DNA Fountain enables a robust and efficient storage architecture
DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 355; no. 6328; pp. 950 - 954 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
03.03.2017
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 10⁶ bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 1015 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports. |
---|---|
AbstractList | DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 106 bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 1015 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports. DNA has the potential to provide large-capacity information storage. However, current methods have only been able to use a fraction of the theoretical maximum. Erlich and Zielinski present a method, DNA Fountain, which approaches the theoretical maximum for information stored per nucleotide. They demonstrated efficient encoding of information—including a full computer operating system—into DNA that could be retrieved at scale after multiple rounds of polymerase chain reaction. Science , this issue p. 950 A resilient DNA storage strategy enables near-maximal information content per nucleotide. DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 10 6 bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 10 15 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports. A reliable and efficient DNA storage architectureDNA has the potential to provide large-capacity information storage. However, current methods have only been able to use a fraction of the theoretical maximum. Erlich and Zielinski present a method, DNA Fountain, which approaches the theoretical maximum for information stored per nucleotide. They demonstrated efficient encoding of information-including a full computer operating system-into DNA that could be retrieved at scale after multiple rounds of polymerase chain reaction.Science, this issue p. 950 DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 106 bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 1015 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports. DNA has the potential to provide large-capacity information storage. However, current methods have only been able to use a fraction of the theoretical maximum. Erlich and Zielinski present a method, DNA Fountain, which approaches the theoretical maximum for information stored per nucleotide. They demonstrated efficient encoding of information--including a full computer operating system--into DNA that could be retrieved at scale after multiple rounds of polymerase chain reaction. Science, this issue p. 950 DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 106 bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 1015 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports. DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 10⁶ bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 1015 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports. DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 10 bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 10 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports. |
Author | Erlich, Yaniv Zielinski, Dina |
Author_xml | – sequence: 1 givenname: Yaniv surname: Erlich fullname: Erlich, Yaniv – sequence: 2 givenname: Dina surname: Zielinski fullname: Zielinski, Dina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28254941$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0c1PwyAYBnBiNG5Tz540Tbx4qQIvFLi5zM_E6EXPDaUv2mWjE9qD_71dNjXx5ImQ98dD4JmQ3dAGJOSY0QvGeHGZXIPB4YW1c05B75Axo0bmZtjskjGlUOSaKjkik5TmlA4zA_tkxDWXwgg2JlfXT9Pstu1DZ5uQYbDVAlNms9hWfeoyG-oMvW_W13RZ6tpo3zCz0b03Hbquj3hI9rxdJDzargfk9fbmZXafPz7fPcymj7mTUnW5EVrUyjvlPBQCpaIShbdOcloBr2vuCmkrVAg1msppJcBDBQqEL6h3HA7I-SZ3FduPHlNXLpvkcLGwAds-lUwbMJQXQvyDaqYKLeV_UpUQgjEFAz37Q-dtH8Pw5rWSYDgAG9TlRrnYphTRl6vYLG38LBkt15WV28rKbWXDidNtbl8tsf7x3x0N4GQD5uv__50Lw7SQAF-71J2C |
CitedBy_id | crossref_primary_10_1088_1367_2630_ac2005 crossref_primary_10_1038_s41467_019_09517_y crossref_primary_10_1021_acssynbio_0c00246 crossref_primary_10_1007_s13206_024_00146_2 crossref_primary_10_1021_acs_macromol_3c02405 crossref_primary_10_1021_acssynbio_0c00361 crossref_primary_10_3390_e24081151 crossref_primary_10_1002_smtd_202201610 crossref_primary_10_1002_smtd_202301585 crossref_primary_10_1038_s41467_020_18842_6 crossref_primary_10_1093_bib_bbac336 crossref_primary_10_1039_D2CS01022D crossref_primary_10_1021_acs_nanolett_0c00755 crossref_primary_10_1109_ACCESS_2024_3353305 crossref_primary_10_1093_nar_gkab505 crossref_primary_10_1111_1751_7915_14291 crossref_primary_10_1109_TCBB_2020_3011582 crossref_primary_10_1109_JIOT_2021_3083663 crossref_primary_10_1109_TIT_2017_2747557 crossref_primary_10_1109_ACCESS_2020_3021700 crossref_primary_10_1109_JSAIT_2022_3151737 crossref_primary_10_1088_2399_1984_ac7d81 crossref_primary_10_1109_LCOMM_2019_2912572 crossref_primary_10_1038_s41540_022_00233_w crossref_primary_10_1109_COMST_2021_3066117 crossref_primary_10_1080_14686996_2024_2346068 crossref_primary_10_1021_jacs_9b04728 crossref_primary_10_1002_cplu_202200183 crossref_primary_10_1186_s12864_024_10178_5 crossref_primary_10_1007_s12095_020_00459_7 crossref_primary_10_1021_acssynbio_2c00649 crossref_primary_10_1038_s41565_017_0004_z crossref_primary_10_1093_bib_bbac484 crossref_primary_10_1021_acsami_2c02995 crossref_primary_10_1109_TIT_2022_3217518 crossref_primary_10_1109_TIT_2024_3350436 crossref_primary_10_1109_TNB_2021_3121278 crossref_primary_10_1016_j_nantod_2020_100871 crossref_primary_10_1109_TCBB_2021_3127271 crossref_primary_10_1109_TIT_2021_3127174 crossref_primary_10_1038_s41467_023_42223_4 crossref_primary_10_1093_nargab_lqab126 crossref_primary_10_1007_s12257_020_0022_9 crossref_primary_10_1016_j_eng_2022_05_023 crossref_primary_10_1021_cbe_3c00085 crossref_primary_10_1038_s41563_021_01021_3 crossref_primary_10_1039_D2SC06466A crossref_primary_10_1186_s12859_023_05237_9 crossref_primary_10_1002_anie_202001162 crossref_primary_10_1093_nsr_nwab028 crossref_primary_10_1109_TNB_2023_3284406 crossref_primary_10_1039_C7CC00222J crossref_primary_10_3389_fbinf_2023_1276934 crossref_primary_10_1038_s41587_021_00988_3 crossref_primary_10_1016_j_ijpharm_2021_120580 crossref_primary_10_1038_s43588_022_00231_2 crossref_primary_10_1002_ange_202001162 crossref_primary_10_1109_ACCESS_2021_3078138 crossref_primary_10_1038_s41576_018_0052_8 crossref_primary_10_1109_TETC_2022_3225570 crossref_primary_10_1109_TIT_2023_3247812 crossref_primary_10_1109_TMBMC_2024_3403488 crossref_primary_10_1007_s10529_022_03295_2 crossref_primary_10_1049_ell2_13110 crossref_primary_10_1109_ACCESS_2019_2921400 crossref_primary_10_1016_j_isci_2024_109575 crossref_primary_10_1109_MC_2023_3272188 crossref_primary_10_1002_cbic_201800057 crossref_primary_10_1038_s41598_024_51730_3 crossref_primary_10_1002_ange_202010171 crossref_primary_10_1109_TIT_2020_3002611 crossref_primary_10_1007_s13205_018_1246_7 crossref_primary_10_1038_s41565_023_01377_4 crossref_primary_10_1002_advs_202004038 crossref_primary_10_1038_s41467_024_46767_x crossref_primary_10_1093_nar_gky296 crossref_primary_10_1093_nsr_nwad229 crossref_primary_10_1109_TCBB_2021_3088525 crossref_primary_10_1109_TNB_2020_2977304 crossref_primary_10_1109_JIOT_2023_3332903 crossref_primary_10_1021_acsnano_3c12000 crossref_primary_10_1140_epje_i2018_11696_5 crossref_primary_10_1080_09544828_2022_2143155 crossref_primary_10_1002_anie_201909927 crossref_primary_10_1016_j_nancom_2021_100391 crossref_primary_10_1007_s12539_021_00476_x crossref_primary_10_1109_MCOM_002_2200249 crossref_primary_10_1021_jacs_0c09891 crossref_primary_10_1109_TMBMC_2023_3331579 crossref_primary_10_1016_j_csbj_2023_09_004 crossref_primary_10_1049_iet_nbt_2020_0157 crossref_primary_10_1109_TCBB_2023_3263521 crossref_primary_10_1038_s42003_022_04062_9 crossref_primary_10_3390_e23121592 crossref_primary_10_1021_acs_nanolett_1c04203 crossref_primary_10_1109_LCOMM_2022_3216408 crossref_primary_10_1016_j_molliq_2021_116167 crossref_primary_10_1002_adfm_201901672 crossref_primary_10_1016_j_tcs_2021_09_021 crossref_primary_10_1021_jacs_2c10316 crossref_primary_10_1021_jacs_2c13825 crossref_primary_10_1016_j_tibtech_2023_07_006 crossref_primary_10_1021_acs_analchem_2c02667 crossref_primary_10_1021_acscentsci_9b00210 crossref_primary_10_1038_s42004_020_0308_z crossref_primary_10_1109_TCOMM_2023_3335409 crossref_primary_10_1109_ACCESS_2019_2961105 crossref_primary_10_1038_s41467_020_18681_5 crossref_primary_10_1016_j_bios_2023_115723 crossref_primary_10_1038_s41576_019_0125_3 crossref_primary_10_1126_sciadv_adg9933 crossref_primary_10_1246_bcsj_20200201 crossref_primary_10_1089_genbio_2023_0018 crossref_primary_10_1002_anie_202212011 crossref_primary_10_1016_j_micinf_2018_11_002 crossref_primary_10_1093_nsr_nwab086 crossref_primary_10_1002_cbic_201800658 crossref_primary_10_1039_C9CC04372A crossref_primary_10_1109_TMBMC_2020_3035370 crossref_primary_10_1093_nar_gkab230 crossref_primary_10_1073_pnas_1802640115 crossref_primary_10_3389_fbioe_2022_869111 crossref_primary_10_1038_s41467_019_10258_1 crossref_primary_10_1038_s41467_020_15588_z crossref_primary_10_1109_TNB_2021_3102122 crossref_primary_10_1016_j_csbj_2019_06_004 crossref_primary_10_1016_j_csbj_2021_08_031 crossref_primary_10_1016_j_jocs_2024_102367 crossref_primary_10_1021_acsomega_3c09234 crossref_primary_10_1109_TIT_2023_3241773 crossref_primary_10_3390_math10050845 crossref_primary_10_1016_j_eurpolymj_2019_109260 crossref_primary_10_1109_TIT_2022_3227128 crossref_primary_10_1007_s11427_022_2252_0 crossref_primary_10_1021_acs_nanolett_8b04715 crossref_primary_10_1371_journal_pone_0245506 crossref_primary_10_1186_s12859_022_04723_w crossref_primary_10_1371_journal_pone_0277139 crossref_primary_10_1038_s41467_020_16958_3 crossref_primary_10_1126_sciadv_abk0100 crossref_primary_10_1109_TIT_2021_3063709 crossref_primary_10_1109_TIT_2022_3176371 crossref_primary_10_1021_acssynbio_1c00142 crossref_primary_10_1371_journal_pone_0255376 crossref_primary_10_1016_j_csbj_2024_04_048 crossref_primary_10_1070_RCR4994 crossref_primary_10_1038_s41598_021_92987_2 crossref_primary_10_1038_s41598_023_29575_z crossref_primary_10_1093_bioinformatics_btad548 crossref_primary_10_1103_PhysRevE_96_052402 crossref_primary_10_1038_nbt_4093 crossref_primary_10_1109_TNB_2024_3356522 crossref_primary_10_1007_s13205_021_02882_w crossref_primary_10_1038_s41467_017_01104_3 crossref_primary_10_1038_s41587_019_0240_x crossref_primary_10_3390_math12081235 crossref_primary_10_1016_j_biotechadv_2020_107639 crossref_primary_10_1093_bioinformatics_btab246 crossref_primary_10_1109_TNB_2021_3056351 crossref_primary_10_1016_j_biopha_2020_111074 crossref_primary_10_1016_j_tibtech_2023_08_001 crossref_primary_10_1093_nar_gkab1209 crossref_primary_10_1109_TIT_2022_3206527 crossref_primary_10_1109_MCOM_011_2200755 crossref_primary_10_1038_s41467_023_38876_w crossref_primary_10_1038_s41467_022_33046_w crossref_primary_10_1002_advs_202206201 crossref_primary_10_1038_s41467_020_14319_8 crossref_primary_10_2174_2212796813999190823154354 crossref_primary_10_1016_j_scib_2021_03_010 crossref_primary_10_2144_000114531 crossref_primary_10_1039_D3CS00469D crossref_primary_10_1002_advs_202305921 crossref_primary_10_1021_acscombsci_9b00088 crossref_primary_10_1088_2399_6528_ad246d crossref_primary_10_1016_j_biotechadv_2023_108155 crossref_primary_10_1021_acsnano_9b02562 crossref_primary_10_1038_s41467_024_47187_7 crossref_primary_10_1109_TIT_2021_3122798 crossref_primary_10_1016_j_csbj_2023_02_016 crossref_primary_10_1038_nbt_4079 crossref_primary_10_2174_1574893617666220314114732 crossref_primary_10_1109_ACCESS_2024_3401464 crossref_primary_10_1109_TIT_2022_3184903 crossref_primary_10_1016_j_image_2021_116331 crossref_primary_10_1002_anie_201810559 crossref_primary_10_1007_s11042_020_09237_2 crossref_primary_10_1109_ACCESS_2023_3235201 crossref_primary_10_1038_s41598_023_43658_x crossref_primary_10_1109_TNB_2024_3379976 crossref_primary_10_1002_adma_202307499 crossref_primary_10_1145_3626233 crossref_primary_10_1016_j_progpolymsci_2023_101677 crossref_primary_10_1007_s13534_024_00386_z crossref_primary_10_1002_ange_201807845 crossref_primary_10_1038_s41598_023_43172_0 crossref_primary_10_1038_s41598_022_18108_9 crossref_primary_10_1021_acs_jcim_3c01592 crossref_primary_10_1534_g3_119_400373 crossref_primary_10_1109_TCOMM_2021_3130660 crossref_primary_10_1093_bioinformatics_btad572 crossref_primary_10_1039_D3DD00083D crossref_primary_10_1002_anie_201707976 crossref_primary_10_1021_jacs_3c13953 crossref_primary_10_1021_acssynbio_2c00291 crossref_primary_10_3390_philosophies5020010 crossref_primary_10_1021_acssynbio_9b00100 crossref_primary_10_3389_fbioe_2023_1173763 crossref_primary_10_1021_jacs_1c07331 crossref_primary_10_1038_s41589_020_00711_4 crossref_primary_10_3390_ijms24032549 crossref_primary_10_1002_smtd_202101335 crossref_primary_10_1186_s12859_023_05264_6 crossref_primary_10_1007_s42979_024_02672_0 crossref_primary_10_1145_3516482 crossref_primary_10_1109_TNB_2023_3254514 crossref_primary_10_1021_acssynbio_1c00575 crossref_primary_10_1016_j_nlm_2023_107748 crossref_primary_10_1038_s41598_023_34160_5 crossref_primary_10_1109_TETC_2023_3293477 crossref_primary_10_1088_1674_1056_28_4_040504 crossref_primary_10_3390_electronics12122621 crossref_primary_10_1021_jacs_1c10612 crossref_primary_10_1155_2021_9112407 crossref_primary_10_1002_anie_201702384 crossref_primary_10_1038_s41598_019_43105_w crossref_primary_10_3390_app10113990 crossref_primary_10_1002_nano_202100275 crossref_primary_10_1109_ACCESS_2020_3015825 crossref_primary_10_1038_s41467_020_14455_1 crossref_primary_10_1016_j_csbj_2021_04_057 crossref_primary_10_1088_1361_6528_aaa120 crossref_primary_10_1016_j_compbiolchem_2022_107696 crossref_primary_10_1002_smll_202107381 crossref_primary_10_1021_acs_biomac_4c00259 crossref_primary_10_1039_D0CC00222D crossref_primary_10_1002_ange_202212011 crossref_primary_10_1109_TIT_2020_3030569 crossref_primary_10_1016_j_progpolymsci_2023_101754 crossref_primary_10_1016_j_biosystems_2022_104664 crossref_primary_10_1038_s42003_020_01141_7 crossref_primary_10_1002_slct_201801484 crossref_primary_10_1109_TETC_2023_3268274 crossref_primary_10_5334_joh_11 crossref_primary_10_1016_j_isci_2023_106231 crossref_primary_10_1186_s12859_021_04318_x crossref_primary_10_3390_ijms25126449 crossref_primary_10_1021_acsnano_2c11241 crossref_primary_10_1093_bioinformatics_btae113 crossref_primary_10_1016_j_compbiomed_2023_107404 crossref_primary_10_1007_s11047_018_9686_x crossref_primary_10_1109_JPHOT_2018_2859257 crossref_primary_10_1186_s12052_021_00146_y crossref_primary_10_1108_LHT_06_2017_0117 crossref_primary_10_1007_s42514_022_00094_z crossref_primary_10_1109_TCBB_2019_2940177 crossref_primary_10_3389_fbioe_2022_916615 crossref_primary_10_1109_ACCESS_2020_2980036 crossref_primary_10_30991_IJMLNCE_2018v02i04_003 crossref_primary_10_1021_acssynbio_3c00308 crossref_primary_10_1016_j_compbiomed_2022_106269 crossref_primary_10_1109_LCOMM_2018_2861867 crossref_primary_10_1038_s41570_018_0051_5 crossref_primary_10_1126_sciadv_adf5868 crossref_primary_10_1039_C9PY01939A crossref_primary_10_1016_j_csbj_2023_01_045 crossref_primary_10_1021_acsanm_1c02519 crossref_primary_10_1073_pnas_2004821117 crossref_primary_10_1016_j_compbiomed_2023_107548 crossref_primary_10_1109_TIT_2022_3152392 crossref_primary_10_1021_acsami_1c02429 crossref_primary_10_1021_acsmacrolett_1c00275 crossref_primary_10_3390_biotech12020044 crossref_primary_10_1109_TIT_2022_3233733 crossref_primary_10_1109_ACCESS_2021_3116245 crossref_primary_10_56093_ijans_v90i2_98761 crossref_primary_10_1126_sciadv_abl8614 crossref_primary_10_3389_fgene_2023_1179867 crossref_primary_10_1016_j_tibtech_2024_02_002 crossref_primary_10_1093_bioinformatics_btae274 crossref_primary_10_1016_j_csbj_2024_02_019 crossref_primary_10_1007_s13222_023_00460_3 crossref_primary_10_1016_j_mtbio_2022_100306 crossref_primary_10_1109_ACCESS_2020_2970838 crossref_primary_10_1109_TIT_2021_3066430 crossref_primary_10_3390_foods12010017 crossref_primary_10_1038_s41467_023_41729_1 crossref_primary_10_1093_bib_bbae125 crossref_primary_10_1021_acssynbio_0c00401 crossref_primary_10_1109_TMBMC_2024_3408053 crossref_primary_10_1126_sciadv_abi6714 crossref_primary_10_1002_anie_202010171 crossref_primary_10_1038_s41467_023_36297_3 crossref_primary_10_1002_cbic_202000149 crossref_primary_10_1214_21_AAP1662 crossref_primary_10_1016_j_eurpolymj_2018_04_038 crossref_primary_10_1038_s41467_021_23669_w crossref_primary_10_1109_TCBB_2022_3233914 crossref_primary_10_1109_LCOMM_2018_2866566 crossref_primary_10_1109_ACCESS_2019_2924827 crossref_primary_10_1038_s43588_022_00235_y crossref_primary_10_1038_nature23017 crossref_primary_10_1109_ACCESS_2020_2989444 crossref_primary_10_1002_adfm_202305680 crossref_primary_10_1002_imt2_168 crossref_primary_10_3389_fmicb_2018_02174 crossref_primary_10_1109_TIT_2019_2961265 crossref_primary_10_1109_TIT_2023_3292895 crossref_primary_10_1002_ange_201909927 crossref_primary_10_1002_nano_202200168 crossref_primary_10_1002_anie_201807845 crossref_primary_10_1021_acssynbio_0c00419 crossref_primary_10_1109_MC_2018_3620975 crossref_primary_10_1038_s41598_024_53944_x crossref_primary_10_1186_s13036_019_0211_2 crossref_primary_10_1093_nar_gkx777 crossref_primary_10_1073_pnas_2011660117 crossref_primary_10_1007_s11427_022_2214_2 crossref_primary_10_1021_acs_jcim_3c00629 crossref_primary_10_1016_j_nancom_2019_100254 crossref_primary_10_1038_s41467_023_36020_2 crossref_primary_10_1038_s41587_019_0376_8 crossref_primary_10_1109_TIT_2022_3176917 crossref_primary_10_1039_D2LC00761D crossref_primary_10_1016_j_celrep_2024_113699 crossref_primary_10_1038_s41467_021_21587_5 crossref_primary_10_1021_acs_langmuir_2c01167 crossref_primary_10_1038_s41467_020_19148_3 crossref_primary_10_1002_adma_202001249 crossref_primary_10_1038_s41467_021_24496_9 crossref_primary_10_1109_TCOMM_2023_3330848 crossref_primary_10_1557_mrs_2018_165 crossref_primary_10_3390_cimb45040233 crossref_primary_10_1587_transfun_2019EAP1053 crossref_primary_10_1016_j_mtbio_2023_100900 crossref_primary_10_1093_bioadv_vbad117 crossref_primary_10_18231_j_ijcaap_2021_023 crossref_primary_10_1038_s41570_021_00251_y crossref_primary_10_1093_nar_gkaa727 crossref_primary_10_1016_j_isci_2023_106638 crossref_primary_10_1109_LCOMM_2020_2997683 crossref_primary_10_1002_advs_202303197 crossref_primary_10_1109_TIT_2021_3120920 crossref_primary_10_1038_s41596_019_0244_5 crossref_primary_10_1016_j_compbiomed_2023_107244 crossref_primary_10_1002_sstr_202000046 crossref_primary_10_1093_nsr_nwaa007 crossref_primary_10_1002_ange_201702384 crossref_primary_10_1002_advs_202402951 crossref_primary_10_1038_s41467_019_10978_4 crossref_primary_10_1016_j_tics_2022_01_007 crossref_primary_10_1021_acsami_3c01860 crossref_primary_10_1016_j_future_2017_12_066 crossref_primary_10_1017_S147355041700043X crossref_primary_10_1007_s13205_019_1868_4 crossref_primary_10_1038_s41598_021_97570_3 crossref_primary_10_15430_JCP_2017_22_4_211 crossref_primary_10_1007_s00203_023_03694_7 crossref_primary_10_1002_smll_201805384 crossref_primary_10_1016_j_biosystems_2024_105136 crossref_primary_10_1109_TMBMC_2022_3211446 crossref_primary_10_3389_fgene_2023_1158337 crossref_primary_10_1038_s41467_021_24991_z crossref_primary_10_1186_s13640_022_00600_x crossref_primary_10_1002_jms_3947 crossref_primary_10_7202_1089940ar crossref_primary_10_1002_smll_202309867 crossref_primary_10_1038_s42004_018_0089_9 crossref_primary_10_1021_acsnano_2c06748 crossref_primary_10_1093_pnasnexus_pgac252 crossref_primary_10_1021_acssynbio_7b00382 crossref_primary_10_1038_s41467_021_27846_9 crossref_primary_10_3389_fmicb_2019_03139 crossref_primary_10_1016_j_ffa_2024_102391 crossref_primary_10_3389_fgene_2021_644945 crossref_primary_10_1038_s41587_019_0356_z crossref_primary_10_1093_gigascience_giz075 crossref_primary_10_1016_j_fmre_2021_11_030 crossref_primary_10_3390_ijms21062191 crossref_primary_10_1038_s41570_024_00576_4 crossref_primary_10_1016_j_cbpa_2019_05_009 crossref_primary_10_1109_ACCESS_2023_3332254 crossref_primary_10_1111_jpim_12613 crossref_primary_10_1038_s41598_019_41228_8 crossref_primary_10_3389_fbioe_2021_689797 crossref_primary_10_1002_ange_201810559 crossref_primary_10_1038_s41467_021_22277_y crossref_primary_10_1038_s41467_019_13952_2 crossref_primary_10_1038_nmat4887 crossref_primary_10_1038_s41467_020_16797_2 crossref_primary_10_1002_ange_201707976 crossref_primary_10_1038_s41598_024_58386_z crossref_primary_10_1093_bioinformatics_btaa740 crossref_primary_10_1109_TIT_2021_3058966 crossref_primary_10_1002_smtd_202001094 crossref_primary_10_1039_D2LC00972B crossref_primary_10_1109_TMBMC_2024_3403759 crossref_primary_10_1109_LCOMM_2022_3212200 crossref_primary_10_1109_TNB_2023_3303512 crossref_primary_10_3847_1538_4357_aae380 |
Cites_doi | 10.1016/0167-7152(92)90012-T 10.1007/s10463-006-0038-8 10.1109/JSAC.2002.803996 10.1049/ip-com:20050237 10.1109/TMBMC.2016.2537305 10.1038/nmeth.2137 10.1371/journal.pone.0042543 10.1016/j.procs.2016.05.398 10.1038/nmeth.2918 10.1109/TIT.2006.874390 10.1126/science.293.5536.1763c 10.1186/1477-3155-9-57 10.1002/9780470559277.ch110190 10.1093/bioinformatics/btt593 10.1038/srep14138 10.1145/2954680.2872397 10.1093/gbe/evs116 10.1126/science.1226355 10.1201/9781420053890-10 10.1186/gb-2010-11-11-r116 10.1016/0167-7152(83)90025-1 10.1186/gb-2013-14-5-r51 10.1002/gepi.20575 10.1145/584091.584093 10.1002/anie.201411378 10.1108/eb005489 10.1101/gr.092957.109 10.1038/nbt.1716 10.1038/nature11875 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Association for the Advancement of Science Copyright © 2017, American Association for the Advancement of Science. Copyright © 2017, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2017 American Association for the Advancement of Science – notice: Copyright © 2017, American Association for the Advancement of Science. – notice: Copyright © 2017, American Association for the Advancement of Science |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aaj2038 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Solid State and Superconductivity Abstracts Materials Research Database Nucleic Acids Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Architecture |
EISSN | 1095-9203 |
EndPage | 954 |
ExternalDocumentID | 10_1126_science_aaj2038 28254941 24918453 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0B8 0R~ 0WA 123 18M 2FS 2KS 2WC 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AADHG AAIKC AAMNW AANCE AAWTO ABBHK ABCQX ABDBF ABDEX ABEFU ABIVO ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ADACV ADDRP ADMHC ADUKH AEGBM AENEX AEUPB AEXZC AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS AQVQM ASPBG AVWKF B-7 BKF BLC C45 C51 CS3 DB2 DCCCD DOOOF DU5 EBS EJD EMOBN ESX F5P FA8 FEDTE GX1 HZ~ I.T IAO IEA IGG IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OK1 OMK OVD P-O P2P PQQKQ PZZ QS- RHF RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UIG UKR UMD UNMZH UQL USG VQA VVN WH7 WI4 X7M XJF XZL Y6R YCJ YK4 YKV YNT YOJ YR2 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AFRQD CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c557t-9484d7fc7cf364e5705e4fac520b32dd2c65abe7e3de9bc8743f3b3734f60fc23 |
ISSN | 0036-8075 |
IngestDate | Wed Dec 04 07:42:16 EST 2024 Wed Dec 04 00:43:01 EST 2024 Wed Dec 04 14:58:35 EST 2024 Mon Nov 04 11:43:20 EST 2024 Fri Dec 06 05:47:58 EST 2024 Sat Sep 28 08:12:17 EDT 2024 Tue Dec 10 23:44:33 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6328 |
Language | English |
License | Copyright © 2017, American Association for the Advancement of Science. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c557t-9484d7fc7cf364e5705e4fac520b32dd2c65abe7e3de9bc8743f3b3734f60fc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3257-8387 0000-0003-1357-4233 |
OpenAccessLink | https://www.biorxiv.org/content/biorxiv/early/2016/12/04/074237.full.pdf |
PMID | 28254941 |
PQID | 1875392331 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1893902644 proquest_miscellaneous_1881768552 proquest_miscellaneous_1874441173 proquest_journals_1875392331 crossref_primary_10_1126_science_aaj2038 pubmed_primary_28254941 jstor_primary_24918453 |
PublicationCentury | 2000 |
PublicationDate | 2017-03-03 |
PublicationDateYYYYMMDD | 2017-03-03 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2017 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – sequence: 0 name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 Sampson J. (e_1_3_2_34_2) 2011; 35 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 Madge O. G. (e_1_3_2_37_2) 2006 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 Yazdi S. M. (e_1_3_2_10_2) 2015; 5 e_1_3_2_32_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 Eroshenko N. (e_1_3_2_25_2) 2012; 2012 |
References_xml | – ident: e_1_3_2_18_2 – ident: e_1_3_2_32_2 doi: 10.1016/0167-7152(92)90012-T – ident: e_1_3_2_33_2 doi: 10.1007/s10463-006-0038-8 – ident: e_1_3_2_17_2 doi: 10.1109/JSAC.2002.803996 – ident: e_1_3_2_20_2 doi: 10.1049/ip-com:20050237 – ident: e_1_3_2_9_2 doi: 10.1109/TMBMC.2016.2537305 – ident: e_1_3_2_14_2 doi: 10.1038/nmeth.2137 – ident: e_1_3_2_28_2 doi: 10.1371/journal.pone.0042543 – ident: e_1_3_2_12_2 – ident: e_1_3_2_8_2 doi: 10.1016/j.procs.2016.05.398 – ident: e_1_3_2_22_2 doi: 10.1038/nmeth.2918 – ident: e_1_3_2_38_2 doi: 10.1109/TIT.2006.874390 – ident: e_1_3_2_3_2 doi: 10.1126/science.293.5536.1763c – ident: e_1_3_2_23_2 doi: 10.1186/1477-3155-9-57 – volume: 2012 start-page: 1 year: 2012 ident: e_1_3_2_25_2 article-title: Gene assembly from chip-synthesized oligonucleotides publication-title: Curr. Protoc. Chem. Biol. doi: 10.1002/9780470559277.ch110190 contributor: fullname: Eroshenko N. – ident: e_1_3_2_39_2 doi: 10.1093/bioinformatics/btt593 – volume: 5 start-page: 14138 year: 2015 ident: e_1_3_2_10_2 article-title: A rewritable, random-access DNA-based storage system publication-title: Sci. Rep. doi: 10.1038/srep14138 contributor: fullname: Yazdi S. M. – ident: e_1_3_2_7_2 doi: 10.1145/2954680.2872397 – ident: e_1_3_2_26_2 doi: 10.1093/gbe/evs116 – start-page: 1 year: 2006 ident: e_1_3_2_37_2 article-title: Efficient fountain codes for medium blocklengths publication-title: IEEE Trans. Commun. contributor: fullname: Madge O. G. – ident: e_1_3_2_4_2 doi: 10.1126/science.1226355 – ident: e_1_3_2_21_2 doi: 10.1201/9781420053890-10 – ident: e_1_3_2_29_2 doi: 10.1186/gb-2010-11-11-r116 – ident: e_1_3_2_31_2 doi: 10.1016/0167-7152(83)90025-1 – ident: e_1_3_2_15_2 doi: 10.1186/gb-2013-14-5-r51 – volume: 35 start-page: 269 year: 2011 ident: e_1_3_2_34_2 article-title: Efficient study design for next generation sequencing publication-title: Genet. Epidemiol. doi: 10.1002/gepi.20575 contributor: fullname: Sampson J. – ident: e_1_3_2_11_2 doi: 10.1145/584091.584093 – ident: e_1_3_2_36_2 – ident: e_1_3_2_30_2 – ident: e_1_3_2_6_2 doi: 10.1002/anie.201411378 – ident: e_1_3_2_2_2 doi: 10.1108/eb005489 – ident: e_1_3_2_16_2 doi: 10.1101/gr.092957.109 – ident: e_1_3_2_27_2 – ident: e_1_3_2_24_2 doi: 10.1038/nbt.1716 – ident: e_1_3_2_19_2 – ident: e_1_3_2_35_2 – ident: e_1_3_2_5_2 doi: 10.1038/nature11875 |
SSID | ssj0009593 |
Score | 2.7110412 |
Snippet | DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the... DNA has the potential to provide large-capacity information storage. However, current methods have only been able to use a fraction of the theoretical maximum.... A reliable and efficient DNA storage architectureDNA has the potential to provide large-capacity information storage. However, current methods have only been... |
SourceID | proquest crossref pubmed jstor |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 950 |
SubjectTerms | Algorithms Architecture Base Sequence Computer architecture Computers Deoxyribonucleic acid DNA DNA - chemistry Gene sequencing Genetic testing High-Throughput Nucleotide Sequencing Information retrieval Information storage Information Storage and Retrieval - methods Libraries, Digital Methodology Microbiology Nucleotides Oligonucleotides Oligonucleotides - chemistry Polymerase chain reaction Retrieval Robustness Sequence Stores |
Title | DNA Fountain enables a robust and efficient storage architecture |
URI | https://www.jstor.org/stable/24918453 https://www.ncbi.nlm.nih.gov/pubmed/28254941 https://www.proquest.com/docview/1875392331 https://search.proquest.com/docview/1874441173 https://search.proquest.com/docview/1881768552 https://search.proquest.com/docview/1893902644 |
Volume | 355 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviA3GMgYyEg9DVaY4tpP4jYpulK8KiU4qT5Hj2FIRalE_JgH_POePpEGwivESVanrWnc_n-_O94HQcw2nTFVwFnOV8pgpoePCGBJrDeazMkIy14vgwzgbXbK3Uz7t9X52s0vW1Zn68de8kv_hKrwDvtos2Rtwtp0UXsBn4C88gcPw_CceD8cD1xfJmvd97bKgVn3ZXy6qzcpHjmtXIcLe99soSBuf07056GqmzSYHjbO9xenwrg1HHPiggSaGIPys41A4X36d-f5Sn-V8dtV6pmc28z10yR6Gpt2NvwHOMBtwRVuETLYJLzdZRlcGhxLI_gTyYjexHSPT8DdBLlNfvzcAMKMhidwLWuHL1f55AHRaVuozKb_ApMX2rGvu90eDT-XH4UX5_s343S1021ZRtI0XXk_JtRWbQ12oTsZVM_1vKo2Par3eXnF6y-Q-uhcMDjzw6NlHPT0_QHd8C9LvB2g_UG6FT0MF8hcP0EsAFm6AhQOwsMQeWBiAhVtg4QAs3AXWQ3R5cT55NYpDq41YcZ6vY8EKVudG5crQjGmeJ1wzIxVPk4qmdZ2qjMtK55rWWlSqAL3T0IrmlJksMSqlh2hvvpjrI4STHDQeIhi1_jHNQBAIqSSppapIXRseodOGWuU3X1GldJZompWBsGUgbIQOHTXbcSkTpGCcRuikIW8Z9uOqJNb0BnuFkgg9a78GaWmvwORcLzZuDAMDgOR015iCgBHOebprjKAiscZEhB559m4X6ZwujBzvXuRjdHe7vU7Q3nq50U9AwV1XTx0QfwGu86kK |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+Fountain+enables+a+robust+and+efficient+storage+architecture&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Erlich%2C+Yaniv&rft.au=Zielinski%2C+Dina&rft.date=2017-03-03&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=355&rft.issue=6328&rft.spage=950&rft_id=info:doi/10.1126%2Fscience.aaj2038&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |