5 year: 2013 ident: CR37 article-title: Highly efficient dye-sensitized solar cells: progress and future challenges publication-title: Energy Environ. Sci. doi: 10.1039/c3ee24453a – volume: 4 start-page: 864 issue: 10 year: 2019 end-page: 873 ident: CR5 article-title: Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress sn(ii) oxidation in precursor ink publication-title: Nat. Energy doi: 10.1038/s41560-019-0466-3 – volume: 7 start-page: 1701038 issue: 20 year: 2017 ident: CR44 article-title: Dimensional engineering of a graded 3D–2D halide perovskite interface enables ultrahigh Voc enhanced stability in the p-i-n photovoltaics publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701038 – volume: 6 start-page: 485 issue: 2 year: 2021 end-page: 492 ident: CR15 article-title: Enhanced performance and stability of 3D/2D tin perovskite solar cells fabricated with a sequential solution deposition publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02305 – volume: 3 start-page: 3072 issue: 12 year: 2019 end-page: 3087 ident: CR13 article-title: Conjugated organic cations enable efficient self-healing FASnI solar cells publication-title: Joule doi: 10.1016/j.joule.2019.08.023 – volume: 11 start-page: 1742 issue: 7 year: 2018 end-page: 1751 ident: CR34 article-title: Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00162F – volume: 143 start-page: 10970 issue: 29 year: 2021 end-page: 10976 ident: CR7 article-title: One-step synthesis of SnI ·(DMSO) adducts for high-performance tin perovskite solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c03032 – volume: 14 start-page: 1286 issue: 3 year: 2021 end-page: 1325 ident: CR2 article-title: Recent progress in tin-based perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/D0EE04007J – volume: 49 start-page: 411 year: 2018 end-page: 418 ident: CR24 article-title: Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.05.006 – volume: 54 start-page: 151 year: 2021 end-page: 173 ident: CR52 article-title: Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaics publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.05.050 – volume: 13 start-page: 2896 issue: 9 year: 2020 end-page: 2902 ident: CR14 article-title: Templated growth of FASnI crystals for efficient tin perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/d0ee01845g – volume: 28 start-page: 9333 issue: 42 year: 2016 end-page: 9340 ident: CR18 article-title: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22% publication-title: Adv. Mater. doi: 10.1002/adma.201602992 – volume: 29 start-page: 1808059 issue: 18 year: 2019 ident: CR32 article-title: Enhanced hole transportation for inverted tin-based perovskite solar cells with high performance and stability publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808059 – volume: 5 start-page: 863 issue: 4 year: 2021 end-page: 886 ident: CR26 article-title: Lead-free tin perovskite solar cells publication-title: Joule doi: 10.1016/j.joule.2021.03.001 – volume: 26 start-page: 7122 issue: 41 year: 2014 end-page: 7127 ident: CR38 article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation publication-title: Adv. Mater. doi: 10.1002/adma.201401991 – volume: 5 start-page: 2100034 issue: 5 year: 2021 ident: CR49 article-title: Additive engineering toward high-performance tin perovskite solar cells publication-title: Sol. RRL doi: 10.1002/solr.202100034 – volume: 31 start-page: 2007447 issue: 11 year: 2021 ident: CR25 article-title: Efficient passivation strategy on Sn related defects for high performance all-inorganic CsSnI perovskite solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007447 – volume: 4 start-page: 2000240 issue: 9 year: 2020 ident: CR11 article-title: Efficient and stable tin perovskite solar cells enabled by graded heterostructure of light-absorbing layer publication-title: Sol. RRL doi: 10.1002/solr.202000240 – volume: 14 start-page: 1704007 issue: 19 year: 2018 ident: CR56 article-title: Interfacial passivation of the p-doped hole-transporting layer using general insulating polymers for high-performance inverted perovskite solar cells publication-title: Small doi: 10.1002/smll.201704007 – volume: 139 start-page: 6693 issue: 19 year: 2017 end-page: 6699 ident: CR12 article-title: Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01815 – volume: 10 start-page: 621 issue: 2 year: 2017 end-page: 627 ident: CR45 article-title: Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface publication-title: Energy Environ. Sci. doi: 10.1039/c6ee03182j – volume: 63 start-page: 107 issue: 1 year: 2020 end-page: 115 ident: CR48 article-title: Efficient and stable tin-based perovskite solar cells by introducing π-conjugated lewis base publication-title: Sci. China Chem. doi: 10.1007/s11426-019-9653-8 – volume: 8 start-page: 1702019 issue: 4 year: 2018 ident: CR23 article-title: Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702019 – volume: 14 start-page: 4354 issue: 20 year: 2021 end-page: 4376 ident: CR55 article-title: Defect passivation for perovskite solar cells: from molecule design to device performance publication-title: Chemsuschem doi: 10.1002/cssc.202101573 – volume: 4 start-page: 902 issue: 4 year: 2020 end-page: 912 ident: CR17 article-title: Surface-controlled oriented growth of FASnI crystals for efficient lead-free perovskite solar cells publication-title: Joule doi: 10.1016/j.joule.2020.03.007 – volume: 1 start-page: 16142 issue: 10 year: 2016 ident: CR54 article-title: Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% publication-title: Nat. Energy doi: 10.1038/nenergy.2016.142 – volume: 4 start-page: 1930 issue: 8 year: 2019 end-page: 1937 ident: CR22 article-title: Strategies to improve performance and stability for tin-based perovskite solar cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01179 – volume: 5 start-page: 2223 issue: 7 year: 2020 end-page: 2230 ident: CR27 article-title: High-performance lead-free solar cells based on tin-halide perovskite thin films functionalized by a divalent organic cation publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00888 – volume: 2 start-page: 210 issue: 4 year: 2021 end-page: 219 ident: CR1 article-title: Tin halide perovskite solar cells: an emerging thin-film photovoltaic technology publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.0c00111 – volume: 58 start-page: 806 issue: 3 year: 2019 end-page: 810 ident: CR20 article-title: Antioxidant grain passivation for air-stable tin-based perovskite solar cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811539 – volume: 11 start-page: 2353 issue: 9 year: 2018 end-page: 2362 ident: CR47 article-title: Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00956B – volume: 6 start-page: 1480 issue: 4 year: 2021 end-page: 1489 ident: CR28 article-title: Localized electron density engineering for stabilized B-γ CsSnI -based perovskite solar cells with efficiencies >10% publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00342 – volume: 365 start-page: 687 issue: 6454 year: 2019 end-page: 691 ident: CR51 article-title: Stabilizing heterostructures of soft perovskite semiconductors publication-title: Science doi: 10.1126/science.aax8018 – volume: 31 start-page: 1900605 issue: 24 year: 2019 ident: CR53 article-title: Efficient and stable CsPbI solar cells via regulating lattice distortion with surface organic terminal groups publication-title: Adv. Mater. doi: 10.1002/adma.201900605 – volume: 6 start-page: 3637 issue: 12 year: 2013 end-page: 3645 ident: CR36 article-title: Coordinated shifts of interfacial energy levels: Insight into electron injection in highly efficient dye-sensitized solar cells publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42110d – volume: 3 start-page: 1116 issue: 5 year: 2018 end-page: 1121 ident: CR42 article-title: Improving the performance of inverted formamidinium tin iodide perovskite solar cells by reducing the energy-level mismatch publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00383 – volume: 74 year: 2020 ident: CR8 article-title: Lead-free tin-halide perovskite solar cells with 13% efficiency publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104858 – volume: 3 start-page: 1900057 issue: 6 year: 2019 ident: CR35 article-title: Low electron carrier concentration near the p-n junction interface: A fundamental factor limiting short-circuit current of Cu(In, Ga)S 2 solar cells publication-title: Sol. RRL doi: 10.1002/solr.201900057 – volume: 13 start-page: 152 issue: 1 year: 2021 ident: CR4 article-title: The main progress of perovskite solar cells in 2020–2021 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00672-w – volume: 8 start-page: 2760 issue: 5 year: 2020 end-page: 2768 ident: CR19 article-title: Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13159K – volume: 11 start-page: 2678 issue: 1 year: 2020 ident: CR43 article-title: Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure publication-title: Nat. Commun. doi: 10.1038/s41467-020-16561-6 – volume: 3 start-page: 1900213 issue: 9 year: 2019 ident: CR3 article-title: Lead-free tin-based perovskite solar cells: strategies toward high performance publication-title: Sol. RRL doi: 10.1002/solr.201900213 – volume: 4 start-page: 2000240 issue: 9 year: 2020 ident: 842_CR11 publication-title: Sol. RRL doi: 10.1002/solr.202000240 – volume: 1 start-page: 16142 issue: 10 year: 2016 ident: 842_CR54 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.142 – volume: 14 start-page: 1704007 issue: 19 year: 2018 ident: 842_CR56 publication-title: Small doi: 10.1002/smll.201704007 – volume: 13 start-page: 152 issue: 1 year: 2021 ident: 842_CR4 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00672-w – volume: 8 start-page: 2760 issue: 5 year: 2020 ident: 842_CR19 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13159K – volume: 63 start-page: 107 issue: 1 year: 2020 ident: 842_CR48 publication-title: Sci. China Chem. doi: 10.1007/s11426-019-9653-8 – volume: 33 start-page: 2102055 issue: 36 year: 2021 ident: 842_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.202102055 – volume: 7 start-page: 1701038 issue: 20 year: 2017 ident: 842_CR44 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701038 – volume: 31 start-page: 2106560 issue: 50 year: 2021 ident: 842_CR29 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106560 – volume: 6 start-page: 1480 issue: 4 year: 2021 ident: 842_CR28 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00342 – volume: 3 start-page: 1116 issue: 5 year: 2018 ident: 842_CR42 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00383 – volume: 5 start-page: 1741 issue: 6 year: 2020 ident: 842_CR31 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00526 – volume: 11 start-page: 2101085 issue: 42 year: 2021 ident: 842_CR6 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101085 – volume: 5 start-page: 2223 issue: 7 year: 2020 ident: 842_CR27 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00888 – volume: 28 start-page: 9333 issue: 42 year: 2016 ident: 842_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201602992 – volume: 6 start-page: 3637 issue: 12 year: 2013 ident: 842_CR36 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42110d – volume: 11 start-page: 2678 issue: 1 year: 2020 ident: 842_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16561-6 – volume: 4 start-page: 1930 issue: 8 year: 2019 ident: 842_CR22 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01179 – volume: 14 start-page: 4354 issue: 20 year: 2021 ident: 842_CR55 publication-title: Chemsuschem doi: 10.1002/cssc.202101573 – volume: 33 start-page: 2103394 issue: 41 year: 2021 ident: 842_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.202103394 – volume: 31 start-page: 1804835 issue: 2 year: 2019 ident: 842_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.201804835 – volume: 139 start-page: 6693 issue: 19 year: 2017 ident: 842_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01815 – volume: 6 start-page: 1443 issue: 5 year: 2013 ident: 842_CR37 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee24453a – volume: 3 start-page: 1900213 issue: 9 year: 2019 ident: 842_CR3 publication-title: Sol. RRL doi: 10.1002/solr.201900213 – volume: 5 start-page: 2100034 issue: 5 year: 2021 ident: 842_CR49 publication-title: Sol. RRL doi: 10.1002/solr.202100034 – volume: 10 start-page: 621 issue: 2 year: 2017 ident: 842_CR45 publication-title: Energy Environ. Sci. doi: 10.1039/c6ee03182j – volume: 365 start-page: 687 issue: 6454 year: 2019 ident: 842_CR51 publication-title: Science doi: 10.1126/science.aax8018 – volume: 13 start-page: 2896 issue: 9 year: 2020 ident: 842_CR14 publication-title: Energy Environ. Sci. doi: 10.1039/d0ee01845g – volume: 11 start-page: 2965 issue: 8 year: 2020 ident: 842_CR21 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c00923 – volume: 3 start-page: 46 issue: 1 year: 2018 ident: 842_CR41 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00976 – volume: 5 start-page: 863 issue: 4 year: 2021 ident: 842_CR26 publication-title: Joule doi: 10.1016/j.joule.2021.03.001 – volume: 11 start-page: 2353 issue: 9 year: 2018 ident: 842_CR47 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00956B – volume: 11 start-page: 1742 issue: 7 year: 2018 ident: 842_CR34 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00162F – volume: 31 start-page: 1900605 issue: 24 year: 2019 ident: 842_CR53 publication-title: Adv. Mater. doi: 10.1002/adma.201900605 – volume: 3 start-page: 14996 issue: 29 year: 2015 ident: 842_CR50 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00190K – volume: 29 start-page: 1808059 issue: 18 year: 2019 ident: 842_CR32 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808059 – volume: 74 year: 2020 ident: 842_CR8 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104858 – volume: 3 start-page: 3072 issue: 12 year: 2019 ident: 842_CR13 publication-title: Joule doi: 10.1016/j.joule.2019.08.023 – volume: 54 start-page: 151 year: 2021 ident: 842_CR52 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.05.050 – volume: 2 start-page: 210 issue: 4 year: 2021 ident: 842_CR1 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.0c00111 – volume: 31 start-page: 2007447 issue: 11 year: 2021 ident: 842_CR25 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007447 – volume: 58 start-page: 806 issue: 3 year: 2019 ident: 842_CR20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811539 – volume: 26 start-page: 7122 issue: 41 year: 2014 ident: 842_CR38 publication-title: Adv. Mater. doi: 10.1002/adma.201401991 – volume: 10 start-page: 5277 issue: 17 year: 2019 ident: 842_CR30 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02024 – volume: 26 start-page: 6068 issue: 20 year: 2014 ident: 842_CR57 publication-title: Chem. Mater. doi: 10.1021/cm503122j – volume: 8 start-page: 1702019 issue: 4 year: 2018 ident: 842_CR23 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702019 – volume: 6 start-page: 485 issue: 2 year: 2021 ident: 842_CR15 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02305 – volume: 4 start-page: 864 issue: 10 year: 2019 ident: 842_CR5 publication-title: Nat. Energy doi: 10.1038/s41560-019-0466-3 – volume: 5 start-page: 15124 issue: 29 year: 2017 ident: 842_CR40 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02662E – volume: 31 start-page: 2100931 issue: 25 year: 2021 ident: 842_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100931 – volume: 14 start-page: 1286 issue: 3 year: 2021 ident: 842_CR2 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE04007J – volume: 49 start-page: 411 year: 2018 ident: 842_CR24 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.05.006 – volume: 143 start-page: 10970 issue: 29 year: 2021 ident: 842_CR7 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c03032 – volume: 4 start-page: 902 issue: 4 year: 2020 ident: 842_CR17 publication-title: Joule doi: 10.1016/j.joule.2020.03.007 – volume: 1 start-page: 16178 year: 2016 ident: 842_CR39 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.178 – volume: 26 start-page: 1253 issue: 8 year: 2016 ident: 842_CR33 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503338 – volume: 3 start-page: 1900057 issue: 6 year: 2019 ident: 842_CR35 publication-title: Sol. RRL doi: 10.1002/solr.201900057 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.505066 |
Snippet | Highlights
A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in... Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic... HighlightsA novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in... A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber... Abstract Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 99 |
SubjectTerms | Absorbers Built-in electric field Bulk charge recombination Efficiency Electric fields Engineering Gradient FASnI3 absorber Illumination Lead free Lead-free perovskite solar cell Lewis base Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Open circuit voltage Perovskite Solar Cells Perovskites Photoelectrons Photovoltaic cells Recrystallization Solar cells Tin |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwFLSgvcAB8SkCBRmJG1jYsRM7J7StNlo4VBWlUm-RHTu00irZJlt-P35eZ9NUotfEq03ynu2x33gGoc8F11zXziO3AkS1eSaIKaBfpZZR3Qibu0CQPc1XF-LnZXYZN9yGSKscx8QwUNuuhj3yb8DE8lAjk_z75oaAaxRUV6OFxmN06Idg5Rdfh8fL07NfY0alEpyZpjoh2CuLO2o1ArRd-CRoloGAmZx0MrNU-Pk9Trg7QC2hlBUc6xgjuaR5PIkTzuOBezMlQJAHnfqUiNlsF0wBZkj2Pg_zXjE2zHHlc_QsglO82GXTC_TItS_R0zuSha_QZgX8mc6nnetuB1wuztsfHC_M0PXG9Ri2dfGyvQq8ArwMHjvXNS6BJ4c9PsbAKyFn02kFDB6fpOydw_5q93eA3WR8DgtufOLW6-E1uiiXv09WJLo2kDrL5JYYymztF1XO6UYXuZFSFik1NmNOGg9_uGPKUiN0TutayKJxnDlHudA1s1Jp_gYdtF3r3iKshII6JU0bqoVKrfJYRSuVSScV57RIEBu_blVHSXNw1lhXezHmEJHKR6QKEalEgr7sf7PZCXo82PoYgrZvCWLc4ULX_6li366Msg3z78uKwgiRNh5z5o2rrfNQy6aCJ-hoDHkVR4ihmvI5QZ_2t33fhoKNDjEMbTyeVDRPkJylyuyB5nfa66ugEu4X0rxQMkFfx6Sa_vz_L_zu4Wd9j56kIb0FoeoIHWz7W_fBo7Kt-Ri73j9MFymg priority: 102 providerName: ProQuest – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwGA26vuiDeMXqKhF800CuTfI4DjOMPoiwLuxbSdrUXRjapZ3195sv08t2UcHXJqWX70tz0u_kHIQ-WOGEK0NEbhZEtYWSxFsYV7xi1NWyykMiyH7Ld-fy64W6GDaF9SPbfSxJpi_1tNkNrJEpAfY5iMBzIu-jByqu3SGv17PmONfgxjTXBsFSWd5SqJGg5yJmETMFomV61sZUXMY5fZhkjyBaQ_kqudQxRnJN82H3zZ9vazHDJSOABXq9y728U4BN89r2CXo8AFK8OmbQU3QvNM_Qo1syhc_R9Q44M21MtdDe9Hi7Omu-CLzyfdv50GH4lYs3zWXiEuBN8tW5KvEWuHE4YmIMXBLyfd6hgMHXk2y7EHA82v7q4Q8yPoNFNl6H_b5_gc63mx_rHRmcGkiplD4QT1lVxoVUCK52Nvdaa8uprxQL2kfIIwIzFfXS5bQspbZ1ECwEKqQrWaWNEy_RSdM24RXCRhqoTVJeUycNr0zEJ84YpYM2QlCbITa-3aIcZMzBTWNfTALMKSJFjEiRIlLIDH2czrk-inj8s_dnCNrUEwS404G2-1kM47nwpqpZfF5mrZeS1xFn5nUoqxDhVcWlyNDpGPJi-Cr0BbAJI1xWOja_n5rjeIYijUsxTH0ihjQ0z5BepMrihpYtzdVlUgaPi2dhjc7QpzGp5ov__YFf_1_3N-ghT-kuCTWn6OTQ3YS3EZkd_Ls0EH8D0JIkzA priority: 102 providerName: Springer Nature |
Title | Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells |
URI | https://link.springer.com/article/10.1007/s40820-022-00842-4 https://www.proquest.com/docview/2648326573 https://www.proquest.com/docview/2648893806 https://pubmed.ncbi.nlm.nih.gov/PMC8993987 https://doaj.org/article/b8df19ee199b442f8396fecde015d243 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgucAB8RRdlpWRuEGEX4ntY1saCofVimWlvUV2MtGuVKWrtsvvZ8ZNXysBFy6tZDtq4xlnPmfG38fYB6-DDjUgcvNEqq1zk0VP60o1UoTWNAWkAtmzYnppvl_lV3tSX1QTtqYHXk_c5-iaVnoA6X00RrUY0IsW6gYwjjXKJJ5PjHl7myn0JGVJkWmXHyRZZbPHUmOI00XviMxyIi6zO37MXBmM632gXQNpSymspFQnZVZYUfQncNI5PFJtFhkVxhM_vcrMQZRLYgAHCPZ-_eW9JGyKbeUz9rQHpXy4nozn7AF0L9iTParCl-x2SnUzc3Q3mN8teTm86L5pPozL-SLCgtPrXD7prlM9AZ8kbZ2bmpdUH8cRF3OqJ8nOd6cUOGl7ZuUCgGPr_NeS3iLzC9po8zHMZstX7LKc_BxPs16tIavz3K6yKGRT42YKILTBF9Fa65WITS7BRoQ9GqRrRDShEHVtrG9BSwChTahlY13Qr9lRN-_gDePOOMpPCtWKYJxqHGKU4FxuwTqthR8wuZndqu6pzElRY1ZtSZiTRSq0SJUsUpkB-7i95nZN5PHX0SMy2nYkkXCnBnTNqnfN6l-uOWAnG5NX_ZNhWVFFIULm3GL3-203rmlK1IRkwzQGcaQTxYDZA1c5-EOHPd3NdWIHxw209s4O2KeNU-1-_M83fPw_bvgte6zSIjCZcCfsaLW4g3eI2VbxlD105ddT9mg4-jIq8Xs0OTv_ga1jZeizGJ-mBfwbeNQ24g |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeAAeEFcRGGAkeAIL3xI7DwiVsdCyMSFtk_aW2YnDJlVJaToQf4rfiI-bNOsk9rbXxG2Tnos_-xx_H0KvU2GEKZxHbimQaotYEptCXPGSUVPJMnGhQXY_GR_Jr8fx8Qb625-FgbbKPieGRF02BeyRv4dOLA81YiU-zn4SUI2C6movobF0i13357dfsrUfJp-9fd9wnu0cbo9JpypAijhWC2IpKwsP-p0zlUkTq5RKObVlzJyyfnoWjumSWmkSWhRSpZUTzDkqpClYqbQR_ntvoJtSiBQiSmdfev_lCnSghqokiDnLC9w4EphkxECfFgNdmhpYOWMuPZropvclfFdQOAv6eIyRRNGkO_cTTv-BVjQl0I4PrPicyLW5NUgQrOHmy12fl0q_YUbN7qG7HRTGo6Xv3kcbrn6A7lwgSHyIZmPo1mm8k7vmvMXZ6KCeCDyybTO3bo5hExnv1KehiwHvBEWfswJn0JWHPRrH0MVCvg9nIzAoipJs7hz2V5tfLexd4wNY3uNtN522j9DRtVjzMdqsm9o9QVhLDVVRyitqpOal9sjIaB0rp7QQNI0Q6__dvOgI1EHHY5qvqJ-DRXJvkTxYJJcRerv6zGxJH3Ll6E9gtNVIoP4OF5r5j7zLJLnVZcX8-7I0tVLyyiPcpHJF6TywK7kUEdrqTZ53-ajNh-iJ0KvVbZ9JoDxkgg3DGI9eNU0ipNZcZe2B1u_UZ6eBk9wv20WqVYTe9U41_Pj_X_jp1c_6Et0aH37by_cm-7vP0G0eXF0SqrfQ5mJ-7p57PLiwL0IQYnRy3VH_D5YUZf4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVgSAgeEJ8iMMBIvEE0fyV2Hktp1AGaJo1Je4vs2GGTqqRKuv3--bpp0kyAxGvsqknvdX2ce-45CH3KuOa6dB65ZSCqzRMRmwzWFbOU6ErY1AWC7Em6PBffL5KLvS7-wHbflSS3PQ2g0lRvjta2Ohoa38AmmcTARAdBeBaL--iBP6lQIPXNR_1xJsGZaawTgr2y2FOrEaDtwkdBswQEzOSok5kw4ff3fsPdAmoJpazgWEdpnEqS9p04f76tyW4XTAEmSPYuD_NOMTbscflT9KQHp3i2zaZn6J6rn6PHe5KFL9B6CfyZxqeda647nM_O6mOOZ6ZrWuNaDK918aK-DLwCvAgeO1clzoEnhz0-xsAriU_HbgUMHp9x3jqH_dXmpoO3yfgMDtx47lar7iU6zxe_5su4d22IyySRm9gQakt_qHJOVzpLjZQyY8TYhDppPPzhjipLjNApKUshs8px6hzhQpfUSqX5K3RQN7V7jbASCuqUhFVEC8Ws8lhFK5VIJxXnJIsQ3f26RdlLmoOzxqoYxJhDRAofkSJEpBAR-jx8Zr0V9Pjn7K8QtGEmiHGHC037u-jXdmGUrah_XpplRghWecyZVq60zkMtywSP0OEu5EX_D9EVwCz00DmRfvjjMOzXNhRsdIhhmOPxpCJphOQkVSY3NB2pry6DSrg_SPNMyQh92SXV-OV_f-A3_zf9A3p4-i0vfh6f_HiLHrGQ-SIm6hAdbNpr984Dto15H9bkLfr-K_0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+FASnI3+Absorber+with+Enhanced+Electric+Field+for+High-Performance+Lead-Free+Perovskite+Solar+Cells&rft.jtitle=Nano-micro+letters&rft.au=Wu%2C+Tianhao&rft.au=Liu%2C+Xiao&rft.au=Luo%2C+Xinhui&rft.au=Segawa%2C+Hiroshi&rft.date=2022-04-08&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-022-00842-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40820_022_00842_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |