Bayesian Computation through Cortical Latent Dynamics
Statistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when sensory information is uncertain. Bayesian theory formalizes how prior beliefs can be leveraged and has had a major impact on models of perception, sensorimotor function, and cognition. How...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 103; no. 5; pp. 934 - 947.e5 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
04.09.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0896-6273 1097-4199 1097-4199 |
DOI | 10.1016/j.neuron.2019.06.012 |
Cover
Abstract | Statistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when sensory information is uncertain. Bayesian theory formalizes how prior beliefs can be leveraged and has had a major impact on models of perception, sensorimotor function, and cognition. However, it is not known how recurrent interactions among neurons mediate Bayesian integration. By using a time-interval reproduction task in monkeys, we found that prior statistics warp neural representations in the frontal cortex, allowing the mapping of sensory inputs to motor outputs to incorporate prior statistics in accordance with Bayesian inference. Analysis of recurrent neural network models performing the task revealed that this warping was enabled by a low-dimensional curved manifold and allowed us to further probe the potential causal underpinnings of this computational strategy. These results uncover a simple and general principle whereby prior beliefs exert their influence on behavior by sculpting cortical latent dynamics.
[Display omitted]
•Monkeys estimate time by integrating sensory evidence with prior beliefs•Prior beliefs warp neural representations in the frontal cortex•Warped representations provide an optimal substrate for integrating beliefs•Recurrent neural network models validate the warping effect of prior beliefs
Sohn et al. found that prior beliefs warp neural representations in the frontal cortex. This warping provides a substrate for the optimal integration of prior beliefs with sensory evidence during sensorimotor behavior. |
---|---|
AbstractList | Statistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when sensory information is uncertain. Bayesian theory formalizes how prior beliefs can be leveraged and has had a major impact on models of perception, sensorimotor function, and cognition. However, it is not known how recurrent interactions among neurons mediate Bayesian integration. Using a time interval reproduction task in monkeys, we found that prior statistics warp neural representations in the frontal cortex allowing the mapping of sensory inputs to motor outputs to incorporate prior statistics in accordance with Bayesian inference. Analysis of recurrent neural network models performing the task revealed that this warping was enabled by a low-dimensional curved manifold, and allowed us to further probe the potential causal underpinnings of this computational strategy. These results uncover a simple and general principle whereby prior beliefs exert their influence on behavior by sculpting cortical latent dynamics.
Sohn, Narain, Meirhaeghe et al. found that prior beliefs warp neural representations in the frontal cortex. This warping provides a substrate for the optimal integration of prior beliefs with sensory evidence during sensorimotor behavior. Statistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when sensory information is uncertain. Bayesian theory formalizes how prior beliefs can be leveraged and has had a major impact on models of perception, sensorimotor function, and cognition. However, it is not known how recurrent interactions among neurons mediate Bayesian integration. By using a time-interval reproduction task in monkeys, we found that prior statistics warp neural representations in the frontal cortex, allowing the mapping of sensory inputs to motor outputs to incorporate prior statistics in accordance with Bayesian inference. Analysis of recurrent neural network models performing the task revealed that this warping was enabled by a low-dimensional curved manifold and allowed us to further probe the potential causal underpinnings of this computational strategy. These results uncover a simple and general principle whereby prior beliefs exert their influence on behavior by sculpting cortical latent dynamics. [Display omitted] •Monkeys estimate time by integrating sensory evidence with prior beliefs•Prior beliefs warp neural representations in the frontal cortex•Warped representations provide an optimal substrate for integrating beliefs•Recurrent neural network models validate the warping effect of prior beliefs Sohn et al. found that prior beliefs warp neural representations in the frontal cortex. This warping provides a substrate for the optimal integration of prior beliefs with sensory evidence during sensorimotor behavior. Statistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when sensory information is uncertain. Bayesian theory formalizes how prior beliefs can be leveraged and has had a major impact on models of perception, sensorimotor function, and cognition. However, it is not known how recurrent interactions among neurons mediate Bayesian integration. By using a time-interval reproduction task in monkeys, we found that prior statistics warp neural representations in the frontal cortex, allowing the mapping of sensory inputs to motor outputs to incorporate prior statistics in accordance with Bayesian inference. Analysis of recurrent neural network models performing the task revealed that this warping was enabled by a low-dimensional curved manifold and allowed us to further probe the potential causal underpinnings of this computational strategy. These results uncover a simple and general principle whereby prior beliefs exert their influence on behavior by sculpting cortical latent dynamics. Statistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when sensory information is uncertain. Bayesian theory formalizes how prior beliefs can be leveraged and has had a major impact on models of perception, sensorimotor function, and cognition. However, it is not known how recurrent interactions among neurons mediate Bayesian integration. By using a time-interval reproduction task in monkeys, we found that prior statistics warp neural representations in the frontal cortex, allowing the mapping of sensory inputs to motor outputs to incorporate prior statistics in accordance with Bayesian inference. Analysis of recurrent neural network models performing the task revealed that this warping was enabled by a low-dimensional curved manifold and allowed us to further probe the potential causal underpinnings of this computational strategy. These results uncover a simple and general principle whereby prior beliefs exert their influence on behavior by sculpting cortical latent dynamics.Statistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when sensory information is uncertain. Bayesian theory formalizes how prior beliefs can be leveraged and has had a major impact on models of perception, sensorimotor function, and cognition. However, it is not known how recurrent interactions among neurons mediate Bayesian integration. By using a time-interval reproduction task in monkeys, we found that prior statistics warp neural representations in the frontal cortex, allowing the mapping of sensory inputs to motor outputs to incorporate prior statistics in accordance with Bayesian inference. Analysis of recurrent neural network models performing the task revealed that this warping was enabled by a low-dimensional curved manifold and allowed us to further probe the potential causal underpinnings of this computational strategy. These results uncover a simple and general principle whereby prior beliefs exert their influence on behavior by sculpting cortical latent dynamics. SummaryStatistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when sensory information is uncertain. Bayesian theory formalizes how prior beliefs can be leveraged and has had a major impact on models of perception, sensorimotor function, and cognition. However, it is not known how recurrent interactions among neurons mediate Bayesian integration. By using a time-interval reproduction task in monkeys, we found that prior statistics warp neural representations in the frontal cortex, allowing the mapping of sensory inputs to motor outputs to incorporate prior statistics in accordance with Bayesian inference. Analysis of recurrent neural network models performing the task revealed that this warping was enabled by a low-dimensional curved manifold and allowed us to further probe the potential causal underpinnings of this computational strategy. These results uncover a simple and general principle whereby prior beliefs exert their influence on behavior by sculpting cortical latent dynamics. |
Author | Meirhaeghe, Nicolas Narain, Devika Jazayeri, Mehrdad Sohn, Hansem |
AuthorAffiliation | 2 Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts 02139, USA 1 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 3 Erasmus Medical Center, Rotterdam, 3015CN, the Netherlands |
AuthorAffiliation_xml | – name: 3 Erasmus Medical Center, Rotterdam, 3015CN, the Netherlands – name: 1 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA – name: 2 Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts 02139, USA |
Author_xml | – sequence: 1 givenname: Hansem surname: Sohn fullname: Sohn, Hansem organization: Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 2 givenname: Devika surname: Narain fullname: Narain, Devika organization: Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 3 givenname: Nicolas surname: Meirhaeghe fullname: Meirhaeghe, Nicolas organization: Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA – sequence: 4 givenname: Mehrdad surname: Jazayeri fullname: Jazayeri, Mehrdad email: mjaz@mit.edu organization: Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31320220$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFv0zAYxS20iXWD_wChSly4JHyf49gxByToxphUiQucLcdxVleJXexkUv97XLVDsAM7WbJ_7-n5vUty5oO3hLxBKBGQf9iW3s4x-JICyhJ4CUhfkAWCFAVDKc_IAhrJC05FdUEuU9oCIKslviQXFVYUKIUFqb_ovU1O--UqjLt50pMLfjltYpjvN_kuTs7oYbnWk_XT8nrv9ehMekXOez0k-_p0XpGfX29-rL4V6--3d6vP68LUtZiKBhlo1jHe9ZVpu75rmagO4VsLraAMQBtOa02lEYCt6FGKjratMLyXSFl1RT4dfXdzO9rO5AxRD2oX3ajjXgXt1L8v3m3UfXhQvIEaq4PB-5NBDL9mmyY1umTsMGhvw5wUpRxplWnM6Lsn6DbM0efvZaphrGEgZKbe_p3oT5THRjPw8QiYGFKKtlfGHVvNAd2gENShAbVVx_nUYT4FXOX5spg9ET_6PyM71WTzFg_ORpWMs97YzkVrJtUF93-D3-JwtfQ |
CitedBy_id | crossref_primary_10_1016_j_cub_2022_12_044 crossref_primary_10_1016_j_cell_2022_08_019 crossref_primary_10_1016_j_conb_2022_102630 crossref_primary_10_1038_s41467_021_25939_z crossref_primary_10_1038_s41583_022_00623_3 crossref_primary_10_7554_eLife_94961 crossref_primary_10_1016_j_celrep_2023_113234 crossref_primary_10_7554_eLife_86491 crossref_primary_10_1038_s41467_024_49568_4 crossref_primary_10_1016_j_neubiorev_2023_105312 crossref_primary_10_1523_JNEUROSCI_1652_20_2020 crossref_primary_10_1016_j_conb_2021_10_010 crossref_primary_10_1103_PhysRevX_12_021054 crossref_primary_10_1016_j_neuron_2024_06_011 crossref_primary_10_1523_JNEUROSCI_0628_20_2021 crossref_primary_10_7554_eLife_89421_3 crossref_primary_10_1016_j_conb_2021_10_014 crossref_primary_10_1016_j_cub_2021_01_068 crossref_primary_10_1111_tops_12699 crossref_primary_10_1038_s41467_024_54688_y crossref_primary_10_1016_j_conb_2021_09_008 crossref_primary_10_1146_annurev_neuro_092619_094115 crossref_primary_10_1038_s41598_024_78786_5 crossref_primary_10_1038_s41593_022_01088_4 crossref_primary_10_1371_journal_pcbi_1009933 crossref_primary_10_1038_s41467_024_51308_7 crossref_primary_10_1038_s41586_024_08433_6 crossref_primary_10_1038_s41593_025_01899_1 crossref_primary_10_1146_annurev_psych_021021_103038 crossref_primary_10_1186_s12915_022_01444_7 crossref_primary_10_1152_physrev_00034_2020 crossref_primary_10_1038_s41467_020_16999_8 crossref_primary_10_7554_eLife_71612 crossref_primary_10_1016_j_celrep_2023_112136 crossref_primary_10_1162_neco_a_01671 crossref_primary_10_2139_ssrn_3967676 crossref_primary_10_1371_journal_pone_0303843 crossref_primary_10_1038_s41593_020_0653_3 crossref_primary_10_7554_eLife_89421 crossref_primary_10_1016_j_conb_2019_09_011 crossref_primary_10_1016_j_technovation_2022_102459 crossref_primary_10_1016_j_neuron_2022_12_007 crossref_primary_10_1038_s41593_019_0500_6 crossref_primary_10_1162_neco_a_01389 crossref_primary_10_3389_fnins_2023_1278096 crossref_primary_10_1523_JNEUROSCI_1503_22_2022 crossref_primary_10_1016_j_neuron_2021_07_011 crossref_primary_10_7554_eLife_94296 crossref_primary_10_1152_jn_00559_2020 crossref_primary_10_1038_s41583_021_00448_6 crossref_primary_10_3389_fnbeh_2022_957804 crossref_primary_10_1038_s41598_024_77849_x crossref_primary_10_1038_s41593_024_01783_4 crossref_primary_10_1126_sciadv_ado8230 crossref_primary_10_1016_j_cub_2024_04_010 crossref_primary_10_1038_s41592_022_01675_0 crossref_primary_10_7554_eLife_81325 crossref_primary_10_1016_j_isci_2023_107204 crossref_primary_10_1038_s41467_024_50563_y crossref_primary_10_1016_j_tics_2023_03_002 crossref_primary_10_1088_1741_2552_aba6d9 crossref_primary_10_1073_pnas_2305853120 crossref_primary_10_1038_s42003_022_04049_6 crossref_primary_10_1016_j_tics_2024_03_003 crossref_primary_10_1007_s10827_023_00857_9 crossref_primary_10_7554_eLife_67256 crossref_primary_10_7554_eLife_85487 crossref_primary_10_1016_j_neubiorev_2022_104649 crossref_primary_10_1016_j_tics_2020_11_002 crossref_primary_10_1371_journal_pcbi_1011669 crossref_primary_10_7554_eLife_71801 crossref_primary_10_1103_PhysRevLett_124_248302 crossref_primary_10_1038_s41583_023_00740_7 crossref_primary_10_1016_j_chb_2023_107791 crossref_primary_10_7554_eLife_94961_2 crossref_primary_10_1073_pnas_2021531118 crossref_primary_10_1016_j_conb_2021_08_002 crossref_primary_10_1038_s41467_023_43139_9 crossref_primary_10_1177_09567976231173902 crossref_primary_10_1016_j_neuron_2022_12_016 crossref_primary_10_1016_j_celrep_2024_114412 crossref_primary_10_1038_s41598_024_53907_2 crossref_primary_10_1073_pnas_2312831121 crossref_primary_10_1016_j_tics_2021_08_002 crossref_primary_10_1038_s41583_021_00502_3 crossref_primary_10_1146_annurev_neuro_092322_100402 crossref_primary_10_1073_pnas_2312992121 crossref_primary_10_1016_j_conb_2020_11_003 crossref_primary_10_1016_j_isci_2023_107543 crossref_primary_10_1038_s41539_024_00241_x crossref_primary_10_1016_j_cub_2025_01_052 crossref_primary_10_52547_shefa_10_4_44 crossref_primary_10_1038_s41583_022_00670_w crossref_primary_10_1126_sciadv_adg4156 crossref_primary_10_7554_eLife_62583 crossref_primary_10_1016_j_neuron_2021_08_025 crossref_primary_10_1109_ACCESS_2024_3450551 crossref_primary_10_7554_eLife_94296_3 crossref_primary_10_1016_j_conb_2021_10_008 crossref_primary_10_1093_texcom_tgaa037 crossref_primary_10_1016_j_neuron_2021_03_009 crossref_primary_10_1098_rsos_201844 crossref_primary_10_1063_5_0062603 crossref_primary_10_1038_s41467_022_33581_6 crossref_primary_10_1371_journal_pbio_3001861 crossref_primary_10_7717_peerj_18477 crossref_primary_10_1016_j_neuron_2021_06_028 crossref_primary_10_3389_fncom_2022_960569 crossref_primary_10_1016_j_cub_2023_11_066 crossref_primary_10_7554_eLife_67620 crossref_primary_10_1016_j_conb_2021_04_004 crossref_primary_10_1038_s41593_022_01230_2 crossref_primary_10_1016_j_tins_2020_11_007 crossref_primary_10_3902_jnns_27_165 crossref_primary_10_3389_fpsyt_2023_1080668 |
Cites_doi | 10.1038/nature25510 10.1016/j.neuron.2017.03.002 10.1038/nn.4390 10.1523/JNEUROSCI.5948-11.2012 10.1152/jn.1992.68.3.653 10.1093/brain/116.1.243 10.1038/37975 10.1523/JNEUROSCI.5613-10.2011 10.1038/s41593-017-0028-6 10.3389/fncom.2010.00024 10.1126/science.1155564 10.1038/nature02169 10.1152/jn.90629.2008 10.1016/j.conb.2009.06.008 10.1038/s41467-018-07161-6 10.1038/nature12742 10.1103/PhysRevLett.97.188104 10.1523/JNEUROSCI.1376-17.2017 10.1073/pnas.1112933108 10.1038/nn1691 10.1038/nn.3643 10.1016/j.neuron.2018.05.015 10.1016/S0896-6273(02)00657-8 10.1038/nn.2272 10.1371/journal.pcbi.1002771 10.1371/journal.pcbi.1004792 10.1038/s41467-017-02516-x 10.1038/nn.2191 10.7554/eLife.31134 10.1037/0735-7044.117.4.760 10.1038/nn.4042 10.1038/nn1386 10.1002/cne.903070405 10.1016/j.tics.2018.07.010 10.1038/nn.2831 10.1016/S0896-6273(02)00964-9 10.1109/5.58337 10.1007/s00221-007-1234-3 10.1152/jn.00867.2001 10.1146/annurev.neuro.24.1.1193 10.1016/j.conb.2014.01.008 10.1038/s41467-018-06560-z 10.1126/science.1094765 10.1016/j.neuron.2008.09.021 10.1038/s41592-018-0109-9 10.1038/22268 10.1088/1741-2560/10/6/066012 10.1016/j.cub.2015.08.038 10.1152/jn.1987.57.1.179 10.1038/nature11129 10.1016/j.neuron.2016.02.009 10.1126/science.1256254 10.1126/science.1195870 10.1038/nn1790 10.1523/JNEUROSCI.5513-12.2013 10.1038/nn.3826 10.1016/j.tics.2010.01.003 10.1006/lmot.2001.1105 10.1126/science.1091573 10.1038/s41593-018-0233-y 10.1038/nn.2590 10.1016/j.cell.2019.04.005 10.1016/j.neuron.2018.05.020 10.1038/nn.3419 10.1523/JNEUROSCI.2574-09.2009 10.1016/j.neuron.2017.05.025 10.1523/JNEUROSCI.2321-13.2013 10.1016/j.cub.2015.02.036 10.1016/j.neuron.2015.04.014 10.1038/nrn2558 10.1016/j.neuron.2017.02.019 10.1162/NECO_a_00638 10.1038/nn1669 10.1016/j.neuron.2014.04.045 10.1126/science.274.5286.427 10.1016/j.neuron.2018.07.003 10.1126/science.aav9436 10.1523/JNEUROSCI.16-09-03067.1996 10.1038/nn.3405 10.1073/pnas.79.8.2554 10.1038/nature13665 10.1016/j.neuron.2017.01.016 10.1038/nn.2123 10.1371/journal.pbio.0040134 10.1002/cne.902930211 10.1038/s41593-018-0310-2 10.1038/s41593-018-0095-3 10.1016/j.neuron.2011.05.047 10.1152/jn.90941.2008 10.1146/annurev-neuro-062111-150509 10.1038/s41467-018-05146-z 10.1016/j.neuron.2008.09.034 10.1146/annurev-neuro-071013-014017 10.1523/JNEUROSCI.1443-13.2013 10.1371/journal.pcbi.1005175 10.1371/journal.pbio.1000167 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.neuron.2019.06.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 947.e5 |
ExternalDocumentID | PMC6805134 31320220 10_1016_j_neuron_2019_06_012 S0896627319305628 |
Genre | Video-Audio Media Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS078127 – fundername: NIMH NIH HHS grantid: R01 MH122025 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- 5VS AAEDT AAFWJ AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB G-2 HZ~ ITC MVM OZT R2- X7M ZGI ZKB CGR CUY CVF ECM EFKBS EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c557t-8140a4d46df3cbdfdb4731016be0b72400ac625a29c701b7f197d2bb7c6f91243 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Thu Aug 21 18:33:58 EDT 2025 Thu Sep 04 17:57:10 EDT 2025 Fri Jul 25 11:13:45 EDT 2025 Mon Jul 21 05:52:53 EDT 2025 Tue Jul 01 01:16:21 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Fri Feb 23 02:47:45 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | neural manifold frontal cortex neural trajectories recurrent neural networks Bayesian inference Bayesian integration |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-8140a4d46df3cbdfdb4731016be0b72400ac625a29c701b7f197d2bb7c6f91243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research Equal contribution H.S. and M.J. conceived the in-vivo experiments. H.S. collected the physiology data. D.N. and M.J. conceived the in-silico experiments with recurrent neural networks. D.N. trained, simulated and analyzed the networks. H.S. and N.M. analyzed the physiology data. M.J. supervised the project. All authors were involved in interpreting the results and writing the manuscript. Author contributions |
OpenAccessLink | http://www.cell.com/article/S0896627319305628/pdf |
PMID | 31320220 |
PQID | 2284484079 |
PQPubID | 2031076 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6805134 proquest_miscellaneous_2261236801 proquest_journals_2284484079 pubmed_primary_31320220 crossref_citationtrail_10_1016_j_neuron_2019_06_012 crossref_primary_10_1016_j_neuron_2019_06_012 elsevier_sciencedirect_doi_10_1016_j_neuron_2019_06_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-04 |
PublicationDateYYYYMMDD | 2019-09-04 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | O’Connor, Hires, Guo, Li, Yu, Sun, Huber, Svoboda (bib72) 2013; 16 Pandarinath, O’Shea, Collins, Jozefowicz, Stavisky, Kao, Trautmann, Kaufman, Ryu, Hochberg (bib76) 2018; 15 Griffiths, Kemp, Tenenbaum (bib34) 2008 Remington, Egger, Narain, Wang, Jazayeri (bib85) 2018; 22 Kaufman, Churchland, Ryu, Shenoy (bib50) 2014; 17 Werbos (bib103) 1990; 78 Afshar, Santhanam, Yu, Ryu, Sahani, Shenoy (bib2) 2011; 71 Mita, Mushiake, Shima, Matsuzaka, Tanji (bib69) 2009; 12 Michaels, Dann, Scherberger (bib68) 2016; 12 Körding, Wolpert (bib53) 2004; 427 Berkes, Orbán, Lengyel, Fiser (bib9) 2011; 331 Cui, Stetson, Montague, Eagleman (bib18) 2009; 7 Remington, Narain, Hosseini, Jazayeri (bib84) 2018; 98 Malapani, Fairhurst (bib59) 2002; 33 Golub, Sadtler, Oby, Quick, Ryu, Tyler-Kabara, Batista, Chase, Yu (bib32) 2018; 21 Murakami, Vicente, Costa, Mainen (bib70) 2014; 17 Buonomano, Maass (bib10) 2009; 10 Goudar, Buonomano (bib33) 2018; 7 Simoncelli, Olshausen (bib94) 2001; 24 Churchland, Kiani, Shadlen (bib14) 2008; 11 Merchant, Zarco, Pérez, Prado, Bartolo (bib66) 2011; 108 Churchland, Cunningham, Kaufman, Foster, Nuyujukian, Ryu, Shenoy (bib15) 2012; 487 Hennequin, Vogels, Gerstner (bib41) 2014; 82 Seo, Cai, Donahue, Lee (bib90) 2014; 346 Laje, Buonomano (bib54) 2013; 16 Sussillo, Churchland, Kaufman, Shenoy (bib99) 2015; 18 Mello, Soares, Paton (bib65) 2015; 25 Coull, Vidal, Nazarian, Macar (bib16) 2004; 303 Martens, Sutskever (bib61) 2012 Fetsch, Turner, DeAngelis, Angelaki (bib22) 2009; 29 Rigotti, Ben Dayan Rubin, Wang, Fusi (bib86) 2010; 4 Bashivan, Kar, DiCarlo (bib6) 2019 Ma, Beck, Latham, Pouget (bib58) 2006; 9 Ma, Jazayeri (bib57) 2014; 37 Ohmae, Lu, Takahashi, Uchida, Kitazawa (bib73) 2008; 184 Wang (bib100) 2008; 60 Beck, Ma, Kiani, Hanks, Churchland, Roitman, Shadlen, Latham, Pouget (bib8) 2008; 60 Cowley, Kaufman, Butler, Churchland, Ryu, Shenoy, Yu (bib17) 2013; 10 Matell, Meck, Nicolelis (bib63) 2003; 117 Lu, Matsuzawa, Hikosaka (bib56) 2002; 34 Basso, Wurtz (bib7) 1997; 389 Rabinovich, Huerta, Laurent (bib79) 2008; 321 Matsuzaka, Aizawa, Tanji (bib64) 1992; 68 Gold, Law, Connolly, Bennur (bib31) 2008; 100 Hardy, Goudar, Romero-Sosa, Buonomano (bib39) 2018; 9 Yu, Cunningham, Santhanam, Ryu, Shenoy, Sahani (bib106) 2009; 102 Gu, Angelaki, Deangelis (bib35) 2008; 11 Merchant, Pérez, Zarco, Gámez (bib67) 2013; 33 Simoncelli (bib93) 2009; IV Stocker, Simoncelli (bib96) 2006; 9 Darlington, Beck, Lisberger (bib19) 2018; 21 Hanks, Mazurek, Kiani, Hopp, Shadlen (bib38) 2011; 31 Jazayeri, Shadlen (bib49) 2015; 25 Pachitariu, Steinmetz, Kadir, Carandini, Harris (bib75) 2016 Fiser, Berkes, Orbán, Lengyel (bib24) 2010; 14 Rao, DeAngelis, Snyder (bib82) 2012; 32 Funamizu, Kuhn, Doya (bib26) 2016; 19 Huerta, Kaas (bib44) 1990; 293 Janssen, Shadlen (bib45) 2005; 8 Sadtler, Quick, Golub, Chase, Ryu, Tyler-Kabara, Yu, Batista (bib87) 2014; 512 Histed, Miller (bib42) 2006; 4 Sugrue, Corrado, Newsome (bib97) 2004; 304 Hopfield (bib43) 1982; 79 Ganguli, Simoncelli (bib29) 2014; 26 Chen, Wise (bib13) 1996; 16 Rajan, Abbott (bib80) 2006; 97 Knill, Richards (bib52) 1996 Schlag, Schlag-Rey (bib89) 1987; 57 Song, Yang, Wang (bib95) 2016; 12 Narain, Remington, Zeeuw, Jazayeri (bib71) 2018; 9 Gallego, Perich, Miller, Solla (bib27) 2017; 94 Angelaki, Gu, DeAngelis (bib4) 2009; 19 Schall, Stuphorn, Brown (bib88) 2002; 36 Jazayeri, Afraz (bib46) 2017; 93 Kim, Ghim, Lee, Jung (bib51) 2013; 33 Emmons, De Corte, Kim, Parker, Matell, Narayanan (bib20) 2017; 37 Rajan, Harvey, Tank (bib81) 2016; 90 Halsband, Ito, Tanji, Freund (bib36) 1993; 116 Orban de Xivry, Coppe, Blohm, Lefèvre (bib74) 2013; 33 Williams, Kim, Wang, Vyas, Ryu, Shenoy, Schnitzer, Kolda, Ganguli (bib104) 2018; 98 Mastrogiuseppe, Ostojic (bib62) 2018; 99 Akrami, Kopec, Diamond, Brody (bib3) 2018; 554 Chaisangmongkon, Swaminathan, Freedman, Wang (bib12) 2017; 93 Girshick, Landy, Simoncelli (bib30) 2011; 14 Yang, Joglekar, Song, Newsome, Wang (bib105) 2019; 22 Lara, Cunningham, Churchland (bib55) 2018; 9 Wang, Narain, Hosseini, Jazayeri (bib101) 2018; 21 Jazayeri, Movshon (bib47) 2006; 9 Gallego, Perich, Naufel, Ethier, Solla, Miller (bib28) 2018; 9 Ponce, Xiao, Schade, Hartmann, Kreiman, Livingstone (bib78) 2019; 177 Carnevale, de Lafuente, Romo, Barak, Parga (bib11) 2015; 86 Mante, Sussillo, Shenoy, Newsome (bib60) 2013; 503 Fetz (bib23) 1992; 15 Fujii, Mushiake, Tanji (bib25) 2002; 87 Sussillo (bib98) 2014; 25 Shenoy, Sahani, Churchland (bib91) 2013; 36 Shook, Schlag-Rey, Schlag (bib92) 1991; 307 Athalye, Ganguly, Costa, Carmena (bib5) 2017; 93 Jazayeri, Shadlen (bib48) 2010; 13 Hanes, Schall (bib37) 1996; 274 Platt, Glimcher (bib77) 1999; 400 Raphan, Simoncelli (bib83) 2006; 19 Acerbi, Wolpert, Vijayakumar (bib1) 2012; 8 Buonomano (10.1016/j.neuron.2019.06.012_bib10) 2009; 10 Hardy (10.1016/j.neuron.2019.06.012_bib39) 2018; 9 Yang (10.1016/j.neuron.2019.06.012_bib105) 2019; 22 Gallego (10.1016/j.neuron.2019.06.012_bib27) 2017; 94 Darlington (10.1016/j.neuron.2019.06.012_bib19) 2018; 21 O’Connor (10.1016/j.neuron.2019.06.012_bib72) 2013; 16 Shook (10.1016/j.neuron.2019.06.012_bib92) 1991; 307 Sugrue (10.1016/j.neuron.2019.06.012_bib97) 2004; 304 Song (10.1016/j.neuron.2019.06.012_bib95) 2016; 12 Körding (10.1016/j.neuron.2019.06.012_bib53) 2004; 427 Sussillo (10.1016/j.neuron.2019.06.012_bib98) 2014; 25 Malapani (10.1016/j.neuron.2019.06.012_bib59) 2002; 33 Fetz (10.1016/j.neuron.2019.06.012_bib23) 1992; 15 Ganguli (10.1016/j.neuron.2019.06.012_bib29) 2014; 26 Hopfield (10.1016/j.neuron.2019.06.012_bib43) 1982; 79 Schlag (10.1016/j.neuron.2019.06.012_bib89) 1987; 57 Churchland (10.1016/j.neuron.2019.06.012_bib15) 2012; 487 Pandarinath (10.1016/j.neuron.2019.06.012_bib76) 2018; 15 Girshick (10.1016/j.neuron.2019.06.012_bib30) 2011; 14 Matell (10.1016/j.neuron.2019.06.012_bib63) 2003; 117 Histed (10.1016/j.neuron.2019.06.012_bib42) 2006; 4 Emmons (10.1016/j.neuron.2019.06.012_bib20) 2017; 37 Janssen (10.1016/j.neuron.2019.06.012_bib45) 2005; 8 Sussillo (10.1016/j.neuron.2019.06.012_bib99) 2015; 18 Lu (10.1016/j.neuron.2019.06.012_bib56) 2002; 34 Ma (10.1016/j.neuron.2019.06.012_bib58) 2006; 9 Gu (10.1016/j.neuron.2019.06.012_bib35) 2008; 11 Mello (10.1016/j.neuron.2019.06.012_bib65) 2015; 25 Remington (10.1016/j.neuron.2019.06.012_bib84) 2018; 98 Remington (10.1016/j.neuron.2019.06.012_bib85) 2018; 22 Rao (10.1016/j.neuron.2019.06.012_bib82) 2012; 32 Martens (10.1016/j.neuron.2019.06.012_bib61) 2012 Shenoy (10.1016/j.neuron.2019.06.012_bib91) 2013; 36 Basso (10.1016/j.neuron.2019.06.012_bib7) 1997; 389 Rabinovich (10.1016/j.neuron.2019.06.012_bib79) 2008; 321 Bashivan (10.1016/j.neuron.2019.06.012_bib6) 2019 Schall (10.1016/j.neuron.2019.06.012_bib88) 2002; 36 Kim (10.1016/j.neuron.2019.06.012_bib51) 2013; 33 Simoncelli (10.1016/j.neuron.2019.06.012_bib94) 2001; 24 Knill (10.1016/j.neuron.2019.06.012_bib52) 1996 Hennequin (10.1016/j.neuron.2019.06.012_bib41) 2014; 82 Michaels (10.1016/j.neuron.2019.06.012_bib68) 2016; 12 Rajan (10.1016/j.neuron.2019.06.012_bib80) 2006; 97 Cui (10.1016/j.neuron.2019.06.012_bib18) 2009; 7 Goudar (10.1016/j.neuron.2019.06.012_bib33) 2018; 7 Golub (10.1016/j.neuron.2019.06.012_bib32) 2018; 21 Raphan (10.1016/j.neuron.2019.06.012_bib83) 2006; 19 Cowley (10.1016/j.neuron.2019.06.012_bib17) 2013; 10 Stocker (10.1016/j.neuron.2019.06.012_bib96) 2006; 9 Rajan (10.1016/j.neuron.2019.06.012_bib81) 2016; 90 Yu (10.1016/j.neuron.2019.06.012_bib106) 2009; 102 Beck (10.1016/j.neuron.2019.06.012_bib8) 2008; 60 Jazayeri (10.1016/j.neuron.2019.06.012_bib47) 2006; 9 Mita (10.1016/j.neuron.2019.06.012_bib69) 2009; 12 Wang (10.1016/j.neuron.2019.06.012_bib101) 2018; 21 Merchant (10.1016/j.neuron.2019.06.012_bib67) 2013; 33 Chen (10.1016/j.neuron.2019.06.012_bib13) 1996; 16 Acerbi (10.1016/j.neuron.2019.06.012_bib1) 2012; 8 Akrami (10.1016/j.neuron.2019.06.012_bib3) 2018; 554 Berkes (10.1016/j.neuron.2019.06.012_bib9) 2011; 331 Jazayeri (10.1016/j.neuron.2019.06.012_bib49) 2015; 25 Kaufman (10.1016/j.neuron.2019.06.012_bib50) 2014; 17 Halsband (10.1016/j.neuron.2019.06.012_bib36) 1993; 116 Pachitariu (10.1016/j.neuron.2019.06.012_bib75) 2016 Fujii (10.1016/j.neuron.2019.06.012_bib25) 2002; 87 Laje (10.1016/j.neuron.2019.06.012_bib54) 2013; 16 Carnevale (10.1016/j.neuron.2019.06.012_bib11) 2015; 86 Jazayeri (10.1016/j.neuron.2019.06.012_bib46) 2017; 93 Gallego (10.1016/j.neuron.2019.06.012_bib28) 2018; 9 Griffiths (10.1016/j.neuron.2019.06.012_bib34) 2008 Afshar (10.1016/j.neuron.2019.06.012_bib2) 2011; 71 Hanes (10.1016/j.neuron.2019.06.012_bib37) 1996; 274 Narain (10.1016/j.neuron.2019.06.012_bib71) 2018; 9 Coull (10.1016/j.neuron.2019.06.012_bib16) 2004; 303 Hanks (10.1016/j.neuron.2019.06.012_bib38) 2011; 31 Werbos (10.1016/j.neuron.2019.06.012_bib103) 1990; 78 Gold (10.1016/j.neuron.2019.06.012_bib31) 2008; 100 Lara (10.1016/j.neuron.2019.06.012_bib55) 2018; 9 Ma (10.1016/j.neuron.2019.06.012_bib57) 2014; 37 Angelaki (10.1016/j.neuron.2019.06.012_bib4) 2009; 19 Jazayeri (10.1016/j.neuron.2019.06.012_bib48) 2010; 13 Matsuzaka (10.1016/j.neuron.2019.06.012_bib64) 1992; 68 Mante (10.1016/j.neuron.2019.06.012_bib60) 2013; 503 Seo (10.1016/j.neuron.2019.06.012_bib90) 2014; 346 Simoncelli (10.1016/j.neuron.2019.06.012_bib93) 2009; IV Chaisangmongkon (10.1016/j.neuron.2019.06.012_bib12) 2017; 93 Funamizu (10.1016/j.neuron.2019.06.012_bib26) 2016; 19 Mastrogiuseppe (10.1016/j.neuron.2019.06.012_bib62) 2018; 99 Athalye (10.1016/j.neuron.2019.06.012_bib5) 2017; 93 Murakami (10.1016/j.neuron.2019.06.012_bib70) 2014; 17 Rigotti (10.1016/j.neuron.2019.06.012_bib86) 2010; 4 Huerta (10.1016/j.neuron.2019.06.012_bib44) 1990; 293 Ponce (10.1016/j.neuron.2019.06.012_bib78) 2019; 177 Merchant (10.1016/j.neuron.2019.06.012_bib66) 2011; 108 Williams (10.1016/j.neuron.2019.06.012_bib104) 2018; 98 Fetsch (10.1016/j.neuron.2019.06.012_bib22) 2009; 29 Churchland (10.1016/j.neuron.2019.06.012_bib14) 2008; 11 Orban de Xivry (10.1016/j.neuron.2019.06.012_bib74) 2013; 33 Ohmae (10.1016/j.neuron.2019.06.012_bib73) 2008; 184 Fiser (10.1016/j.neuron.2019.06.012_bib24) 2010; 14 Platt (10.1016/j.neuron.2019.06.012_bib77) 1999; 400 Sadtler (10.1016/j.neuron.2019.06.012_bib87) 2014; 512 Wang (10.1016/j.neuron.2019.06.012_bib100) 2008; 60 |
References_xml | – volume: 14 start-page: 926 year: 2011 end-page: 932 ident: bib30 article-title: Cardinal rules: visual orientation perception reflects knowledge of environmental statistics publication-title: Nat. Neurosci. – volume: 102 start-page: 614 year: 2009 end-page: 635 ident: bib106 article-title: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity publication-title: J. Neurophysiol. – volume: 33 start-page: 9082 year: 2013 end-page: 9096 ident: bib67 article-title: Interval tuning in the primate medial premotor cortex as a general timing mechanism publication-title: J. Neurosci. – volume: 12 start-page: 502 year: 2009 end-page: 507 ident: bib69 article-title: Interval time coding by neurons in the presupplementary and supplementary motor areas publication-title: Nat. Neurosci. – volume: 97 start-page: 188104 year: 2006 ident: bib80 article-title: Eigenvalue spectra of random matrices for neural networks publication-title: Phys. Rev. Lett. – start-page: 479 year: 2012 end-page: 535 ident: bib61 article-title: Training Deep and Recurrent Networks with Hessian-Free Optimization publication-title: Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science – volume: 32 start-page: 10063 year: 2012 end-page: 10074 ident: bib82 article-title: Neural correlates of prior expectations of motion in the lateral intraparietal and middle temporal areas publication-title: J. Neurosci. – volume: 15 start-page: 679 year: 1992 end-page: 690 ident: bib23 article-title: Are movement parameters recognizably coded in the activity of single neurons? publication-title: Behav. Brain Sci. – volume: 33 start-page: 156 year: 2002 end-page: 176 ident: bib59 article-title: Scalar Timing in Animals and Humans publication-title: Learn. Motiv. – volume: 487 start-page: 51 year: 2012 end-page: 56 ident: bib15 article-title: Neural population dynamics during reaching publication-title: Nature – volume: 90 start-page: 128 year: 2016 end-page: 142 ident: bib81 article-title: Recurrent Network Models of Sequence Generation and Memory publication-title: Neuron – volume: 117 start-page: 760 year: 2003 end-page: 773 ident: bib63 article-title: Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons publication-title: Behav. Neurosci. – volume: 9 start-page: 4732 year: 2018 ident: bib39 article-title: A model of temporal scaling correctly predicts that motor timing improves with speed publication-title: Nat. Commun. – volume: 9 start-page: 4233 year: 2018 ident: bib28 article-title: Cortical population activity within a preserved neural manifold underlies multiple motor behaviors publication-title: Nat. Commun. – volume: 512 start-page: 423 year: 2014 end-page: 426 ident: bib87 article-title: Neural constraints on learning publication-title: Nature – volume: 184 start-page: 593 year: 2008 end-page: 598 ident: bib73 article-title: Neuronal activity related to anticipated and elapsed time in macaque supplementary eye field publication-title: Exp. Brain Res. – volume: 16 start-page: 925 year: 2013 end-page: 933 ident: bib54 article-title: Robust timing and motor patterns by taming chaos in recurrent neural networks publication-title: Nat. Neurosci. – volume: 9 start-page: 690 year: 2006 end-page: 696 ident: bib47 article-title: Optimal representation of sensory information by neural populations publication-title: Nat. Neurosci. – volume: 18 start-page: 1025 year: 2015 end-page: 1033 ident: bib99 article-title: A neural network that finds a naturalistic solution for the production of muscle activity publication-title: Nat. Neurosci. – volume: 99 start-page: 609 year: 2018 end-page: 623.e29 ident: bib62 article-title: Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent Neural Networks publication-title: Neuron – volume: 21 start-page: 102 year: 2018 end-page: 110 ident: bib101 article-title: Flexible timing by temporal scaling of cortical responses publication-title: Nat. Neurosci. – volume: 19 start-page: 1682 year: 2016 end-page: 1689 ident: bib26 article-title: Neural substrate of dynamic Bayesian inference in the cerebral cortex publication-title: Nat. Neurosci. – volume: 13 start-page: 1020 year: 2010 end-page: 1026 ident: bib48 article-title: Temporal context calibrates interval timing publication-title: Nat. Neurosci. – volume: 14 start-page: 119 year: 2010 end-page: 130 ident: bib24 article-title: Statistically optimal perception and learning: from behavior to neural representations publication-title: Trends Cogn. Sci. – volume: 86 start-page: 1067 year: 2015 end-page: 1077 ident: bib11 article-title: Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal Uncertainty publication-title: Neuron – volume: 15 start-page: 805 year: 2018 end-page: 815 ident: bib76 article-title: Inferring single-trial neural population dynamics using sequential auto-encoders publication-title: Nat. Methods – year: 2019 ident: bib6 article-title: Neural population control via deep image synthesis publication-title: Science – volume: 31 start-page: 6339 year: 2011 end-page: 6352 ident: bib38 article-title: Elapsed decision time affects the weighting of prior probability in a perceptual decision task publication-title: J. Neurosci. – volume: 21 start-page: 607 year: 2018 end-page: 616 ident: bib32 article-title: Learning by neural reassociation publication-title: Nat. Neurosci. – volume: 29 start-page: 15601 year: 2009 end-page: 15612 ident: bib22 article-title: Dynamic reweighting of visual and vestibular cues during self-motion perception publication-title: J. Neurosci. – volume: 71 start-page: 555 year: 2011 end-page: 564 ident: bib2 article-title: Single-trial neural correlates of arm movement preparation publication-title: Neuron – volume: 60 start-page: 1142 year: 2008 end-page: 1152 ident: bib8 article-title: Probabilistic population codes for Bayesian decision making publication-title: Neuron – volume: 93 start-page: 1003 year: 2017 end-page: 1014 ident: bib46 article-title: Navigating the Neural Space in Search of the Neural Code publication-title: Neuron – volume: 503 start-page: 78 year: 2013 end-page: 84 ident: bib60 article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex publication-title: Nature – volume: 36 start-page: 309 year: 2002 end-page: 322 ident: bib88 article-title: Monitoring and control of action by the frontal lobes publication-title: Neuron – volume: 554 start-page: 368 year: 2018 end-page: 372 ident: bib3 article-title: Posterior parietal cortex represents sensory history and mediates its effects on behaviour publication-title: Nature – volume: 93 start-page: 955 year: 2017 end-page: 970 ident: bib5 article-title: Emergence of Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control publication-title: Neuron – volume: 12 start-page: e1005175 year: 2016 ident: bib68 article-title: Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning publication-title: PLoS Comput. Biol. – volume: 19 start-page: 1145 year: 2006 end-page: 1152 ident: bib83 article-title: Learning to be Bayesian without supervision publication-title: Adv. Neural Inf. Process. Syst. – volume: 94 start-page: 978 year: 2017 end-page: 984 ident: bib27 article-title: Neural Manifolds for the Control of Movement publication-title: Neuron – volume: 321 start-page: 48 year: 2008 end-page: 50 ident: bib79 article-title: Neuroscience. Transient dynamics for neural processing publication-title: Science – volume: 8 start-page: 234 year: 2005 end-page: 241 ident: bib45 article-title: A representation of the hazard rate of elapsed time in macaque area LIP publication-title: Nat. Neurosci. – volume: 304 start-page: 1782 year: 2004 end-page: 1787 ident: bib97 article-title: Matching behavior and the representation of value in the parietal cortex publication-title: Science – volume: 108 start-page: 19784 year: 2011 end-page: 19789 ident: bib66 article-title: Measuring time with different neural chronometers during a synchronization-continuation task publication-title: Proc. Natl. Acad. Sci. USA – volume: 33 start-page: 17301 year: 2013 end-page: 17313 ident: bib74 article-title: Kalman filtering naturally accounts for visually guided and predictive smooth pursuit dynamics publication-title: J. Neurosci. – volume: 17 start-page: 1574 year: 2014 end-page: 1582 ident: bib70 article-title: Neural antecedents of self-initiated actions in secondary motor cortex publication-title: Nat. Neurosci. – volume: 16 start-page: 3067 year: 1996 end-page: 3081 ident: bib13 article-title: Evolution of directional preferences in the supplementary eye field during acquisition of conditional oculomotor associations publication-title: J. Neurosci. – year: 1996 ident: bib52 article-title: Perception as Bayesian Inference – volume: 346 start-page: 340 year: 2014 end-page: 343 ident: bib90 article-title: Neural correlates of strategic reasoning during competitive games publication-title: Science – volume: 93 start-page: 1504 year: 2017 end-page: 1517 ident: bib12 article-title: Computing by Robust Transience: How the Fronto-Parietal Network Performs Sequential, Category-Based Decisions publication-title: Neuron – volume: 16 start-page: 958 year: 2013 end-page: 965 ident: bib72 article-title: Neural coding during active somatosensation revealed using illusory touch publication-title: Nat. Neurosci. – volume: 389 start-page: 66 year: 1997 end-page: 69 ident: bib7 article-title: Modulation of neuronal activity by target uncertainty publication-title: Nature – volume: 11 start-page: 693 year: 2008 end-page: 702 ident: bib14 article-title: Decision-making with multiple alternatives publication-title: Nat. Neurosci. – volume: 60 start-page: 215 year: 2008 end-page: 234 ident: bib100 article-title: Decision making in recurrent neuronal circuits publication-title: Neuron – volume: 427 start-page: 244 year: 2004 end-page: 247 ident: bib53 article-title: Bayesian integration in sensorimotor learning publication-title: Nature – volume: 274 start-page: 427 year: 1996 end-page: 430 ident: bib37 article-title: Neural control of voluntary movement initiation publication-title: Science – volume: 33 start-page: 13834 year: 2013 end-page: 13847 ident: bib51 article-title: Neural correlates of interval timing in rodent prefrontal cortex publication-title: J. Neurosci. – volume: 303 start-page: 1506 year: 2004 end-page: 1508 ident: bib16 article-title: Functional anatomy of the attentional modulation of time estimation publication-title: Science – volume: 36 start-page: 337 year: 2013 end-page: 359 ident: bib91 article-title: Cortical control of arm movements: a dynamical systems perspective publication-title: Annu. Rev. Neurosci. – volume: 9 start-page: 469 year: 2018 ident: bib71 article-title: A cerebellar mechanism for learning prior distributions of time intervals publication-title: Nat. Commun. – year: 2016 ident: bib75 article-title: Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels publication-title: bioRxiv – volume: 78 start-page: 1550 year: 1990 end-page: 1560 ident: bib103 article-title: Backpropagation through time: what it does and how to do it publication-title: Proc. IEEE – volume: 4 start-page: 24 year: 2010 ident: bib86 article-title: Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses publication-title: Front. Comput. Neurosci. – volume: 17 start-page: 440 year: 2014 end-page: 448 ident: bib50 article-title: Cortical activity in the null space: permitting preparation without movement publication-title: Nat. Neurosci. – volume: 22 start-page: 297 year: 2019 end-page: 306 ident: bib105 article-title: Task representations in neural networks trained to perform many cognitive tasks publication-title: Nat. Neurosci. – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: bib43 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. USA – volume: 177 start-page: 999 year: 2019 end-page: 1009 ident: bib78 article-title: Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences publication-title: Cell – volume: 8 start-page: e1002771 year: 2012 ident: bib1 article-title: Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing publication-title: PLoS Comput. Biol. – volume: 10 start-page: 113 year: 2009 end-page: 125 ident: bib10 article-title: State-dependent computations: spatiotemporal processing in cortical networks publication-title: Nat. Rev. Neurosci. – volume: 26 start-page: 2103 year: 2014 end-page: 2134 ident: bib29 article-title: Efficient sensory encoding and Bayesian inference with heterogeneous neural populations publication-title: Neural Comput. – volume: 9 start-page: 578 year: 2006 end-page: 585 ident: bib96 article-title: Noise characteristics and prior expectations in human visual speed perception publication-title: Nat. Neurosci. – volume: 400 start-page: 233 year: 1999 end-page: 238 ident: bib77 article-title: Neural correlates of decision variables in parietal cortex publication-title: Nature – volume: 9 start-page: 2754 year: 2018 ident: bib55 article-title: Different population dynamics in the supplementary motor area and motor cortex during reaching publication-title: Nat. Commun. – volume: 34 start-page: 317 year: 2002 end-page: 325 ident: bib56 article-title: A neural correlate of oculomotor sequences in supplementary eye field publication-title: Neuron – volume: 57 start-page: 179 year: 1987 end-page: 200 ident: bib89 article-title: Evidence for a supplementary eye field publication-title: J. Neurophysiol. – volume: 22 start-page: 938 year: 2018 end-page: 952 ident: bib85 article-title: A Dynamical Systems Perspective on Flexible Motor Timing publication-title: Trends Cogn. Sci. – volume: 100 start-page: 2653 year: 2008 end-page: 2668 ident: bib31 article-title: The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning publication-title: J. Neurophysiol. – volume: 7 start-page: e1000167 year: 2009 ident: bib18 article-title: Ready...go: Amplitude of the FMRI signal encodes expectation of cue arrival time publication-title: PLoS Biol. – volume: 37 start-page: 8718 year: 2017 end-page: 8733 ident: bib20 article-title: Rodent Medial Frontal Control of Temporal Processing in the Dorsomedial Striatum publication-title: J. Neurosci. – volume: 9 start-page: 1432 year: 2006 end-page: 1438 ident: bib58 article-title: Bayesian inference with probabilistic population codes publication-title: Nat. Neurosci. – volume: 82 start-page: 1394 year: 2014 end-page: 1406 ident: bib41 article-title: Optimal control of transient dynamics in balanced networks supports generation of complex movements publication-title: Neuron – volume: 25 start-page: 2599 year: 2015 end-page: 2609 ident: bib49 article-title: A Neural Mechanism for Sensing and Reproducing a Time Interval publication-title: Curr. Biol. – start-page: 59 year: 2008 end-page: 100 ident: bib34 article-title: Bayesian Models of Cognition publication-title: Cambridge Handbook of Computational Cognitive Modeling – volume: 98 start-page: 1005 year: 2018 end-page: 1019 ident: bib84 article-title: Flexible Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics publication-title: Neuron – volume: 307 start-page: 562 year: 1991 end-page: 583 ident: bib92 article-title: Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei publication-title: J. Comp. Neurol. – volume: 19 start-page: 452 year: 2009 end-page: 458 ident: bib4 article-title: Multisensory integration: psychophysics, neurophysiology, and computation publication-title: Curr. Opin. Neurobiol. – volume: 116 start-page: 243 year: 1993 end-page: 266 ident: bib36 article-title: The role of premotor cortex and the supplementary motor area in the temporal control of movement in man publication-title: Brain – volume: 7 start-page: e31134 year: 2018 ident: bib33 article-title: Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks publication-title: eLife – volume: 12 start-page: e1004792 year: 2016 ident: bib95 article-title: Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework publication-title: PLoS Comput. Biol. – volume: 37 start-page: 205 year: 2014 end-page: 220 ident: bib57 article-title: Neural coding of uncertainty and probability publication-title: Annu. Rev. Neurosci. – volume: 4 start-page: e134 year: 2006 ident: bib42 article-title: Microstimulation of frontal cortex can reorder a remembered spatial sequence publication-title: PLoS Biol. – volume: 10 start-page: 066012 year: 2013 ident: bib17 article-title: DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity publication-title: J. Neural Eng. – volume: 25 start-page: 156 year: 2014 end-page: 163 ident: bib98 article-title: Neural circuits as computational dynamical systems publication-title: Curr. Opin. Neurobiol. – volume: 87 start-page: 2158 year: 2002 end-page: 2166 ident: bib25 article-title: Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and Pre-SMA of monkeys publication-title: J. Neurophysiol. – volume: IV start-page: 525 year: 2009 end-page: 535 ident: bib93 article-title: Optimal estimation in sensory systems publication-title: Cogn. Neurosci. – volume: 21 start-page: 1442 year: 2018 end-page: 1451 ident: bib19 article-title: Neural implementation of Bayesian inference in a sensorimotor behavior publication-title: Nat. Neurosci. – volume: 24 start-page: 1193 year: 2001 end-page: 1216 ident: bib94 article-title: Natural image statistics and neural representation publication-title: Annu. Rev. Neurosci. – volume: 25 start-page: 1113 year: 2015 end-page: 1122 ident: bib65 article-title: A scalable population code for time in the striatum publication-title: Curr. Biol. – volume: 11 start-page: 1201 year: 2008 end-page: 1210 ident: bib35 article-title: Neural correlates of multisensory cue integration in macaque MSTd publication-title: Nat. Neurosci. – volume: 331 start-page: 83 year: 2011 end-page: 87 ident: bib9 article-title: Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment publication-title: Science – volume: 98 start-page: 1099 year: 2018 end-page: 1115 ident: bib104 article-title: Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through Tensor Component Analysis publication-title: Neuron – volume: 293 start-page: 299 year: 1990 end-page: 330 ident: bib44 article-title: Supplementary eye field as defined by intracortical microstimulation: connections in macaques publication-title: J. Comp. Neurol. – volume: 68 start-page: 653 year: 1992 end-page: 662 ident: bib64 article-title: A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task publication-title: J. Neurophysiol. – volume: 554 start-page: 368 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib3 article-title: Posterior parietal cortex represents sensory history and mediates its effects on behaviour publication-title: Nature doi: 10.1038/nature25510 – volume: 93 start-page: 1504 year: 2017 ident: 10.1016/j.neuron.2019.06.012_bib12 article-title: Computing by Robust Transience: How the Fronto-Parietal Network Performs Sequential, Category-Based Decisions publication-title: Neuron doi: 10.1016/j.neuron.2017.03.002 – volume: 19 start-page: 1682 year: 2016 ident: 10.1016/j.neuron.2019.06.012_bib26 article-title: Neural substrate of dynamic Bayesian inference in the cerebral cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.4390 – volume: 32 start-page: 10063 year: 2012 ident: 10.1016/j.neuron.2019.06.012_bib82 article-title: Neural correlates of prior expectations of motion in the lateral intraparietal and middle temporal areas publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5948-11.2012 – volume: 68 start-page: 653 year: 1992 ident: 10.1016/j.neuron.2019.06.012_bib64 article-title: A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task publication-title: J. Neurophysiol. doi: 10.1152/jn.1992.68.3.653 – volume: 116 start-page: 243 year: 1993 ident: 10.1016/j.neuron.2019.06.012_bib36 article-title: The role of premotor cortex and the supplementary motor area in the temporal control of movement in man publication-title: Brain doi: 10.1093/brain/116.1.243 – volume: 389 start-page: 66 year: 1997 ident: 10.1016/j.neuron.2019.06.012_bib7 article-title: Modulation of neuronal activity by target uncertainty publication-title: Nature doi: 10.1038/37975 – volume: 31 start-page: 6339 year: 2011 ident: 10.1016/j.neuron.2019.06.012_bib38 article-title: Elapsed decision time affects the weighting of prior probability in a perceptual decision task publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5613-10.2011 – volume: 19 start-page: 1145 year: 2006 ident: 10.1016/j.neuron.2019.06.012_bib83 article-title: Learning to be Bayesian without supervision publication-title: Adv. Neural Inf. Process. Syst. – volume: 21 start-page: 102 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib101 article-title: Flexible timing by temporal scaling of cortical responses publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0028-6 – volume: 4 start-page: 24 year: 2010 ident: 10.1016/j.neuron.2019.06.012_bib86 article-title: Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2010.00024 – volume: 321 start-page: 48 year: 2008 ident: 10.1016/j.neuron.2019.06.012_bib79 article-title: Neuroscience. Transient dynamics for neural processing publication-title: Science doi: 10.1126/science.1155564 – volume: 427 start-page: 244 year: 2004 ident: 10.1016/j.neuron.2019.06.012_bib53 article-title: Bayesian integration in sensorimotor learning publication-title: Nature doi: 10.1038/nature02169 – volume: 100 start-page: 2653 year: 2008 ident: 10.1016/j.neuron.2019.06.012_bib31 article-title: The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning publication-title: J. Neurophysiol. doi: 10.1152/jn.90629.2008 – volume: 19 start-page: 452 year: 2009 ident: 10.1016/j.neuron.2019.06.012_bib4 article-title: Multisensory integration: psychophysics, neurophysiology, and computation publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2009.06.008 – volume: 9 start-page: 4732 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib39 article-title: A model of temporal scaling correctly predicts that motor timing improves with speed publication-title: Nat. Commun. doi: 10.1038/s41467-018-07161-6 – volume: 503 start-page: 78 year: 2013 ident: 10.1016/j.neuron.2019.06.012_bib60 article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex publication-title: Nature doi: 10.1038/nature12742 – volume: 97 start-page: 188104 year: 2006 ident: 10.1016/j.neuron.2019.06.012_bib80 article-title: Eigenvalue spectra of random matrices for neural networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.188104 – volume: 37 start-page: 8718 year: 2017 ident: 10.1016/j.neuron.2019.06.012_bib20 article-title: Rodent Medial Frontal Control of Temporal Processing in the Dorsomedial Striatum publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1376-17.2017 – volume: 108 start-page: 19784 year: 2011 ident: 10.1016/j.neuron.2019.06.012_bib66 article-title: Measuring time with different neural chronometers during a synchronization-continuation task publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1112933108 – year: 2016 ident: 10.1016/j.neuron.2019.06.012_bib75 article-title: Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels publication-title: bioRxiv – volume: 9 start-page: 690 year: 2006 ident: 10.1016/j.neuron.2019.06.012_bib47 article-title: Optimal representation of sensory information by neural populations publication-title: Nat. Neurosci. doi: 10.1038/nn1691 – volume: 17 start-page: 440 year: 2014 ident: 10.1016/j.neuron.2019.06.012_bib50 article-title: Cortical activity in the null space: permitting preparation without movement publication-title: Nat. Neurosci. doi: 10.1038/nn.3643 – volume: 98 start-page: 1099 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib104 article-title: Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through Tensor Component Analysis publication-title: Neuron doi: 10.1016/j.neuron.2018.05.015 – volume: 34 start-page: 317 year: 2002 ident: 10.1016/j.neuron.2019.06.012_bib56 article-title: A neural correlate of oculomotor sequences in supplementary eye field publication-title: Neuron doi: 10.1016/S0896-6273(02)00657-8 – volume: 12 start-page: 502 year: 2009 ident: 10.1016/j.neuron.2019.06.012_bib69 article-title: Interval time coding by neurons in the presupplementary and supplementary motor areas publication-title: Nat. Neurosci. doi: 10.1038/nn.2272 – volume: 15 start-page: 679 year: 1992 ident: 10.1016/j.neuron.2019.06.012_bib23 article-title: Are movement parameters recognizably coded in the activity of single neurons? publication-title: Behav. Brain Sci. – start-page: 479 year: 2012 ident: 10.1016/j.neuron.2019.06.012_bib61 article-title: Training Deep and Recurrent Networks with Hessian-Free Optimization – volume: 8 start-page: e1002771 year: 2012 ident: 10.1016/j.neuron.2019.06.012_bib1 article-title: Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002771 – volume: 12 start-page: e1004792 year: 2016 ident: 10.1016/j.neuron.2019.06.012_bib95 article-title: Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004792 – volume: 9 start-page: 469 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib71 article-title: A cerebellar mechanism for learning prior distributions of time intervals publication-title: Nat. Commun. doi: 10.1038/s41467-017-02516-x – year: 1996 ident: 10.1016/j.neuron.2019.06.012_bib52 – volume: 11 start-page: 1201 year: 2008 ident: 10.1016/j.neuron.2019.06.012_bib35 article-title: Neural correlates of multisensory cue integration in macaque MSTd publication-title: Nat. Neurosci. doi: 10.1038/nn.2191 – volume: 7 start-page: e31134 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib33 article-title: Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks publication-title: eLife doi: 10.7554/eLife.31134 – volume: 117 start-page: 760 year: 2003 ident: 10.1016/j.neuron.2019.06.012_bib63 article-title: Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons publication-title: Behav. Neurosci. doi: 10.1037/0735-7044.117.4.760 – volume: 18 start-page: 1025 year: 2015 ident: 10.1016/j.neuron.2019.06.012_bib99 article-title: A neural network that finds a naturalistic solution for the production of muscle activity publication-title: Nat. Neurosci. doi: 10.1038/nn.4042 – volume: 8 start-page: 234 year: 2005 ident: 10.1016/j.neuron.2019.06.012_bib45 article-title: A representation of the hazard rate of elapsed time in macaque area LIP publication-title: Nat. Neurosci. doi: 10.1038/nn1386 – volume: 307 start-page: 562 year: 1991 ident: 10.1016/j.neuron.2019.06.012_bib92 article-title: Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei publication-title: J. Comp. Neurol. doi: 10.1002/cne.903070405 – volume: 22 start-page: 938 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib85 article-title: A Dynamical Systems Perspective on Flexible Motor Timing publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2018.07.010 – volume: 14 start-page: 926 year: 2011 ident: 10.1016/j.neuron.2019.06.012_bib30 article-title: Cardinal rules: visual orientation perception reflects knowledge of environmental statistics publication-title: Nat. Neurosci. doi: 10.1038/nn.2831 – volume: 36 start-page: 309 year: 2002 ident: 10.1016/j.neuron.2019.06.012_bib88 article-title: Monitoring and control of action by the frontal lobes publication-title: Neuron doi: 10.1016/S0896-6273(02)00964-9 – volume: 78 start-page: 1550 year: 1990 ident: 10.1016/j.neuron.2019.06.012_bib103 article-title: Backpropagation through time: what it does and how to do it publication-title: Proc. IEEE doi: 10.1109/5.58337 – volume: 184 start-page: 593 year: 2008 ident: 10.1016/j.neuron.2019.06.012_bib73 article-title: Neuronal activity related to anticipated and elapsed time in macaque supplementary eye field publication-title: Exp. Brain Res. doi: 10.1007/s00221-007-1234-3 – volume: 87 start-page: 2158 year: 2002 ident: 10.1016/j.neuron.2019.06.012_bib25 article-title: Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and Pre-SMA of monkeys publication-title: J. Neurophysiol. doi: 10.1152/jn.00867.2001 – volume: 24 start-page: 1193 year: 2001 ident: 10.1016/j.neuron.2019.06.012_bib94 article-title: Natural image statistics and neural representation publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.24.1.1193 – volume: 25 start-page: 156 year: 2014 ident: 10.1016/j.neuron.2019.06.012_bib98 article-title: Neural circuits as computational dynamical systems publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.01.008 – volume: 9 start-page: 4233 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib28 article-title: Cortical population activity within a preserved neural manifold underlies multiple motor behaviors publication-title: Nat. Commun. doi: 10.1038/s41467-018-06560-z – volume: 304 start-page: 1782 year: 2004 ident: 10.1016/j.neuron.2019.06.012_bib97 article-title: Matching behavior and the representation of value in the parietal cortex publication-title: Science doi: 10.1126/science.1094765 – volume: 60 start-page: 1142 year: 2008 ident: 10.1016/j.neuron.2019.06.012_bib8 article-title: Probabilistic population codes for Bayesian decision making publication-title: Neuron doi: 10.1016/j.neuron.2008.09.021 – volume: 15 start-page: 805 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib76 article-title: Inferring single-trial neural population dynamics using sequential auto-encoders publication-title: Nat. Methods doi: 10.1038/s41592-018-0109-9 – volume: 400 start-page: 233 year: 1999 ident: 10.1016/j.neuron.2019.06.012_bib77 article-title: Neural correlates of decision variables in parietal cortex publication-title: Nature doi: 10.1038/22268 – volume: 10 start-page: 066012 year: 2013 ident: 10.1016/j.neuron.2019.06.012_bib17 article-title: DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/6/066012 – volume: 25 start-page: 2599 year: 2015 ident: 10.1016/j.neuron.2019.06.012_bib49 article-title: A Neural Mechanism for Sensing and Reproducing a Time Interval publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.08.038 – volume: 57 start-page: 179 year: 1987 ident: 10.1016/j.neuron.2019.06.012_bib89 article-title: Evidence for a supplementary eye field publication-title: J. Neurophysiol. doi: 10.1152/jn.1987.57.1.179 – volume: 487 start-page: 51 year: 2012 ident: 10.1016/j.neuron.2019.06.012_bib15 article-title: Neural population dynamics during reaching publication-title: Nature doi: 10.1038/nature11129 – volume: 90 start-page: 128 year: 2016 ident: 10.1016/j.neuron.2019.06.012_bib81 article-title: Recurrent Network Models of Sequence Generation and Memory publication-title: Neuron doi: 10.1016/j.neuron.2016.02.009 – volume: 346 start-page: 340 year: 2014 ident: 10.1016/j.neuron.2019.06.012_bib90 article-title: Neural correlates of strategic reasoning during competitive games publication-title: Science doi: 10.1126/science.1256254 – volume: 331 start-page: 83 year: 2011 ident: 10.1016/j.neuron.2019.06.012_bib9 article-title: Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment publication-title: Science doi: 10.1126/science.1195870 – volume: 9 start-page: 1432 year: 2006 ident: 10.1016/j.neuron.2019.06.012_bib58 article-title: Bayesian inference with probabilistic population codes publication-title: Nat. Neurosci. doi: 10.1038/nn1790 – volume: 33 start-page: 9082 year: 2013 ident: 10.1016/j.neuron.2019.06.012_bib67 article-title: Interval tuning in the primate medial premotor cortex as a general timing mechanism publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5513-12.2013 – volume: 17 start-page: 1574 year: 2014 ident: 10.1016/j.neuron.2019.06.012_bib70 article-title: Neural antecedents of self-initiated actions in secondary motor cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.3826 – volume: 14 start-page: 119 year: 2010 ident: 10.1016/j.neuron.2019.06.012_bib24 article-title: Statistically optimal perception and learning: from behavior to neural representations publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2010.01.003 – volume: 33 start-page: 156 year: 2002 ident: 10.1016/j.neuron.2019.06.012_bib59 article-title: Scalar Timing in Animals and Humans publication-title: Learn. Motiv. doi: 10.1006/lmot.2001.1105 – volume: 303 start-page: 1506 year: 2004 ident: 10.1016/j.neuron.2019.06.012_bib16 article-title: Functional anatomy of the attentional modulation of time estimation publication-title: Science doi: 10.1126/science.1091573 – volume: 21 start-page: 1442 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib19 article-title: Neural implementation of Bayesian inference in a sensorimotor behavior publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0233-y – volume: IV start-page: 525 year: 2009 ident: 10.1016/j.neuron.2019.06.012_bib93 article-title: Optimal estimation in sensory systems publication-title: Cogn. Neurosci. – volume: 13 start-page: 1020 year: 2010 ident: 10.1016/j.neuron.2019.06.012_bib48 article-title: Temporal context calibrates interval timing publication-title: Nat. Neurosci. doi: 10.1038/nn.2590 – volume: 177 start-page: 999 year: 2019 ident: 10.1016/j.neuron.2019.06.012_bib78 article-title: Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences publication-title: Cell doi: 10.1016/j.cell.2019.04.005 – volume: 98 start-page: 1005 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib84 article-title: Flexible Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics publication-title: Neuron doi: 10.1016/j.neuron.2018.05.020 – volume: 16 start-page: 958 year: 2013 ident: 10.1016/j.neuron.2019.06.012_bib72 article-title: Neural coding during active somatosensation revealed using illusory touch publication-title: Nat. Neurosci. doi: 10.1038/nn.3419 – volume: 29 start-page: 15601 year: 2009 ident: 10.1016/j.neuron.2019.06.012_bib22 article-title: Dynamic reweighting of visual and vestibular cues during self-motion perception publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2574-09.2009 – volume: 94 start-page: 978 year: 2017 ident: 10.1016/j.neuron.2019.06.012_bib27 article-title: Neural Manifolds for the Control of Movement publication-title: Neuron doi: 10.1016/j.neuron.2017.05.025 – volume: 33 start-page: 17301 year: 2013 ident: 10.1016/j.neuron.2019.06.012_bib74 article-title: Kalman filtering naturally accounts for visually guided and predictive smooth pursuit dynamics publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2321-13.2013 – volume: 25 start-page: 1113 year: 2015 ident: 10.1016/j.neuron.2019.06.012_bib65 article-title: A scalable population code for time in the striatum publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.02.036 – volume: 86 start-page: 1067 year: 2015 ident: 10.1016/j.neuron.2019.06.012_bib11 article-title: Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal Uncertainty publication-title: Neuron doi: 10.1016/j.neuron.2015.04.014 – volume: 10 start-page: 113 year: 2009 ident: 10.1016/j.neuron.2019.06.012_bib10 article-title: State-dependent computations: spatiotemporal processing in cortical networks publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2558 – volume: 93 start-page: 1003 year: 2017 ident: 10.1016/j.neuron.2019.06.012_bib46 article-title: Navigating the Neural Space in Search of the Neural Code publication-title: Neuron doi: 10.1016/j.neuron.2017.02.019 – volume: 26 start-page: 2103 year: 2014 ident: 10.1016/j.neuron.2019.06.012_bib29 article-title: Efficient sensory encoding and Bayesian inference with heterogeneous neural populations publication-title: Neural Comput. doi: 10.1162/NECO_a_00638 – volume: 9 start-page: 578 year: 2006 ident: 10.1016/j.neuron.2019.06.012_bib96 article-title: Noise characteristics and prior expectations in human visual speed perception publication-title: Nat. Neurosci. doi: 10.1038/nn1669 – volume: 82 start-page: 1394 year: 2014 ident: 10.1016/j.neuron.2019.06.012_bib41 article-title: Optimal control of transient dynamics in balanced networks supports generation of complex movements publication-title: Neuron doi: 10.1016/j.neuron.2014.04.045 – volume: 274 start-page: 427 year: 1996 ident: 10.1016/j.neuron.2019.06.012_bib37 article-title: Neural control of voluntary movement initiation publication-title: Science doi: 10.1126/science.274.5286.427 – volume: 99 start-page: 609 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib62 article-title: Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent Neural Networks publication-title: Neuron doi: 10.1016/j.neuron.2018.07.003 – start-page: 59 year: 2008 ident: 10.1016/j.neuron.2019.06.012_bib34 article-title: Bayesian Models of Cognition – year: 2019 ident: 10.1016/j.neuron.2019.06.012_bib6 article-title: Neural population control via deep image synthesis publication-title: Science doi: 10.1126/science.aav9436 – volume: 16 start-page: 3067 year: 1996 ident: 10.1016/j.neuron.2019.06.012_bib13 article-title: Evolution of directional preferences in the supplementary eye field during acquisition of conditional oculomotor associations publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-09-03067.1996 – volume: 16 start-page: 925 year: 2013 ident: 10.1016/j.neuron.2019.06.012_bib54 article-title: Robust timing and motor patterns by taming chaos in recurrent neural networks publication-title: Nat. Neurosci. doi: 10.1038/nn.3405 – volume: 79 start-page: 2554 year: 1982 ident: 10.1016/j.neuron.2019.06.012_bib43 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.79.8.2554 – volume: 512 start-page: 423 year: 2014 ident: 10.1016/j.neuron.2019.06.012_bib87 article-title: Neural constraints on learning publication-title: Nature doi: 10.1038/nature13665 – volume: 93 start-page: 955 year: 2017 ident: 10.1016/j.neuron.2019.06.012_bib5 article-title: Emergence of Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control publication-title: Neuron doi: 10.1016/j.neuron.2017.01.016 – volume: 11 start-page: 693 year: 2008 ident: 10.1016/j.neuron.2019.06.012_bib14 article-title: Decision-making with multiple alternatives publication-title: Nat. Neurosci. doi: 10.1038/nn.2123 – volume: 4 start-page: e134 year: 2006 ident: 10.1016/j.neuron.2019.06.012_bib42 article-title: Microstimulation of frontal cortex can reorder a remembered spatial sequence publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040134 – volume: 293 start-page: 299 year: 1990 ident: 10.1016/j.neuron.2019.06.012_bib44 article-title: Supplementary eye field as defined by intracortical microstimulation: connections in macaques publication-title: J. Comp. Neurol. doi: 10.1002/cne.902930211 – volume: 22 start-page: 297 year: 2019 ident: 10.1016/j.neuron.2019.06.012_bib105 article-title: Task representations in neural networks trained to perform many cognitive tasks publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0310-2 – volume: 21 start-page: 607 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib32 article-title: Learning by neural reassociation publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0095-3 – volume: 71 start-page: 555 year: 2011 ident: 10.1016/j.neuron.2019.06.012_bib2 article-title: Single-trial neural correlates of arm movement preparation publication-title: Neuron doi: 10.1016/j.neuron.2011.05.047 – volume: 102 start-page: 614 year: 2009 ident: 10.1016/j.neuron.2019.06.012_bib106 article-title: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity publication-title: J. Neurophysiol. doi: 10.1152/jn.90941.2008 – volume: 36 start-page: 337 year: 2013 ident: 10.1016/j.neuron.2019.06.012_bib91 article-title: Cortical control of arm movements: a dynamical systems perspective publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062111-150509 – volume: 9 start-page: 2754 year: 2018 ident: 10.1016/j.neuron.2019.06.012_bib55 article-title: Different population dynamics in the supplementary motor area and motor cortex during reaching publication-title: Nat. Commun. doi: 10.1038/s41467-018-05146-z – volume: 60 start-page: 215 year: 2008 ident: 10.1016/j.neuron.2019.06.012_bib100 article-title: Decision making in recurrent neuronal circuits publication-title: Neuron doi: 10.1016/j.neuron.2008.09.034 – volume: 37 start-page: 205 year: 2014 ident: 10.1016/j.neuron.2019.06.012_bib57 article-title: Neural coding of uncertainty and probability publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-071013-014017 – volume: 33 start-page: 13834 year: 2013 ident: 10.1016/j.neuron.2019.06.012_bib51 article-title: Neural correlates of interval timing in rodent prefrontal cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1443-13.2013 – volume: 12 start-page: e1005175 year: 2016 ident: 10.1016/j.neuron.2019.06.012_bib68 article-title: Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005175 – volume: 7 start-page: e1000167 year: 2009 ident: 10.1016/j.neuron.2019.06.012_bib18 article-title: Ready...go: Amplitude of the FMRI signal encodes expectation of cue arrival time publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000167 |
SSID | ssj0014591 |
Score | 2.6194968 |
Snippet | Statistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when sensory information is uncertain. Bayesian... SummaryStatistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when sensory information is uncertain.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 934 |
SubjectTerms | Animals Bayes Theorem Bayesian analysis Bayesian inference Bayesian integration Bias Cerebral Cortex Cognition Cognition - physiology Cortex (frontal) Experiments frontal cortex Frontal Lobe - physiology Information processing Macaca mulatta Nerve Net - physiology neural manifold Neural networks Neural Networks, Computer neural trajectories Neurons Physiology recurrent neural networks Sensorimotor system Somatosensory cortex Statistical analysis Time Perception |
Title | Bayesian Computation through Cortical Latent Dynamics |
URI | https://dx.doi.org/10.1016/j.neuron.2019.06.012 https://www.ncbi.nlm.nih.gov/pubmed/31320220 https://www.proquest.com/docview/2284484079 https://www.proquest.com/docview/2261236801 https://pubmed.ncbi.nlm.nih.gov/PMC6805134 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5VRUi8TFsLrGxUQZp4ixondl0_toWqosADMNE3K3YcUQTZ1HYP_fe7s5NoBaFJPCa5RPbZvu_s3H0HcMUTtIxuIuIkkzZGvHUx4riKEfzGDq1fxnyZzk-fx8tr_mEt1h2YN7kwFFZZ2_5g0721ru-Mam2Objeb0ddkooi9HOcQucEpJfxSVikl8a1n7Z8ELkLVPBSOSbpJn_MxXp4zklhQmfIsniz9Fzz97X7-GUX5AJYWp3BS-5PRNDT5DDqu6kF_WuFe-vchehv5CE9_dN6Dp6Hw5KEPYpYfHKVPRqGqgx-eqK7Zg_e2_oQ7-oiOaLWP3oWq9bvncL14_22-jOsCCrEVQu7peC_JecHHRZlZU5SF4agu7LpxiZEUPZpb3P_kqbIyYUaWTMkiNUbacakQ-LMX0K1uKncOkXPo-xXoPtq05CLJ0XHIFRMTZwtmVGEHkDV607ZmF6ciF790E0b2Uwdta9K2pmg6lg4gbt-6Dewaj8jLZkj00SzRCACPvHnZjKCuV-lOp4jNHHe4Ug3gTfsY1xf9NMkrd3NHMp6gBoF8AC_DgLdNJdpLylTGZh1NhVaAuLuPn1SbH57DGz8oWMZf_XeHLuAZXflwN34J3f32zr1G_2hvhvBkuvryfTX0C-Ee39UO-w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RqqpcEIUWlkdJpaq3aOPEjtdHnlrKwqUg7c2KHUcsgiyC5bD_nhk7idhWFRJXexw5Y3vmsz3-BuAnT9AyuoGIk0zaGP2ti9GPqxidX-7Q-mXMp-m8uMyH1_z3WIyX4Kh9C0NhlY3tDzbdW-umpN9os_8wmfT_JANF7OU4hwgGp4MP8BHRQE4E-mfjw-4qgYuQNg-lYxJv38_5IC9PGkk0qEx5Gk-W_s8__Ys__w6jfOWXTtdgtQGU0UHo8xdYcvU6bBzUuJm-n0e_Ih_i6c_O1-FTyDw53wBxWMwdvZ-MQloHPz5Rk7QHyx79EXc0QiRaz6LjkLb-6Stcn55cHQ3jJoNCbIWQMzrfSwpe8rysMmvKqjQc9YW_blxiJIWPFhY3QEWqrEyYkRVTskyNkTavFHr-7Bss19PabUHkHIK_EvGjTSsukgKRQ6GYGDhbMqNK24Os1Zu2Db04Zbm4020c2a0O2takbU3hdCztQdy1egj0Gm_Iy3ZI9MI00egB3mi5246gbpbpk07ROXPc4krVgx9dNS4wujUpajd9JhnPUIOevAebYcC7rhLvJT1Vxm4tTIVOgMi7F2vqyY0n8cYPCpbx7Xf_0D58Hl5djPTo7PJ8B1aoxse-8V1Ynj0-uz0ESzPz3S-GFwNrEHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Computation+through+Cortical+Latent+Dynamics&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Sohn%2C+Hansem&rft.au=Narain%2C+Devika&rft.au=Meirhaeghe%2C+Nicolas&rft.au=Jazayeri%2C+Mehrdad&rft.date=2019-09-04&rft.issn=1097-4199&rft.eissn=1097-4199&rft.volume=103&rft.issue=5&rft.spage=934&rft_id=info:doi/10.1016%2Fj.neuron.2019.06.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |