DNA Fountain enables a robust and efficient storage architecture

DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 355; no. 6328; pp. 950 - 954
Main Authors Erlich, Yaniv, Zielinski, Dina
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 03.03.2017
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 10⁶ bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 1015 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports.
AbstractList DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 106 bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 1015 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports.
DNA has the potential to provide large-capacity information storage. However, current methods have only been able to use a fraction of the theoretical maximum. Erlich and Zielinski present a method, DNA Fountain, which approaches the theoretical maximum for information stored per nucleotide. They demonstrated efficient encoding of information—including a full computer operating system—into DNA that could be retrieved at scale after multiple rounds of polymerase chain reaction. Science , this issue p. 950 A resilient DNA storage strategy enables near-maximal information content per nucleotide. DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 10 6 bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 10 15 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports.
A reliable and efficient DNA storage architectureDNA has the potential to provide large-capacity information storage. However, current methods have only been able to use a fraction of the theoretical maximum. Erlich and Zielinski present a method, DNA Fountain, which approaches the theoretical maximum for information stored per nucleotide. They demonstrated efficient encoding of information-including a full computer operating system-into DNA that could be retrieved at scale after multiple rounds of polymerase chain reaction.Science, this issue p. 950 DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 106 bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 1015 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports.
DNA has the potential to provide large-capacity information storage. However, current methods have only been able to use a fraction of the theoretical maximum. Erlich and Zielinski present a method, DNA Fountain, which approaches the theoretical maximum for information stored per nucleotide. They demonstrated efficient encoding of information--including a full computer operating system--into DNA that could be retrieved at scale after multiple rounds of polymerase chain reaction. Science, this issue p. 950 DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 106 bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 1015 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports.
DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 10⁶ bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 1015 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports.
DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 10 bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 10 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports.
Author Erlich, Yaniv
Zielinski, Dina
Author_xml – sequence: 1
  givenname: Yaniv
  surname: Erlich
  fullname: Erlich, Yaniv
– sequence: 2
  givenname: Dina
  surname: Zielinski
  fullname: Zielinski, Dina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28254941$$D View this record in MEDLINE/PubMed
BookMark eNqN0c1PwyAYBnBiNG5Tz540Tbx4qQIvFLi5zM_E6EXPDaUv2mWjE9qD_71dNjXx5ImQ98dD4JmQ3dAGJOSY0QvGeHGZXIPB4YW1c05B75Axo0bmZtjskjGlUOSaKjkik5TmlA4zA_tkxDWXwgg2JlfXT9Pstu1DZ5uQYbDVAlNms9hWfeoyG-oMvW_W13RZ6tpo3zCz0b03Hbquj3hI9rxdJDzargfk9fbmZXafPz7fPcymj7mTUnW5EVrUyjvlPBQCpaIShbdOcloBr2vuCmkrVAg1msppJcBDBQqEL6h3HA7I-SZ3FduPHlNXLpvkcLGwAds-lUwbMJQXQvyDaqYKLeV_UpUQgjEFAz37Q-dtH8Pw5rWSYDgAG9TlRrnYphTRl6vYLG38LBkt15WV28rKbWXDidNtbl8tsf7x3x0N4GQD5uv__50Lw7SQAF-71J2C
CitedBy_id crossref_primary_10_1088_1367_2630_ac2005
crossref_primary_10_1038_s41467_019_09517_y
crossref_primary_10_1021_acssynbio_0c00246
crossref_primary_10_1007_s13206_024_00146_2
crossref_primary_10_1021_acs_macromol_3c02405
crossref_primary_10_1021_acssynbio_0c00361
crossref_primary_10_3390_e24081151
crossref_primary_10_1002_smtd_202201610
crossref_primary_10_1002_smtd_202301585
crossref_primary_10_1038_s41467_020_18842_6
crossref_primary_10_1093_bib_bbac336
crossref_primary_10_1039_D2CS01022D
crossref_primary_10_1021_acs_nanolett_0c00755
crossref_primary_10_1109_ACCESS_2024_3353305
crossref_primary_10_1093_nar_gkab505
crossref_primary_10_1111_1751_7915_14291
crossref_primary_10_1109_TCBB_2020_3011582
crossref_primary_10_1109_JIOT_2021_3083663
crossref_primary_10_1109_TIT_2017_2747557
crossref_primary_10_1109_ACCESS_2020_3021700
crossref_primary_10_1109_JSAIT_2022_3151737
crossref_primary_10_1088_2399_1984_ac7d81
crossref_primary_10_1109_LCOMM_2019_2912572
crossref_primary_10_1038_s41540_022_00233_w
crossref_primary_10_1109_COMST_2021_3066117
crossref_primary_10_1080_14686996_2024_2346068
crossref_primary_10_1021_jacs_9b04728
crossref_primary_10_1002_cplu_202200183
crossref_primary_10_1186_s12864_024_10178_5
crossref_primary_10_1007_s12095_020_00459_7
crossref_primary_10_1021_acssynbio_2c00649
crossref_primary_10_1038_s41565_017_0004_z
crossref_primary_10_1093_bib_bbac484
crossref_primary_10_1021_acsami_2c02995
crossref_primary_10_1109_TIT_2022_3217518
crossref_primary_10_1109_TIT_2024_3350436
crossref_primary_10_1109_TNB_2021_3121278
crossref_primary_10_1016_j_nantod_2020_100871
crossref_primary_10_1109_TCBB_2021_3127271
crossref_primary_10_1109_TIT_2021_3127174
crossref_primary_10_1038_s41467_023_42223_4
crossref_primary_10_1093_nargab_lqab126
crossref_primary_10_1007_s12257_020_0022_9
crossref_primary_10_1016_j_eng_2022_05_023
crossref_primary_10_1021_cbe_3c00085
crossref_primary_10_1038_s41563_021_01021_3
crossref_primary_10_1039_D2SC06466A
crossref_primary_10_1186_s12859_023_05237_9
crossref_primary_10_1002_anie_202001162
crossref_primary_10_1093_nsr_nwab028
crossref_primary_10_1109_TNB_2023_3284406
crossref_primary_10_1039_C7CC00222J
crossref_primary_10_3389_fbinf_2023_1276934
crossref_primary_10_1038_s41587_021_00988_3
crossref_primary_10_1016_j_ijpharm_2021_120580
crossref_primary_10_1038_s43588_022_00231_2
crossref_primary_10_1002_ange_202001162
crossref_primary_10_1109_ACCESS_2021_3078138
crossref_primary_10_1038_s41576_018_0052_8
crossref_primary_10_1109_TETC_2022_3225570
crossref_primary_10_1109_TIT_2023_3247812
crossref_primary_10_1109_TMBMC_2024_3403488
crossref_primary_10_1007_s10529_022_03295_2
crossref_primary_10_1049_ell2_13110
crossref_primary_10_1109_ACCESS_2019_2921400
crossref_primary_10_1016_j_isci_2024_109575
crossref_primary_10_1109_MC_2023_3272188
crossref_primary_10_1002_cbic_201800057
crossref_primary_10_1038_s41598_024_51730_3
crossref_primary_10_1002_ange_202010171
crossref_primary_10_1109_TIT_2020_3002611
crossref_primary_10_1007_s13205_018_1246_7
crossref_primary_10_1038_s41565_023_01377_4
crossref_primary_10_1002_advs_202004038
crossref_primary_10_1038_s41467_024_46767_x
crossref_primary_10_1093_nar_gky296
crossref_primary_10_1093_nsr_nwad229
crossref_primary_10_1109_TCBB_2021_3088525
crossref_primary_10_1109_TNB_2020_2977304
crossref_primary_10_1109_JIOT_2023_3332903
crossref_primary_10_1021_acsnano_3c12000
crossref_primary_10_1140_epje_i2018_11696_5
crossref_primary_10_1080_09544828_2022_2143155
crossref_primary_10_1002_anie_201909927
crossref_primary_10_1016_j_nancom_2021_100391
crossref_primary_10_1007_s12539_021_00476_x
crossref_primary_10_1109_MCOM_002_2200249
crossref_primary_10_1021_jacs_0c09891
crossref_primary_10_1109_TMBMC_2023_3331579
crossref_primary_10_1016_j_csbj_2023_09_004
crossref_primary_10_1049_iet_nbt_2020_0157
crossref_primary_10_1109_TCBB_2023_3263521
crossref_primary_10_1038_s42003_022_04062_9
crossref_primary_10_3390_e23121592
crossref_primary_10_1021_acs_nanolett_1c04203
crossref_primary_10_1109_LCOMM_2022_3216408
crossref_primary_10_1016_j_molliq_2021_116167
crossref_primary_10_1002_adfm_201901672
crossref_primary_10_1016_j_tcs_2021_09_021
crossref_primary_10_1021_jacs_2c10316
crossref_primary_10_1021_jacs_2c13825
crossref_primary_10_1016_j_tibtech_2023_07_006
crossref_primary_10_1021_acs_analchem_2c02667
crossref_primary_10_1021_acscentsci_9b00210
crossref_primary_10_1038_s42004_020_0308_z
crossref_primary_10_1109_TCOMM_2023_3335409
crossref_primary_10_1109_ACCESS_2019_2961105
crossref_primary_10_1038_s41467_020_18681_5
crossref_primary_10_1016_j_bios_2023_115723
crossref_primary_10_1038_s41576_019_0125_3
crossref_primary_10_1126_sciadv_adg9933
crossref_primary_10_1246_bcsj_20200201
crossref_primary_10_1089_genbio_2023_0018
crossref_primary_10_1002_anie_202212011
crossref_primary_10_1016_j_micinf_2018_11_002
crossref_primary_10_1093_nsr_nwab086
crossref_primary_10_1002_cbic_201800658
crossref_primary_10_1039_C9CC04372A
crossref_primary_10_1109_TMBMC_2020_3035370
crossref_primary_10_1093_nar_gkab230
crossref_primary_10_1073_pnas_1802640115
crossref_primary_10_3389_fbioe_2022_869111
crossref_primary_10_1038_s41467_019_10258_1
crossref_primary_10_1038_s41467_020_15588_z
crossref_primary_10_1109_TNB_2021_3102122
crossref_primary_10_1016_j_csbj_2019_06_004
crossref_primary_10_1016_j_csbj_2021_08_031
crossref_primary_10_1016_j_jocs_2024_102367
crossref_primary_10_1021_acsomega_3c09234
crossref_primary_10_1109_TIT_2023_3241773
crossref_primary_10_3390_math10050845
crossref_primary_10_1016_j_eurpolymj_2019_109260
crossref_primary_10_1109_TIT_2022_3227128
crossref_primary_10_1007_s11427_022_2252_0
crossref_primary_10_1021_acs_nanolett_8b04715
crossref_primary_10_1371_journal_pone_0245506
crossref_primary_10_1186_s12859_022_04723_w
crossref_primary_10_1371_journal_pone_0277139
crossref_primary_10_1038_s41467_020_16958_3
crossref_primary_10_1126_sciadv_abk0100
crossref_primary_10_1109_TIT_2021_3063709
crossref_primary_10_1109_TIT_2022_3176371
crossref_primary_10_1021_acssynbio_1c00142
crossref_primary_10_1371_journal_pone_0255376
crossref_primary_10_1016_j_csbj_2024_04_048
crossref_primary_10_1070_RCR4994
crossref_primary_10_1038_s41598_021_92987_2
crossref_primary_10_1038_s41598_023_29575_z
crossref_primary_10_1093_bioinformatics_btad548
crossref_primary_10_1103_PhysRevE_96_052402
crossref_primary_10_1038_nbt_4093
crossref_primary_10_1109_TNB_2024_3356522
crossref_primary_10_1007_s13205_021_02882_w
crossref_primary_10_1038_s41467_017_01104_3
crossref_primary_10_1038_s41587_019_0240_x
crossref_primary_10_3390_math12081235
crossref_primary_10_1016_j_biotechadv_2020_107639
crossref_primary_10_1093_bioinformatics_btab246
crossref_primary_10_1109_TNB_2021_3056351
crossref_primary_10_1016_j_biopha_2020_111074
crossref_primary_10_1016_j_tibtech_2023_08_001
crossref_primary_10_1093_nar_gkab1209
crossref_primary_10_1109_TIT_2022_3206527
crossref_primary_10_1109_MCOM_011_2200755
crossref_primary_10_1038_s41467_023_38876_w
crossref_primary_10_1038_s41467_022_33046_w
crossref_primary_10_1002_advs_202206201
crossref_primary_10_1038_s41467_020_14319_8
crossref_primary_10_2174_2212796813999190823154354
crossref_primary_10_1016_j_scib_2021_03_010
crossref_primary_10_2144_000114531
crossref_primary_10_1039_D3CS00469D
crossref_primary_10_1002_advs_202305921
crossref_primary_10_1021_acscombsci_9b00088
crossref_primary_10_1088_2399_6528_ad246d
crossref_primary_10_1016_j_biotechadv_2023_108155
crossref_primary_10_1021_acsnano_9b02562
crossref_primary_10_1038_s41467_024_47187_7
crossref_primary_10_1109_TIT_2021_3122798
crossref_primary_10_1016_j_csbj_2023_02_016
crossref_primary_10_1038_nbt_4079
crossref_primary_10_2174_1574893617666220314114732
crossref_primary_10_1109_ACCESS_2024_3401464
crossref_primary_10_1109_TIT_2022_3184903
crossref_primary_10_1016_j_image_2021_116331
crossref_primary_10_1002_anie_201810559
crossref_primary_10_1007_s11042_020_09237_2
crossref_primary_10_1109_ACCESS_2023_3235201
crossref_primary_10_1038_s41598_023_43658_x
crossref_primary_10_1109_TNB_2024_3379976
crossref_primary_10_1002_adma_202307499
crossref_primary_10_1145_3626233
crossref_primary_10_1016_j_progpolymsci_2023_101677
crossref_primary_10_1007_s13534_024_00386_z
crossref_primary_10_1002_ange_201807845
crossref_primary_10_1038_s41598_023_43172_0
crossref_primary_10_1038_s41598_022_18108_9
crossref_primary_10_1021_acs_jcim_3c01592
crossref_primary_10_1534_g3_119_400373
crossref_primary_10_1109_TCOMM_2021_3130660
crossref_primary_10_1093_bioinformatics_btad572
crossref_primary_10_1039_D3DD00083D
crossref_primary_10_1002_anie_201707976
crossref_primary_10_1021_jacs_3c13953
crossref_primary_10_1021_acssynbio_2c00291
crossref_primary_10_3390_philosophies5020010
crossref_primary_10_1021_acssynbio_9b00100
crossref_primary_10_3389_fbioe_2023_1173763
crossref_primary_10_1021_jacs_1c07331
crossref_primary_10_1038_s41589_020_00711_4
crossref_primary_10_3390_ijms24032549
crossref_primary_10_1002_smtd_202101335
crossref_primary_10_1186_s12859_023_05264_6
crossref_primary_10_1007_s42979_024_02672_0
crossref_primary_10_1145_3516482
crossref_primary_10_1109_TNB_2023_3254514
crossref_primary_10_1021_acssynbio_1c00575
crossref_primary_10_1016_j_nlm_2023_107748
crossref_primary_10_1038_s41598_023_34160_5
crossref_primary_10_1109_TETC_2023_3293477
crossref_primary_10_1088_1674_1056_28_4_040504
crossref_primary_10_3390_electronics12122621
crossref_primary_10_1021_jacs_1c10612
crossref_primary_10_1155_2021_9112407
crossref_primary_10_1002_anie_201702384
crossref_primary_10_1038_s41598_019_43105_w
crossref_primary_10_3390_app10113990
crossref_primary_10_1002_nano_202100275
crossref_primary_10_1109_ACCESS_2020_3015825
crossref_primary_10_1038_s41467_020_14455_1
crossref_primary_10_1016_j_csbj_2021_04_057
crossref_primary_10_1088_1361_6528_aaa120
crossref_primary_10_1016_j_compbiolchem_2022_107696
crossref_primary_10_1002_smll_202107381
crossref_primary_10_1021_acs_biomac_4c00259
crossref_primary_10_1039_D0CC00222D
crossref_primary_10_1002_ange_202212011
crossref_primary_10_1109_TIT_2020_3030569
crossref_primary_10_1016_j_progpolymsci_2023_101754
crossref_primary_10_1016_j_biosystems_2022_104664
crossref_primary_10_1038_s42003_020_01141_7
crossref_primary_10_1002_slct_201801484
crossref_primary_10_1109_TETC_2023_3268274
crossref_primary_10_5334_joh_11
crossref_primary_10_1016_j_isci_2023_106231
crossref_primary_10_1186_s12859_021_04318_x
crossref_primary_10_3390_ijms25126449
crossref_primary_10_1021_acsnano_2c11241
crossref_primary_10_1093_bioinformatics_btae113
crossref_primary_10_1016_j_compbiomed_2023_107404
crossref_primary_10_1007_s11047_018_9686_x
crossref_primary_10_1109_JPHOT_2018_2859257
crossref_primary_10_1186_s12052_021_00146_y
crossref_primary_10_1108_LHT_06_2017_0117
crossref_primary_10_1007_s42514_022_00094_z
crossref_primary_10_1109_TCBB_2019_2940177
crossref_primary_10_3389_fbioe_2022_916615
crossref_primary_10_1109_ACCESS_2020_2980036
crossref_primary_10_30991_IJMLNCE_2018v02i04_003
crossref_primary_10_1021_acssynbio_3c00308
crossref_primary_10_1016_j_compbiomed_2022_106269
crossref_primary_10_1109_LCOMM_2018_2861867
crossref_primary_10_1038_s41570_018_0051_5
crossref_primary_10_1126_sciadv_adf5868
crossref_primary_10_1039_C9PY01939A
crossref_primary_10_1016_j_csbj_2023_01_045
crossref_primary_10_1021_acsanm_1c02519
crossref_primary_10_1073_pnas_2004821117
crossref_primary_10_1016_j_compbiomed_2023_107548
crossref_primary_10_1109_TIT_2022_3152392
crossref_primary_10_1021_acsami_1c02429
crossref_primary_10_1021_acsmacrolett_1c00275
crossref_primary_10_3390_biotech12020044
crossref_primary_10_1109_TIT_2022_3233733
crossref_primary_10_1109_ACCESS_2021_3116245
crossref_primary_10_56093_ijans_v90i2_98761
crossref_primary_10_1126_sciadv_abl8614
crossref_primary_10_3389_fgene_2023_1179867
crossref_primary_10_1016_j_tibtech_2024_02_002
crossref_primary_10_1093_bioinformatics_btae274
crossref_primary_10_1016_j_csbj_2024_02_019
crossref_primary_10_1007_s13222_023_00460_3
crossref_primary_10_1016_j_mtbio_2022_100306
crossref_primary_10_1109_ACCESS_2020_2970838
crossref_primary_10_1109_TIT_2021_3066430
crossref_primary_10_3390_foods12010017
crossref_primary_10_1038_s41467_023_41729_1
crossref_primary_10_1093_bib_bbae125
crossref_primary_10_1021_acssynbio_0c00401
crossref_primary_10_1109_TMBMC_2024_3408053
crossref_primary_10_1126_sciadv_abi6714
crossref_primary_10_1002_anie_202010171
crossref_primary_10_1038_s41467_023_36297_3
crossref_primary_10_1002_cbic_202000149
crossref_primary_10_1214_21_AAP1662
crossref_primary_10_1016_j_eurpolymj_2018_04_038
crossref_primary_10_1038_s41467_021_23669_w
crossref_primary_10_1109_TCBB_2022_3233914
crossref_primary_10_1109_LCOMM_2018_2866566
crossref_primary_10_1109_ACCESS_2019_2924827
crossref_primary_10_1038_s43588_022_00235_y
crossref_primary_10_1038_nature23017
crossref_primary_10_1109_ACCESS_2020_2989444
crossref_primary_10_1002_adfm_202305680
crossref_primary_10_1002_imt2_168
crossref_primary_10_3389_fmicb_2018_02174
crossref_primary_10_1109_TIT_2019_2961265
crossref_primary_10_1109_TIT_2023_3292895
crossref_primary_10_1002_ange_201909927
crossref_primary_10_1002_nano_202200168
crossref_primary_10_1002_anie_201807845
crossref_primary_10_1021_acssynbio_0c00419
crossref_primary_10_1109_MC_2018_3620975
crossref_primary_10_1038_s41598_024_53944_x
crossref_primary_10_1186_s13036_019_0211_2
crossref_primary_10_1093_nar_gkx777
crossref_primary_10_1073_pnas_2011660117
crossref_primary_10_1007_s11427_022_2214_2
crossref_primary_10_1021_acs_jcim_3c00629
crossref_primary_10_1016_j_nancom_2019_100254
crossref_primary_10_1038_s41467_023_36020_2
crossref_primary_10_1038_s41587_019_0376_8
crossref_primary_10_1109_TIT_2022_3176917
crossref_primary_10_1039_D2LC00761D
crossref_primary_10_1016_j_celrep_2024_113699
crossref_primary_10_1038_s41467_021_21587_5
crossref_primary_10_1021_acs_langmuir_2c01167
crossref_primary_10_1038_s41467_020_19148_3
crossref_primary_10_1002_adma_202001249
crossref_primary_10_1038_s41467_021_24496_9
crossref_primary_10_1109_TCOMM_2023_3330848
crossref_primary_10_1557_mrs_2018_165
crossref_primary_10_3390_cimb45040233
crossref_primary_10_1587_transfun_2019EAP1053
crossref_primary_10_1016_j_mtbio_2023_100900
crossref_primary_10_1093_bioadv_vbad117
crossref_primary_10_18231_j_ijcaap_2021_023
crossref_primary_10_1038_s41570_021_00251_y
crossref_primary_10_1093_nar_gkaa727
crossref_primary_10_1016_j_isci_2023_106638
crossref_primary_10_1109_LCOMM_2020_2997683
crossref_primary_10_1002_advs_202303197
crossref_primary_10_1109_TIT_2021_3120920
crossref_primary_10_1038_s41596_019_0244_5
crossref_primary_10_1016_j_compbiomed_2023_107244
crossref_primary_10_1002_sstr_202000046
crossref_primary_10_1093_nsr_nwaa007
crossref_primary_10_1002_ange_201702384
crossref_primary_10_1002_advs_202402951
crossref_primary_10_1038_s41467_019_10978_4
crossref_primary_10_1016_j_tics_2022_01_007
crossref_primary_10_1021_acsami_3c01860
crossref_primary_10_1016_j_future_2017_12_066
crossref_primary_10_1017_S147355041700043X
crossref_primary_10_1007_s13205_019_1868_4
crossref_primary_10_1038_s41598_021_97570_3
crossref_primary_10_15430_JCP_2017_22_4_211
crossref_primary_10_1007_s00203_023_03694_7
crossref_primary_10_1002_smll_201805384
crossref_primary_10_1016_j_biosystems_2024_105136
crossref_primary_10_1109_TMBMC_2022_3211446
crossref_primary_10_3389_fgene_2023_1158337
crossref_primary_10_1038_s41467_021_24991_z
crossref_primary_10_1186_s13640_022_00600_x
crossref_primary_10_1002_jms_3947
crossref_primary_10_7202_1089940ar
crossref_primary_10_1002_smll_202309867
crossref_primary_10_1038_s42004_018_0089_9
crossref_primary_10_1021_acsnano_2c06748
crossref_primary_10_1093_pnasnexus_pgac252
crossref_primary_10_1021_acssynbio_7b00382
crossref_primary_10_1038_s41467_021_27846_9
crossref_primary_10_3389_fmicb_2019_03139
crossref_primary_10_1016_j_ffa_2024_102391
crossref_primary_10_3389_fgene_2021_644945
crossref_primary_10_1038_s41587_019_0356_z
crossref_primary_10_1093_gigascience_giz075
crossref_primary_10_1016_j_fmre_2021_11_030
crossref_primary_10_3390_ijms21062191
crossref_primary_10_1038_s41570_024_00576_4
crossref_primary_10_1016_j_cbpa_2019_05_009
crossref_primary_10_1109_ACCESS_2023_3332254
crossref_primary_10_1111_jpim_12613
crossref_primary_10_1038_s41598_019_41228_8
crossref_primary_10_3389_fbioe_2021_689797
crossref_primary_10_1002_ange_201810559
crossref_primary_10_1038_s41467_021_22277_y
crossref_primary_10_1038_s41467_019_13952_2
crossref_primary_10_1038_nmat4887
crossref_primary_10_1038_s41467_020_16797_2
crossref_primary_10_1002_ange_201707976
crossref_primary_10_1038_s41598_024_58386_z
crossref_primary_10_1093_bioinformatics_btaa740
crossref_primary_10_1109_TIT_2021_3058966
crossref_primary_10_1002_smtd_202001094
crossref_primary_10_1039_D2LC00972B
crossref_primary_10_1109_TMBMC_2024_3403759
crossref_primary_10_1109_LCOMM_2022_3212200
crossref_primary_10_1109_TNB_2023_3303512
crossref_primary_10_3847_1538_4357_aae380
Cites_doi 10.1016/0167-7152(92)90012-T
10.1007/s10463-006-0038-8
10.1109/JSAC.2002.803996
10.1049/ip-com:20050237
10.1109/TMBMC.2016.2537305
10.1038/nmeth.2137
10.1371/journal.pone.0042543
10.1016/j.procs.2016.05.398
10.1038/nmeth.2918
10.1109/TIT.2006.874390
10.1126/science.293.5536.1763c
10.1186/1477-3155-9-57
10.1002/9780470559277.ch110190
10.1093/bioinformatics/btt593
10.1038/srep14138
10.1145/2954680.2872397
10.1093/gbe/evs116
10.1126/science.1226355
10.1201/9781420053890-10
10.1186/gb-2010-11-11-r116
10.1016/0167-7152(83)90025-1
10.1186/gb-2013-14-5-r51
10.1002/gepi.20575
10.1145/584091.584093
10.1002/anie.201411378
10.1108/eb005489
10.1101/gr.092957.109
10.1038/nbt.1716
10.1038/nature11875
ContentType Journal Article
Copyright Copyright © 2017 American Association for the Advancement of Science
Copyright © 2017, American Association for the Advancement of Science.
Copyright © 2017, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2017 American Association for the Advancement of Science
– notice: Copyright © 2017, American Association for the Advancement of Science.
– notice: Copyright © 2017, American Association for the Advancement of Science
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aaj2038
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Solid State and Superconductivity Abstracts
Materials Research Database
Nucleic Acids Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Architecture
EISSN 1095-9203
EndPage 954
ExternalDocumentID 10_1126_science_aaj2038
28254941
24918453
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AADHG
AAIKC
AAMNW
AANCE
AAWTO
ABBHK
ABCQX
ABDBF
ABDEX
ABEFU
ABIVO
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ADACV
ADDRP
ADMHC
ADUKH
AEGBM
AENEX
AEUPB
AEXZC
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASPBG
AVWKF
B-7
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DOOOF
DU5
EBS
EJD
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHF
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UIG
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YCJ
YK4
YKV
YNT
YOJ
YR2
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AFRQD
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c557t-9484d7fc7cf364e5705e4fac520b32dd2c65abe7e3de9bc8743f3b3734f60fc23
ISSN 0036-8075
IngestDate Wed Dec 04 07:42:16 EST 2024
Wed Dec 04 00:43:01 EST 2024
Wed Dec 04 14:58:35 EST 2024
Mon Nov 04 11:43:20 EST 2024
Fri Dec 06 05:47:58 EST 2024
Sat Sep 28 08:12:17 EDT 2024
Tue Dec 10 23:44:33 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6328
Language English
License Copyright © 2017, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c557t-9484d7fc7cf364e5705e4fac520b32dd2c65abe7e3de9bc8743f3b3734f60fc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3257-8387
0000-0003-1357-4233
OpenAccessLink https://www.biorxiv.org/content/biorxiv/early/2016/12/04/074237.full.pdf
PMID 28254941
PQID 1875392331
PQPubID 1256
PageCount 5
ParticipantIDs proquest_miscellaneous_1893902644
proquest_miscellaneous_1881768552
proquest_miscellaneous_1874441173
proquest_journals_1875392331
crossref_primary_10_1126_science_aaj2038
pubmed_primary_28254941
jstor_primary_24918453
PublicationCentury 2000
PublicationDate 2017-03-03
PublicationDateYYYYMMDD 2017-03-03
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2017
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – sequence: 0
  name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
Sampson J. (e_1_3_2_34_2) 2011; 35
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
Madge O. G. (e_1_3_2_37_2) 2006
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
Yazdi S. M. (e_1_3_2_10_2) 2015; 5
e_1_3_2_32_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
Eroshenko N. (e_1_3_2_25_2) 2012; 2012
References_xml – ident: e_1_3_2_18_2
– ident: e_1_3_2_32_2
  doi: 10.1016/0167-7152(92)90012-T
– ident: e_1_3_2_33_2
  doi: 10.1007/s10463-006-0038-8
– ident: e_1_3_2_17_2
  doi: 10.1109/JSAC.2002.803996
– ident: e_1_3_2_20_2
  doi: 10.1049/ip-com:20050237
– ident: e_1_3_2_9_2
  doi: 10.1109/TMBMC.2016.2537305
– ident: e_1_3_2_14_2
  doi: 10.1038/nmeth.2137
– ident: e_1_3_2_28_2
  doi: 10.1371/journal.pone.0042543
– ident: e_1_3_2_12_2
– ident: e_1_3_2_8_2
  doi: 10.1016/j.procs.2016.05.398
– ident: e_1_3_2_22_2
  doi: 10.1038/nmeth.2918
– ident: e_1_3_2_38_2
  doi: 10.1109/TIT.2006.874390
– ident: e_1_3_2_3_2
  doi: 10.1126/science.293.5536.1763c
– ident: e_1_3_2_23_2
  doi: 10.1186/1477-3155-9-57
– volume: 2012
  start-page: 1
  year: 2012
  ident: e_1_3_2_25_2
  article-title: Gene assembly from chip-synthesized oligonucleotides
  publication-title: Curr. Protoc. Chem. Biol.
  doi: 10.1002/9780470559277.ch110190
  contributor:
    fullname: Eroshenko N.
– ident: e_1_3_2_39_2
  doi: 10.1093/bioinformatics/btt593
– volume: 5
  start-page: 14138
  year: 2015
  ident: e_1_3_2_10_2
  article-title: A rewritable, random-access DNA-based storage system
  publication-title: Sci. Rep.
  doi: 10.1038/srep14138
  contributor:
    fullname: Yazdi S. M.
– ident: e_1_3_2_7_2
  doi: 10.1145/2954680.2872397
– ident: e_1_3_2_26_2
  doi: 10.1093/gbe/evs116
– start-page: 1
  year: 2006
  ident: e_1_3_2_37_2
  article-title: Efficient fountain codes for medium blocklengths
  publication-title: IEEE Trans. Commun.
  contributor:
    fullname: Madge O. G.
– ident: e_1_3_2_4_2
  doi: 10.1126/science.1226355
– ident: e_1_3_2_21_2
  doi: 10.1201/9781420053890-10
– ident: e_1_3_2_29_2
  doi: 10.1186/gb-2010-11-11-r116
– ident: e_1_3_2_31_2
  doi: 10.1016/0167-7152(83)90025-1
– ident: e_1_3_2_15_2
  doi: 10.1186/gb-2013-14-5-r51
– volume: 35
  start-page: 269
  year: 2011
  ident: e_1_3_2_34_2
  article-title: Efficient study design for next generation sequencing
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.20575
  contributor:
    fullname: Sampson J.
– ident: e_1_3_2_11_2
  doi: 10.1145/584091.584093
– ident: e_1_3_2_36_2
– ident: e_1_3_2_30_2
– ident: e_1_3_2_6_2
  doi: 10.1002/anie.201411378
– ident: e_1_3_2_2_2
  doi: 10.1108/eb005489
– ident: e_1_3_2_16_2
  doi: 10.1101/gr.092957.109
– ident: e_1_3_2_27_2
– ident: e_1_3_2_24_2
  doi: 10.1038/nbt.1716
– ident: e_1_3_2_19_2
– ident: e_1_3_2_35_2
– ident: e_1_3_2_5_2
  doi: 10.1038/nature11875
SSID ssj0009593
Score 2.7110412
Snippet DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the...
DNA has the potential to provide large-capacity information storage. However, current methods have only been able to use a fraction of the theoretical maximum....
A reliable and efficient DNA storage architectureDNA has the potential to provide large-capacity information storage. However, current methods have only been...
SourceID proquest
crossref
pubmed
jstor
SourceType Aggregation Database
Index Database
Publisher
StartPage 950
SubjectTerms Algorithms
Architecture
Base Sequence
Computer architecture
Computers
Deoxyribonucleic acid
DNA
DNA - chemistry
Gene sequencing
Genetic testing
High-Throughput Nucleotide Sequencing
Information retrieval
Information storage
Information Storage and Retrieval - methods
Libraries, Digital
Methodology
Microbiology
Nucleotides
Oligonucleotides
Oligonucleotides - chemistry
Polymerase chain reaction
Retrieval
Robustness
Sequence
Stores
Title DNA Fountain enables a robust and efficient storage architecture
URI https://www.jstor.org/stable/24918453
https://www.ncbi.nlm.nih.gov/pubmed/28254941
https://www.proquest.com/docview/1875392331
https://search.proquest.com/docview/1874441173
https://search.proquest.com/docview/1881768552
https://search.proquest.com/docview/1893902644
Volume 355
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviA3GMgYyEg9DVaY4tpP4jYpulK8KiU4qT5Hj2FIRalE_JgH_POePpEGwivESVanrWnc_n-_O94HQcw2nTFVwFnOV8pgpoePCGBJrDeazMkIy14vgwzgbXbK3Uz7t9X52s0vW1Zn68de8kv_hKrwDvtos2Rtwtp0UXsBn4C88gcPw_CceD8cD1xfJmvd97bKgVn3ZXy6qzcpHjmtXIcLe99soSBuf07056GqmzSYHjbO9xenwrg1HHPiggSaGIPys41A4X36d-f5Sn-V8dtV6pmc28z10yR6Gpt2NvwHOMBtwRVuETLYJLzdZRlcGhxLI_gTyYjexHSPT8DdBLlNfvzcAMKMhidwLWuHL1f55AHRaVuozKb_ApMX2rGvu90eDT-XH4UX5_s343S1021ZRtI0XXk_JtRWbQ12oTsZVM_1vKo2Par3eXnF6y-Q-uhcMDjzw6NlHPT0_QHd8C9LvB2g_UG6FT0MF8hcP0EsAFm6AhQOwsMQeWBiAhVtg4QAs3AXWQ3R5cT55NYpDq41YcZ6vY8EKVudG5crQjGmeJ1wzIxVPk4qmdZ2qjMtK55rWWlSqAL3T0IrmlJksMSqlh2hvvpjrI4STHDQeIhi1_jHNQBAIqSSppapIXRseodOGWuU3X1GldJZompWBsGUgbIQOHTXbcSkTpGCcRuikIW8Z9uOqJNb0BnuFkgg9a78GaWmvwORcLzZuDAMDgOR015iCgBHOebprjKAiscZEhB559m4X6ZwujBzvXuRjdHe7vU7Q3nq50U9AwV1XTx0QfwGu86kK
link.rule.ids 314,780,784,27924,27925
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+Fountain+enables+a+robust+and+efficient+storage+architecture&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Erlich%2C+Yaniv&rft.au=Zielinski%2C+Dina&rft.date=2017-03-03&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=355&rft.issue=6328&rft.spage=950&rft_id=info:doi/10.1126%2Fscience.aaj2038&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon