Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts

Photosynthesis is a process that inevitably produces reactive oxygen species, such as hydrogen peroxide, which is reduced by chloroplast-localized detoxification mechanisms one of which involves 2-Cys peroxiredoxins (2-Cys Prxs). Arabidopsis chloroplasts contain two very similar 2-Cys Prxs (denoted...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 61; no. 14; pp. 4043 - 4054
Main Authors Pulido, Pablo, Spínola, María Cristina, Kirchsteiger, Kerstin, Guinea, Manuel, Pascual, María Belén, Sahrawy, Mariam, Sandalio, Luisa María, Dietz, Karl-Josef, González, Maricruz, Cejudo, Francisco Javier
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photosynthesis is a process that inevitably produces reactive oxygen species, such as hydrogen peroxide, which is reduced by chloroplast-localized detoxification mechanisms one of which involves 2-Cys peroxiredoxins (2-Cys Prxs). Arabidopsis chloroplasts contain two very similar 2-Cys Prxs (denoted A and B). These enzymes are reduced by two pathways: NADPH thioredoxin reductase C (NTRC), which uses NADPH as source of reducing power; and plastidial thioredoxins (Trxs) coupled to photosynthetically reduced ferredoxin of which Trx x is the most efficient reductant in vitro. With the aim of establishing the functional relationship between NTRC, Trx x, and 2-Cys Prxs in vivo, an Arabidopsis Trx x knock-out mutant has been identified and a double mutant (denoted Δ2cp) with <5% of 2-Cys Prx content has been generated. The phenotypes of the three mutants, ntrc, trxx, and Δ2cp, were compared under standard growth conditions and in response to continuous light or prolonged darkness and oxidative stress. Though all mutants showed altered redox homeostasis, no difference was observed in response to oxidative stress treatment. Moreover, the redox status of the 2-Cys Prx was imbalanced in the ntrc mutant but not in the trxx mutant. These results show that NTRC is the most relevant pathway for chloroplast 2-Cys Prx reduction in vivo, but the antioxidant function of this system is not essential. The deficiency of NTRC caused a more severe phenotype than the deficiency of Trx x or 2-Cys Prxs as determined by growth, pigment content, CO₂ fixation, and Fv/Fm, indicating additional functions of NTRC.
AbstractList Photosynthesis is a process that inevitably produces reactive oxygen species, such as hydrogen peroxide, which is reduced by chloroplast-localized detoxification mechanisms one of which involves 2-Cys peroxiredoxins (2-Cys Prxs). Arabidopsis chloroplasts contain two very similar 2-Cys Prxs (denoted A and B). These enzymes are reduced by two pathways: NADPH thioredoxin reductase C (NTRC), which uses NADPH as source of reducing power; and plastidial thioredoxins (Trxs) coupled to photosynthetically reduced ferredoxin of which Trx x is the most efficient reductant in vitro. With the aim of establishing the functional relationship between NTRC, Trx x, and 2-Cys Prxs in vivo, an Arabidopsis Trx x knock-out mutant has been identified and a double mutant (denoted Δ2cp) with <5% of 2-Cys Prx content has been generated. The phenotypes of the three mutants, ntrc, trxx, and Δ2cp, were compared under standard growth conditions and in response to continuous light or prolonged darkness and oxidative stress. Though all mutants showed altered redox homeostasis, no difference was observed in response to oxidative stress treatment. Moreover, the redox status of the 2-Cys Prx was imbalanced in the ntrc mutant but not in the trxx mutant. These results show that NTRC is the most relevant pathway for chloroplast 2-Cys Prx reduction in vivo, but the antioxidant function of this system is not essential. The deficiency of NTRC caused a more severe phenotype than the deficiency of Trx x or 2-Cys Prxs as determined by growth, pigment content, CO 2 fixation, and F v /F m , indicating additional functions of NTRC.
Photosynthesis is a process that inevitably produces reactive oxygen species, such as hydrogen peroxide, which is reduced by chloroplast-localized detoxification mechanisms one of which involves 2-Cys peroxiredoxins (2-Cys Prxs). Arabidopsis chloroplasts contain two very similar 2-Cys Prxs (denoted A and B). These enzymes are reduced by two pathways: NADPH thioredoxin reductase C (NTRC), which uses NADPH as source of reducing power; and plastidial thioredoxins (Trxs) coupled to photosynthetically reduced ferredoxin of which Trx x is the most efficient reductant in vitro. With the aim of establishing the functional relationship between NTRC, Trx x, and 2-Cys Prxs in vivo, an Arabidopsis Trx x knock-out mutant has been identified and a double mutant (denoted Δ2cp) with <5% of 2-Cys Prx content has been generated. The phenotypes of the three mutants, ntrc, trxx, and Δ2cp, were compared under standard growth conditions and in response to continuous light or prolonged darkness and oxidative stress. Though all mutants showed altered redox homeostasis, no difference was observed in response to oxidative stress treatment. Moreover, the redox status of the 2-Cys Prx was imbalanced in the ntrc mutant but not in the trxx mutant. These results show that NTRC is the most relevant pathway for chloroplast 2-Cys Prx reduction in vivo, but the antioxidant function of this system is not essential. The deficiency of NTRC caused a more severe phenotype than the deficiency of Trx x or 2-Cys Prxs as determined by growth, pigment content, CO2 fixation, and Fv/Fm, indicating additional functions of NTRC.
Photosynthesis is a process that inevitably produces reactive oxygen species, such as hydrogen peroxide, which is reduced by chloroplast-localized detoxification mechanisms one of which involves 2-Cys peroxiredoxins (2-Cys Prxs). Arabidopsis chloroplasts contain two very similar 2-Cys Prxs (denoted A and B). These enzymes are reduced by two pathways: NADPH thioredoxin reductase C (NTRC), which uses NADPH as source of reducing power; and plastidial thioredoxins (Trxs) coupled to photosynthetically reduced ferredoxin of which Trx x is the most efficient reductant in vitro . With the aim of establishing the functional relationship between NTRC, Trx x , and 2-Cys Prxs in vivo , an Arabidopsis Trx x knock-out mutant has been identified and a double mutant (denoted Δ2cp ) with <5% of 2-Cys Prx content has been generated. The phenotypes of the three mutants, ntrc , trxx , and Δ2cp , were compared under standard growth conditions and in response to continuous light or prolonged darkness and oxidative stress. Though all mutants showed altered redox homeostasis, no difference was observed in response to oxidative stress treatment. Moreover, the redox status of the 2-Cys Prx was imbalanced in the ntrc mutant but not in the trxx mutant. These results show that NTRC is the most relevant pathway for chloroplast 2-Cys Prx reduction in vivo , but the antioxidant function of this system is not essential. The deficiency of NTRC caused a more severe phenotype than the deficiency of Trx x or 2-Cys Prxs as determined by growth, pigment content, CO 2 fixation, and F v / F m , indicating additional functions of NTRC.
Photosynthesis is a process that inevitably produces reactive oxygen species, such as hydrogen peroxide, which is reduced by chloroplast-localized detoxification mechanisms one of which involves 2-Cys peroxiredoxins (2-Cys Prxs). Arabidopsis chloroplasts contain two very similar 2-Cys Prxs (denoted A and B). These enzymes are reduced by two pathways: NADPH thioredoxin reductase C (NTRC), which uses NADPH as source of reducing power; and plastidial thioredoxins (Trxs) coupled to photosynthetically reduced ferredoxin of which Trx chi is the most efficient reductant in vitro. With the aim of establishing the functional relationship between NTRC, Trx x, and 2-Cys Prxs in vivo, an Arabidopsis Trx chi knock-out mutant has been identified and a double mutant (denoted Delta 2cp) with <5% of 2-Cys Prx content has been generated. The phenotypes of the three mutants, ntrc, trxx, and Delta 2cp, were compared under standard growth conditions and in response to continuous light or prolonged darkness and oxidative stress. Though all mutants showed altered redox homeostasis, no difference was observed in response to oxidative stress treatment. Moreover, the redox status of the 2-Cys Prx was imbalanced in the ntrc mutant but not in the trxx mutant. These results show that NTRC is the most relevant pathway for chloroplast 2-Cys Prx reduction in vivo, but the antioxidant function of this system is not essential. The deficiency of NTRC caused a more severe phenotype than the deficiency of Trx chi or 2-Cys Prxs as determined by growth, pigment content, CO(2) fixation, and F(v)/F(m), indicating additional functions of NTRC.
Photosynthesis is a process that inevitably produces reactive oxygen species, such as hydrogen peroxide, which is reduced by chloroplast-localized detoxification mechanisms one of which involves 2-Cys peroxiredoxins (2-Cys Prxs). Arabidopsis chloroplasts contain two very similar 2-Cys Prxs (denoted A and B). These enzymes are reduced by two pathways: NADPH thioredoxin reductase C (NTRC), which uses NADPH as source of reducing power; and plastidial thioredoxins (Trxs) coupled to photosynthetically reduced ferredoxin of which Trx x is the most efficient reductant in vitro. With the aim of establishing the functional relationship between NTRC, Trx x, and 2-Cys Prxs in vivo, an Arabidopsis Trx x knock-out mutant has been identified and a double mutant (denoted Δ2cp) with <5% of 2-Cys Prx content has been generated. The phenotypes of the three mutants, ntrc, trxx, and Δ2cp, were compared under standard growth conditions and in response to continuous light or prolonged darkness and oxidative stress. Though all mutants showed altered redox homeostasis, no difference was observed in response to oxidative stress treatment. Moreover, the redox status of the 2-Cys Prx was imbalanced in the ntrc mutant but not in the trxx mutant. These results show that NTRC is the most relevant pathway for chloroplast 2-Cys Prx reduction in vivo, but the antioxidant function of this system is not essential. The deficiency of NTRC caused a more severe phenotype than the deficiency of Trx x or 2-Cys Prxs as determined by growth, pigment content, CO₂ fixation, and Fv/Fm, indicating additional functions of NTRC.
Author Sandalio, Luisa María
Dietz, Karl-Josef
González, Maricruz
Sahrawy, Mariam
Pascual, María Belén
Cejudo, Francisco Javier
Spínola, María Cristina
Kirchsteiger, Kerstin
Guinea, Manuel
Pulido, Pablo
AuthorAffiliation 1 Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio 49, 41092-Sevilla, Spain
2 Departamento de Bioquímica y Biología Molecular de Plantas, Estación Experimental del Zaidín, CSIC, C/Profesor Alvareda, 18008-Granada, Spain
3 Biochemistry and Physiology of Plants, W5-134, Bielefeld University, D-33501, Germany
AuthorAffiliation_xml – name: 3 Biochemistry and Physiology of Plants, W5-134, Bielefeld University, D-33501, Germany
– name: 1 Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio 49, 41092-Sevilla, Spain
– name: 2 Departamento de Bioquímica y Biología Molecular de Plantas, Estación Experimental del Zaidín, CSIC, C/Profesor Alvareda, 18008-Granada, Spain
Author_xml – sequence: 1
  fullname: Pulido, Pablo
– sequence: 2
  fullname: Spínola, María Cristina
– sequence: 3
  fullname: Kirchsteiger, Kerstin
– sequence: 4
  fullname: Guinea, Manuel
– sequence: 5
  fullname: Pascual, María Belén
– sequence: 6
  fullname: Sahrawy, Mariam
– sequence: 7
  fullname: Sandalio, Luisa María
– sequence: 8
  fullname: Dietz, Karl-Josef
– sequence: 9
  fullname: González, Maricruz
– sequence: 10
  fullname: Cejudo, Francisco Javier
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23217306$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20616155$$D View this record in MEDLINE/PubMed
BookMark eNpVkM1v1DAQxS1URLeFC3cgFy5IoWM7jpNLpWpFW9QFDlAJ7cWaeO3GSxoHO0t3_3tcUrZwmQ-937yR3hE56H1vCHlJ4T2Fmp-st82JCT8ZrZ6QGS1KyFnB6QGZATCWQy3kITmKcQ0AAoR4Rg4ZlLSkQszI-nzT69H5HrsMU9lFFzNvs7E12YBje4e7mFkfMpbP0zSY4LcumFWqfZb65s9xlpazgI1b-eHeYGyxc8ku023ngx86jGN8Tp5a7KJ58dCPyfX5h2_zy3zx5eLj_GyRayHkmFdUIxYSmdRFVYItgVG0spbAoZANsxxMYSsDpW5Yw1nijUTKkKOoJTX8mJxOvsOmuTUrbfoxYKeG4G4x7JRHp_5XeteqG_9LsZqLSopk8G4y0MHHGIzd31JQ94mrlLiaEk_w63-_7dG_ESfg7QOAUWNnA_baxUeOMyo5lIl7NXHrOPrwqBfAq5rXSc8n3cXRbPc6hh-qlFwKdfl9qZaLJV18uvqsrhL_ZuIteoU3If28_sqAcqBVJVlZ899KqrEv
CODEN JEBOA6
CitedBy_id crossref_primary_10_3389_fpls_2019_00380
crossref_primary_10_5352_JLS_2010_20_12_1777
crossref_primary_10_1016_j_plaphy_2022_03_008
crossref_primary_10_1093_pcp_pcs166
crossref_primary_10_1007_s11033_014_3151_4
crossref_primary_10_1007_s11738_020_03065_5
crossref_primary_10_1080_17429145_2018_1562111
crossref_primary_10_3389_fpls_2016_00305
crossref_primary_10_3389_fpls_2021_680376
crossref_primary_10_1002_pmic_201200365
crossref_primary_10_1093_pcp_pcw007
crossref_primary_10_3389_fpls_2017_00118
crossref_primary_10_1016_j_plaphy_2019_04_039
crossref_primary_10_3390_plants8120543
crossref_primary_10_1186_s12870_017_1092_5
crossref_primary_10_1111_plb_13592
crossref_primary_10_1111_pce_14789
crossref_primary_10_1111_pce_12652
crossref_primary_10_3389_fpls_2023_1152375
crossref_primary_10_1007_s11738_022_03459_7
crossref_primary_10_3390_antiox12051041
crossref_primary_10_1073_pnas_1604101113
crossref_primary_10_1016_j_redox_2023_102645
crossref_primary_10_1016_j_ijbiomac_2020_04_246
crossref_primary_10_1021_bi200058a
crossref_primary_10_1104_pp_114_255356
crossref_primary_10_1016_j_febslet_2015_07_046
crossref_primary_10_56093_ijas_v86i5_58356
crossref_primary_10_1371_journal_pone_0120978
crossref_primary_10_7554_eLife_38194
crossref_primary_10_1107_S2053230X18010920
crossref_primary_10_1038_nature11088
crossref_primary_10_1104_pp_113_217141
crossref_primary_10_1639_0007_2745_117_3_232
crossref_primary_10_1093_plphys_kiab246
crossref_primary_10_1093_pcp_pcr193
crossref_primary_10_1089_ars_2010_3657
crossref_primary_10_1093_plphys_kiad426
crossref_primary_10_1016_j_plgene_2019_100182
crossref_primary_10_3390_antiox9111072
crossref_primary_10_1089_ars_2017_7400
crossref_primary_10_1002_pld3_93
crossref_primary_10_1093_plphys_kiae102
crossref_primary_10_3390_plants9010091
crossref_primary_10_1093_jxb_ert216
crossref_primary_10_1111_j_1365_3040_2011_02400_x
crossref_primary_10_1016_j_jplph_2018_12_009
crossref_primary_10_7717_peerj_10685
crossref_primary_10_1111_tpj_14959
crossref_primary_10_1371_journal_pone_0125302
crossref_primary_10_1111_pce_12596
crossref_primary_10_1094_MPMI_05_11_0112
crossref_primary_10_1111_pce_14013
crossref_primary_10_1042_BCJ20161089
crossref_primary_10_1093_pcp_pcw031
crossref_primary_10_1089_ars_2018_7617
crossref_primary_10_1093_jxb_erz326
crossref_primary_10_1093_pcp_pcae013
crossref_primary_10_1104_pp_111_177196
crossref_primary_10_1093_jxb_ert184
crossref_primary_10_1093_pcp_pcad049
crossref_primary_10_1080_15592324_2017_1347244
crossref_primary_10_26508_lsa_202000775
crossref_primary_10_1016_j_plaphy_2017_11_014
crossref_primary_10_1111_tpj_12947
crossref_primary_10_1111_pce_13601
crossref_primary_10_1080_09168451_2014_890037
crossref_primary_10_1021_cr300354g
crossref_primary_10_1016_j_stress_2022_100108
crossref_primary_10_3390_antiox11101979
crossref_primary_10_1371_journal_pone_0143344
crossref_primary_10_3390_antiox11040654
crossref_primary_10_1093_plphys_kiab101
crossref_primary_10_1111_ppl_14397
crossref_primary_10_1007_s13205_022_03246_8
crossref_primary_10_1007_s12374_016_0464_y
crossref_primary_10_1111_jipb_12296
crossref_primary_10_1016_j_molp_2018_09_005
crossref_primary_10_1016_j_redox_2023_102731
crossref_primary_10_1042_BCJ20180707
crossref_primary_10_1186_s12284_017_0170_5
crossref_primary_10_1104_pp_110_171082
crossref_primary_10_1016_j_gene_2019_04_041
crossref_primary_10_1111_tpj_15119
crossref_primary_10_14348_molcells_2016_2324
crossref_primary_10_1111_j_1365_3040_2011_02319_x
crossref_primary_10_1016_j_plantsci_2016_07_003
crossref_primary_10_3389_fpls_2024_1372886
crossref_primary_10_1111_pce_13021
crossref_primary_10_1094_MPMI_05_11_0130
crossref_primary_10_1186_s12870_015_0444_2
crossref_primary_10_1098_rstb_2016_0474
crossref_primary_10_3390_ijms13033751
crossref_primary_10_1016_j_pbi_2011_12_002
crossref_primary_10_1016_j_bbagen_2012_03_003
crossref_primary_10_1093_aob_mcv094
crossref_primary_10_1016_j_biotechadv_2013_06_006
crossref_primary_10_1093_jxb_err386
crossref_primary_10_3389_fpls_2016_01427
crossref_primary_10_1093_mp_ssu032
crossref_primary_10_1093_plphys_kiac374
crossref_primary_10_1093_mp_ssu034
crossref_primary_10_3390_plants12213745
crossref_primary_10_15252_embj_2021107660
crossref_primary_10_1093_mp_sst039
crossref_primary_10_1104_pp_112_195446
crossref_primary_10_1016_j_ijbiomac_2020_06_026
crossref_primary_10_1098_rstb_2013_0224
crossref_primary_10_1515_hsz_2014_0281
crossref_primary_10_3389_fpls_2020_00231
crossref_primary_10_1093_plphys_kiad466
crossref_primary_10_1016_j_tplants_2016_12_008
crossref_primary_10_1073_pnas_1706003114
crossref_primary_10_1093_jxb_erab463
crossref_primary_10_1093_plphys_kiaa062
crossref_primary_10_3389_fpls_2023_1178935
crossref_primary_10_1016_j_febslet_2012_07_003
crossref_primary_10_1016_j_jbc_2021_100695
crossref_primary_10_1007_s11120_018_0583_z
crossref_primary_10_1016_j_tplants_2011_02_003
crossref_primary_10_1016_j_plantsci_2017_02_001
crossref_primary_10_1093_pcp_pcy134
crossref_primary_10_1089_ars_2017_7164
crossref_primary_10_3389_fpls_2023_1179112
crossref_primary_10_3389_fenvs_2015_00013
crossref_primary_10_1093_jxb_erw017
crossref_primary_10_3389_fpls_2015_00845
crossref_primary_10_1016_j_plaphy_2021_01_029
crossref_primary_10_1093_plphys_kiac199
crossref_primary_10_1111_pce_12718
crossref_primary_10_1016_j_febslet_2011_03_006
crossref_primary_10_1093_jxb_eru512
crossref_primary_10_1007_s11240_011_0061_1
crossref_primary_10_3390_agronomy12061264
crossref_primary_10_1073_pnas_2119719119
crossref_primary_10_1007_s10535_013_0346_9
crossref_primary_10_1016_j_jprot_2017_09_015
crossref_primary_10_1104_pp_112_197723
crossref_primary_10_1111_tpj_13049
crossref_primary_10_1016_j_febslet_2014_09_044
crossref_primary_10_1371_journal_pcbi_1007102
crossref_primary_10_1093_jxb_erz252
crossref_primary_10_1016_j_plaphy_2023_107876
Cites_doi 10.1111/j.1365-313X.2004.02271.x
10.1093/mp/ssp089
10.1104/pp.107.098103
10.1104/pp.106.082040
10.1074/jbc.M302077200
10.1016/j.tplants.2005.02.005
10.1016/j.jplph.2005.04.020
10.1074/jbc.M404696200
10.1104/pp.104.052233
10.1016/j.febslet.2009.03.067
10.1146/annurev.arplant.54.031902.134934
10.1089/ars.2006.8.1757
10.1105/tpc.107.055061
10.1126/science.1103178
10.1016/j.bbrc.2006.07.088
10.1016/j.tplants.2004.08.009
10.1104/pp.010017
10.1016/j.febslet.2006.10.001
10.1023/A:1021218932260
10.1126/science.1080405
10.1038/nprot.2007.101
10.1074/jbc.M301145200
10.1038/nrm1525
10.1111/j.1365-313X.2006.02665.x
10.1104/pp.108.133777
10.1104/pp.106.089458
10.1128/EC.00207-06
10.1104/pp.106.078162
10.1104/pp.108.122325
10.1042/BJ20080030
10.1016/j.pbi.2006.09.012
10.1105/tpc.001644
10.1016/j.febslet.2008.07.006
10.1104/pp.119.4.1407
10.1104/pp.88.4.1215
10.1146/annurev.arplant.55.031903.141701
10.1111/j.1742-4658.2009.06985.x
10.1038/embor.2008.57
10.1073/pnas.072644999
10.1104/pp.124.2.823
10.1073/pnas.0903559106
10.1093/jxb/53.372.1305
10.1105/tpc.106.044230
10.1006/meth.2001.1262
10.1126/science.1086391
10.1093/mp/ssp011
10.1089/ars.2008.2177
10.1105/tpc.014662
10.1093/mp/ssn082
10.1111/j.1399-3054.2008.01088.x
10.1074/jbc.M009574200
10.1016/j.jplph.2007.01.003
10.1046/j.1365-313X.2003.01901.x
10.1104/pp.103.022533
10.1042/bst0110591
10.1093/jxb/erj160
10.1093/pcp/pcp177
10.1105/tpc.106.041541
10.1105/tpc.105.037036
10.1046/j.1365-3040.2002.00850.x
ContentType Journal Article
Copyright Society for Experimental Biology 2010
2015 INIST-CNRS
2010 The Author(s). 2010
Copyright_xml – notice: Society for Experimental Biology 2010
– notice: 2015 INIST-CNRS
– notice: 2010 The Author(s). 2010
DBID FBQ
BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
DOI 10.1093/jxb/erq218
DatabaseName AGRIS
Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 4054
ExternalDocumentID 10_1093_jxb_erq218
20616155
23217306
24038939
ark_67375_HXZ_ZLZ1LMKN_K
US201301887269
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
3O-
4.4
482
48X
53G
5GY
5VS
5WA
5WD
6.Y
70D
AABJS
AABMN
AAESY
AAIMJ
AAIYJ
AAJKP
AAJQQ
AAMDB
AAMVS
AANRK
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
ABBHK
ABEUO
ABIXL
ABJNI
ABLJU
ABNKS
ABPPZ
ABPTD
ABPTK
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXZS
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ADBBV
ADEIU
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADORX
ADQLU
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AIKOY
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZQFJ
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BYORX
C1A
CAG
CASEJ
CDBKE
COF
CS3
CXTWN
CZ4
D-I
DAKXR
DATOO
DFEDG
DFGAJ
DIK
DILTD
DPORF
DPPUQ
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
ELUNK
ESX
F20
F5P
F9B
FBQ
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
GX1
H5~
HAR
HVGLF
HW0
HZ~
H~9
IOX
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TLC
TN5
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZCG
ZKX
~02
~91
~KM
AARHZ
AASNB
ABMNT
ABXSQ
ABXVV
ACMRT
ADACV
AQVQM
BSCLL
JXSIZ
AAHBH
AAUAY
ADQBN
ATGXG
H13
IPSME
08R
IQODW
ACZBC
AEHUL
AFSHK
AGMDO
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
ID FETCH-LOGICAL-c557t-81caa47a27c4860f6021af79703047b2f30e4f8e06cb2b3281ce7a12a3a5971e3
ISSN 0022-0957
IngestDate Tue Sep 17 21:05:36 EDT 2024
Thu Sep 12 19:53:17 EDT 2024
Tue Oct 15 23:38:00 EDT 2024
Sun Oct 22 16:08:25 EDT 2023
Sun Oct 20 12:37:53 EDT 2024
Sun Mar 31 11:38:34 EDT 2024
Wed Dec 27 19:18:44 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Arabidopsis thaliana
Oxidative stress
peroxiredoxin
Cruciferae
Dicotyledones
Angiospermae
Botany
Spermatophyta
Functional analysis
Experimental plant
Thioredoxin
Chloroplast
Language English
License CC BY 4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c557t-81caa47a27c4860f6021af79703047b2f30e4f8e06cb2b3281ce7a12a3a5971e3
Notes ark:/67375/HXZ-ZLZ1LMKN-K
These authors contributed equally to this work.
istex:430E7560776072A15B0EFF58DFEE1C3EE91D23B9
Present address: Centre for Research on Agricultural Genomics (CRAG), 08034-Barcelona, Spain
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2935875
PMID 20616155
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2935875
crossref_primary_10_1093_jxb_erq218
pubmed_primary_20616155
pascalfrancis_primary_23217306
jstor_primary_24038939
istex_primary_ark_67375_HXZ_ZLZ1LMKN_K
fao_agris_US201301887269
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2010
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 15531707 - Plant Physiol. 2004 Dec;136(4):4088-95
16891402 - Plant Cell. 2006 Sep;18(9):2356-68
15817417 - Trends Plant Sci. 2005 Apr;10(4):166-9
18165327 - Plant Cell. 2007 Dec;19(12):4120-30
12913160 - Plant Physiol. 2003 Aug;132(4):2045-57
16606633 - J Exp Bot. 2006;57(8):1697-709
15539603 - Science. 2004 Nov 12;306(5699):1183-5
16507087 - Plant J. 2006 Mar;45(6):968-81
15573135 - Nat Rev Mol Cell Biol. 2004 Dec;5(12):971-82
19995730 - Mol Plant. 2009 Nov;2(6):1273-88
18346073 - Physiol Plant. 2008 Jul;133(3):516-24
12893945 - Science. 2003 Aug 1;301(5633):653-7
15377225 - Annu Rev Plant Biol. 2004;55:373-99
16245137 - Photosynth Res. 2002;74(3):259-68
17435007 - Eukaryot Cell. 2007 Jun;6(6):919-30
17054949 - FEBS Lett. 2006 Nov 13;580(26):6055-61
12106017 - Biochem J. 2002 Oct 15;367(Pt 2):491-7
19825629 - Mol Plant. 2009 May;2(3):457-67
16666446 - Plant Physiol. 1988 Dec;88(4):1215-8
15610347 - Plant J. 2005 Jan;41(1):31-42
17011815 - Curr Opin Plant Biol. 2006 Dec;9(6):671-8
19476488 - FEBS J. 2009 May;276(9):2469-77
19345687 - FEBS Lett. 2009 May 6;583(9):1399-402
17513483 - Plant Physiol. 2007 Jul;144(3):1559-79
14508004 - Plant Cell. 2003 Oct;15(10):2320-32
17446888 - Nat Protoc. 2007;2(4):871-4
14617062 - Plant J. 2003 Dec;36(5):602-15
18451767 - EMBO Rep. 2008 May;9(5):435-9
11929977 - Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5738-43
18318659 - Biochem J. 2008 Jun 1;412(2):275-85
14502986 - Annu Rev Plant Biol. 2003;54:93-107
11997377 - J Exp Bot. 2002 May;53(372):1305-19
12707279 - J Biol Chem. 2003 Jun 27;278(26):23747-52
12702727 - J Biol Chem. 2003 Jul 4;278(27):24409-20
18625226 - FEBS Lett. 2008 Aug 6;582(18):2773-8
18612075 - Plant Physiol. 2008 Jul;147(3):978-84
19825615 - Mol Plant. 2009 Mar;2(2):298-307
16987029 - Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1757-64
15292215 - J Biol Chem. 2004 Oct 15;279(42):43821-7
16008099 - J Plant Physiol. 2005 Jul;162(7):749-57
12529539 - Plant Physiol. 2003 Jan;131(1):317-25
15465684 - Trends Plant Sci. 2004 Oct;9(10):490-8
17360071 - J Plant Physiol. 2007 Dec;164(12):1626-38
12084836 - Plant Cell. 2002 Jun;14(6):1417-32
19151130 - Plant Physiol. 2009 Mar;149(3):1261-76
11121418 - J Biol Chem. 2001 Mar 23;276(12):9297-302
11846609 - Methods. 2001 Dec;25(4):402-8
11997378 - J Exp Bot. 2002 May;53(372):1321-9
16760486 - Plant Physiol. 2006 Jun;141(2):346-50
16258032 - Plant Cell. 2005 Dec;17(12):3451-69
11027730 - Plant Physiol. 2000 Oct;124(2):823-32
19470473 - Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9908-13
17071643 - Plant Physiol. 2006 Dec;142(4):1364-79
16998070 - Plant Cell. 2006 Oct;18(10):2749-66
16884685 - Biochem Biophys Res Commun. 2006 Sep 22;348(2):478-84
19239350 - Antioxid Redox Signal. 2009 Apr;11(4):861-905
12714747 - Science. 2003 Apr 25;300(5619):650-3
10198100 - Plant Physiol. 1999 Apr;119(4):1407-14
16760493 - Plant Physiol. 2006 Jun;141(2):391-6
20007290 - Plant Cell Physiol. 2010 Feb;51(2):190-200
Broin ( key 20170512124435_bib8) 2002; 14
Dietz ( key 20170512124435_bib12) 2003; 54
Baier ( key 20170512124435_bib5) 1999; 119
Foyer ( key 20170512124435_bib15) 2009; 11
Sandalio ( key 20170512124435_bib54) 1988; 88
Nelson ( key 20170512124435_bib40) 2004; 5
Romero-Puertas ( key 20170512124435_bib52) 2002; 25
Navrot ( key 20170512124435_bib39) 2006; 142
op den Camp ( key 20170512124435_bib41) 2003; 15
Stenbaek ( key 20170512124435_bib59) 2008; 582
Rascher ( key 20170512124435_bib48) 2006; 9
Pérez-Ruiz ( key 20170512124435_bib44) 2009; 2
Moon ( key 20170512124435_bib36) 2006; 348
Spínola ( key 20170512124435_bib58) 2008; 133
Havaux ( key 20170512124435_bib18) 2005; 17
Pitzschke ( key 20170512124435_bib47) 2006; 8
Lamkemeyer ( key 20170512124435_bib26) 2006; 45
Michalska ( key 20170512124435_bib34) 2009; 106
Peñuelas ( key 20170512124435_bib42) 2005; 10
Kangasjärvi ( key 20170512124435_bib20) 2008; 412
Collin ( key 20170512124435_bib10) 2004; 136
Mittler ( key 20170512124435_bib35) 2004; 9
Horling ( key 20170512124435_bib19) 2003; 131
Dietz ( key 20170512124435_bib11) 2002; 53
Kruk ( key 20170512124435_bib25) 2005; 162
Petersson ( key 20170512124435_bib46) 2006; 580
Alonso ( key 20170512124435_bib2) 2003; 301
Dietz ( key 20170512124435_bib13) 2006; 57
Hall ( key 20170512124435_bib17) 2009; 276
Livak ( key 20170512124435_bib31) 2001; 25
Ledford ( key 20170512124435_bib27) 2007; 6
Wagner ( key 20170512124435_bib61) 2004; 306
Rouhier ( key 20170512124435_bib53) 2002; 74
Baier ( key 20170512124435_bib6) 2000; 124
Brehelin ( key 20170512124435_bib7) 2003; 132
Lepistö ( key 20170512124435_bib29) 2009; 149
Apel ( key 20170512124435_bib3) 2004; 55
Serrato ( key 20170512124435_bib56) 2004; 279
Kim ( key 20170512124435_bib21) 2008; 9
Kirchsteiger ( key 20170512124435_bib22) 2009; 2
Romero-Puertas ( key 20170512124435_bib51) 2007; 19
Van Breusegem ( key 20170512124435_bib60) 2008; 147
Wood ( key 20170512124435_bib62) 2003; 300
Asada ( key 20170512124435_bib4) 2006; 141
König ( key 20170512124435_bib24) 2003; 278
Gillespile ( key 20170512124435_bib16) 2007; 2
Collin ( key 20170512124435_bib9) 2003; 278
Maruta ( key 20170512124435_bib32) 2010; 51
Shigeoka ( key 20170512124435_bib57) 2002; 53
Rodriguez Milla ( key 20170512124435_bib50) 2003; 36
Muthuramalingam ( key 20170512124435_bib38) 2009; 2
Mullineaux ( key 20170512124435_bib37) 2006; 141
Pérez-Ruiz ( key 20170512124435_bib43) 2009; 583
Serrato ( key 20170512124435_bib55) 2002; 217
Pérez-Ruiz ( key 20170512124435_bib45) 2006; 18
Domínguez-Solís ( key 20170512124435_bib14) 2001; 276
Lee ( key 20170512124435_bib28) 2007; 16
Lichtenthaler ( key 20170512124435_bib30) 1983; 603
Miao ( key 20170512124435_bib33) 2006; 18
Rey ( key 20170512124435_bib49) 2005; 41
König ( key 20170512124435_bib23) 2002; 99
Alkhalfioui ( key 20170512124435_bib1) 2007; 144
References_xml – volume: 41
  start-page: 31
  year: 2005
  ident: key 20170512124435_bib49
  article-title: Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2004.02271.x
  contributor:
    fullname: Rey
– volume: 217
  start-page: 392
  year: 2002
  ident: key 20170512124435_bib55
  article-title: Cloning of thioredoxin h reductase and characterization of the thioredoxin reductase–thioredoxin h system from wheat
  publication-title: Biochemical Journal
  contributor:
    fullname: Serrato
– volume: 2
  start-page: 1273
  year: 2009
  ident: key 20170512124435_bib38
  article-title: Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast
  publication-title: Molecular Plant
  doi: 10.1093/mp/ssp089
  contributor:
    fullname: Muthuramalingam
– volume: 144
  start-page: 1559
  year: 2007
  ident: key 20170512124435_bib1
  article-title: Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds
  publication-title: Plant Physiology
  doi: 10.1104/pp.107.098103
  contributor:
    fullname: Alkhalfioui
– volume: 141
  start-page: 391
  year: 2006
  ident: key 20170512124435_bib4
  article-title: Production and scavenging of reactive oxygen species in chloroplasts and their functions
  publication-title: Plant Physiology
  doi: 10.1104/pp.106.082040
  contributor:
    fullname: Asada
– volume: 278
  start-page: 23747
  year: 2003
  ident: key 20170512124435_bib9
  article-title: The Arabidopsis plastidial thioredoxins. New functions and new insights into specificity
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M302077200
  contributor:
    fullname: Collin
– volume: 10
  start-page: 166
  year: 2005
  ident: key 20170512124435_bib42
  article-title: Isoprenoids: an evolutionary pool for photoprotection
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2005.02.005
  contributor:
    fullname: Peñuelas
– volume: 162
  start-page: 749
  year: 2005
  ident: key 20170512124435_bib25
  article-title: Tocopherol as singlet oxygen scavenger in photosystem II
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2005.04.020
  contributor:
    fullname: Kruk
– volume: 279
  start-page: 43821
  year: 2004
  ident: key 20170512124435_bib56
  article-title: A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M404696200
  contributor:
    fullname: Serrato
– volume: 136
  start-page: 4088
  year: 2004
  ident: key 20170512124435_bib10
  article-title: Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type
  publication-title: Plant Physiology
  doi: 10.1104/pp.104.052233
  contributor:
    fullname: Collin
– volume: 583
  start-page: 1399
  year: 2009
  ident: key 20170512124435_bib43
  article-title: A proposed reaction mechanism for rice NADPH thioredoxin reductase C, an enzyme with protein disulfide reductase activity
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2009.03.067
  contributor:
    fullname: Pérez-Ruiz
– volume: 54
  start-page: 93
  year: 2003
  ident: key 20170512124435_bib12
  article-title: Plant peroxiredoxins
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.54.031902.134934
  contributor:
    fullname: Dietz
– volume: 8
  start-page: 1757
  year: 2006
  ident: key 20170512124435_bib47
  article-title: Reactive oxygen species signaling in plants
  publication-title: Antioxidant Redox Signaling
  doi: 10.1089/ars.2006.8.1757
  contributor:
    fullname: Pitzschke
– volume: 19
  start-page: 4120
  year: 2007
  ident: key 20170512124435_bib51
  article-title: S-Nitrosylation of peroxiredoxin IIE promotes peroxynitrite-mediated tyrosine nitration
  publication-title: The Plant Cell
  doi: 10.1105/tpc.107.055061
  contributor:
    fullname: Romero-Puertas
– volume: 306
  start-page: 1183
  year: 2004
  ident: key 20170512124435_bib61
  article-title: The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana
  publication-title: Science
  doi: 10.1126/science.1103178
  contributor:
    fullname: Wagner
– volume: 53
  start-page: 1321
  year: 2002
  ident: key 20170512124435_bib11
  article-title: The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation
  publication-title: Journal of Experimental Botany
  contributor:
    fullname: Dietz
– volume: 348
  start-page: 478
  year: 2006
  ident: key 20170512124435_bib36
  article-title: The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1016/j.bbrc.2006.07.088
  contributor:
    fullname: Moon
– volume: 9
  start-page: 490
  year: 2004
  ident: key 20170512124435_bib35
  article-title: Reactive oxygen gene network of plants
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2004.08.009
  contributor:
    fullname: Mittler
– volume: 131
  start-page: 317
  year: 2003
  ident: key 20170512124435_bib19
  article-title: Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.010017
  contributor:
    fullname: Horling
– volume: 580
  start-page: 6055
  year: 2006
  ident: key 20170512124435_bib46
  article-title: The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2006.10.001
  contributor:
    fullname: Petersson
– volume: 74
  start-page: 259
  year: 2002
  ident: key 20170512124435_bib53
  article-title: Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes
  publication-title: Photosynthesis Research
  doi: 10.1023/A:1021218932260
  contributor:
    fullname: Rouhier
– volume: 300
  start-page: 650
  year: 2003
  ident: key 20170512124435_bib62
  article-title: Peroxiredoxin evolution and the regulation of hydrogen peroxide signalling
  publication-title: Science
  doi: 10.1126/science.1080405
  contributor:
    fullname: Wood
– volume: 2
  start-page: 871
  year: 2007
  ident: key 20170512124435_bib16
  article-title: Measurement of reduced, oxidized and total ascorbate content in plants
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2007.101
  contributor:
    fullname: Gillespile
– volume: 278
  start-page: 24409
  year: 2003
  ident: key 20170512124435_bib24
  article-title: Reaction mechanism of plant 2-Cys peroxiredoxin
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M301145200
  contributor:
    fullname: König
– volume: 5
  start-page: 1
  year: 2004
  ident: key 20170512124435_bib40
  article-title: The complex architecture of oxygenic photosynthesis
  publication-title: Nature Reviews in Molecular Cell Biology
  doi: 10.1038/nrm1525
  contributor:
    fullname: Nelson
– volume: 45
  start-page: 968
  year: 2006
  ident: key 20170512124435_bib26
  article-title: Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2006.02665.x
  contributor:
    fullname: Lamkemeyer
– volume: 149
  start-page: 1261
  year: 2009
  ident: key 20170512124435_bib29
  article-title: Choloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.108.133777
  contributor:
    fullname: Lepistö
– volume: 142
  start-page: 1364
  year: 2006
  ident: key 20170512124435_bib39
  article-title: Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses
  publication-title: Plant Physiology
  doi: 10.1104/pp.106.089458
  contributor:
    fullname: Navrot
– volume: 6
  start-page: 919
  year: 2007
  ident: key 20170512124435_bib27
  article-title: Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii
  publication-title: Eukaryotic Cell
  doi: 10.1128/EC.00207-06
  contributor:
    fullname: Ledford
– volume: 141
  start-page: 346
  year: 2006
  ident: key 20170512124435_bib37
  article-title: Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants
  publication-title: Plant Physiology
  doi: 10.1104/pp.106.078162
  contributor:
    fullname: Mullineaux
– volume: 147
  start-page: 978
  year: 2008
  ident: key 20170512124435_bib60
  article-title: Unraveling the tapestry of networks involving reactive oxygen species in plants
  publication-title: Plant Physiology
  doi: 10.1104/pp.108.122325
  contributor:
    fullname: Van Breusegem
– volume: 412
  start-page: 275
  year: 2008
  ident: key 20170512124435_bib20
  article-title: Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses
  publication-title: Biochemical Journal
  doi: 10.1042/BJ20080030
  contributor:
    fullname: Kangasjärvi
– volume: 9
  start-page: 671
  year: 2006
  ident: key 20170512124435_bib48
  article-title: Dynamics of photosynthesis in fluctuating light
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2006.09.012
  contributor:
    fullname: Rascher
– volume: 14
  start-page: 1417
  year: 2002
  ident: key 20170512124435_bib8
  article-title: The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage
  publication-title: The Plant Cell
  doi: 10.1105/tpc.001644
  contributor:
    fullname: Broin
– volume: 582
  start-page: 2773
  year: 2008
  ident: key 20170512124435_bib59
  article-title: NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2008.07.006
  contributor:
    fullname: Stenbaek
– volume: 119
  start-page: 1407
  year: 1999
  ident: key 20170512124435_bib5
  article-title: Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis. Evidence from transgenic Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.119.4.1407
  contributor:
    fullname: Baier
– volume: 88
  start-page: 1215
  year: 1988
  ident: key 20170512124435_bib54
  article-title: Intraorganellar distribution of superoxide dismutase in plant peroxisomes (glyoxysomes and leaf peroxisomes)
  publication-title: Plant Physiology
  doi: 10.1104/pp.88.4.1215
  contributor:
    fullname: Sandalio
– volume: 55
  start-page: 373
  year: 2004
  ident: key 20170512124435_bib3
  article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.55.031903.141701
  contributor:
    fullname: Apel
– volume: 276
  start-page: 2469
  year: 2009
  ident: key 20170512124435_bib17
  article-title: Typical 2-Cys peroxiredoxins—structures, mechanisms and functions
  publication-title: FEBS Journal
  doi: 10.1111/j.1742-4658.2009.06985.x
  contributor:
    fullname: Hall
– volume: 9
  start-page: 435
  year: 2008
  ident: key 20170512124435_bib21
  article-title: No single way to understand singlet oxygen signalling in plants
  publication-title: EMBO Reports
  doi: 10.1038/embor.2008.57
  contributor:
    fullname: Kim
– volume: 99
  start-page: 5738
  year: 2002
  ident: key 20170512124435_bib23
  article-title: The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox hierarchy of photosynthetic electron flux
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.072644999
  contributor:
    fullname: König
– volume: 124
  start-page: 823
  year: 2000
  ident: key 20170512124435_bib6
  article-title: Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism
  publication-title: Plant Physiology
  doi: 10.1104/pp.124.2.823
  contributor:
    fullname: Baier
– volume: 106
  start-page: 9908
  year: 2009
  ident: key 20170512124435_bib34
  article-title: NTRC links built in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0903559106
  contributor:
    fullname: Michalska
– volume: 53
  start-page: 1305
  year: 2002
  ident: key 20170512124435_bib57
  article-title: Regulation and function of ascorbate peroxidase isoenzymes
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/53.372.1305
  contributor:
    fullname: Shigeoka
– volume: 18
  start-page: 2749
  year: 2006
  ident: key 20170512124435_bib33
  article-title: An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses
  publication-title: The Plant Cell
  doi: 10.1105/tpc.106.044230
  contributor:
    fullname: Miao
– volume: 25
  start-page: 402
  year: 2001
  ident: key 20170512124435_bib31
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
  contributor:
    fullname: Livak
– volume: 301
  start-page: 653
  year: 2003
  ident: key 20170512124435_bib2
  article-title: Genome-wide insertional mutagenesis of Arabidopsis thaliana
  publication-title: Science
  doi: 10.1126/science.1086391
  contributor:
    fullname: Alonso
– volume: 2
  start-page: 457
  year: 2009
  ident: key 20170512124435_bib44
  article-title: The quaternary structure of NADPH thioredoxin reductase C is redox sensitive
  publication-title: Molecular Plant
  doi: 10.1093/mp/ssp011
  contributor:
    fullname: Pérez-Ruiz
– volume: 11
  start-page: 861
  year: 2009
  ident: key 20170512124435_bib15
  article-title: Redox regulation in photosynthetic organisms: signalling, acclimation, and practical implications
  publication-title: Antioxidant Redox Signaling
  doi: 10.1089/ars.2008.2177
  contributor:
    fullname: Foyer
– volume: 15
  start-page: 2320
  year: 2003
  ident: key 20170512124435_bib41
  article-title: Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis
  publication-title: The Plant Cell
  doi: 10.1105/tpc.014662
  contributor:
    fullname: op den Camp
– volume: 2
  start-page: 298
  year: 2009
  ident: key 20170512124435_bib22
  article-title: NADPH thioredoxin reductase C controls the redox status of chloroplast 2-Cys peroxiredoxins in Arabidopsis thaliana
  publication-title: Molecular Plant
  doi: 10.1093/mp/ssn082
  contributor:
    fullname: Kirchsteiger
– volume: 133
  start-page: 516
  year: 2008
  ident: key 20170512124435_bib58
  article-title: NTRC: new ways of using NADPH in the chloroplast
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.2008.01088.x
  contributor:
    fullname: Spínola
– volume: 276
  start-page: 9297
  year: 2001
  ident: key 20170512124435_bib14
  article-title: The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M009574200
  contributor:
    fullname: Domínguez-Solís
– volume: 16
  start-page: 1626
  year: 2007
  ident: key 20170512124435_bib28
  article-title: Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2007.01.003
  contributor:
    fullname: Lee
– volume: 36
  start-page: 602
  year: 2003
  ident: key 20170512124435_bib50
  article-title: Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signalling pathways
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313X.2003.01901.x
  contributor:
    fullname: Rodriguez Milla
– volume: 132
  start-page: 2045
  year: 2003
  ident: key 20170512124435_bib7
  article-title: Resemblance and dissemblance of Arabidopsis type II peroxiredoxins: similar sequences for divergent gene expression, protein localization, and activity
  publication-title: Plant Physiology
  doi: 10.1104/pp.103.022533
  contributor:
    fullname: Brehelin
– volume: 603
  start-page: 591
  year: 1983
  ident: key 20170512124435_bib30
  article-title: Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents
  publication-title: Biochemical Society Transactions
  doi: 10.1042/bst0110591
  contributor:
    fullname: Lichtenthaler
– volume: 57
  start-page: 1697
  year: 2006
  ident: key 20170512124435_bib13
  article-title: The function of peroxiredoxins in plant organelle redox metabolism
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erj160
  contributor:
    fullname: Dietz
– volume: 51
  start-page: 190
  year: 2010
  ident: key 20170512124435_bib32
  article-title: Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pcp177
  contributor:
    fullname: Maruta
– volume: 18
  start-page: 2356
  year: 2006
  ident: key 20170512124435_bib45
  article-title: Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage
  publication-title: The Plant Cell
  doi: 10.1105/tpc.106.041541
  contributor:
    fullname: Pérez-Ruiz
– volume: 17
  start-page: 3451
  year: 2005
  ident: key 20170512124435_bib18
  article-title: Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana
  publication-title: The Plant Cell
  doi: 10.1105/tpc.105.037036
  contributor:
    fullname: Havaux
– volume: 25
  start-page: 677
  year: 2002
  ident: key 20170512124435_bib52
  article-title: Cadmium causes the oxidative modification of proteins in pea plants
  publication-title: Plant, Cell and Environment
  doi: 10.1046/j.1365-3040.2002.00850.x
  contributor:
    fullname: Romero-Puertas
SSID ssj0005055
Score 2.456481
Snippet Photosynthesis is a process that inevitably produces reactive oxygen species, such as hydrogen peroxide, which is reduced by chloroplast-localized...
SourceID pubmedcentral
crossref
pubmed
pascalfrancis
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4043
SubjectTerms Antioxidants
Antioxidants - metabolism
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
Biological and medical sciences
Chloroplast
Chloroplasts
Chloroplasts - enzymology
Chloroplasts - metabolism
Cysteine - metabolism
Darkness
Enzymes
Fundamental and applied biological sciences. Psychology
Hydrogen Peroxide - metabolism
Leaves
Light
NADP - metabolism
Oxidation-Reduction
Oxidative stress
Oxidative Stress - physiology
Peroxides
peroxiredoxin
Peroxiredoxins - metabolism
Phenotypes
Photosynthesis
Plant physiology
Plants
Research Papers
Thioredoxin
Thioredoxin-Disulfide Reductase - metabolism
Thioredoxins - metabolism
Title Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts
URI https://api.istex.fr/ark:/67375/HXZ-ZLZ1LMKN-K/fulltext.pdf
https://www.jstor.org/stable/24038939
https://www.ncbi.nlm.nih.gov/pubmed/20616155
https://pubmed.ncbi.nlm.nih.gov/PMC2935875
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa6wYEL4tdYBkyWQFymsMRx4uYIg62i2y6sUtVLZKfJmm1KSpeKwn_Kf8N7dpImqJMGPURt4jpt3uf3PtvPnwl5pxzPTxzp2ji6YHOIabYKPW73E8eNHTdNPa3deXYeDEb869gf93q_W1lLy1J9iH9tXFfyP1aFc2BXXCX7D5ZtKoUT8B7sC0ewMBzvZeNjCErVWJ5siYvo1U_A7H7In1pt4YDZR_AOJcFXGQqErvQilqkRjtUjHgupsmkxxwrKmR76kAfxDPryxRzotVF72sBhO_sDqKKsPQv62uUN1GhIqrop1rP0emr-cw5d6mqtkDkhcYcx8Dd5EyeGGa6aKZPsskr8QKaaNWA-WQJBrurIl1XmfzV-gVPvYXv84o51kW2fDd1lIIImLCfGTfPAsRmv4kflx42oe41X3vLKqCDUivDAUfnG6GGUta5WCtG0-M6qyNAR6f4reDYpjXJxjTlywo8G40k0OZ24p2fD82i4RR4wEfqYbXoybmUfOb5fC9njn6uVc0PvEO5_aO7e4UpbqSygB4WNf1Unz2Imr7yFxpyaXVhaNKqb4tviTBdPyOMKKPSjQe5T0kvyZ-ThJ42T5-RqDV9aw5cWKQX40hq-FMxGNXxpB760gS-FDy340hq-tA3fF2R0_OXiaGBXW3_Yse-L0u67sZRcSCZi3CUtDYCKylSEGJ-4UCz1nISn4FCCWDHlMSifCOky6UnoIbuJt0O28yJPdgn1U97n09BTHF64ez0PBVQugilwf64ci7ytH3I0NwovkcnM8CIwRWRMYZFdeP6RvISmEI2-MZzwdyFAsyC0yHttlObbd0HBIjvaak1B1MKE_gLUsN8x47oAeEoIwYFFXhpzrq8AD8eUAouIjqGbAigb372SZzMtH88w9UH4e_f92a_Io3W7fU22y8UyeQNMvFT7GtN_ACq-5F8
link.rule.ids 230,315,786,790,891,27955,27956
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+analysis+of+the+pathways+for+2-Cys+peroxiredoxin+reduction+in+Arabidopsis+thaliana+chloroplasts&rft.jtitle=Journal+of+experimental+botany&rft.au=Pulido%2C+Pablo&rft.au=Sp%C3%ADnola%2C+Mar%C3%ADa+Cristina&rft.au=Kirchsteiger%2C+Kerstin&rft.au=Guinea%2C+Manuel&rft.date=2010-09-01&rft.pub=Oxford+University+Press&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=61&rft.issue=14&rft.spage=4043&rft.epage=4054&rft_id=info:doi/10.1093%2Fjxb%2Ferq218&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_HXZ_ZLZ1LMKN_K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon