Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells

Highlights A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber is described. A promising efficiency of 13.82% was obtained based on the formamidinium tin iodide (FASnI 3 ) perovskite solar cel...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 14; no. 1; pp. 99 - 14
Main Authors Wu, Tianhao, Liu, Xiao, Luo, Xinhui, Segawa, Hiroshi, Tong, Guoqing, Zhang, Yiqiang, Ono, Luis K., Qi, Yabing, Han, Liyuan
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 08.04.2022
Springer Nature B.V
Springer Singapore
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber is described. A promising efficiency of 13.82% was obtained based on the formamidinium tin iodide (FASnI 3 ) perovskite solar cells with a vertical Sn 2+ gradient and an enhanced electric field. The solar cell with a heterogeneous FASnI 3 absorber is ultrastable, maintaining over 13% efficiency after operation under 1-sun illumination for 1,000 h in air. Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI 3 ) perovskite absorber with a vertical Sn 2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn 2+ content from the bottom to the top in this heterogeneous FASnI 3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn 2+ -gradient FASnI 3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h.
AbstractList A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber is described. A promising efficiency of 13.82% was obtained based on the formamidinium tin iodide (FASnI 3 ) perovskite solar cells with a vertical Sn 2+ gradient and an enhanced electric field. The solar cell with a heterogeneous FASnI 3 absorber is ultrastable, maintaining over 13% efficiency after operation under 1-sun illumination for 1,000 h in air. Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI 3 ) perovskite absorber with a vertical Sn 2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn 2+ content from the bottom to the top in this heterogeneous FASnI 3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn 2+ -gradient FASnI 3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h.
Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI3) perovskite absorber with a vertical Sn2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn2+ content from the bottom to the top in this heterogeneous FASnI3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn2+-gradient FASnI3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h.Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI3) perovskite absorber with a vertical Sn2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn2+ content from the bottom to the top in this heterogeneous FASnI3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn2+-gradient FASnI3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h.
HighlightsA novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber is described.A promising efficiency of 13.82% was obtained based on the formamidinium tin iodide (FASnI3) perovskite solar cells with a vertical Sn2+ gradient and an enhanced electric field.The solar cell with a heterogeneous FASnI3 absorber is ultrastable, maintaining over 13% efficiency after operation under 1-sun illumination for 1,000 h in air.Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI3) perovskite absorber with a vertical Sn2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn2+ content from the bottom to the top in this heterogeneous FASnI3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn2+-gradient FASnI3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h.
Abstract Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI3) perovskite absorber with a vertical Sn2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn2+ content from the bottom to the top in this heterogeneous FASnI3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn2+-gradient FASnI3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h.
Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI 3 ) perovskite absorber with a vertical Sn 2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn 2+ content from the bottom to the top in this heterogeneous FASnI 3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn 2+ -gradient FASnI 3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h.
Highlights A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber is described. A promising efficiency of 13.82% was obtained based on the formamidinium tin iodide (FASnI 3 ) perovskite solar cells with a vertical Sn 2+ gradient and an enhanced electric field. The solar cell with a heterogeneous FASnI 3 absorber is ultrastable, maintaining over 13% efficiency after operation under 1-sun illumination for 1,000 h in air. Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI 3 ) perovskite absorber with a vertical Sn 2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn 2+ content from the bottom to the top in this heterogeneous FASnI 3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn 2+ -gradient FASnI 3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h.
ArticleNumber 99
Author Segawa, Hiroshi
Wu, Tianhao
Han, Liyuan
Ono, Luis K.
Qi, Yabing
Luo, Xinhui
Tong, Guoqing
Liu, Xiao
Zhang, Yiqiang
Author_xml – sequence: 1
  givenname: Tianhao
  surname: Wu
  fullname: Wu, Tianhao
  organization: State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST)
– sequence: 2
  givenname: Xiao
  surname: Liu
  fullname: Liu, Xiao
  email: liu.xiao@mail.u-tokyo.ac.jp
  organization: Special Division of Environmental and Energy Science, Komaba Organization for Educational Excellence (KOMEX), College of Arts and Sciences, University of Tokyo
– sequence: 3
  givenname: Xinhui
  surname: Luo
  fullname: Luo, Xinhui
  organization: State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University
– sequence: 4
  givenname: Hiroshi
  surname: Segawa
  fullname: Segawa, Hiroshi
  organization: Special Division of Environmental and Energy Science, Komaba Organization for Educational Excellence (KOMEX), College of Arts and Sciences, University of Tokyo
– sequence: 5
  givenname: Guoqing
  surname: Tong
  fullname: Tong, Guoqing
  organization: Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST)
– sequence: 6
  givenname: Yiqiang
  surname: Zhang
  fullname: Zhang, Yiqiang
  organization: School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University
– sequence: 7
  givenname: Luis K.
  surname: Ono
  fullname: Ono, Luis K.
  organization: Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST)
– sequence: 8
  givenname: Yabing
  surname: Qi
  fullname: Qi, Yabing
  organization: Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST)
– sequence: 9
  givenname: Liyuan
  surname: Han
  fullname: Han, Liyuan
  email: han.liyuan@sjtu.edu.cn
  organization: State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Special Division of Environmental and Energy Science, Komaba Organization for Educational Excellence (KOMEX), College of Arts and Sciences, University of Tokyo
BookMark eNp9Uk1vEzEQXaEiWkr_ACdLXLgs-HNtX5CiKCGRIoFUOFteezZx2ayDvWnFv8fJFqH20JNHM--9GT-9t9XFEAeoqvcEfyIYy8-ZY0VxjSmtMVac1vxVdUWJwLUQglyUmhFSNxI3l9VNzqHFgnJJpeBvqksmmOaiUVfVYQUjpLiFAeIxo-XsdlgzNGtzTC0k9BDGHVoMOzs48GjRgxtTcGgZoPeoiwmtwnZXf4dU6v0JhDZgfb1MAKh0433-FUZAt7G3Cc2h7_O76nVn-ww3j-919XO5-DFf1ZtvX9fz2aZ2QsixbjHxjgoNYDurm1ZKqSluvSAgW840A6I8brltsHNc6g4YAcCMW0e8VJZdV-tJ10d7Zw4p7G36Y6IN5tyIaWtsGoPrwbTKd6RsIlq3nNNOMd104DxgIjzlrGh9mbQOx3YP3sEwJts_EX06GcLObOO9UVozrWQR-PgokOLvI-TR7EN2xQ57tt3QhiulmcJNgX54Br2LxzQUq84oRhshTxepCeVSzDlBZ1wY7RjiaX_oDcHmlBIzpcSUlJhzSgwvVPqM-u8fL5LYRMoFPGwh_b_qBdZfCc3QMA
CitedBy_id crossref_primary_10_1016_j_mtchem_2023_101572
crossref_primary_10_1016_j_rser_2023_114002
crossref_primary_10_1002_zaac_202300045
crossref_primary_10_1016_j_inoche_2025_114114
crossref_primary_10_1016_j_cej_2023_142635
crossref_primary_10_1039_D4CP03184A
crossref_primary_10_1002_adts_202400353
crossref_primary_10_1039_D3EE00601H
crossref_primary_10_15541_jim20220710
crossref_primary_10_1002_anie_202419183
crossref_primary_10_1007_s12648_024_03350_w
crossref_primary_10_1021_acsami_2c20885
crossref_primary_10_1002_aenm_202203313
crossref_primary_10_1088_2631_8695_ad2f83
crossref_primary_10_1016_j_jcat_2024_115877
crossref_primary_10_1007_s12596_024_01879_x
crossref_primary_10_1039_D2SC06499E
crossref_primary_10_3390_mi14040806
crossref_primary_10_1002_aenm_202203190
crossref_primary_10_1021_acsenergylett_2c01624
crossref_primary_10_1039_D2EE01801B
crossref_primary_10_1002_smtd_202300029
crossref_primary_10_1016_j_cej_2023_142302
crossref_primary_10_1021_acsami_4c21442
crossref_primary_10_1007_s40820_023_01088_4
crossref_primary_10_1016_j_nanoen_2022_107818
crossref_primary_10_1007_s12633_023_02717_8
crossref_primary_10_1007_s11426_022_1445_2
crossref_primary_10_1002_aesr_202200160
crossref_primary_10_1002_smll_202208119
crossref_primary_10_1002_slct_202405119
crossref_primary_10_1016_j_rio_2025_100783
crossref_primary_10_1021_acsaem_3c01651
crossref_primary_10_3390_nano13020249
crossref_primary_10_1039_D3SE00571B
crossref_primary_10_1002_adfm_202300693
crossref_primary_10_1016_j_solener_2024_113144
crossref_primary_10_1016_j_jssc_2025_125293
crossref_primary_10_1039_D4TC01556H
crossref_primary_10_1021_acsenergylett_4c02700
crossref_primary_10_1088_1402_4896_acff28
crossref_primary_10_1002_adfm_202404792
crossref_primary_10_1016_j_solener_2023_111805
crossref_primary_10_35848_1347_4065_acc6d8
crossref_primary_10_1002_adfm_202207713
crossref_primary_10_1016_j_jpcs_2024_112139
crossref_primary_10_1039_D2EE02510H
crossref_primary_10_1016_j_optmat_2023_113822
crossref_primary_10_1038_s41467_025_56571_w
crossref_primary_10_1021_acsami_3c06538
crossref_primary_10_1039_D3QM00956D
crossref_primary_10_1002_solr_202300754
crossref_primary_10_1002_aenm_202200305
crossref_primary_10_1002_adts_202200652
crossref_primary_10_1098_rsos_230331
crossref_primary_10_1002_smll_202302418
crossref_primary_10_1002_ange_202419183
crossref_primary_10_1002_advs_202304811
crossref_primary_10_1007_s40820_022_00918_1
crossref_primary_10_1016_j_optmat_2022_112517
crossref_primary_10_1016_j_mseb_2024_117209
crossref_primary_10_3390_nano12224055
Cites_doi 10.1021/acs.jpclett.0c00923
10.1002/adma.201804835
10.1038/nenergy.2016.178
10.1021/acsenergylett.0c00526
10.1021/acs.jpclett.9b02024
10.1039/C5TA00190K
10.1002/adfm.202100931
10.1021/acsenergylett.7b00976
10.1039/C7TA02662E
10.1002/aenm.202101085
10.1002/adfm.201503338
10.1002/adfm.202106560
10.1021/cm503122j
10.1002/adma.202102055
10.1002/adma.202103394
10.1039/c3ee24453a
10.1038/s41560-019-0466-3
10.1002/aenm.201701038
10.1021/acsenergylett.0c02305
10.1016/j.joule.2019.08.023
10.1039/C8EE00162F
10.1021/jacs.1c03032
10.1039/D0EE04007J
10.1016/j.nanoen.2018.05.006
10.1016/j.jechem.2020.05.050
10.1039/d0ee01845g
10.1002/adma.201602992
10.1002/adfm.201808059
10.1016/j.joule.2021.03.001
10.1002/adma.201401991
10.1002/solr.202100034
10.1002/adfm.202007447
10.1002/solr.202000240
10.1002/smll.201704007
10.1021/jacs.7b01815
10.1039/c6ee03182j
10.1007/s11426-019-9653-8
10.1002/aenm.201702019
10.1002/cssc.202101573
10.1016/j.joule.2020.03.007
10.1038/nenergy.2016.142
10.1021/acsenergylett.9b01179
10.1021/acsenergylett.0c00888
10.1021/accountsmr.0c00111
10.1002/anie.201811539
10.1039/C8EE00956B
10.1021/acsenergylett.1c00342
10.1126/science.aax8018
10.1002/adma.201900605
10.1039/c3ee42110d
10.1021/acsenergylett.8b00383
10.1016/j.nanoen.2020.104858
10.1002/solr.201900057
10.1007/s40820-021-00672-w
10.1039/C9TA13159K
10.1038/s41467-020-16561-6
10.1002/solr.201900213
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-022-00842-4
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 14
ExternalDocumentID oai_doaj_org_article_b8df19ee199b442f8396fecde015d243
PMC8993987
10_1007_s40820_022_00842_4
GrantInformation_xml – fundername: Shanghai Jiao Tong University
– fundername: ;
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c557t-b01dc259eeafa96b777920bd51e7b4393e18d0b4a60cc479fe31ee034ac1d78a3
IEDL.DBID DOA
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 00:56:18 EDT 2025
Thu Aug 21 18:40:29 EDT 2025
Fri Jul 11 03:46:49 EDT 2025
Wed Aug 13 10:03:58 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
Tue Jul 01 00:55:47 EDT 2025
Fri Feb 21 02:45:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords absorber
Bulk charge recombination
Gradient FASnI
Built-in electric field
Lead-free perovskite solar cell
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-b01dc259eeafa96b777920bd51e7b4393e18d0b4a60cc479fe31ee034ac1d78a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/b8df19ee199b442f8396fecde015d243
PMID 35394568
PQID 2648326573
PQPubID 2044332
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_b8df19ee199b442f8396fecde015d243
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8993987
proquest_miscellaneous_2648893806
proquest_journals_2648326573
crossref_citationtrail_10_1007_s40820_022_00842_4
crossref_primary_10_1007_s40820_022_00842_4
springer_journals_10_1007_s40820_022_00842_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220408
PublicationDateYYYYMMDD 2022-04-08
PublicationDate_xml – month: 4
  year: 2022
  text: 20220408
  day: 8
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationYear 2022
Publisher Springer Nature Singapore
Springer Nature B.V
Springer Singapore
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: Springer Singapore
– name: SpringerOpen
References Jiang, Li, Zhou, Wei, Wei (CR7) 2021; 143
Zhang, Hägglund, Johansson (CR33) 2016; 26
Wu, Li, Qi, Zhang, Han (CR55) 2021; 14
Wang, Tai, Guo, Cao, Liu (CR31) 2020; 5
Diau, Jokar, Rameez (CR22) 2019; 4
Wang, Wu, Barbaud, Kong, Cui (CR51) 2019; 365
Yang, Zhang, Zhang, Liu, Qin (CR36) 2013; 6
Ran, Gao, Li, Xi, Li (CR13) 2019; 3
Gu, Zhao, Wang, Rao, Zhao (CR3) 2019; 3
Koh, Krishnamoorthy, Yantara, Shi, Leong (CR50) 2015; 3
Lin, Xiao, Qin, Han, Zhang (CR5) 2019; 4
Wu, Qin, Wang, Wu, Chen (CR4) 2021; 13
Kamarudin, Hirotani, Wang, Hamada, Nishimura (CR30) 2019; 10
Bai, Xiao, Hu, Zhang, Meng (CR44) 2017; 7
Marshall, Walker, Walton, Hatton (CR39) 2016; 1
Chen, Chen, Hou, Xu, Teale (CR46) 2021; 33
Zhang, Song, Hu, Xiang, He (CR56) 2018; 14
Jiang, Zang, Zhou, Li, Wei (CR1) 2021; 2
Liao, Liu, Zhou, Yang, Shang (CR12) 2017; 139
Meng, Wang, Lin, Liu, He (CR17) 2020; 4
Chen, Dong, Eickemeyer, Liu, Dai (CR27) 2020; 5
Wu, Liu, He, Wang, Meng (CR48) 2020; 63
Jokar, Chien, Fathi, Rameez, Chang (CR47) 2018; 11
Jokar, Cheng, Lin, Narra, Shahbazi (CR15) 2021; 6
Yu, Chen, Zhu, Wang, Han (CR10) 2021; 33
Wu, Wang, Dai, Cui, Wang (CR53) 2019; 31
Liu, Wang, Wu, He, Meng (CR43) 2020; 11
He, Wu, Liu, Wang, Meng (CR19) 2020; 8
Wu, Cui, Liu, Luo, Su (CR49) 2021; 5
Cho, Paek, Grancini, Roldan-Carmona, Gao (CR45) 2017; 10
Zhang, Yang, Numata, Han (CR37) 2013; 6
Chen, Wu, Yang, Su, Luo (CR24) 2018; 49
Cao, Yan (CR2) 2021; 14
Jokar, Chien, Tsai, Fathi, Diau (CR16) 2019; 31
Tai, Guo, Tang, You, Ng (CR20) 2019; 58
Lee, Kim, Kim, Shin, Jeong (CR34) 2018; 11
Bi, Yi, Luo, Décoppet, Zhang (CR54) 2016; 1
Sahare, Pham, Angmo, Ghoderao, MacLeod (CR6) 2021; 11
Wu, Liu, Luo, Lin, Cui (CR26) 2021; 5
Xu, Chen, Xiang, Gong, Wei (CR57) 2014; 26
Liu, Wang, Xie, Yang, Han (CR42) 2018; 3
Meng, Wu, Liu, He, Noda (CR21) 2020; 11
Wu, Cui, Liu, Meng, Wang (CR11) 2020; 4
Shao, Liu, Portale, Fang, Blake (CR23) 2018; 8
Liu, Tu, Hu, Huang, Meng (CR32) 2019; 29
Zhang, Yuan, Chen (CR35) 2019; 3
Li, Di, Chang, Yin, Fu (CR25) 2021; 31
Kumar, Dharani, Leong, Boix, Prabhakar (CR38) 2014; 26
Shi, Zhang, Meng, Teng, Liu (CR40) 2017; 5
Liu, Wu, Zhang, Zhang, Segawa (CR29) 2021; 31
Saianand, Sonar, Wilson, Gopalan, Roy (CR52) 2021; 54
Liu, Wu, Chen, Meng, He (CR14) 2020; 13
Nishimura, Kamarudin, Hirotani, Hamada, Shen (CR8) 2020; 74
Liao, Zhao, Yu, Grice, Wang (CR18) 2016; 28
Ye, Wang, Wang, Ma, Yang (CR28) 2021; 6
Lee, Shin, Im, Ahn, Noh (CR41) 2018; 3
Cui, Liu, Wu, Lin, Luo (CR9) 2021; 31
T Wu (842_CR11) 2020; 4
X He (842_CR19) 2020; 8
T Shi (842_CR40) 2017; 5
T Wu (842_CR53) 2019; 31
T Wang (842_CR31) 2020; 5
B Li (842_CR25) 2021; 31
EW-G Diau (842_CR22) 2019; 4
X Zhang (842_CR35) 2019; 3
D Cui (842_CR9) 2021; 31
T Ye (842_CR28) 2021; 6
MH Kumar (842_CR38) 2014; 26
W Liao (842_CR18) 2016; 28
X Liu (842_CR14) 2020; 13
E Jokar (842_CR47) 2018; 11
S Zhang (842_CR37) 2013; 6
B Chen (842_CR46) 2021; 33
T Wu (842_CR49) 2021; 5
S Sahare (842_CR6) 2021; 11
G Saianand (842_CR52) 2021; 54
T Wu (842_CR26) 2021; 5
F Gu (842_CR3) 2019; 3
T Wu (842_CR48) 2020; 63
D Bi (842_CR54) 2016; 1
F Zhang (842_CR56) 2018; 14
SJ Lee (842_CR41) 2018; 3
K Nishimura (842_CR8) 2020; 74
M Chen (842_CR27) 2020; 5
T Wu (842_CR55) 2021; 14
J-H Lee (842_CR34) 2018; 11
X Jiang (842_CR7) 2021; 143
C Liu (842_CR32) 2019; 29
X Jiang (842_CR1) 2021; 2
KP Marshall (842_CR39) 2016; 1
P Xu (842_CR57) 2014; 26
B-B Yu (842_CR10) 2021; 33
E Jokar (842_CR16) 2019; 31
MA Kamarudin (842_CR30) 2019; 10
C Ran (842_CR13) 2019; 3
X Meng (842_CR17) 2020; 4
Y Liao (842_CR12) 2017; 139
X Yang (842_CR36) 2013; 6
Y Wang (842_CR51) 2019; 365
K Chen (842_CR24) 2018; 49
J Cao (842_CR2) 2021; 14
TM Koh (842_CR50) 2015; 3
X Liu (842_CR29) 2021; 31
X Liu (842_CR43) 2020; 11
Y Bai (842_CR44) 2017; 7
R Lin (842_CR5) 2019; 4
X Meng (842_CR21) 2020; 11
Q Tai (842_CR20) 2019; 58
S Shao (842_CR23) 2018; 8
T Wu (842_CR4) 2021; 13
X Liu (842_CR42) 2018; 3
X Zhang (842_CR33) 2016; 26
E Jokar (842_CR15) 2021; 6
KT Cho (842_CR45) 2017; 10
References_xml – volume: 11
  start-page: 2965
  issue: 8
  year: 2020
  end-page: 2971
  ident: CR21
  article-title: Highly reproducible and efficient FASnI perovskite solar cells fabricated with volatilizable reducing solvent
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c00923
– volume: 31
  start-page: 1804835
  issue: 2
  year: 2019
  ident: CR16
  article-title: Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804835
– volume: 1
  start-page: 16178
  year: 2016
  ident: CR39
  article-title: Enhanced stability and efficiency in hole-transport-layer-free CsSnI perovskite photovoltaics
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.178
– volume: 5
  start-page: 1741
  issue: 6
  year: 2020
  end-page: 1749
  ident: CR31
  article-title: Highly air-stable tin-based perovskite solar cells through grain-surface protection by gallic acid
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00526
– volume: 10
  start-page: 5277
  issue: 17
  year: 2019
  end-page: 5283
  ident: CR30
  article-title: Suppression of charge carrier recombination in lead-free tin halide perovskite via Lewis base post-treatment
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02024
– volume: 3
  start-page: 14996
  issue: 29
  year: 2015
  end-page: 15000
  ident: CR50
  article-title: Formamidinium tin-based perovskite with low E for photovoltaic applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00190K
– volume: 31
  start-page: 2100931
  issue: 25
  year: 2021
  ident: CR9
  article-title: Making room for growing oriented FASnI with large grains via cold precursor solution
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100931
– volume: 3
  start-page: 46
  issue: 1
  year: 2018
  end-page: 53
  ident: CR41
  article-title: Reducing carrier density in formamidinium tin perovskites and its beneficial effects on stability and efficiency of perovskite solar cells
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00976
– volume: 5
  start-page: 15124
  issue: 29
  year: 2017
  end-page: 15129
  ident: CR40
  article-title: Effects of organic cations on the defect physics of tin halide perovskites
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02662E
– volume: 11
  start-page: 2101085
  issue: 42
  year: 2021
  ident: CR6
  article-title: Emerging perovskite solar cell technology: Remedial actions for the foremost challenges
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101085
– volume: 26
  start-page: 1253
  issue: 8
  year: 2016
  end-page: 1260
  ident: CR33
  article-title: Electro-optics of colloidal quantum dot solids for thin-film solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503338
– volume: 31
  start-page: 2106560
  issue: 50
  year: 2021
  ident: CR29
  article-title: Interface energy-level management toward efficient tin perovskite solar cells with hole-transport-layer-free structure
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106560
– volume: 26
  start-page: 6068
  issue: 20
  year: 2014
  end-page: 6072
  ident: CR57
  article-title: Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI
  publication-title: Chem. Mater.
  doi: 10.1021/cm503122j
– volume: 33
  start-page: 2102055
  issue: 36
  year: 2021
  ident: CR10
  article-title: Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102055
– volume: 33
  start-page: 2103394
  issue: 41
  year: 2021
  ident: CR46
  article-title: Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103394
– volume: 6
  start-page: 1443
  issue: 5
  year: 2013
  ident: CR37
  article-title: Highly efficient dye-sensitized solar cells: progress and future challenges
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee24453a
– volume: 4
  start-page: 864
  issue: 10
  year: 2019
  end-page: 873
  ident: CR5
  article-title: Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress sn(ii) oxidation in precursor ink
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0466-3
– volume: 7
  start-page: 1701038
  issue: 20
  year: 2017
  ident: CR44
  article-title: Dimensional engineering of a graded 3D–2D halide perovskite interface enables ultrahigh Voc enhanced stability in the p-i-n photovoltaics
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701038
– volume: 6
  start-page: 485
  issue: 2
  year: 2021
  end-page: 492
  ident: CR15
  article-title: Enhanced performance and stability of 3D/2D tin perovskite solar cells fabricated with a sequential solution deposition
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02305
– volume: 3
  start-page: 3072
  issue: 12
  year: 2019
  end-page: 3087
  ident: CR13
  article-title: Conjugated organic cations enable efficient self-healing FASnI solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2019.08.023
– volume: 11
  start-page: 1742
  issue: 7
  year: 2018
  end-page: 1751
  ident: CR34
  article-title: Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00162F
– volume: 143
  start-page: 10970
  issue: 29
  year: 2021
  end-page: 10976
  ident: CR7
  article-title: One-step synthesis of SnI ·(DMSO) adducts for high-performance tin perovskite solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03032
– volume: 14
  start-page: 1286
  issue: 3
  year: 2021
  end-page: 1325
  ident: CR2
  article-title: Recent progress in tin-based perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE04007J
– volume: 49
  start-page: 411
  year: 2018
  end-page: 418
  ident: CR24
  article-title: Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.05.006
– volume: 54
  start-page: 151
  year: 2021
  end-page: 173
  ident: CR52
  article-title: Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaics
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.05.050
– volume: 13
  start-page: 2896
  issue: 9
  year: 2020
  end-page: 2902
  ident: CR14
  article-title: Templated growth of FASnI crystals for efficient tin perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d0ee01845g
– volume: 28
  start-page: 9333
  issue: 42
  year: 2016
  end-page: 9340
  ident: CR18
  article-title: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602992
– volume: 29
  start-page: 1808059
  issue: 18
  year: 2019
  ident: CR32
  article-title: Enhanced hole transportation for inverted tin-based perovskite solar cells with high performance and stability
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808059
– volume: 5
  start-page: 863
  issue: 4
  year: 2021
  end-page: 886
  ident: CR26
  article-title: Lead-free tin perovskite solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2021.03.001
– volume: 26
  start-page: 7122
  issue: 41
  year: 2014
  end-page: 7127
  ident: CR38
  article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401991
– volume: 5
  start-page: 2100034
  issue: 5
  year: 2021
  ident: CR49
  article-title: Additive engineering toward high-performance tin perovskite solar cells
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100034
– volume: 31
  start-page: 2007447
  issue: 11
  year: 2021
  ident: CR25
  article-title: Efficient passivation strategy on Sn related defects for high performance all-inorganic CsSnI perovskite solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007447
– volume: 4
  start-page: 2000240
  issue: 9
  year: 2020
  ident: CR11
  article-title: Efficient and stable tin perovskite solar cells enabled by graded heterostructure of light-absorbing layer
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000240
– volume: 14
  start-page: 1704007
  issue: 19
  year: 2018
  ident: CR56
  article-title: Interfacial passivation of the p-doped hole-transporting layer using general insulating polymers for high-performance inverted perovskite solar cells
  publication-title: Small
  doi: 10.1002/smll.201704007
– volume: 139
  start-page: 6693
  issue: 19
  year: 2017
  end-page: 6699
  ident: CR12
  article-title: Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01815
– volume: 10
  start-page: 621
  issue: 2
  year: 2017
  end-page: 627
  ident: CR45
  article-title: Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c6ee03182j
– volume: 63
  start-page: 107
  issue: 1
  year: 2020
  end-page: 115
  ident: CR48
  article-title: Efficient and stable tin-based perovskite solar cells by introducing π-conjugated lewis base
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-019-9653-8
– volume: 8
  start-page: 1702019
  issue: 4
  year: 2018
  ident: CR23
  article-title: Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702019
– volume: 14
  start-page: 4354
  issue: 20
  year: 2021
  end-page: 4376
  ident: CR55
  article-title: Defect passivation for perovskite solar cells: from molecule design to device performance
  publication-title: Chemsuschem
  doi: 10.1002/cssc.202101573
– volume: 4
  start-page: 902
  issue: 4
  year: 2020
  end-page: 912
  ident: CR17
  article-title: Surface-controlled oriented growth of FASnI crystals for efficient lead-free perovskite solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.007
– volume: 1
  start-page: 16142
  issue: 10
  year: 2016
  ident: CR54
  article-title: Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.142
– volume: 4
  start-page: 1930
  issue: 8
  year: 2019
  end-page: 1937
  ident: CR22
  article-title: Strategies to improve performance and stability for tin-based perovskite solar cells
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01179
– volume: 5
  start-page: 2223
  issue: 7
  year: 2020
  end-page: 2230
  ident: CR27
  article-title: High-performance lead-free solar cells based on tin-halide perovskite thin films functionalized by a divalent organic cation
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00888
– volume: 2
  start-page: 210
  issue: 4
  year: 2021
  end-page: 219
  ident: CR1
  article-title: Tin halide perovskite solar cells: an emerging thin-film photovoltaic technology
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.0c00111
– volume: 58
  start-page: 806
  issue: 3
  year: 2019
  end-page: 810
  ident: CR20
  article-title: Antioxidant grain passivation for air-stable tin-based perovskite solar cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811539
– volume: 11
  start-page: 2353
  issue: 9
  year: 2018
  end-page: 2362
  ident: CR47
  article-title: Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00956B
– volume: 6
  start-page: 1480
  issue: 4
  year: 2021
  end-page: 1489
  ident: CR28
  article-title: Localized electron density engineering for stabilized B-γ CsSnI -based perovskite solar cells with efficiencies >10%
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00342
– volume: 365
  start-page: 687
  issue: 6454
  year: 2019
  end-page: 691
  ident: CR51
  article-title: Stabilizing heterostructures of soft perovskite semiconductors
  publication-title: Science
  doi: 10.1126/science.aax8018
– volume: 31
  start-page: 1900605
  issue: 24
  year: 2019
  ident: CR53
  article-title: Efficient and stable CsPbI solar cells via regulating lattice distortion with surface organic terminal groups
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900605
– volume: 6
  start-page: 3637
  issue: 12
  year: 2013
  end-page: 3645
  ident: CR36
  article-title: Coordinated shifts of interfacial energy levels: Insight into electron injection in highly efficient dye-sensitized solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42110d
– volume: 3
  start-page: 1116
  issue: 5
  year: 2018
  end-page: 1121
  ident: CR42
  article-title: Improving the performance of inverted formamidinium tin iodide perovskite solar cells by reducing the energy-level mismatch
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00383
– volume: 74
  year: 2020
  ident: CR8
  article-title: Lead-free tin-halide perovskite solar cells with 13% efficiency
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104858
– volume: 3
  start-page: 1900057
  issue: 6
  year: 2019
  ident: CR35
  article-title: Low electron carrier concentration near the p-n junction interface: A fundamental factor limiting short-circuit current of Cu(In, Ga)S 2 solar cells
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900057
– volume: 13
  start-page: 152
  issue: 1
  year: 2021
  ident: CR4
  article-title: The main progress of perovskite solar cells in 2020–2021
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00672-w
– volume: 8
  start-page: 2760
  issue: 5
  year: 2020
  end-page: 2768
  ident: CR19
  article-title: Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13159K
– volume: 11
  start-page: 2678
  issue: 1
  year: 2020
  ident: CR43
  article-title: Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16561-6
– volume: 3
  start-page: 1900213
  issue: 9
  year: 2019
  ident: CR3
  article-title: Lead-free tin-based perovskite solar cells: strategies toward high performance
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900213
– volume: 4
  start-page: 2000240
  issue: 9
  year: 2020
  ident: 842_CR11
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000240
– volume: 1
  start-page: 16142
  issue: 10
  year: 2016
  ident: 842_CR54
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.142
– volume: 14
  start-page: 1704007
  issue: 19
  year: 2018
  ident: 842_CR56
  publication-title: Small
  doi: 10.1002/smll.201704007
– volume: 13
  start-page: 152
  issue: 1
  year: 2021
  ident: 842_CR4
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00672-w
– volume: 8
  start-page: 2760
  issue: 5
  year: 2020
  ident: 842_CR19
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13159K
– volume: 63
  start-page: 107
  issue: 1
  year: 2020
  ident: 842_CR48
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-019-9653-8
– volume: 33
  start-page: 2102055
  issue: 36
  year: 2021
  ident: 842_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102055
– volume: 7
  start-page: 1701038
  issue: 20
  year: 2017
  ident: 842_CR44
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701038
– volume: 31
  start-page: 2106560
  issue: 50
  year: 2021
  ident: 842_CR29
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106560
– volume: 6
  start-page: 1480
  issue: 4
  year: 2021
  ident: 842_CR28
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00342
– volume: 3
  start-page: 1116
  issue: 5
  year: 2018
  ident: 842_CR42
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00383
– volume: 5
  start-page: 1741
  issue: 6
  year: 2020
  ident: 842_CR31
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00526
– volume: 11
  start-page: 2101085
  issue: 42
  year: 2021
  ident: 842_CR6
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101085
– volume: 5
  start-page: 2223
  issue: 7
  year: 2020
  ident: 842_CR27
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00888
– volume: 28
  start-page: 9333
  issue: 42
  year: 2016
  ident: 842_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602992
– volume: 6
  start-page: 3637
  issue: 12
  year: 2013
  ident: 842_CR36
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42110d
– volume: 11
  start-page: 2678
  issue: 1
  year: 2020
  ident: 842_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16561-6
– volume: 4
  start-page: 1930
  issue: 8
  year: 2019
  ident: 842_CR22
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01179
– volume: 14
  start-page: 4354
  issue: 20
  year: 2021
  ident: 842_CR55
  publication-title: Chemsuschem
  doi: 10.1002/cssc.202101573
– volume: 33
  start-page: 2103394
  issue: 41
  year: 2021
  ident: 842_CR46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103394
– volume: 31
  start-page: 1804835
  issue: 2
  year: 2019
  ident: 842_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804835
– volume: 139
  start-page: 6693
  issue: 19
  year: 2017
  ident: 842_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01815
– volume: 6
  start-page: 1443
  issue: 5
  year: 2013
  ident: 842_CR37
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee24453a
– volume: 3
  start-page: 1900213
  issue: 9
  year: 2019
  ident: 842_CR3
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900213
– volume: 5
  start-page: 2100034
  issue: 5
  year: 2021
  ident: 842_CR49
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100034
– volume: 10
  start-page: 621
  issue: 2
  year: 2017
  ident: 842_CR45
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c6ee03182j
– volume: 365
  start-page: 687
  issue: 6454
  year: 2019
  ident: 842_CR51
  publication-title: Science
  doi: 10.1126/science.aax8018
– volume: 13
  start-page: 2896
  issue: 9
  year: 2020
  ident: 842_CR14
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d0ee01845g
– volume: 11
  start-page: 2965
  issue: 8
  year: 2020
  ident: 842_CR21
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c00923
– volume: 3
  start-page: 46
  issue: 1
  year: 2018
  ident: 842_CR41
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00976
– volume: 5
  start-page: 863
  issue: 4
  year: 2021
  ident: 842_CR26
  publication-title: Joule
  doi: 10.1016/j.joule.2021.03.001
– volume: 11
  start-page: 2353
  issue: 9
  year: 2018
  ident: 842_CR47
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00956B
– volume: 11
  start-page: 1742
  issue: 7
  year: 2018
  ident: 842_CR34
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00162F
– volume: 31
  start-page: 1900605
  issue: 24
  year: 2019
  ident: 842_CR53
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900605
– volume: 3
  start-page: 14996
  issue: 29
  year: 2015
  ident: 842_CR50
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00190K
– volume: 29
  start-page: 1808059
  issue: 18
  year: 2019
  ident: 842_CR32
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808059
– volume: 74
  year: 2020
  ident: 842_CR8
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104858
– volume: 3
  start-page: 3072
  issue: 12
  year: 2019
  ident: 842_CR13
  publication-title: Joule
  doi: 10.1016/j.joule.2019.08.023
– volume: 54
  start-page: 151
  year: 2021
  ident: 842_CR52
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.05.050
– volume: 2
  start-page: 210
  issue: 4
  year: 2021
  ident: 842_CR1
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.0c00111
– volume: 31
  start-page: 2007447
  issue: 11
  year: 2021
  ident: 842_CR25
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007447
– volume: 58
  start-page: 806
  issue: 3
  year: 2019
  ident: 842_CR20
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811539
– volume: 26
  start-page: 7122
  issue: 41
  year: 2014
  ident: 842_CR38
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401991
– volume: 10
  start-page: 5277
  issue: 17
  year: 2019
  ident: 842_CR30
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02024
– volume: 26
  start-page: 6068
  issue: 20
  year: 2014
  ident: 842_CR57
  publication-title: Chem. Mater.
  doi: 10.1021/cm503122j
– volume: 8
  start-page: 1702019
  issue: 4
  year: 2018
  ident: 842_CR23
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702019
– volume: 6
  start-page: 485
  issue: 2
  year: 2021
  ident: 842_CR15
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02305
– volume: 4
  start-page: 864
  issue: 10
  year: 2019
  ident: 842_CR5
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0466-3
– volume: 5
  start-page: 15124
  issue: 29
  year: 2017
  ident: 842_CR40
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02662E
– volume: 31
  start-page: 2100931
  issue: 25
  year: 2021
  ident: 842_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100931
– volume: 14
  start-page: 1286
  issue: 3
  year: 2021
  ident: 842_CR2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE04007J
– volume: 49
  start-page: 411
  year: 2018
  ident: 842_CR24
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.05.006
– volume: 143
  start-page: 10970
  issue: 29
  year: 2021
  ident: 842_CR7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03032
– volume: 4
  start-page: 902
  issue: 4
  year: 2020
  ident: 842_CR17
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.007
– volume: 1
  start-page: 16178
  year: 2016
  ident: 842_CR39
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.178
– volume: 26
  start-page: 1253
  issue: 8
  year: 2016
  ident: 842_CR33
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503338
– volume: 3
  start-page: 1900057
  issue: 6
  year: 2019
  ident: 842_CR35
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900057
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.505066
Snippet Highlights A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in...
Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic...
HighlightsA novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in...
A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber...
Abstract Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 99
SubjectTerms Absorbers
Built-in electric field
Bulk charge recombination
Efficiency
Electric fields
Engineering
Gradient FASnI3 absorber
Illumination
Lead free
Lead-free perovskite solar cell
Lewis base
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Open circuit voltage
Perovskite Solar Cells
Perovskites
Photoelectrons
Photovoltaic cells
Recrystallization
Solar cells
Tin
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwFLSgvcAB8SkCBRmJG1jYsRM7J7StNlo4VBWlUm-RHTu00irZJlt-P35eZ9NUotfEq03ynu2x33gGoc8F11zXziO3AkS1eSaIKaBfpZZR3Qibu0CQPc1XF-LnZXYZN9yGSKscx8QwUNuuhj3yb8DE8lAjk_z75oaAaxRUV6OFxmN06Idg5Rdfh8fL07NfY0alEpyZpjoh2CuLO2o1ArRd-CRoloGAmZx0MrNU-Pk9Trg7QC2hlBUc6xgjuaR5PIkTzuOBezMlQJAHnfqUiNlsF0wBZkj2Pg_zXjE2zHHlc_QsglO82GXTC_TItS_R0zuSha_QZgX8mc6nnetuB1wuztsfHC_M0PXG9Ri2dfGyvQq8ArwMHjvXNS6BJ4c9PsbAKyFn02kFDB6fpOydw_5q93eA3WR8DgtufOLW6-E1uiiXv09WJLo2kDrL5JYYymztF1XO6UYXuZFSFik1NmNOGg9_uGPKUiN0TutayKJxnDlHudA1s1Jp_gYdtF3r3iKshII6JU0bqoVKrfJYRSuVSScV57RIEBu_blVHSXNw1lhXezHmEJHKR6QKEalEgr7sf7PZCXo82PoYgrZvCWLc4ULX_6li366Msg3z78uKwgiRNh5z5o2rrfNQy6aCJ-hoDHkVR4ihmvI5QZ_2t33fhoKNDjEMbTyeVDRPkJylyuyB5nfa66ugEu4X0rxQMkFfx6Sa_vz_L_zu4Wd9j56kIb0FoeoIHWz7W_fBo7Kt-Ri73j9MFymg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwGA26vuiDeMXqKhF800CuTfI4DjOMPoiwLuxbSdrUXRjapZ3195sv08t2UcHXJqWX70tz0u_kHIQ-WOGEK0NEbhZEtYWSxFsYV7xi1NWyykMiyH7Ld-fy64W6GDaF9SPbfSxJpi_1tNkNrJEpAfY5iMBzIu-jByqu3SGv17PmONfgxjTXBsFSWd5SqJGg5yJmETMFomV61sZUXMY5fZhkjyBaQ_kqudQxRnJN82H3zZ9vazHDJSOABXq9y728U4BN89r2CXo8AFK8OmbQU3QvNM_Qo1syhc_R9Q44M21MtdDe9Hi7Omu-CLzyfdv50GH4lYs3zWXiEuBN8tW5KvEWuHE4YmIMXBLyfd6hgMHXk2y7EHA82v7q4Q8yPoNFNl6H_b5_gc63mx_rHRmcGkiplD4QT1lVxoVUCK52Nvdaa8uprxQL2kfIIwIzFfXS5bQspbZ1ECwEKqQrWaWNEy_RSdM24RXCRhqoTVJeUycNr0zEJ84YpYM2QlCbITa-3aIcZMzBTWNfTALMKSJFjEiRIlLIDH2czrk-inj8s_dnCNrUEwS404G2-1kM47nwpqpZfF5mrZeS1xFn5nUoqxDhVcWlyNDpGPJi-Cr0BbAJI1xWOja_n5rjeIYijUsxTH0ihjQ0z5BepMrihpYtzdVlUgaPi2dhjc7QpzGp5ov__YFf_1_3N-ghT-kuCTWn6OTQ3YS3EZkd_Ls0EH8D0JIkzA
  priority: 102
  providerName: Springer Nature
Title Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells
URI https://link.springer.com/article/10.1007/s40820-022-00842-4
https://www.proquest.com/docview/2648326573
https://www.proquest.com/docview/2648893806
https://pubmed.ncbi.nlm.nih.gov/PMC8993987
https://doaj.org/article/b8df19ee199b442f8396fecde015d243
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgucAB8RRdlpWRuEGEX4ntY1saCofVimWlvUV2MtGuVKWrtsvvZ8ZNXysBFy6tZDtq4xlnPmfG38fYB6-DDjUgcvNEqq1zk0VP60o1UoTWNAWkAtmzYnppvl_lV3tSX1QTtqYHXk_c5-iaVnoA6X00RrUY0IsW6gYwjjXKJJ5PjHl7myn0JGVJkWmXHyRZZbPHUmOI00XviMxyIi6zO37MXBmM632gXQNpSymspFQnZVZYUfQncNI5PFJtFhkVxhM_vcrMQZRLYgAHCPZ-_eW9JGyKbeUz9rQHpXy4nozn7AF0L9iTParCl-x2SnUzc3Q3mN8teTm86L5pPozL-SLCgtPrXD7prlM9AZ8kbZ2bmpdUH8cRF3OqJ8nOd6cUOGl7ZuUCgGPr_NeS3iLzC9po8zHMZstX7LKc_BxPs16tIavz3K6yKGRT42YKILTBF9Fa65WITS7BRoQ9GqRrRDShEHVtrG9BSwChTahlY13Qr9lRN-_gDePOOMpPCtWKYJxqHGKU4FxuwTqthR8wuZndqu6pzElRY1ZtSZiTRSq0SJUsUpkB-7i95nZN5PHX0SMy2nYkkXCnBnTNqnfN6l-uOWAnG5NX_ZNhWVFFIULm3GL3-203rmlK1IRkwzQGcaQTxYDZA1c5-EOHPd3NdWIHxw209s4O2KeNU-1-_M83fPw_bvgte6zSIjCZcCfsaLW4g3eI2VbxlD105ddT9mg4-jIq8Xs0OTv_ga1jZeizGJ-mBfwbeNQ24g
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeAAeEFcRGGAkeAIL3xI7DwiVsdCyMSFtk_aW2YnDJlVJaToQf4rfiI-bNOsk9rbXxG2Tnos_-xx_H0KvU2GEKZxHbimQaotYEptCXPGSUVPJMnGhQXY_GR_Jr8fx8Qb625-FgbbKPieGRF02BeyRv4dOLA81YiU-zn4SUI2C6movobF0i13357dfsrUfJp-9fd9wnu0cbo9JpypAijhWC2IpKwsP-p0zlUkTq5RKObVlzJyyfnoWjumSWmkSWhRSpZUTzDkqpClYqbQR_ntvoJtSiBQiSmdfev_lCnSghqokiDnLC9w4EphkxECfFgNdmhpYOWMuPZropvclfFdQOAv6eIyRRNGkO_cTTv-BVjQl0I4PrPicyLW5NUgQrOHmy12fl0q_YUbN7qG7HRTGo6Xv3kcbrn6A7lwgSHyIZmPo1mm8k7vmvMXZ6KCeCDyybTO3bo5hExnv1KehiwHvBEWfswJn0JWHPRrH0MVCvg9nIzAoipJs7hz2V5tfLexd4wNY3uNtN522j9DRtVjzMdqsm9o9QVhLDVVRyitqpOal9sjIaB0rp7QQNI0Q6__dvOgI1EHHY5qvqJ-DRXJvkTxYJJcRerv6zGxJH3Ll6E9gtNVIoP4OF5r5j7zLJLnVZcX8-7I0tVLyyiPcpHJF6TywK7kUEdrqTZ53-ajNh-iJ0KvVbZ9JoDxkgg3DGI9eNU0ipNZcZe2B1u_UZ6eBk9wv20WqVYTe9U41_Pj_X_jp1c_6Et0aH37by_cm-7vP0G0eXF0SqrfQ5mJ-7p57PLiwL0IQYnRy3VH_D5YUZf4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVgSAgeEJ8iMMBIvEE0fyV2Hktp1AGaJo1Je4vs2GGTqqRKuv3--bpp0kyAxGvsqknvdX2ce-45CH3KuOa6dB65ZSCqzRMRmwzWFbOU6ErY1AWC7Em6PBffL5KLvS7-wHbflSS3PQ2g0lRvjta2Ohoa38AmmcTARAdBeBaL--iBP6lQIPXNR_1xJsGZaawTgr2y2FOrEaDtwkdBswQEzOSok5kw4ff3fsPdAmoJpazgWEdpnEqS9p04f76tyW4XTAEmSPYuD_NOMTbscflT9KQHp3i2zaZn6J6rn6PHe5KFL9B6CfyZxqeda647nM_O6mOOZ6ZrWuNaDK918aK-DLwCvAgeO1clzoEnhz0-xsAriU_HbgUMHp9x3jqH_dXmpoO3yfgMDtx47lar7iU6zxe_5su4d22IyySRm9gQakt_qHJOVzpLjZQyY8TYhDppPPzhjipLjNApKUshs8px6hzhQpfUSqX5K3RQN7V7jbASCuqUhFVEC8Ws8lhFK5VIJxXnJIsQ3f26RdlLmoOzxqoYxJhDRAofkSJEpBAR-jx8Zr0V9Pjn7K8QtGEmiHGHC037u-jXdmGUrah_XpplRghWecyZVq60zkMtywSP0OEu5EX_D9EVwCz00DmRfvjjMOzXNhRsdIhhmOPxpCJphOQkVSY3NB2pry6DSrg_SPNMyQh92SXV-OV_f-A3_zf9A3p4-i0vfh6f_HiLHrGQ-SIm6hAdbNpr984Dto15H9bkLfr-K_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+FASnI3+Absorber+with+Enhanced+Electric+Field+for+High-Performance+Lead-Free+Perovskite+Solar+Cells&rft.jtitle=Nano-micro+letters&rft.au=Wu%2C+Tianhao&rft.au=Liu%2C+Xiao&rft.au=Luo%2C+Xinhui&rft.au=Segawa%2C+Hiroshi&rft.date=2022-04-08&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-022-00842-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40820_022_00842_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon