Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils
Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-li...
Saved in:
Published in | The ISME Journal Vol. 6; no. 5; pp. 1032 - 1045 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2012
Oxford University Press Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1751-7362 1751-7370 1751-7370 |
DOI | 10.1038/ismej.2011.168 |
Cover
Loading…
Abstract | Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and
amoA
gene abundance of AOA, but not of AOB, were observed during the active nitrification.
13
CO
2
-DNA-stable isotope probing results showed significant assimilation of
13
C-labeled carbon source into the
amoA
gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal
amoA
gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO
2
fixation by AOA, accompanied by decreasing thaumarchaeal
amoA
gene abundance. Bacterial
amoA
gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal
amoA
gene and 16S rRNA gene revealed active
13
CO
2
-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils. |
---|---|
AbstractList | Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. (13)CO(2)-DNA-stable isotope probing results showed significant assimilation of (13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. (13)CO(2)-DNA-stable isotope probing results showed significant assimilation of (13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils. Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13 CO 2 -DNA-stable isotope probing results showed significant assimilation of 13 C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO 2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13 CO 2 -labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils. Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13CO2-DNA-stable isotope probing results showed significant assimilation of 13C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13CO2-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils. Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. super(13)CO sub(2)-DNA-stable isotope probing results showed significant assimilation of super(13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO sub(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active super(13)CO sub(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils. Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. (13)CO(2)-DNA-stable isotope probing results showed significant assimilation of (13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils. |
Author | Hu, Hang-Wei He, Ji-Zheng Zhang, Li-Mei Shen, Ju-Pei |
Author_xml | – sequence: 1 givenname: Li-Mei surname: Zhang fullname: Zhang, Li-Mei organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences – sequence: 2 givenname: Hang-Wei surname: Hu fullname: Hu, Hang-Wei organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Graduate School, Chinese Academy of Sciences – sequence: 3 givenname: Ju-Pei surname: Shen fullname: Shen, Ju-Pei organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences – sequence: 4 givenname: Ji-Zheng surname: He fullname: He, Ji-Zheng email: jzhe@rcees.ac.cn organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22134644$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktvEzEUhS1URB-wZYkssWGT1I-xPbNBqipeUiUWsLfueG4SRzN2sJ2qZcVPx2lKVApIrGzpfufoPs4pOQoxICEvOZtzJttznydczwXjfM51-4SccKP4zEjDjg5_LY7Jac5rxpTR2jwjx0Jw2eimOSE_LqYpBg-zeOMH_92HJYXkVoBAV3CNdIoJqZ82MRUIhaY4Ii0rCBT-0PXgCiYP1B-qdFeF4mOgcUFzSTEsx1sKrmoczdGP-Tl5uoAx44v794x8ef_u6-XH2dXnD58uL65mTilTZtpgr3rdaS54D0w1_TD0SnXOMMFQItOMtxobEBr7fpCt6vnAWiMFdtDIM_J277rZ9hMODkNJMNpN8hOkWxvB298rwa_sMl5bKUVXF10N3twbpPhti7nYyWeH4wgB4zZbzrjpVKeU-g-UCaVb2YqKvn6EruM2hbqHHVU9W951lXr1sPlD17-uWIH5HnAp5pxwcUA4s7uY2LuY2F1MbI1JFTSPBM6XuzvV4f34b9n5Xparf1hietjuXxU_AdLA1EY |
CitedBy_id | crossref_primary_10_1007_s00253_015_6986_2 crossref_primary_10_1007_s00284_016_1142_5 crossref_primary_10_1016_j_apsoil_2025_105885 crossref_primary_10_1111_1574_6968_12164 crossref_primary_10_1264_jsme2_ME22035 crossref_primary_10_1007_s00253_017_8318_1 crossref_primary_10_1007_s11368_013_0704_4 crossref_primary_10_1016_j_apsoil_2017_10_029 crossref_primary_10_1016_j_scitotenv_2020_143653 crossref_primary_10_1186_s13213_020_01619_z crossref_primary_10_1007_s42729_024_01945_0 crossref_primary_10_1016_j_chemosphere_2017_10_067 crossref_primary_10_1016_j_jenvman_2023_118119 crossref_primary_10_1016_j_apsoil_2025_105890 crossref_primary_10_1128_AEM_00254_13 crossref_primary_10_1016_j_jenvman_2016_09_069 crossref_primary_10_1007_s11368_018_2188_8 crossref_primary_10_1016_j_chemosphere_2020_129248 crossref_primary_10_1016_S2095_3119_15_61230_8 crossref_primary_10_1007_s11104_022_05474_6 crossref_primary_10_1007_s13213_014_0929_5 crossref_primary_10_1016_j_geoderma_2019_113979 crossref_primary_10_1007_s11274_016_2042_3 crossref_primary_10_1016_j_apsoil_2022_104723 crossref_primary_10_1186_s40538_024_00704_8 crossref_primary_10_1093_femsre_fuaa037 crossref_primary_10_1007_s11368_016_1403_8 crossref_primary_10_1007_s11368_023_03704_7 crossref_primary_10_1016_j_ejsobi_2021_103354 crossref_primary_10_1016_j_scitotenv_2020_141340 crossref_primary_10_1016_j_scitotenv_2020_140494 crossref_primary_10_1039_C6RA13066F crossref_primary_10_1002_jobm_202000485 crossref_primary_10_1007_s11368_014_0872_x crossref_primary_10_1016_j_envpol_2021_117558 crossref_primary_10_1038_ismej_2013_35 crossref_primary_10_1007_s10533_020_00672_9 crossref_primary_10_3389_fmicb_2017_02226 crossref_primary_10_1038_s41598_018_20044_6 crossref_primary_10_1007_s42832_019_0016_8 crossref_primary_10_1016_j_jhazmat_2021_127944 crossref_primary_10_1016_j_apsoil_2024_105468 crossref_primary_10_1111_ejss_13553 crossref_primary_10_1080_03036758_2017_1354894 crossref_primary_10_1111_1462_2920_14063 crossref_primary_10_1016_j_scitotenv_2018_03_108 crossref_primary_10_1016_j_soilbio_2020_107863 crossref_primary_10_3389_fmicb_2022_911799 crossref_primary_10_1016_j_jenvman_2024_120504 crossref_primary_10_1007_s11368_019_02479_0 crossref_primary_10_1007_s00248_021_01746_3 crossref_primary_10_3389_fmicb_2016_01638 crossref_primary_10_4141_cjss_2015_040 crossref_primary_10_1128_AEM_00426_15 crossref_primary_10_3389_fmicb_2021_659079 crossref_primary_10_1016_j_envpol_2021_116696 crossref_primary_10_3390_land13081310 crossref_primary_10_1007_s00374_016_1151_3 crossref_primary_10_1007_s11356_020_10928_4 crossref_primary_10_1016_j_ejsobi_2014_03_005 crossref_primary_10_1007_s10482_015_0627_8 crossref_primary_10_1111_1462_2920_15161 crossref_primary_10_1128_aem_00070_24 crossref_primary_10_1042_EBC20220194 crossref_primary_10_1038_srep23747 crossref_primary_10_1515_biol_2022_0010 crossref_primary_10_1016_j_ejsobi_2013_10_003 crossref_primary_10_1016_j_chemosphere_2017_02_075 crossref_primary_10_1016_j_biortech_2018_02_012 crossref_primary_10_1007_s12038_019_9928_9 crossref_primary_10_1007_s11104_024_07189_2 crossref_primary_10_3390_plants11010112 crossref_primary_10_3389_fmicb_2018_00634 crossref_primary_10_1016_j_chemgeo_2025_122714 crossref_primary_10_1007_s11676_017_0484_6 crossref_primary_10_1007_s11368_013_0726_y crossref_primary_10_3390_nitrogen3030031 crossref_primary_10_1007_s00248_022_01997_8 crossref_primary_10_1016_j_scitotenv_2020_142521 crossref_primary_10_1016_j_soilbio_2016_02_005 crossref_primary_10_1007_s00248_017_1045_4 crossref_primary_10_1016_j_scitotenv_2017_12_096 crossref_primary_10_1016_j_wse_2023_11_005 crossref_primary_10_1128_AEM_03633_13 crossref_primary_10_1007_s11368_015_1302_4 crossref_primary_10_1007_s00253_016_7502_z crossref_primary_10_1007_s00374_016_1154_0 crossref_primary_10_1016_j_scitotenv_2018_08_432 crossref_primary_10_1007_s00374_014_0897_8 crossref_primary_10_1038_s41598_021_93898_y crossref_primary_10_1016_j_apsoil_2017_09_041 crossref_primary_10_1029_2019JG005477 crossref_primary_10_1007_s11104_018_3626_5 crossref_primary_10_1016_j_ejrh_2024_101940 crossref_primary_10_1016_j_jes_2020_09_029 crossref_primary_10_1016_j_jhydrol_2024_131741 crossref_primary_10_1021_acs_est_5b00838 crossref_primary_10_1590_1678_992x_2018_0370 crossref_primary_10_1007_s11368_016_1390_9 crossref_primary_10_1007_s11368_018_2155_4 crossref_primary_10_1111_1365_2664_13964 crossref_primary_10_1016_j_soilbio_2017_04_007 crossref_primary_10_1016_j_chemosphere_2019_06_038 crossref_primary_10_1007_s11104_012_1450_x crossref_primary_10_1080_01490451_2014_925013 crossref_primary_10_1016_j_scitotenv_2021_148470 crossref_primary_10_1371_journal_pone_0132879 crossref_primary_10_1007_s11368_016_1525_z crossref_primary_10_1111_ejss_13112 crossref_primary_10_1111_nph_17125 crossref_primary_10_1371_journal_pone_0133763 crossref_primary_10_1007_s11104_018_3845_9 crossref_primary_10_3354_ame01712 crossref_primary_10_1021_acsestengg_4c00525 crossref_primary_10_1007_s00374_017_1244_7 crossref_primary_10_1128_AEM_01430_18 crossref_primary_10_1111_1462_2920_15192 crossref_primary_10_1016_j_watres_2024_122969 crossref_primary_10_1016_j_jes_2020_09_039 crossref_primary_10_1038_s41598_020_67528_y crossref_primary_10_1128_msystems_00309_20 crossref_primary_10_1007_s11104_019_04164_0 crossref_primary_10_1021_acsagscitech_3c00506 crossref_primary_10_1007_s00374_015_1086_0 crossref_primary_10_1016_j_scitotenv_2019_135236 crossref_primary_10_1007_s00374_016_1131_7 crossref_primary_10_1016_j_scitotenv_2018_04_104 crossref_primary_10_1016_j_scitotenv_2021_151645 crossref_primary_10_1016_j_chemosphere_2022_137585 crossref_primary_10_1128_AEM_01960_12 crossref_primary_10_3390_agronomy13082108 crossref_primary_10_1007_s00253_014_5942_x crossref_primary_10_1016_j_agee_2024_108950 crossref_primary_10_3389_fmicb_2017_02136 crossref_primary_10_1016_j_scitotenv_2019_06_128 crossref_primary_10_1007_s00253_018_8865_0 crossref_primary_10_1080_00380768_2015_1023687 crossref_primary_10_1007_s11368_014_0902_8 crossref_primary_10_1016_j_ecoenv_2018_09_042 crossref_primary_10_1093_femsec_fiw023 crossref_primary_10_1016_j_apsoil_2018_12_005 crossref_primary_10_1007_s00374_024_01812_1 crossref_primary_10_1016_j_geoderma_2020_114486 crossref_primary_10_1016_j_ibiod_2018_06_021 crossref_primary_10_1016_j_scitotenv_2020_141317 crossref_primary_10_1002_jeq2_20440 crossref_primary_10_1016_j_soilbio_2017_10_024 crossref_primary_10_1016_j_soilbio_2017_10_023 crossref_primary_10_1002_ldr_4434 crossref_primary_10_1007_s11368_016_1633_9 crossref_primary_10_1016_j_watres_2020_116798 crossref_primary_10_1007_s00253_015_6462_z crossref_primary_10_1016_j_ejsobi_2016_01_008 crossref_primary_10_1002_jobm_201800581 crossref_primary_10_3390_su13179606 crossref_primary_10_1007_s00374_021_01584_y crossref_primary_10_1111_1462_2920_14246 crossref_primary_10_1016_j_scitotenv_2024_171048 crossref_primary_10_1264_jsme2_ME14137 crossref_primary_10_1007_s11368_018_2075_3 crossref_primary_10_1016_j_chemosphere_2024_142753 crossref_primary_10_1007_s00374_021_01606_9 crossref_primary_10_1016_j_biortech_2019_121914 crossref_primary_10_1016_j_soilbio_2019_01_006 crossref_primary_10_1016_j_geoderma_2023_116592 crossref_primary_10_1071_SR20264 crossref_primary_10_1016_j_chemosphere_2019_125399 crossref_primary_10_1016_j_soilbio_2022_108655 crossref_primary_10_1016_j_soilbio_2016_11_005 crossref_primary_10_1016_j_soilbio_2017_05_015 crossref_primary_10_1021_acs_est_0c00915 crossref_primary_10_1007_s00253_013_5213_2 crossref_primary_10_1007_s11368_018_2185_y crossref_primary_10_3390_ijerph192316030 crossref_primary_10_1007_s11368_014_0968_3 crossref_primary_10_1128_AEM_00543_13 crossref_primary_10_1080_03650340_2022_2025588 crossref_primary_10_1016_j_apsoil_2024_105655 crossref_primary_10_1007_s00248_017_1118_4 crossref_primary_10_1007_s11368_018_2109_x crossref_primary_10_1111_1462_2920_13282 crossref_primary_10_1016_j_jenvman_2023_118996 crossref_primary_10_1111_1462_2920_12071 crossref_primary_10_1002_jsfa_10719 crossref_primary_10_1016_j_geoderma_2022_116087 crossref_primary_10_1038_s41598_022_26293_w crossref_primary_10_1016_j_envpol_2022_120731 crossref_primary_10_1016_j_geoderma_2020_114223 crossref_primary_10_1016_j_still_2023_105821 crossref_primary_10_3390_agronomy12020294 crossref_primary_10_1007_s10661_014_3678_9 crossref_primary_10_1038_srep11146 crossref_primary_10_1016_j_soilbio_2020_107795 crossref_primary_10_1016_j_scitotenv_2013_05_070 crossref_primary_10_1016_j_scitotenv_2020_137248 crossref_primary_10_1016_j_soilbio_2017_05_001 crossref_primary_10_1111_1462_2920_15348 crossref_primary_10_3390_agronomy13061603 crossref_primary_10_1016_j_wroa_2025_100317 crossref_primary_10_1080_09064710_2015_1039054 crossref_primary_10_3389_fmicb_2022_913453 crossref_primary_10_1111_1574_6941_12340 crossref_primary_10_1016_j_apsoil_2013_03_006 crossref_primary_10_1016_j_cej_2023_144318 crossref_primary_10_1016_j_scitotenv_2018_01_132 crossref_primary_10_1007_s11431_024_2760_0 crossref_primary_10_7717_peerj_14088 crossref_primary_10_1007_s11104_014_2107_8 crossref_primary_10_1002_jobm_201200671 crossref_primary_10_1021_acs_est_5b00506 crossref_primary_10_3390_su152316529 crossref_primary_10_1016_j_jenvman_2022_117143 crossref_primary_10_1016_j_soilbio_2016_03_002 crossref_primary_10_1016_j_still_2025_106450 crossref_primary_10_1016_j_wroa_2025_100308 crossref_primary_10_3389_fmicb_2018_00885 crossref_primary_10_3390_su16135791 crossref_primary_10_3389_fmicb_2022_952967 crossref_primary_10_1007_s11368_017_1846_6 crossref_primary_10_1111_1574_6941_12336 crossref_primary_10_1080_00380768_2021_2021784 crossref_primary_10_1111_gcbb_12519 crossref_primary_10_1128_mBio_01870_19 crossref_primary_10_1016_j_soilbio_2016_12_029 crossref_primary_10_1016_j_soilbio_2015_02_034 crossref_primary_10_1007_s00253_013_4765_5 crossref_primary_10_1007_s00374_013_0857_8 crossref_primary_10_1007_s00253_014_6188_3 crossref_primary_10_1016_j_scitotenv_2023_165532 crossref_primary_10_1016_j_jenvman_2023_119738 crossref_primary_10_1007_s00374_016_1121_9 crossref_primary_10_1111_1462_2920_14238 crossref_primary_10_1007_s00374_016_1167_8 crossref_primary_10_1016_j_scitotenv_2021_145470 crossref_primary_10_1016_j_soilbio_2017_06_027 crossref_primary_10_1128_AEM_01031_18 crossref_primary_10_1007_s00374_017_1249_2 crossref_primary_10_1016_j_soilbio_2017_06_024 crossref_primary_10_1007_s00248_022_02110_9 crossref_primary_10_1128_spectrum_02403_21 crossref_primary_10_1016_j_scitotenv_2021_146328 crossref_primary_10_1007_s00284_025_04168_3 crossref_primary_10_1016_j_geoderma_2022_116032 crossref_primary_10_1016_j_ejsobi_2020_103263 crossref_primary_10_7717_peerj_6497 crossref_primary_10_1080_01490451_2013_797523 crossref_primary_10_1016_j_soilbio_2016_04_012 crossref_primary_10_1007_s00248_016_0890_x crossref_primary_10_1016_j_scitotenv_2023_166451 crossref_primary_10_1128_AEM_01031_16 crossref_primary_10_1111_ejss_12557 crossref_primary_10_1016_j_cej_2022_140172 crossref_primary_10_1016_j_envres_2021_111802 crossref_primary_10_1007_s11356_021_16887_8 crossref_primary_10_1111_1462_2920_16347 crossref_primary_10_1007_s00248_017_1098_4 crossref_primary_10_1007_s11368_015_1074_x crossref_primary_10_3389_fmicb_2015_01567 crossref_primary_10_3389_fmicb_2019_02518 crossref_primary_10_1016_j_apsoil_2025_105955 crossref_primary_10_1111_1574_6941_12316 crossref_primary_10_1016_j_soilbio_2015_02_013 crossref_primary_10_3390_microorganisms10030540 crossref_primary_10_1007_s11368_017_1792_3 crossref_primary_10_1007_s11104_021_05021_9 crossref_primary_10_1007_s11368_018_1925_3 crossref_primary_10_1016_j_eja_2023_127041 crossref_primary_10_1016_j_agee_2018_06_025 crossref_primary_10_1111_geb_13616 crossref_primary_10_1007_s11368_015_1064_z crossref_primary_10_1007_s00253_015_6488_2 crossref_primary_10_1007_s11368_015_1086_6 crossref_primary_10_3389_fmicb_2015_01350 crossref_primary_10_1016_j_soilbio_2012_06_006 crossref_primary_10_1016_j_soilbio_2017_06_001 crossref_primary_10_3390_agronomy13010010 crossref_primary_10_1007_s11368_014_0910_8 crossref_primary_10_1016_j_apsoil_2024_105309 crossref_primary_10_1016_j_ejsobi_2017_09_005 crossref_primary_10_1007_s11368_013_0843_7 crossref_primary_10_1016_j_ecoleng_2015_12_023 crossref_primary_10_1631_jzus_B1400114 crossref_primary_10_1007_s10499_023_01317_y crossref_primary_10_1016_j_ecoenv_2018_06_030 crossref_primary_10_1016_j_geoderma_2020_114637 crossref_primary_10_1016_j_scitotenv_2020_138563 crossref_primary_10_1007_s10533_021_00830_7 crossref_primary_10_1016_S1002_0160_18_60055_4 crossref_primary_10_1016_j_soilbio_2018_07_004 crossref_primary_10_1007_s00248_014_0391_8 crossref_primary_10_1007_s00253_016_7506_8 crossref_primary_10_1016_j_apsoil_2024_105673 crossref_primary_10_1016_j_ejsobi_2018_02_002 crossref_primary_10_3389_fpls_2021_640789 crossref_primary_10_3389_fmicb_2021_570908 crossref_primary_10_1007_s00374_023_01749_x crossref_primary_10_1016_j_apsoil_2017_02_019 crossref_primary_10_1016_j_geoderma_2018_11_033 crossref_primary_10_1007_s11104_018_3584_y crossref_primary_10_1016_j_scitotenv_2021_145023 crossref_primary_10_1016_j_cej_2023_142207 crossref_primary_10_1016_j_scitotenv_2020_142924 crossref_primary_10_1007_s11368_018_2089_x crossref_primary_10_3390_nitrogen6010004 crossref_primary_10_1016_j_tim_2012_08_001 crossref_primary_10_1016_j_geoderma_2020_114886 crossref_primary_10_1016_j_apsoil_2020_103665 crossref_primary_10_1016_j_jenvman_2016_01_035 crossref_primary_10_1264_jsme2_ME14052 crossref_primary_10_1016_j_jhazmat_2019_121375 crossref_primary_10_1016_j_scitotenv_2019_02_427 crossref_primary_10_1186_s13568_016_0245_5 crossref_primary_10_1002_saj2_20022 crossref_primary_10_1016_j_resmic_2015_07_012 crossref_primary_10_1016_j_ejsobi_2013_05_008 crossref_primary_10_1007_s00253_013_5399_3 crossref_primary_10_1016_j_biortech_2021_125851 crossref_primary_10_1016_j_soilbio_2018_01_007 crossref_primary_10_1007_s11368_021_02897_z crossref_primary_10_1016_j_chemosphere_2017_06_081 crossref_primary_10_1007_s11356_017_8799_6 crossref_primary_10_1016_j_ecoenv_2021_112274 crossref_primary_10_1016_j_soilbio_2016_05_014 crossref_primary_10_1016_j_soilbio_2015_11_003 crossref_primary_10_1080_10643389_2022_2049578 crossref_primary_10_4491_eer_2022_630 crossref_primary_10_1016_j_ijggc_2014_11_013 crossref_primary_10_1016_j_scitotenv_2022_154417 crossref_primary_10_1111_1574_6941_12193 crossref_primary_10_1016_j_jhazmat_2012_06_041 crossref_primary_10_1016_j_jenvman_2022_116597 crossref_primary_10_1038_s41396_017_0025_5 crossref_primary_10_1007_s42729_020_00378_9 crossref_primary_10_1007_s00253_018_9332_7 crossref_primary_10_1007_s11356_016_6396_8 crossref_primary_10_1038_s41396_020_00840_7 crossref_primary_10_1007_s00253_014_6026_7 crossref_primary_10_5194_bg_10_5739_2013 crossref_primary_10_1007_s11368_020_02627_x crossref_primary_10_1021_acs_est_7b04925 crossref_primary_10_3389_fmicb_2022_962146 crossref_primary_10_1038_s41598_023_44147_x crossref_primary_10_1021_es402179v crossref_primary_10_1038_s41598_019_45877_7 crossref_primary_10_1093_femsre_fuv021 crossref_primary_10_1007_s00248_012_0093_z crossref_primary_10_1016_j_scitotenv_2021_149933 crossref_primary_10_1890_ES14_00299_1 crossref_primary_10_1007_s00248_017_0992_0 crossref_primary_10_1016_j_ejsobi_2023_103491 crossref_primary_10_1186_s40168_020_00904_y crossref_primary_10_1016_j_soilbio_2023_109046 crossref_primary_10_1007_s00374_018_1297_2 crossref_primary_10_1016_j_scitotenv_2022_156752 crossref_primary_10_1093_ismeco_ycae093 crossref_primary_10_1111_1758_2229_12264 crossref_primary_10_1007_s00253_018_9225_9 crossref_primary_10_1007_s11104_018_3774_7 crossref_primary_10_1186_s12866_021_02313_z crossref_primary_10_1007_s00248_016_0815_8 crossref_primary_10_1016_j_geoderma_2017_06_002 crossref_primary_10_1016_j_eng_2023_09_013 crossref_primary_10_1016_j_soilbio_2014_02_011 crossref_primary_10_1111_gcb_16392 crossref_primary_10_1016_j_soilbio_2018_02_015 crossref_primary_10_1016_j_ibiod_2020_105136 crossref_primary_10_1016_j_pedsph_2024_12_006 crossref_primary_10_3390_land13030333 crossref_primary_10_1111_1462_2920_12339 crossref_primary_10_3390_f13122160 crossref_primary_10_3390_life12111806 crossref_primary_10_1016_j_soilbio_2024_109595 crossref_primary_10_1186_s40793_023_00503_y crossref_primary_10_1016_j_soilbio_2014_09_028 crossref_primary_10_1093_femsle_fnw052 crossref_primary_10_1016_S1002_0160_19_60803_9 crossref_primary_10_1016_j_soilbio_2015_12_017 crossref_primary_10_1007_s11356_019_07347_5 crossref_primary_10_1371_journal_pone_0299518 crossref_primary_10_3389_fmicb_2022_926592 crossref_primary_10_1016_j_foreco_2023_120907 crossref_primary_10_1016_j_jenvman_2018_02_032 crossref_primary_10_1093_femsec_fiae072 crossref_primary_10_1016_j_pedsph_2022_09_004 crossref_primary_10_1016_j_cej_2018_10_234 crossref_primary_10_1016_j_soilbio_2024_109423 crossref_primary_10_1016_j_jes_2022_02_038 crossref_primary_10_1016_j_geoderma_2024_116835 crossref_primary_10_1016_j_apsoil_2021_104188 crossref_primary_10_1016_j_soilbio_2014_02_009 crossref_primary_10_1007_s11368_014_0888_2 crossref_primary_10_1016_j_geoderma_2020_114814 crossref_primary_10_3390_nitrogen2020011 crossref_primary_10_1080_03650340_2022_2104452 crossref_primary_10_1111_1462_2920_12398 crossref_primary_10_1111_1574_6941_12391 crossref_primary_10_1042_ETLS20180018 crossref_primary_10_1007_s00248_021_01763_2 crossref_primary_10_3390_agronomy13051279 crossref_primary_10_1016_j_apsoil_2019_08_004 crossref_primary_10_1038_s41598_022_23084_1 crossref_primary_10_1007_s00374_019_01405_3 crossref_primary_10_1016_j_soilbio_2016_12_007 crossref_primary_10_1007_s42832_023_0199_x crossref_primary_10_1016_j_scitotenv_2020_143048 crossref_primary_10_3390_su12030953 crossref_primary_10_1007_s11356_018_3565_y crossref_primary_10_1038_s41598_022_10711_0 crossref_primary_10_1111_1462_2920_14457 crossref_primary_10_1016_j_jenvman_2022_115271 crossref_primary_10_1111_1462_2920_12481 crossref_primary_10_1128_msystems_00546_21 crossref_primary_10_1016_j_soilbio_2016_06_002 crossref_primary_10_1016_j_apsoil_2020_103837 crossref_primary_10_3389_fmicb_2020_01737 crossref_primary_10_1016_j_soilbio_2021_108231 crossref_primary_10_1002_ece3_2714 crossref_primary_10_1016_j_soilbio_2024_109687 crossref_primary_10_1111_gcb_17333 crossref_primary_10_1007_s00374_020_01538_w crossref_primary_10_1007_s00203_020_02130_4 crossref_primary_10_1007_s13213_015_1143_9 crossref_primary_10_1016_j_geoderma_2018_07_038 crossref_primary_10_3389_fmicb_2017_00630 crossref_primary_10_1038_srep30349 crossref_primary_10_1111_1462_2920_14553 crossref_primary_10_1016_j_apsoil_2024_105831 crossref_primary_10_1007_s11368_018_2108_y crossref_primary_10_1016_j_soilbio_2015_09_008 crossref_primary_10_3390_agronomy10071003 crossref_primary_10_1016_j_scitotenv_2022_154311 crossref_primary_10_7717_peerj_13504 crossref_primary_10_1111_1758_2229_12109 crossref_primary_10_1016_j_apsoil_2018_06_017 crossref_primary_10_1016_j_watres_2018_08_066 crossref_primary_10_2136_sssaj2019_05_0134 crossref_primary_10_1016_j_soilbio_2021_108242 crossref_primary_10_3389_fmicb_2018_00171 crossref_primary_10_3389_fpls_2022_1099689 crossref_primary_10_1016_j_soilbio_2025_109730 crossref_primary_10_1007_s11104_018_3860_x crossref_primary_10_1016_j_scitotenv_2024_171227 crossref_primary_10_1016_j_soilbio_2015_11_017 crossref_primary_10_1111_ejss_12921 crossref_primary_10_1016_j_apsoil_2017_05_034 crossref_primary_10_1111_j_1462_2920_2012_02882_x crossref_primary_10_1016_j_ejsobi_2018_05_008 crossref_primary_10_1021_acs_est_5b01293 crossref_primary_10_1016_j_agee_2025_109510 crossref_primary_10_1016_j_still_2019_104443 crossref_primary_10_3390_horticulturae10070754 crossref_primary_10_1016_j_scitotenv_2023_169005 crossref_primary_10_1007_s11368_020_02562_x crossref_primary_10_1016_j_pedobi_2015_11_002 crossref_primary_10_1007_s11356_020_07952_9 crossref_primary_10_1016_j_jclepro_2021_126259 crossref_primary_10_1007_s11368_017_1851_9 crossref_primary_10_3724_SP_J_1003_2012_10129 crossref_primary_10_3390_microorganisms8060933 crossref_primary_10_1128_AEM_00308_12 crossref_primary_10_1016_j_soilbio_2018_11_008 crossref_primary_10_1007_s11368_014_0864_x crossref_primary_10_1016_j_apsoil_2014_09_003 crossref_primary_10_1186_s13568_021_01211_x crossref_primary_10_1016_j_jmarsys_2018_03_003 crossref_primary_10_1038_srep40848 crossref_primary_10_3389_fmicb_2014_00515 crossref_primary_10_5194_bg_12_3499_2015 crossref_primary_10_1186_s13568_017_0426_x crossref_primary_10_1007_s00248_023_02180_3 crossref_primary_10_3389_fpls_2022_913204 crossref_primary_10_1007_s11104_018_3648_z crossref_primary_10_1016_j_scitotenv_2017_07_146 crossref_primary_10_1016_j_scitotenv_2016_10_172 crossref_primary_10_1016_j_scitotenv_2025_178776 crossref_primary_10_1016_j_soilbio_2017_01_022 crossref_primary_10_1016_j_soilbio_2019_107673 crossref_primary_10_1071_SR15359 crossref_primary_10_1071_SR16327 crossref_primary_10_1016_j_apsoil_2015_11_009 crossref_primary_10_1002_saj2_20325 crossref_primary_10_1007_s00253_017_8435_x crossref_primary_10_1007_s10646_014_1334_3 crossref_primary_10_1016_j_biortech_2017_06_102 crossref_primary_10_1007_s11356_017_1155_z crossref_primary_10_1111_gcb_13853 crossref_primary_10_3389_fpls_2022_960641 crossref_primary_10_1016_j_apsoil_2022_104456 crossref_primary_10_1016_j_scitotenv_2018_05_356 crossref_primary_10_1016_j_aquaeng_2017_01_004 crossref_primary_10_1016_j_watres_2021_117331 crossref_primary_10_3389_fmicb_2015_00982 crossref_primary_10_1016_j_jenvman_2023_119078 crossref_primary_10_1016_j_still_2019_104347 crossref_primary_10_1128_AEM_00092_21 crossref_primary_10_1016_j_soilbio_2021_108153 crossref_primary_10_1016_j_ecoleng_2018_12_029 crossref_primary_10_1016_j_ejsobi_2021_103288 crossref_primary_10_1111_gcb_70096 crossref_primary_10_1016_j_soilbio_2016_07_007 crossref_primary_10_1111_1462_2920_14905 crossref_primary_10_1128_AEM_00342_18 crossref_primary_10_1016_j_agee_2023_108439 crossref_primary_10_1007_s11368_018_1997_0 crossref_primary_10_1016_j_catena_2024_107955 crossref_primary_10_1016_j_envres_2022_114419 crossref_primary_10_1007_s42729_023_01600_0 crossref_primary_10_1080_09168451_2014_915735 crossref_primary_10_1155_2016_3762159 crossref_primary_10_1002_mbo3_488 crossref_primary_10_1038_s41598_023_35134_3 crossref_primary_10_1038_ismej_2016_192 crossref_primary_10_1038_ismej_2016_191 crossref_primary_10_5194_bg_16_4277_2019 crossref_primary_10_1021_acs_est_7b00392 crossref_primary_10_1016_j_scitotenv_2018_08_372 crossref_primary_10_1016_j_geoderma_2021_115395 crossref_primary_10_1007_s12665_013_2773_5 crossref_primary_10_1016_j_apsoil_2023_104926 crossref_primary_10_1128_AEM_01701_19 crossref_primary_10_1099_ijsem_0_006387 crossref_primary_10_1016_j_soilbio_2017_09_007 crossref_primary_10_1071_MA18007 crossref_primary_10_1111_gcb_17082 crossref_primary_10_1016_j_scitotenv_2017_12_084 crossref_primary_10_1111_ejss_13017 crossref_primary_10_1038_s41598_018_32059_0 crossref_primary_10_1371_journal_pone_0169554 crossref_primary_10_3389_fenvs_2021_656708 crossref_primary_10_1016_j_soilbio_2020_107925 crossref_primary_10_1111_1462_2920_13872 crossref_primary_10_1016_j_ecolmodel_2017_08_016 crossref_primary_10_1007_s11356_013_1825_4 crossref_primary_10_1007_s11368_018_2039_7 crossref_primary_10_1016_j_scitotenv_2022_158032 crossref_primary_10_1016_j_soilbio_2018_02_008 crossref_primary_10_1002_ecy_1863 crossref_primary_10_1016_j_scitotenv_2020_143212 crossref_primary_10_1128_AEM_00061_13 crossref_primary_10_1007_s10653_017_0022_7 crossref_primary_10_1007_s00253_024_13170_x crossref_primary_10_1007_s11368_015_1321_1 crossref_primary_10_1007_s11356_024_32707_1 crossref_primary_10_1007_s11356_020_09120_5 crossref_primary_10_1007_s11368_019_02442_z crossref_primary_10_3389_fmicb_2020_581283 crossref_primary_10_1016_j_soilbio_2013_04_003 crossref_primary_10_3389_fenvs_2022_976618 crossref_primary_10_3390_microorganisms9040709 crossref_primary_10_1016_j_apsoil_2017_12_008 crossref_primary_10_3389_fmicb_2023_1095937 crossref_primary_10_1016_j_jenvman_2024_120119 crossref_primary_10_1111_1751_7915_12354 crossref_primary_10_1093_femsec_fiu023 crossref_primary_10_1016_j_scitotenv_2020_142113 crossref_primary_10_3103_S1063455X16040093 crossref_primary_10_1016_j_envpol_2020_114140 crossref_primary_10_1016_j_apsoil_2014_01_011 crossref_primary_10_1016_j_ejsobi_2024_103658 crossref_primary_10_1016_j_apsoil_2021_104113 crossref_primary_10_1146_annurev_micro_092412_155614 crossref_primary_10_1016_j_eja_2022_126692 crossref_primary_10_1016_j_soilbio_2016_09_001 crossref_primary_10_1007_s11356_016_7519_y crossref_primary_10_1007_s11368_019_02540_y crossref_primary_10_1016_j_jia_2024_03_047 crossref_primary_10_1038_srep30733 crossref_primary_10_1128_AEM_01807_20 crossref_primary_10_1007_s00374_023_01775_9 crossref_primary_10_1016_j_apsoil_2025_106037 crossref_primary_10_1038_s41612_022_00265_3 crossref_primary_10_1007_s00253_018_8873_0 crossref_primary_10_1016_j_ejsobi_2023_103570 crossref_primary_10_3389_fmicb_2024_1377721 crossref_primary_10_1007_s42729_024_02015_1 crossref_primary_10_3389_fmicb_2023_1140487 crossref_primary_10_1016_j_envpol_2015_12_023 crossref_primary_10_1016_j_soilbio_2019_107609 crossref_primary_10_1038_srep22903 crossref_primary_10_1007_s11104_022_05609_9 crossref_primary_10_1038_srep16587 crossref_primary_10_1016_j_soilad_2024_100021 crossref_primary_10_3389_fmicb_2015_00938 crossref_primary_10_1016_j_soilbio_2021_108192 crossref_primary_10_1007_s11368_019_02552_8 crossref_primary_10_1016_j_chemosphere_2023_139685 crossref_primary_10_1016_j_soilbio_2016_09_013 crossref_primary_10_1016_j_apsoil_2019_01_010 crossref_primary_10_1016_j_rsma_2022_102314 crossref_primary_10_4236_as_2018_93025 crossref_primary_10_1016_j_resmic_2014_08_003 crossref_primary_10_1016_j_scitotenv_2012_08_091 crossref_primary_10_1016_j_apsoil_2022_104785 crossref_primary_10_1007_s00253_013_5174_5 crossref_primary_10_3389_fmicb_2022_1013408 crossref_primary_10_1007_s12275_014_4114_0 crossref_primary_10_1016_j_apsoil_2021_104139 crossref_primary_10_1016_j_mex_2018_06_015 crossref_primary_10_1016_j_marpolbul_2024_116046 crossref_primary_10_1007_s11356_024_34762_0 crossref_primary_10_1016_j_watres_2013_01_042 |
Cites_doi | 10.1038/ismej.2010.191 10.1007/s11104-006-9123-2 10.1128/AEM.69.6.3129-3136.2003 10.1007/BF01054805 10.1126/science.1093857 10.1016/j.tim.2010.06.003 10.1073/pnas.0506625102 10.1016/j.agee.2009.07.010 10.1111/j.1574-6941.2009.00748.x 10.1038/nature04983 10.1038/ismej.2011.5 10.1128/AEM.00136-11 10.1038/ngeo613 10.1038/nrmicro1619 10.1016/S0038-0717(96)00133-2 10.1371/journal.pbio.0040095 10.1111/j.1462-2920.2009.01891.x 10.1080/00103628909368195 10.1016/j.soilbio.2010.05.003 10.1126/science.1149976 10.1111/j.1462-2920.2007.01358.x 10.1073/pnas.1013488108 10.1073/pnas.89.12.5685 10.1016/S0038-0717(00)00247-9 10.1073/pnas.1004947107 10.1126/science.1182570 10.1093/molbev/msm092 10.1038/nrmicro1852 10.1111/j.1574-6941.2010.00971.x 10.1016/j.soilbio.2006.11.003 10.1073/pnas.0913533107 10.1073/pnas.1010981108 10.1038/nature08465 10.1073/pnas.1107196108 10.1128/AEM.66.12.5488-5491.2000 10.1128/AEM.68.10.4751-4757.2002 10.1128/AEM.00595-10 10.1128/AEM.71.1.197-206.2005 10.1111/j.1462-2920.2005.00947.x 10.2136/sssaj2001.653849x 10.1016/j.tim.2006.03.004 10.1080/00103629409369010 10.1111/j.1574-6941.2007.00310.x 10.1111/j.1574-6941.2010.00861.x 10.1111/j.1462-2920.2008.01701.x 10.1111/j.1574-6941.2009.00725.x 10.1111/j.1574-6941.1999.tb00646.x 10.1111/j.1574-6941.2007.00335.x 10.1038/nature03911 10.1007/BF00009558 10.1111/j.1462-2920.2007.01563.x 10.1128/AEM.64.9.3480-3485.1998 10.1128/aem.54.6.1536-1540.1988 10.1128/jb.120.1.556-558.1974 10.1128/aem.63.12.4704-4712.1997 |
ContentType | Journal Article |
Copyright | International Society for Microbial Ecology 2012 Copyright Nature Publishing Group May 2012 Copyright © 2012 International Society for Microbial Ecology 2012 International Society for Microbial Ecology |
Copyright_xml | – notice: International Society for Microbial Ecology 2012 – notice: Copyright Nature Publishing Group May 2012 – notice: Copyright © 2012 International Society for Microbial Ecology 2012 International Society for Microbial Ecology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7ST 7T7 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY SOI 7X8 5PM |
DOI | 10.1038/ismej.2011.168 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Engineering Research Database ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Agriculture |
DocumentTitleAlternate | Relative roles of AOA and AOB in acidic soils |
EISSN | 1751-7370 |
EndPage | 1045 |
ExternalDocumentID | PMC3329103 2635509001 22134644 10_1038_ismej_2011_168 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -Q- 0R~ 123 29J 39C 3V. 4.4 406 53G 70F 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAHBH AANZL AAZLF ABAKF ABAWZ ABDBF ABEJV ABGNP ABJNI ABLJU ABUWG ABXVV ACGFS ACKTT ACPRK ACRQY ACUHS ACZOJ ADBBV ADHDB AEFQL AEJRE AENEX AEUYN AEVLU AEXYK AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AILAN AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMNDL AMYLF AOIJS ASPBG ATCPS AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DNIVK DPUIP DU5 EBS EDH EE. EIOEI EJD EMOBN ESX F5P FDQFY FEDTE FERAY FIZPM FSGXE FYUFA HCIFZ HMCUK HVGLF HYE HZ~ I-F IWAJR JSO KQ8 LK8 M1P M7P MM. NAO NQJWS O9- OK1 PATMY PQQKQ PROAC PSQYO PYCSY RNT RNTTT ROX RPM SNX SNYQT SOHCF SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TOX TR2 TSG TUS UKHRP ~02 ~8M AAYXX ACSTC AYFIA CITATION JZLTJ PHGZM PHGZT CGR CUY CVF ECGQY ECM EIF GROUPED_DOAJ NPM PJZUB PPXIY PQGLB 7QL 7SN 7ST 7T7 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H13 K9. M7N P64 PKEHL PQEST PQUKI PRINS SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c557t-67eb5b696121ba054bddb559c7020e3e060186e4a26ebbd385b1d08732e9a43 |
IEDL.DBID | BENPR |
ISSN | 1751-7362 1751-7370 |
IngestDate | Thu Aug 21 18:14:58 EDT 2025 Sun Aug 24 03:28:35 EDT 2025 Mon Jul 21 09:27:42 EDT 2025 Wed Aug 13 07:17:27 EDT 2025 Mon Jul 21 06:05:26 EDT 2025 Tue Jul 01 01:04:17 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Fri Feb 21 02:39:16 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | ammonia-oxidizing bacteria stable isotope probing dicyandiamide acidic soil nitrification ammonia-oxidizing archaea |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-67eb5b696121ba054bddb559c7020e3e060186e4a26ebbd385b1d08732e9a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 These authors contributed equally to this work. |
OpenAccessLink | https://www.nature.com/articles/ismej2011168.pdf |
PMID | 22134644 |
PQID | 1001018199 |
PQPubID | 536304 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3329103 proquest_miscellaneous_1017959555 proquest_miscellaneous_1002568382 proquest_journals_1001018199 pubmed_primary_22134644 crossref_primary_10_1038_ismej_2011_168 crossref_citationtrail_10_1038_ismej_2011_168 springer_journals_10_1038_ismej_2011_168 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-01 |
PublicationDateYYYYMMDD | 2012-05-01 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | Multidisciplinary Journal of Microbial Ecology |
PublicationTitle | The ISME Journal |
PublicationTitleAbbrev | ISME J |
PublicationTitleAlternate | ISME J |
PublicationYear | 2012 |
Publisher | Nature Publishing Group UK Oxford University Press Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Oxford University Press – name: Nature Publishing Group |
References | Berg, Kockelkorn, Buckel, Fuchs (CR2) 2007; 318 Gubry-Rangin, Nicol, Prosser (CR12) 2010; 74 Xue, Yao, Huang (CR52) 2006; 288 Di, Cameron, Shen, Winefield, O’Callaghan, Bowatte (CR7) 2009; 2 Kettler, Doran, Gilbert (CR22) 2001; 65 Lehtovirta, Prosser, Nicol (CR24) 2009; 70 Tourna, Freitag, Nicol, Prosser (CR42) 2008; 10 Tourna, Stieglmeier, Spang, Könneke, Schintlmeister, Urich (CR43) 2011; 108 Zaman, Blennerhassett (CR55) 2010; 136 Mintie, Heichen, Cromack, Myrold, Bottomley (CR28) 2003; 69 Bollmann, Bar-Gilissen, Laanbroek (CR3) 2002; 68 Leininger, Urich, Schloter, Schwark, Qi, Nicol (CR26) 2006; 442 O’Callaghan, Gerard, Carter, Lardner, Sarathchandra, Burch (CR31) 2010; 42 Schmidt, Hultman, Robinson, Killham, Prosser (CR35) 2007; 61 Schramm, de Beer, Wagner, Amann (CR36) 1998; 64 Jiang, Bakken (CR19) 1999; 30 Walker, de la Torre, Klotz, Urakawa, Pinel, Arp (CR49) 2010; 107 Zacherl, Amberger (CR54) 1990; 22 Delong (CR6) 1992; 89 Xia, Zhang, Zeng, Feng, Weng, Lin (CR51) 2011; 5 Freitag, Chang, Prosser (CR10) 2006; 8 Vitousek, Aber, Howarth, Likens, Matson, Schindler (CR47) 1997; 7 Wallace (CR50) 1994; 25 Spang, Hatzenpichler, Brochier-Armanet, Rattei, Tischler, Spieck (CR37) 2010; 18 Lehtovirta, Stoecker, Vilcinskas, Prosser, Nicol (CR25) 2011; 108 Yao, Gao, Nicol, Campbell, Prosser, Zhang (CR53) 2011; 77 Rotthauwe, Witzel, Liesack (CR34) 1997; 63 Stark, Firestone (CR38) 1996; 28 Vonuexkull, Mutert (CR48) 1995; 171 De Boer, Kowalchuk (CR5) 2001; 33 Tamura, Dudley, Nei, Kumar (CR41) 2007; 24 Griffiths, Whiteley, O’Donnell, Bailey (CR11) 2000; 66 Islam, Chen, White (CR17) 2007; 39 Stopnisek, Gubry-Rangin, Hofferle, Nicol, Mandic-Mulec, Prosser (CR39) 2010; 76 Zhang, Offre, He, Verhamme, Nicol, Prosser (CR56) 2010; 107 Hallam, Mincer, Schleper, Preston, Roberts, Richardson (CR14) 2006; 4 Jia, Conrad (CR18) 2009; 11 Venter, Remington, Heidelberg, Halpern, Rusch, Eisen (CR45) 2004; 304 Brochier-Armanet, Boussau, Gribaldo, Forterre (CR4) 2008; 6 Offre, Prosser, Nicol (CR32) 2009; 70 Amberger (CR1) 1989; 20 Hankinson, Schmidt (CR15) 1988; 54 Valentine (CR44) 2007; 5 Di, Cameron, Shen, Winefield, O’Callaghan, Bowatte (CR8) 2010; 72 Pratscher, Dumont, Conrad (CR33) 2011; 108 He, Shen, Zhang, Zhu, Zheng, Xu (CR16) 2007; 9 Nicol, Schleper (CR30) 2006; 14 Martens-Habbena, Berube, Urakawa, de la Torre, Stahl (CR27) 2009; 461 Suzuki, Dular, Kwok (CR40) 1974; 120 Francis, Roberts, Beman, Santoro, Oakley (CR9) 2005; 102 Verhamme, Prosser, Nicol (CR46) 2011; 5 Guo, Liu, Zhang, Shen, Han, Zhang (CR13) 2010; 327 Nicol, Leininger, Schleper, Prosser (CR29) 2008; 10 Jordan, Cantera, Fenn, Stein (CR20) 2005; 71 Könneke, Bernhard, de la Torre, Walker, Waterbury, Stahl (CR23) 2005; 437 Kemnitz, Kolb, Conrad (CR21) 2007; 60 Suzuki (2024020118235281700_CR40) 1974; 120 Vitousek (2024020118235281700_CR47) 1997; 7 Kettler (2024020118235281700_CR22) 2001; 65 Bollmann (2024020118235281700_CR3) 2002; 68 Griffiths (2024020118235281700_CR11) 2000; 66 Pratscher (2024020118235281700_CR33) 2011; 108 Rotthauwe (2024020118235281700_CR34) 1997; 63 Xue (2024020118235281700_CR52) 2006; 288 De Boer (2024020118235281700_CR5) 2001; 33 Stopnisek (2024020118235281700_CR39) 2010; 76 He (2024020118235281700_CR16) 2007; 9 O’Callaghan (2024020118235281700_CR31) 2010; 42 Lehtovirta (2024020118235281700_CR25) 2011; 108 Könneke (2024020118235281700_CR23) 2005; 437 Martens-Habbena (2024020118235281700_CR27) 2009; 461 Valentine (2024020118235281700_CR44) 2007; 5 Vonuexkull (2024020118235281700_CR48) 1995; 171 Berg (2024020118235281700_CR2) 2007; 318 Di (2024020118235281700_CR7) 2009; 2 Nicol (2024020118235281700_CR29) 2008; 10 Offre (2024020118235281700_CR32) 2009; 70 Delong (2024020118235281700_CR6) 1992; 89 Jordan (2024020118235281700_CR20) 2005; 71 Spang (2024020118235281700_CR37) 2010; 18 Mintie (2024020118235281700_CR28) 2003; 69 Leininger (2024020118235281700_CR26) 2006; 442 Venter (2024020118235281700_CR45) 2004; 304 Jiang (2024020118235281700_CR19) 1999; 30 Tamura (2024020118235281700_CR41) 2007; 24 Wallace (2024020118235281700_CR50) 1994; 25 Walker (2024020118235281700_CR49) 2010; 107 Tourna (2024020118235281700_CR42) 2008; 10 Brochier-Armanet (2024020118235281700_CR4) 2008; 6 Guo (2024020118235281700_CR13) 2010; 327 Islam (2024020118235281700_CR17) 2007; 39 Di (2024020118235281700_CR8) 2010; 72 Hankinson (2024020118235281700_CR15) 1988; 54 Verhamme (2024020118235281700_CR46) 2011; 5 Freitag (2024020118235281700_CR10) 2006; 8 Gubry-Rangin (2024020118235281700_CR12) 2010; 74 Kemnitz (2024020118235281700_CR21) 2007; 60 Tourna (2024020118235281700_CR43) 2011; 108 Nicol (2024020118235281700_CR30) 2006; 14 Yao (2024020118235281700_CR53) 2011; 77 Zaman (2024020118235281700_CR55) 2010; 136 Lehtovirta (2024020118235281700_CR24) 2009; 70 Jia (2024020118235281700_CR18) 2009; 11 Francis (2024020118235281700_CR9) 2005; 102 Stark (2024020118235281700_CR38) 1996; 28 Xia (2024020118235281700_CR51) 2011; 5 Schramm (2024020118235281700_CR36) 1998; 64 Zhang (2024020118235281700_CR56) 2010; 107 Schmidt (2024020118235281700_CR35) 2007; 61 Amberger (2024020118235281700_CR1) 1989; 20 Zacherl (2024020118235281700_CR54) 1990; 22 Hallam (2024020118235281700_CR14) 2006; 4 16603359 - Trends Microbiol. 2006 May;14(5):207-12 19236445 - Environ Microbiol. 2009 Jul;11(7):1658-71 16177789 - Nature. 2005 Sep 22;437(7058):543-6 15640188 - Appl Environ Microbiol. 2005 Jan;71(1):197-206 17334387 - Nat Rev Microbiol. 2007 Apr;5(4):316-23 18325029 - Environ Microbiol. 2008 May;10(5):1357-64 20889787 - Appl Environ Microbiol. 2010 Nov;76(22):7626-34 1608980 - Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685-9 4422399 - J Bacteriol. 1974 Oct;120(1):556-8 16915287 - Nature. 2006 Aug 17;442(7104):806-9 21228892 - ISME J. 2011 Jun;5(6):1067-71 21571885 - Appl Environ Microbiol. 2011 Jul;77(13):4618-25 12324316 - Appl Environ Microbiol. 2002 Oct;68(10):4751-7 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9 18079405 - Science. 2007 Dec 14;318(5857):1782-6 21326337 - ISME J. 2011 Jul;5(7):1226-36 21525411 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8420-5 16584480 - Environ Microbiol. 2006 Apr;8(4):684-96 21368116 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4170-5 21039653 - FEMS Microbiol Ecol. 2010 Dec;74(3):566-74 17391330 - FEMS Microbiol Ecol. 2007 Jun;60(3):442-8 19732147 - FEMS Microbiol Ecol. 2009 Dec;70(3):367-76 10508942 - FEMS Microbiol Ecol. 1999 Oct 1;30(2):171-186 20150447 - Science. 2010 Feb 19;327(5968):1008-10 18707610 - Environ Microbiol. 2008 Nov;10(11):2966-78 20421470 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8818-23 17686032 - Environ Microbiol. 2007 Sep;9(9):2364-74 11097934 - Appl Environ Microbiol. 2000 Dec;66(12):5488-91 20598889 - Trends Microbiol. 2010 Aug;18(8):331-40 17573939 - FEMS Microbiol Ecol. 2007 Aug;61(2):305-16 20855593 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17240-5 12788707 - Appl Environ Microbiol. 2003 Jun;69(6):3129-36 20370827 - FEMS Microbiol Ecol. 2010 Jun;72(3):386-94 16186488 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14683-8 9406389 - Appl Environ Microbiol. 1997 Dec;63(12):4704-12 19656195 - FEMS Microbiol Ecol. 2009 Oct;70(1):99-108 19794413 - Nature. 2009 Oct 15;461(7266):976-9 16533068 - PLoS Biol. 2006 Apr;4(4):e95 15001713 - Science. 2004 Apr 2;304(5667):66-74 18274537 - Nat Rev Microbiol. 2008 Mar;6(3):245-52 21896746 - Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15892-7 16347664 - Appl Environ Microbiol. 1988 Jun;54(6):1536-40 9726900 - Appl Environ Microbiol. 1998 Sep;64(9):3480-5 |
References_xml | – volume: 5 start-page: 1067 year: 2011 end-page: 1071 ident: CR46 article-title: Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms publication-title: ISME J doi: 10.1038/ismej.2010.191 – volume: 288 start-page: 319 year: 2006 end-page: 331 ident: CR52 article-title: Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils publication-title: Plant Soil doi: 10.1007/s11104-006-9123-2 – volume: 54 start-page: 1536 year: 1988 end-page: 1540 ident: CR15 article-title: An acidophilic and a neutrophilic nitrobacter strain isolated from the numerically predominant nitrite-oxidizing population of an acid forest soil publication-title: Appl Environ Microbiol – volume: 69 start-page: 3129 year: 2003 end-page: 3136 ident: CR28 article-title: Ammonia-oxidizing bacteria along meadow-to-forest transects in the oregon cascade mountains publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.6.3129-3136.2003 – volume: 22 start-page: 37 year: 1990 end-page: 44 ident: CR54 article-title: Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thiourea on nitrosomonas-europaea publication-title: Fert Res doi: 10.1007/BF01054805 – volume: 304 start-page: 66 year: 2004 end-page: 74 ident: CR45 article-title: Environmental genome shotgun sequencing of the sargasso sea publication-title: Science doi: 10.1126/science.1093857 – volume: 18 start-page: 331 year: 2010 end-page: 340 ident: CR37 article-title: Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum thaumarchaeota publication-title: Trends Microbiol doi: 10.1016/j.tim.2010.06.003 – volume: 102 start-page: 14683 year: 2005 end-page: 14688 ident: CR9 article-title: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0506625102 – volume: 7 start-page: 737 year: 1997 end-page: 750 ident: CR47 article-title: Human alteration of the global nitrogen cycle: sources and consequences publication-title: Ecol Appl – volume: 136 start-page: 236 year: 2010 end-page: 246 ident: CR55 article-title: Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system publication-title: Agr Ecosyst Environ doi: 10.1016/j.agee.2009.07.010 – volume: 70 start-page: 367 year: 2009 end-page: 376 ident: CR24 article-title: Soil pH regulates the abundance and diversity of group 1.1c crenarchaeota publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2009.00748.x – volume: 442 start-page: 806 year: 2006 end-page: 809 ident: CR26 article-title: Archaea predominate among ammonia-oxidizing prokaryotes in soils publication-title: Nature doi: 10.1038/nature04983 – volume: 5 start-page: 1226 year: 2011 end-page: 1236 ident: CR51 article-title: Autotrophic growth of nitrifying community in an agricultural soil publication-title: ISME J doi: 10.1038/ismej.2011.5 – volume: 77 start-page: 4618 year: 2011 end-page: 4625 ident: CR53 article-title: Links between ammonia oxidizer community structure, abundance and nitrification potential in acidic soils publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00136-11 – volume: 2 start-page: 621 year: 2009 end-page: 624 ident: CR7 article-title: Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils publication-title: Nat Geosci doi: 10.1038/ngeo613 – volume: 5 start-page: 316 year: 2007 end-page: 323 ident: CR44 article-title: Adaptations to energy stress dictate the ecology and evolution of the archaea publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1619 – volume: 28 start-page: 1307 year: 1996 end-page: 1317 ident: CR38 article-title: Kinetic characteristics of ammonium-oxidizer communities in a california oak woodland-annual grassland publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(96)00133-2 – volume: 4 start-page: 520 year: 2006 end-page: 536 ident: CR14 article-title: Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine crenarchaeota publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040095 – volume: 11 start-page: 1658 year: 2009 end-page: 1671 ident: CR18 article-title: Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2009.01891.x – volume: 20 start-page: 1933 year: 1989 end-page: 1955 ident: CR1 article-title: Research on dicyandiamide as a nitrification inhibitor and future outlook publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103628909368195 – volume: 42 start-page: 1425 year: 2010 end-page: 1436 ident: CR31 article-title: Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2010.05.003 – volume: 318 start-page: 1782 year: 2007 end-page: 1786 ident: CR2 article-title: A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea publication-title: Science doi: 10.1126/science.1149976 – volume: 9 start-page: 2364 year: 2007 end-page: 2374 ident: CR16 article-title: Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2007.01358.x – volume: 108 start-page: 8420 year: 2011 end-page: 8425 ident: CR43 article-title: , an ammonia oxidizing archaeon from soil publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1013488108 – volume: 63 start-page: 4704 year: 1997 end-page: 4712 ident: CR34 article-title: The ammonia monooxygenase structural gene as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations publication-title: Appl Environ Microbiol – volume: 89 start-page: 5685 year: 1992 end-page: 5689 ident: CR6 article-title: Archaea in coastal marine environments publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.89.12.5685 – volume: 33 start-page: 853 year: 2001 end-page: 866 ident: CR5 article-title: Nitrification in acid soils: micro-organisms and mechanisms publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(00)00247-9 – volume: 107 start-page: 17240 year: 2010 end-page: 17245 ident: CR56 article-title: Autotrophic ammonia oxidation by soil thaumarchaea publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1004947107 – volume: 327 start-page: 1008 year: 2010 end-page: 1010 ident: CR13 article-title: Significant acidification in major Chinese croplands publication-title: Science doi: 10.1126/science.1182570 – volume: 24 start-page: 1596 year: 2007 end-page: 1599 ident: CR41 article-title: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0 publication-title: Mol Biol Evol doi: 10.1093/molbev/msm092 – volume: 6 start-page: 245 year: 2008 end-page: 252 ident: CR4 article-title: Mesophilic crenarchaeota: proposal for a third archaeal phylum, the thaumarchaeota publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1852 – volume: 74 start-page: 566 year: 2010 end-page: 574 ident: CR12 article-title: Archaea rather than bacteria control nitrification in two agricultural acidic soils publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.00971.x – volume: 39 start-page: 972 year: 2007 end-page: 975 ident: CR17 article-title: Heterotrophic and autotrophic nitrification in two acid pasture soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2006.11.003 – volume: 107 start-page: 8818 year: 2010 end-page: 8823 ident: CR49 article-title: genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0913533107 – volume: 108 start-page: 4170 year: 2011 end-page: 4175 ident: CR33 article-title: Ammonia oxidation coupled to CO fixation by archaea and bacteria in an agricultural soil publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1010981108 – volume: 461 start-page: 976 year: 2009 end-page: 979 ident: CR27 article-title: Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria publication-title: Nature doi: 10.1038/nature08465 – volume: 108 start-page: 15892 year: 2011 end-page: 15897 ident: CR25 article-title: Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1107196108 – volume: 66 start-page: 5488 year: 2000 end-page: 5491 ident: CR11 article-title: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.12.5488-5491.2000 – volume: 68 start-page: 4751 year: 2002 end-page: 4757 ident: CR3 article-title: Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria publication-title: Appl Environ Microbiol doi: 10.1128/AEM.68.10.4751-4757.2002 – volume: 76 start-page: 7626 year: 2010 end-page: 7634 ident: CR39 article-title: Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00595-10 – volume: 120 start-page: 556 year: 1974 end-page: 558 ident: CR40 article-title: Ammonia or ammonium ion as substrate for oxidation by nitrosomonas-europaea cells and extracts publication-title: J Bacteriol – volume: 71 start-page: 197 year: 2005 end-page: 206 ident: CR20 article-title: Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.1.197-206.2005 – volume: 8 start-page: 684 year: 2006 end-page: 696 ident: CR10 article-title: Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2005.00947.x – volume: 65 start-page: 849 year: 2001 end-page: 852 ident: CR22 article-title: Simplified method for soil particle-size determination to accompany soil-quality analyses publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2001.653849x – volume: 14 start-page: 207 year: 2006 end-page: 212 ident: CR30 article-title: Ammonia-oxidising crenarchaeota: important players in the nitrogen cycle? publication-title: Trends Microbiol doi: 10.1016/j.tim.2006.03.004 – volume: 25 start-page: 87 year: 1994 end-page: 92 ident: CR50 article-title: Soil acidification from use of too much fertilizer publication-title: Commun Soil Sci Plan Anal doi: 10.1080/00103629409369010 – volume: 60 start-page: 442 year: 2007 end-page: 448 ident: CR21 article-title: High abundance of crenarchaeota in a temperate acidic forest soil publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00310.x – volume: 72 start-page: 386 year: 2010 end-page: 394 ident: CR8 article-title: Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.00861.x – volume: 10 start-page: 2966 year: 2008 end-page: 2978 ident: CR29 article-title: The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2008.01701.x – volume: 70 start-page: 99 year: 2009 end-page: 108 ident: CR32 article-title: Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2009.00725.x – volume: 30 start-page: 171 year: 1999 end-page: 186 ident: CR19 article-title: Comparison of nitrosospira strains isolated from terrestrial environments publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.1999.tb00646.x – volume: 61 start-page: 305 year: 2007 end-page: 316 ident: CR35 article-title: PCR profiling of ammonia-oxidizer communities in acidic soils subjected to nitrogen and sulphur deposition publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00335.x – volume: 437 start-page: 543 year: 2005 end-page: 546 ident: CR23 article-title: Isolation of an autotrophic ammonia-oxidizing marine archaeon publication-title: Nature doi: 10.1038/nature03911 – volume: 171 start-page: 1 year: 1995 end-page: 15 ident: CR48 article-title: Global extent, development and economic-impact of acid soils publication-title: Plant Soil doi: 10.1007/BF00009558 – volume: 10 start-page: 1357 year: 2008 end-page: 1364 ident: CR42 article-title: Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2007.01563.x – volume: 64 start-page: 3480 year: 1998 end-page: 3485 ident: CR36 article-title: Identification and activities of nitrosospira and nitrospira spp. As dominant populations in a nitrifying fluidized bed reactor publication-title: Appl Environ Microbiol – volume: 6 start-page: 245 year: 2008 ident: 2024020118235281700_CR4 article-title: Mesophilic crenarchaeota: proposal for a third archaeal phylum, the thaumarchaeota publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1852 – volume: 9 start-page: 2364 year: 2007 ident: 2024020118235281700_CR16 article-title: Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2007.01358.x – volume: 136 start-page: 236 year: 2010 ident: 2024020118235281700_CR55 article-title: Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system publication-title: Agr Ecosyst Environ doi: 10.1016/j.agee.2009.07.010 – volume: 107 start-page: 17240 year: 2010 ident: 2024020118235281700_CR56 article-title: Autotrophic ammonia oxidation by soil thaumarchaea publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1004947107 – volume: 70 start-page: 99 year: 2009 ident: 2024020118235281700_CR32 article-title: Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2009.00725.x – volume: 5 start-page: 1226 year: 2011 ident: 2024020118235281700_CR51 article-title: Autotrophic growth of nitrifying community in an agricultural soil publication-title: ISME J doi: 10.1038/ismej.2011.5 – volume: 64 start-page: 3480 year: 1998 ident: 2024020118235281700_CR36 article-title: Identification and activities in situ of nitrosospira and nitrospira spp. As dominant populations in a nitrifying fluidized bed reactor publication-title: Appl Environ Microbiol doi: 10.1128/AEM.64.9.3480-3485.1998 – volume: 71 start-page: 197 year: 2005 ident: 2024020118235281700_CR20 article-title: Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.1.197-206.2005 – volume: 76 start-page: 7626 year: 2010 ident: 2024020118235281700_CR39 article-title: Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00595-10 – volume: 304 start-page: 66 year: 2004 ident: 2024020118235281700_CR45 article-title: Environmental genome shotgun sequencing of the sargasso sea publication-title: Science doi: 10.1126/science.1093857 – volume: 65 start-page: 849 year: 2001 ident: 2024020118235281700_CR22 article-title: Simplified method for soil particle-size determination to accompany soil-quality analyses publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2001.653849x – volume: 54 start-page: 1536 year: 1988 ident: 2024020118235281700_CR15 article-title: An acidophilic and a neutrophilic nitrobacter strain isolated from the numerically predominant nitrite-oxidizing population of an acid forest soil publication-title: Appl Environ Microbiol doi: 10.1128/aem.54.6.1536-1540.1988 – volume: 61 start-page: 305 year: 2007 ident: 2024020118235281700_CR35 article-title: PCR profiling of ammonia-oxidizer communities in acidic soils subjected to nitrogen and sulphur deposition publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00335.x – volume: 5 start-page: 1067 year: 2011 ident: 2024020118235281700_CR46 article-title: Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms publication-title: ISME J doi: 10.1038/ismej.2010.191 – volume: 70 start-page: 367 year: 2009 ident: 2024020118235281700_CR24 article-title: Soil pH regulates the abundance and diversity of group 1.1c crenarchaeota publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2009.00748.x – volume: 25 start-page: 87 year: 1994 ident: 2024020118235281700_CR50 article-title: Soil acidification from use of too much fertilizer publication-title: Commun Soil Sci Plan Anal doi: 10.1080/00103629409369010 – volume: 66 start-page: 5488 year: 2000 ident: 2024020118235281700_CR11 article-title: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.12.5488-5491.2000 – volume: 69 start-page: 3129 year: 2003 ident: 2024020118235281700_CR28 article-title: Ammonia-oxidizing bacteria along meadow-to-forest transects in the oregon cascade mountains publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.6.3129-3136.2003 – volume: 8 start-page: 684 year: 2006 ident: 2024020118235281700_CR10 article-title: Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2005.00947.x – volume: 30 start-page: 171 year: 1999 ident: 2024020118235281700_CR19 article-title: Comparison of nitrosospira strains isolated from terrestrial environments publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.1999.tb00646.x – volume: 28 start-page: 1307 year: 1996 ident: 2024020118235281700_CR38 article-title: Kinetic characteristics of ammonium-oxidizer communities in a california oak woodland-annual grassland publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(96)00133-2 – volume: 10 start-page: 2966 year: 2008 ident: 2024020118235281700_CR29 article-title: The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2008.01701.x – volume: 10 start-page: 1357 year: 2008 ident: 2024020118235281700_CR42 article-title: Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2007.01563.x – volume: 318 start-page: 1782 year: 2007 ident: 2024020118235281700_CR2 article-title: A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea publication-title: Science doi: 10.1126/science.1149976 – volume: 89 start-page: 5685 year: 1992 ident: 2024020118235281700_CR6 article-title: Archaea in coastal marine environments publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.89.12.5685 – volume: 60 start-page: 442 year: 2007 ident: 2024020118235281700_CR21 article-title: High abundance of crenarchaeota in a temperate acidic forest soil publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00310.x – volume: 7 start-page: 737 year: 1997 ident: 2024020118235281700_CR47 article-title: Human alteration of the global nitrogen cycle: sources and consequences publication-title: Ecol Appl – volume: 14 start-page: 207 year: 2006 ident: 2024020118235281700_CR30 article-title: Ammonia-oxidising crenarchaeota: important players in the nitrogen cycle? publication-title: Trends Microbiol doi: 10.1016/j.tim.2006.03.004 – volume: 77 start-page: 4618 year: 2011 ident: 2024020118235281700_CR53 article-title: Links between ammonia oxidizer community structure, abundance and nitrification potential in acidic soils publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00136-11 – volume: 33 start-page: 853 year: 2001 ident: 2024020118235281700_CR5 article-title: Nitrification in acid soils: micro-organisms and mechanisms publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(00)00247-9 – volume: 108 start-page: 4170 year: 2011 ident: 2024020118235281700_CR33 article-title: Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1010981108 – volume: 437 start-page: 543 year: 2005 ident: 2024020118235281700_CR23 article-title: Isolation of an autotrophic ammonia-oxidizing marine archaeon publication-title: Nature doi: 10.1038/nature03911 – volume: 24 start-page: 1596 year: 2007 ident: 2024020118235281700_CR41 article-title: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0 publication-title: Mol Biol Evol doi: 10.1093/molbev/msm092 – volume: 74 start-page: 566 year: 2010 ident: 2024020118235281700_CR12 article-title: Archaea rather than bacteria control nitrification in two agricultural acidic soils publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.00971.x – volume: 120 start-page: 556 year: 1974 ident: 2024020118235281700_CR40 article-title: Ammonia or ammonium ion as substrate for oxidation by nitrosomonas-europaea cells and extracts publication-title: J Bacteriol doi: 10.1128/jb.120.1.556-558.1974 – volume: 171 start-page: 1 year: 1995 ident: 2024020118235281700_CR48 article-title: Global extent, development and economic-impact of acid soils publication-title: Plant Soil doi: 10.1007/BF00009558 – volume: 11 start-page: 1658 year: 2009 ident: 2024020118235281700_CR18 article-title: Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2009.01891.x – volume: 327 start-page: 1008 year: 2010 ident: 2024020118235281700_CR13 article-title: Significant acidification in major Chinese croplands publication-title: Science doi: 10.1126/science.1182570 – volume: 108 start-page: 15892 year: 2011 ident: 2024020118235281700_CR25 article-title: Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1107196108 – volume: 39 start-page: 972 year: 2007 ident: 2024020118235281700_CR17 article-title: Heterotrophic and autotrophic nitrification in two acid pasture soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2006.11.003 – volume: 102 start-page: 14683 year: 2005 ident: 2024020118235281700_CR9 article-title: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0506625102 – volume: 2 start-page: 621 year: 2009 ident: 2024020118235281700_CR7 article-title: Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils publication-title: Nat Geosci doi: 10.1038/ngeo613 – volume: 63 start-page: 4704 year: 1997 ident: 2024020118235281700_CR34 article-title: The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations publication-title: Appl Environ Microbiol doi: 10.1128/aem.63.12.4704-4712.1997 – volume: 22 start-page: 37 year: 1990 ident: 2024020118235281700_CR54 article-title: Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thiourea on nitrosomonas-europaea publication-title: Fert Res doi: 10.1007/BF01054805 – volume: 72 start-page: 386 year: 2010 ident: 2024020118235281700_CR8 article-title: Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.00861.x – volume: 20 start-page: 1933 year: 1989 ident: 2024020118235281700_CR1 article-title: Research on dicyandiamide as a nitrification inhibitor and future outlook publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103628909368195 – volume: 442 start-page: 806 year: 2006 ident: 2024020118235281700_CR26 article-title: Archaea predominate among ammonia-oxidizing prokaryotes in soils publication-title: Nature doi: 10.1038/nature04983 – volume: 42 start-page: 1425 year: 2010 ident: 2024020118235281700_CR31 article-title: Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2010.05.003 – volume: 18 start-page: 331 year: 2010 ident: 2024020118235281700_CR37 article-title: Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum thaumarchaeota publication-title: Trends Microbiol doi: 10.1016/j.tim.2010.06.003 – volume: 461 start-page: 976 year: 2009 ident: 2024020118235281700_CR27 article-title: Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria publication-title: Nature doi: 10.1038/nature08465 – volume: 108 start-page: 8420 year: 2011 ident: 2024020118235281700_CR43 article-title: Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1013488108 – volume: 4 start-page: 520 year: 2006 ident: 2024020118235281700_CR14 article-title: Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine crenarchaeota publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040095 – volume: 107 start-page: 8818 year: 2010 ident: 2024020118235281700_CR49 article-title: Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0913533107 – volume: 288 start-page: 319 year: 2006 ident: 2024020118235281700_CR52 article-title: Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils publication-title: Plant Soil doi: 10.1007/s11104-006-9123-2 – volume: 5 start-page: 316 year: 2007 ident: 2024020118235281700_CR44 article-title: Adaptations to energy stress dictate the ecology and evolution of the archaea publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1619 – volume: 68 start-page: 4751 year: 2002 ident: 2024020118235281700_CR3 article-title: Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria publication-title: Appl Environ Microbiol doi: 10.1128/AEM.68.10.4751-4757.2002 – reference: 17686032 - Environ Microbiol. 2007 Sep;9(9):2364-74 – reference: 16533068 - PLoS Biol. 2006 Apr;4(4):e95 – reference: 21228892 - ISME J. 2011 Jun;5(6):1067-71 – reference: 16186488 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14683-8 – reference: 10508942 - FEMS Microbiol Ecol. 1999 Oct 1;30(2):171-186 – reference: 18325029 - Environ Microbiol. 2008 May;10(5):1357-64 – reference: 15640188 - Appl Environ Microbiol. 2005 Jan;71(1):197-206 – reference: 21571885 - Appl Environ Microbiol. 2011 Jul;77(13):4618-25 – reference: 19656195 - FEMS Microbiol Ecol. 2009 Oct;70(1):99-108 – reference: 19236445 - Environ Microbiol. 2009 Jul;11(7):1658-71 – reference: 20889787 - Appl Environ Microbiol. 2010 Nov;76(22):7626-34 – reference: 12788707 - Appl Environ Microbiol. 2003 Jun;69(6):3129-36 – reference: 16347664 - Appl Environ Microbiol. 1988 Jun;54(6):1536-40 – reference: 16177789 - Nature. 2005 Sep 22;437(7058):543-6 – reference: 16915287 - Nature. 2006 Aug 17;442(7104):806-9 – reference: 20598889 - Trends Microbiol. 2010 Aug;18(8):331-40 – reference: 18707610 - Environ Microbiol. 2008 Nov;10(11):2966-78 – reference: 4422399 - J Bacteriol. 1974 Oct;120(1):556-8 – reference: 17391330 - FEMS Microbiol Ecol. 2007 Jun;60(3):442-8 – reference: 21896746 - Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15892-7 – reference: 9406389 - Appl Environ Microbiol. 1997 Dec;63(12):4704-12 – reference: 11097934 - Appl Environ Microbiol. 2000 Dec;66(12):5488-91 – reference: 12324316 - Appl Environ Microbiol. 2002 Oct;68(10):4751-7 – reference: 16603359 - Trends Microbiol. 2006 May;14(5):207-12 – reference: 18079405 - Science. 2007 Dec 14;318(5857):1782-6 – reference: 17334387 - Nat Rev Microbiol. 2007 Apr;5(4):316-23 – reference: 19794413 - Nature. 2009 Oct 15;461(7266):976-9 – reference: 1608980 - Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685-9 – reference: 21368116 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4170-5 – reference: 21525411 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8420-5 – reference: 16584480 - Environ Microbiol. 2006 Apr;8(4):684-96 – reference: 20370827 - FEMS Microbiol Ecol. 2010 Jun;72(3):386-94 – reference: 15001713 - Science. 2004 Apr 2;304(5667):66-74 – reference: 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9 – reference: 20855593 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17240-5 – reference: 20150447 - Science. 2010 Feb 19;327(5968):1008-10 – reference: 19732147 - FEMS Microbiol Ecol. 2009 Dec;70(3):367-76 – reference: 21326337 - ISME J. 2011 Jul;5(7):1226-36 – reference: 21039653 - FEMS Microbiol Ecol. 2010 Dec;74(3):566-74 – reference: 20421470 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8818-23 – reference: 9726900 - Appl Environ Microbiol. 1998 Sep;64(9):3480-5 – reference: 17573939 - FEMS Microbiol Ecol. 2007 Aug;61(2):305-16 – reference: 18274537 - Nat Rev Microbiol. 2008 Mar;6(3):245-52 |
SSID | ssj0057667 |
Score | 2.5611622 |
Snippet | Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1032 |
SubjectTerms | Abundance Acidic soils Agriculture Ammonia Ammonia - metabolism ammonia-oxidizing bacteria Ammonium amoA gene Archaea Archaea - classification Archaea - genetics Archaea - metabolism Autotrophic Processes Bacteria Bacteria - classification Bacteria - genetics Bacteria - metabolism Biomedical and Life Sciences Carbon dioxide Carbon dioxide fixation Carbon Isotopes - analysis Carbon sources China Denaturing Gradient Gel Electrophoresis Deoxyribonucleic acid DNA Ecology Electrophoresis Evolutionary Biology Gel electrophoresis Guanidines - chemistry Isotopes Life Sciences Microbial Ecology Microbial Genetics and Genomics Microbiology Microcosms Nitrate Nitrates Nitrification Nitrogen Cycle Original original-article Oxidation Oxidation-Reduction Phylogeny rRNA 16S Soil Soil - chemistry Soil Microbiology Soils (acid) Stable isotopes |
Title | Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils |
URI | https://link.springer.com/article/10.1038/ismej.2011.168 https://www.ncbi.nlm.nih.gov/pubmed/22134644 https://www.proquest.com/docview/1001018199 https://www.proquest.com/docview/1002568382 https://www.proquest.com/docview/1017959555 https://pubmed.ncbi.nlm.nih.gov/PMC3329103 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RrZC4VLxJKZWRkOBiNbGT2DmhglpVSFSIh7S3yK_QoG3SNltEe-pPZ-w8aFnoeSaWnbHHn2dG3wC8kk6ylNuKIlZOaep4RXWFQC7WjutCsyoN9MUfD_ODb-mHeTYfAm7dUFY5-sTgqG1rfIx8JwlsaHh_FW9PTqnvGuWzq0MLjTVYRxcssxmsv9s7_PR59MUIpkMPWbwjEyrQV4-0jVzu1N2x-9FzeCaeaPX6tbSCNVdLJv_Km4braP8-bAw4kuz2hn8Ad1zzEO72nSUvHsHVrp9wrWj7q7b1JQ5BAiuSU-RI_XTEl9eS-jiA72ZJfI0h8UF0ola-0z2fsyL1JCVeGkxK2op0Ppr-fXFBlMFvDOnaetE9hi_7e1_fH9Ch2QI1WSaWNBdOZzovPKOYVgjktLUanxtGIKB03HneFpm7VLHcaW25zHRiYyk4c4VK-ROYNW3jngHBN05urImZToo0sYnmtsDB4lgJrnMjIqDjny7NwEPu22EsypAP57IMlim9ZUq0TASvJ_2TnoHjv5pbo-HK4SR25Z99E8HLSYxnyCdGVOPa86CDyE9yyW7TSXxb9izLInja74VpOszT4iGwjEDc2CWTgufwvilp6qPA5c05Q8DGI3gz7qfrU__XKjdvX-VzuIearK_J3ILZ8uzcvUDctNTbsCbmYns4Ir8BJaIbzw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgguiDcpBYwEgovVxM7DOSBUoNWWtisEReqpkR07NNU2KWQLLCd-ED-SsfOgZaG3nj227MyM57M9-QbgiTCChVwXFLFySEPDC6oKBHK-MlylihWhoy_eGcejj-HbvWhvAX71_8LYtMp-T3Qbta5ze0e-Gjg2NIxf6cvjz9RWjbKvq30JjdYstszsGx7Zmhebb1C_TxnbWN99PaJdVQGaR1EypXFiVKTi1FJnKYmIRWmtEFfnCSInw40lKBGxCSWLjVKai0gF2hcJZyaVIcdRL8ESgowUfWjp1fr43ft-50fo7irWYkQOaIKRoSeJ5GK1bI7MYcsYGlha19NBcA7Zzido_vVK64LfxnW41qFWstaa2Q1YMNVNuNzWsZzdgp9r9vOUktbfS13-wCGI42AykhzIr4bYZF5SHjmoX02JzWgk9sqeyLl-qmWPlqQcWoltdQZE6oI09u7-02RGZI59ctLU5aS5DR8uQAl3YLGqK3MPCJ6o4lznPlNBGgY6UFynOJjvy4SrOE88oP2XzvKO9dwW35hk7vWdi8xpJrOayVAzHjwb5I9bvo__Sq70iss6v2-yP1bqweOhGT3WPsPIytQnTgZxpuCCnScT2CLwURR5cLe1hWE6zJLwIYz1IDljJYOAZQw_21KVB445nHOG8JB78Ly3p9NT_9cql89f5SO4Mtrd2c62N8db9-Eq9mIuGzRegcXplxPzABHbVD3sHIXA_sV65m9ieFXy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEgou1iZ2Hc0Co0K5aCquKh9QTkR07NGibFLIFlhM_i5_H2HnQstBbzx5bdmbs-eyZfAPwUBjBQq4Lilg5pKHhBVUFAjlfGa5SxYrQ0Re_nsZb78OXe9HeCvzq_4WxaZX9megOal3n9o18HDg2NPRf6bjo0iJ2NybPDj9TW0HKRlr7chqtieyYxTe8vjVPtzdQ148Ym2y-e7FFuwoDNI-iZE7jxKhIxaml0VIS0YvSWiHGzhNEUYYbS1YiYhNKFhulNBeRCrQvEs5MKkOOo56D1QR9ohjB6vPN6e6b3gsgjHfVa9E7BzRBL9ETRnIxLpsD86llDw0sxetxh7iEcpeTNf-K2DpHOLkMlzoES9Zbk7sCK6a6CufbmpaLa_Bz3X6eUtL6e6nLHzgEcXxMRpJ9-dUQm9hLygMH-6s5sdmNxD7fE7nUT7VM0pKUQyuxrc6YSF2Qxr7jf5wtiMyxT06aupw11-HtGSjhBoyqujK3gODtKs517jMVpGGgA8V1ioP5vky4ivPEA9p_6SzvGNBtIY5Z5iLxXGROM5nVTIaa8eDxIH_Ycn_8V3KtV1zWnQFN9sdiPXgwNOPutSEZWZn6yMkg5hRcsNNkAlsQPooiD262tjBMh1lCPoS0HiQnrGQQsOzhJ1uqct-xiHPOECpyD5709nR86v9a5e3TV3kfLuCOzF5tT3fuwEXsxNqo2xqM5l-OzF0Eb3N1r9snBD6c7cb8DQIJWho |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ammonia-oxidizing+archaea+have+more+important+role+than+ammonia-oxidizing+bacteria+in+ammonia+oxidation+of+strongly+acidic+soils&rft.jtitle=The+ISME+Journal&rft.au=Zhang%2C+Li-Mei&rft.au=Hu%2C+Hang-Wei&rft.au=Shen%2C+Ju-Pei&rft.au=He%2C+Ji-Zheng&rft.date=2012-05-01&rft.issn=1751-7362&rft.eissn=1751-7370&rft.volume=6&rft.issue=5&rft.spage=1032&rft.epage=1045&rft_id=info:doi/10.1038%2Fismej.2011.168&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_ismej_2011_168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7362&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7362&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7362&client=summon |