Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils

Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-li...

Full description

Saved in:
Bibliographic Details
Published inThe ISME Journal Vol. 6; no. 5; pp. 1032 - 1045
Main Authors Zhang, Li-Mei, Hu, Hang-Wei, Shen, Ju-Pei, He, Ji-Zheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2012
Oxford University Press
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1751-7362
1751-7370
1751-7370
DOI10.1038/ismej.2011.168

Cover

Loading…
Abstract Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13 CO 2 -DNA-stable isotope probing results showed significant assimilation of 13 C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO 2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13 CO 2 -labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.
AbstractList Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. (13)CO(2)-DNA-stable isotope probing results showed significant assimilation of (13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. (13)CO(2)-DNA-stable isotope probing results showed significant assimilation of (13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.
Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13 CO 2 -DNA-stable isotope probing results showed significant assimilation of 13 C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO 2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13 CO 2 -labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.
Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13CO2-DNA-stable isotope probing results showed significant assimilation of 13C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13CO2-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.
Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. super(13)CO sub(2)-DNA-stable isotope probing results showed significant assimilation of super(13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO sub(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active super(13)CO sub(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.
Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. (13)CO(2)-DNA-stable isotope probing results showed significant assimilation of (13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.
Author Hu, Hang-Wei
He, Ji-Zheng
Zhang, Li-Mei
Shen, Ju-Pei
Author_xml – sequence: 1
  givenname: Li-Mei
  surname: Zhang
  fullname: Zhang, Li-Mei
  organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
– sequence: 2
  givenname: Hang-Wei
  surname: Hu
  fullname: Hu, Hang-Wei
  organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Graduate School, Chinese Academy of Sciences
– sequence: 3
  givenname: Ju-Pei
  surname: Shen
  fullname: Shen, Ju-Pei
  organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
– sequence: 4
  givenname: Ji-Zheng
  surname: He
  fullname: He, Ji-Zheng
  email: jzhe@rcees.ac.cn
  organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22134644$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvEzEUhS1URB-wZYkssWGT1I-xPbNBqipeUiUWsLfueG4SRzN2sJ2qZcVPx2lKVApIrGzpfufoPs4pOQoxICEvOZtzJttznydczwXjfM51-4SccKP4zEjDjg5_LY7Jac5rxpTR2jwjx0Jw2eimOSE_LqYpBg-zeOMH_92HJYXkVoBAV3CNdIoJqZ82MRUIhaY4Ii0rCBT-0PXgCiYP1B-qdFeF4mOgcUFzSTEsx1sKrmoczdGP-Tl5uoAx44v794x8ef_u6-XH2dXnD58uL65mTilTZtpgr3rdaS54D0w1_TD0SnXOMMFQItOMtxobEBr7fpCt6vnAWiMFdtDIM_J277rZ9hMODkNJMNpN8hOkWxvB298rwa_sMl5bKUVXF10N3twbpPhti7nYyWeH4wgB4zZbzrjpVKeU-g-UCaVb2YqKvn6EruM2hbqHHVU9W951lXr1sPlD17-uWIH5HnAp5pxwcUA4s7uY2LuY2F1MbI1JFTSPBM6XuzvV4f34b9n5Xparf1hietjuXxU_AdLA1EY
CitedBy_id crossref_primary_10_1007_s00253_015_6986_2
crossref_primary_10_1007_s00284_016_1142_5
crossref_primary_10_1016_j_apsoil_2025_105885
crossref_primary_10_1111_1574_6968_12164
crossref_primary_10_1264_jsme2_ME22035
crossref_primary_10_1007_s00253_017_8318_1
crossref_primary_10_1007_s11368_013_0704_4
crossref_primary_10_1016_j_apsoil_2017_10_029
crossref_primary_10_1016_j_scitotenv_2020_143653
crossref_primary_10_1186_s13213_020_01619_z
crossref_primary_10_1007_s42729_024_01945_0
crossref_primary_10_1016_j_chemosphere_2017_10_067
crossref_primary_10_1016_j_jenvman_2023_118119
crossref_primary_10_1016_j_apsoil_2025_105890
crossref_primary_10_1128_AEM_00254_13
crossref_primary_10_1016_j_jenvman_2016_09_069
crossref_primary_10_1007_s11368_018_2188_8
crossref_primary_10_1016_j_chemosphere_2020_129248
crossref_primary_10_1016_S2095_3119_15_61230_8
crossref_primary_10_1007_s11104_022_05474_6
crossref_primary_10_1007_s13213_014_0929_5
crossref_primary_10_1016_j_geoderma_2019_113979
crossref_primary_10_1007_s11274_016_2042_3
crossref_primary_10_1016_j_apsoil_2022_104723
crossref_primary_10_1186_s40538_024_00704_8
crossref_primary_10_1093_femsre_fuaa037
crossref_primary_10_1007_s11368_016_1403_8
crossref_primary_10_1007_s11368_023_03704_7
crossref_primary_10_1016_j_ejsobi_2021_103354
crossref_primary_10_1016_j_scitotenv_2020_141340
crossref_primary_10_1016_j_scitotenv_2020_140494
crossref_primary_10_1039_C6RA13066F
crossref_primary_10_1002_jobm_202000485
crossref_primary_10_1007_s11368_014_0872_x
crossref_primary_10_1016_j_envpol_2021_117558
crossref_primary_10_1038_ismej_2013_35
crossref_primary_10_1007_s10533_020_00672_9
crossref_primary_10_3389_fmicb_2017_02226
crossref_primary_10_1038_s41598_018_20044_6
crossref_primary_10_1007_s42832_019_0016_8
crossref_primary_10_1016_j_jhazmat_2021_127944
crossref_primary_10_1016_j_apsoil_2024_105468
crossref_primary_10_1111_ejss_13553
crossref_primary_10_1080_03036758_2017_1354894
crossref_primary_10_1111_1462_2920_14063
crossref_primary_10_1016_j_scitotenv_2018_03_108
crossref_primary_10_1016_j_soilbio_2020_107863
crossref_primary_10_3389_fmicb_2022_911799
crossref_primary_10_1016_j_jenvman_2024_120504
crossref_primary_10_1007_s11368_019_02479_0
crossref_primary_10_1007_s00248_021_01746_3
crossref_primary_10_3389_fmicb_2016_01638
crossref_primary_10_4141_cjss_2015_040
crossref_primary_10_1128_AEM_00426_15
crossref_primary_10_3389_fmicb_2021_659079
crossref_primary_10_1016_j_envpol_2021_116696
crossref_primary_10_3390_land13081310
crossref_primary_10_1007_s00374_016_1151_3
crossref_primary_10_1007_s11356_020_10928_4
crossref_primary_10_1016_j_ejsobi_2014_03_005
crossref_primary_10_1007_s10482_015_0627_8
crossref_primary_10_1111_1462_2920_15161
crossref_primary_10_1128_aem_00070_24
crossref_primary_10_1042_EBC20220194
crossref_primary_10_1038_srep23747
crossref_primary_10_1515_biol_2022_0010
crossref_primary_10_1016_j_ejsobi_2013_10_003
crossref_primary_10_1016_j_chemosphere_2017_02_075
crossref_primary_10_1016_j_biortech_2018_02_012
crossref_primary_10_1007_s12038_019_9928_9
crossref_primary_10_1007_s11104_024_07189_2
crossref_primary_10_3390_plants11010112
crossref_primary_10_3389_fmicb_2018_00634
crossref_primary_10_1016_j_chemgeo_2025_122714
crossref_primary_10_1007_s11676_017_0484_6
crossref_primary_10_1007_s11368_013_0726_y
crossref_primary_10_3390_nitrogen3030031
crossref_primary_10_1007_s00248_022_01997_8
crossref_primary_10_1016_j_scitotenv_2020_142521
crossref_primary_10_1016_j_soilbio_2016_02_005
crossref_primary_10_1007_s00248_017_1045_4
crossref_primary_10_1016_j_scitotenv_2017_12_096
crossref_primary_10_1016_j_wse_2023_11_005
crossref_primary_10_1128_AEM_03633_13
crossref_primary_10_1007_s11368_015_1302_4
crossref_primary_10_1007_s00253_016_7502_z
crossref_primary_10_1007_s00374_016_1154_0
crossref_primary_10_1016_j_scitotenv_2018_08_432
crossref_primary_10_1007_s00374_014_0897_8
crossref_primary_10_1038_s41598_021_93898_y
crossref_primary_10_1016_j_apsoil_2017_09_041
crossref_primary_10_1029_2019JG005477
crossref_primary_10_1007_s11104_018_3626_5
crossref_primary_10_1016_j_ejrh_2024_101940
crossref_primary_10_1016_j_jes_2020_09_029
crossref_primary_10_1016_j_jhydrol_2024_131741
crossref_primary_10_1021_acs_est_5b00838
crossref_primary_10_1590_1678_992x_2018_0370
crossref_primary_10_1007_s11368_016_1390_9
crossref_primary_10_1007_s11368_018_2155_4
crossref_primary_10_1111_1365_2664_13964
crossref_primary_10_1016_j_soilbio_2017_04_007
crossref_primary_10_1016_j_chemosphere_2019_06_038
crossref_primary_10_1007_s11104_012_1450_x
crossref_primary_10_1080_01490451_2014_925013
crossref_primary_10_1016_j_scitotenv_2021_148470
crossref_primary_10_1371_journal_pone_0132879
crossref_primary_10_1007_s11368_016_1525_z
crossref_primary_10_1111_ejss_13112
crossref_primary_10_1111_nph_17125
crossref_primary_10_1371_journal_pone_0133763
crossref_primary_10_1007_s11104_018_3845_9
crossref_primary_10_3354_ame01712
crossref_primary_10_1021_acsestengg_4c00525
crossref_primary_10_1007_s00374_017_1244_7
crossref_primary_10_1128_AEM_01430_18
crossref_primary_10_1111_1462_2920_15192
crossref_primary_10_1016_j_watres_2024_122969
crossref_primary_10_1016_j_jes_2020_09_039
crossref_primary_10_1038_s41598_020_67528_y
crossref_primary_10_1128_msystems_00309_20
crossref_primary_10_1007_s11104_019_04164_0
crossref_primary_10_1021_acsagscitech_3c00506
crossref_primary_10_1007_s00374_015_1086_0
crossref_primary_10_1016_j_scitotenv_2019_135236
crossref_primary_10_1007_s00374_016_1131_7
crossref_primary_10_1016_j_scitotenv_2018_04_104
crossref_primary_10_1016_j_scitotenv_2021_151645
crossref_primary_10_1016_j_chemosphere_2022_137585
crossref_primary_10_1128_AEM_01960_12
crossref_primary_10_3390_agronomy13082108
crossref_primary_10_1007_s00253_014_5942_x
crossref_primary_10_1016_j_agee_2024_108950
crossref_primary_10_3389_fmicb_2017_02136
crossref_primary_10_1016_j_scitotenv_2019_06_128
crossref_primary_10_1007_s00253_018_8865_0
crossref_primary_10_1080_00380768_2015_1023687
crossref_primary_10_1007_s11368_014_0902_8
crossref_primary_10_1016_j_ecoenv_2018_09_042
crossref_primary_10_1093_femsec_fiw023
crossref_primary_10_1016_j_apsoil_2018_12_005
crossref_primary_10_1007_s00374_024_01812_1
crossref_primary_10_1016_j_geoderma_2020_114486
crossref_primary_10_1016_j_ibiod_2018_06_021
crossref_primary_10_1016_j_scitotenv_2020_141317
crossref_primary_10_1002_jeq2_20440
crossref_primary_10_1016_j_soilbio_2017_10_024
crossref_primary_10_1016_j_soilbio_2017_10_023
crossref_primary_10_1002_ldr_4434
crossref_primary_10_1007_s11368_016_1633_9
crossref_primary_10_1016_j_watres_2020_116798
crossref_primary_10_1007_s00253_015_6462_z
crossref_primary_10_1016_j_ejsobi_2016_01_008
crossref_primary_10_1002_jobm_201800581
crossref_primary_10_3390_su13179606
crossref_primary_10_1007_s00374_021_01584_y
crossref_primary_10_1111_1462_2920_14246
crossref_primary_10_1016_j_scitotenv_2024_171048
crossref_primary_10_1264_jsme2_ME14137
crossref_primary_10_1007_s11368_018_2075_3
crossref_primary_10_1016_j_chemosphere_2024_142753
crossref_primary_10_1007_s00374_021_01606_9
crossref_primary_10_1016_j_biortech_2019_121914
crossref_primary_10_1016_j_soilbio_2019_01_006
crossref_primary_10_1016_j_geoderma_2023_116592
crossref_primary_10_1071_SR20264
crossref_primary_10_1016_j_chemosphere_2019_125399
crossref_primary_10_1016_j_soilbio_2022_108655
crossref_primary_10_1016_j_soilbio_2016_11_005
crossref_primary_10_1016_j_soilbio_2017_05_015
crossref_primary_10_1021_acs_est_0c00915
crossref_primary_10_1007_s00253_013_5213_2
crossref_primary_10_1007_s11368_018_2185_y
crossref_primary_10_3390_ijerph192316030
crossref_primary_10_1007_s11368_014_0968_3
crossref_primary_10_1128_AEM_00543_13
crossref_primary_10_1080_03650340_2022_2025588
crossref_primary_10_1016_j_apsoil_2024_105655
crossref_primary_10_1007_s00248_017_1118_4
crossref_primary_10_1007_s11368_018_2109_x
crossref_primary_10_1111_1462_2920_13282
crossref_primary_10_1016_j_jenvman_2023_118996
crossref_primary_10_1111_1462_2920_12071
crossref_primary_10_1002_jsfa_10719
crossref_primary_10_1016_j_geoderma_2022_116087
crossref_primary_10_1038_s41598_022_26293_w
crossref_primary_10_1016_j_envpol_2022_120731
crossref_primary_10_1016_j_geoderma_2020_114223
crossref_primary_10_1016_j_still_2023_105821
crossref_primary_10_3390_agronomy12020294
crossref_primary_10_1007_s10661_014_3678_9
crossref_primary_10_1038_srep11146
crossref_primary_10_1016_j_soilbio_2020_107795
crossref_primary_10_1016_j_scitotenv_2013_05_070
crossref_primary_10_1016_j_scitotenv_2020_137248
crossref_primary_10_1016_j_soilbio_2017_05_001
crossref_primary_10_1111_1462_2920_15348
crossref_primary_10_3390_agronomy13061603
crossref_primary_10_1016_j_wroa_2025_100317
crossref_primary_10_1080_09064710_2015_1039054
crossref_primary_10_3389_fmicb_2022_913453
crossref_primary_10_1111_1574_6941_12340
crossref_primary_10_1016_j_apsoil_2013_03_006
crossref_primary_10_1016_j_cej_2023_144318
crossref_primary_10_1016_j_scitotenv_2018_01_132
crossref_primary_10_1007_s11431_024_2760_0
crossref_primary_10_7717_peerj_14088
crossref_primary_10_1007_s11104_014_2107_8
crossref_primary_10_1002_jobm_201200671
crossref_primary_10_1021_acs_est_5b00506
crossref_primary_10_3390_su152316529
crossref_primary_10_1016_j_jenvman_2022_117143
crossref_primary_10_1016_j_soilbio_2016_03_002
crossref_primary_10_1016_j_still_2025_106450
crossref_primary_10_1016_j_wroa_2025_100308
crossref_primary_10_3389_fmicb_2018_00885
crossref_primary_10_3390_su16135791
crossref_primary_10_3389_fmicb_2022_952967
crossref_primary_10_1007_s11368_017_1846_6
crossref_primary_10_1111_1574_6941_12336
crossref_primary_10_1080_00380768_2021_2021784
crossref_primary_10_1111_gcbb_12519
crossref_primary_10_1128_mBio_01870_19
crossref_primary_10_1016_j_soilbio_2016_12_029
crossref_primary_10_1016_j_soilbio_2015_02_034
crossref_primary_10_1007_s00253_013_4765_5
crossref_primary_10_1007_s00374_013_0857_8
crossref_primary_10_1007_s00253_014_6188_3
crossref_primary_10_1016_j_scitotenv_2023_165532
crossref_primary_10_1016_j_jenvman_2023_119738
crossref_primary_10_1007_s00374_016_1121_9
crossref_primary_10_1111_1462_2920_14238
crossref_primary_10_1007_s00374_016_1167_8
crossref_primary_10_1016_j_scitotenv_2021_145470
crossref_primary_10_1016_j_soilbio_2017_06_027
crossref_primary_10_1128_AEM_01031_18
crossref_primary_10_1007_s00374_017_1249_2
crossref_primary_10_1016_j_soilbio_2017_06_024
crossref_primary_10_1007_s00248_022_02110_9
crossref_primary_10_1128_spectrum_02403_21
crossref_primary_10_1016_j_scitotenv_2021_146328
crossref_primary_10_1007_s00284_025_04168_3
crossref_primary_10_1016_j_geoderma_2022_116032
crossref_primary_10_1016_j_ejsobi_2020_103263
crossref_primary_10_7717_peerj_6497
crossref_primary_10_1080_01490451_2013_797523
crossref_primary_10_1016_j_soilbio_2016_04_012
crossref_primary_10_1007_s00248_016_0890_x
crossref_primary_10_1016_j_scitotenv_2023_166451
crossref_primary_10_1128_AEM_01031_16
crossref_primary_10_1111_ejss_12557
crossref_primary_10_1016_j_cej_2022_140172
crossref_primary_10_1016_j_envres_2021_111802
crossref_primary_10_1007_s11356_021_16887_8
crossref_primary_10_1111_1462_2920_16347
crossref_primary_10_1007_s00248_017_1098_4
crossref_primary_10_1007_s11368_015_1074_x
crossref_primary_10_3389_fmicb_2015_01567
crossref_primary_10_3389_fmicb_2019_02518
crossref_primary_10_1016_j_apsoil_2025_105955
crossref_primary_10_1111_1574_6941_12316
crossref_primary_10_1016_j_soilbio_2015_02_013
crossref_primary_10_3390_microorganisms10030540
crossref_primary_10_1007_s11368_017_1792_3
crossref_primary_10_1007_s11104_021_05021_9
crossref_primary_10_1007_s11368_018_1925_3
crossref_primary_10_1016_j_eja_2023_127041
crossref_primary_10_1016_j_agee_2018_06_025
crossref_primary_10_1111_geb_13616
crossref_primary_10_1007_s11368_015_1064_z
crossref_primary_10_1007_s00253_015_6488_2
crossref_primary_10_1007_s11368_015_1086_6
crossref_primary_10_3389_fmicb_2015_01350
crossref_primary_10_1016_j_soilbio_2012_06_006
crossref_primary_10_1016_j_soilbio_2017_06_001
crossref_primary_10_3390_agronomy13010010
crossref_primary_10_1007_s11368_014_0910_8
crossref_primary_10_1016_j_apsoil_2024_105309
crossref_primary_10_1016_j_ejsobi_2017_09_005
crossref_primary_10_1007_s11368_013_0843_7
crossref_primary_10_1016_j_ecoleng_2015_12_023
crossref_primary_10_1631_jzus_B1400114
crossref_primary_10_1007_s10499_023_01317_y
crossref_primary_10_1016_j_ecoenv_2018_06_030
crossref_primary_10_1016_j_geoderma_2020_114637
crossref_primary_10_1016_j_scitotenv_2020_138563
crossref_primary_10_1007_s10533_021_00830_7
crossref_primary_10_1016_S1002_0160_18_60055_4
crossref_primary_10_1016_j_soilbio_2018_07_004
crossref_primary_10_1007_s00248_014_0391_8
crossref_primary_10_1007_s00253_016_7506_8
crossref_primary_10_1016_j_apsoil_2024_105673
crossref_primary_10_1016_j_ejsobi_2018_02_002
crossref_primary_10_3389_fpls_2021_640789
crossref_primary_10_3389_fmicb_2021_570908
crossref_primary_10_1007_s00374_023_01749_x
crossref_primary_10_1016_j_apsoil_2017_02_019
crossref_primary_10_1016_j_geoderma_2018_11_033
crossref_primary_10_1007_s11104_018_3584_y
crossref_primary_10_1016_j_scitotenv_2021_145023
crossref_primary_10_1016_j_cej_2023_142207
crossref_primary_10_1016_j_scitotenv_2020_142924
crossref_primary_10_1007_s11368_018_2089_x
crossref_primary_10_3390_nitrogen6010004
crossref_primary_10_1016_j_tim_2012_08_001
crossref_primary_10_1016_j_geoderma_2020_114886
crossref_primary_10_1016_j_apsoil_2020_103665
crossref_primary_10_1016_j_jenvman_2016_01_035
crossref_primary_10_1264_jsme2_ME14052
crossref_primary_10_1016_j_jhazmat_2019_121375
crossref_primary_10_1016_j_scitotenv_2019_02_427
crossref_primary_10_1186_s13568_016_0245_5
crossref_primary_10_1002_saj2_20022
crossref_primary_10_1016_j_resmic_2015_07_012
crossref_primary_10_1016_j_ejsobi_2013_05_008
crossref_primary_10_1007_s00253_013_5399_3
crossref_primary_10_1016_j_biortech_2021_125851
crossref_primary_10_1016_j_soilbio_2018_01_007
crossref_primary_10_1007_s11368_021_02897_z
crossref_primary_10_1016_j_chemosphere_2017_06_081
crossref_primary_10_1007_s11356_017_8799_6
crossref_primary_10_1016_j_ecoenv_2021_112274
crossref_primary_10_1016_j_soilbio_2016_05_014
crossref_primary_10_1016_j_soilbio_2015_11_003
crossref_primary_10_1080_10643389_2022_2049578
crossref_primary_10_4491_eer_2022_630
crossref_primary_10_1016_j_ijggc_2014_11_013
crossref_primary_10_1016_j_scitotenv_2022_154417
crossref_primary_10_1111_1574_6941_12193
crossref_primary_10_1016_j_jhazmat_2012_06_041
crossref_primary_10_1016_j_jenvman_2022_116597
crossref_primary_10_1038_s41396_017_0025_5
crossref_primary_10_1007_s42729_020_00378_9
crossref_primary_10_1007_s00253_018_9332_7
crossref_primary_10_1007_s11356_016_6396_8
crossref_primary_10_1038_s41396_020_00840_7
crossref_primary_10_1007_s00253_014_6026_7
crossref_primary_10_5194_bg_10_5739_2013
crossref_primary_10_1007_s11368_020_02627_x
crossref_primary_10_1021_acs_est_7b04925
crossref_primary_10_3389_fmicb_2022_962146
crossref_primary_10_1038_s41598_023_44147_x
crossref_primary_10_1021_es402179v
crossref_primary_10_1038_s41598_019_45877_7
crossref_primary_10_1093_femsre_fuv021
crossref_primary_10_1007_s00248_012_0093_z
crossref_primary_10_1016_j_scitotenv_2021_149933
crossref_primary_10_1890_ES14_00299_1
crossref_primary_10_1007_s00248_017_0992_0
crossref_primary_10_1016_j_ejsobi_2023_103491
crossref_primary_10_1186_s40168_020_00904_y
crossref_primary_10_1016_j_soilbio_2023_109046
crossref_primary_10_1007_s00374_018_1297_2
crossref_primary_10_1016_j_scitotenv_2022_156752
crossref_primary_10_1093_ismeco_ycae093
crossref_primary_10_1111_1758_2229_12264
crossref_primary_10_1007_s00253_018_9225_9
crossref_primary_10_1007_s11104_018_3774_7
crossref_primary_10_1186_s12866_021_02313_z
crossref_primary_10_1007_s00248_016_0815_8
crossref_primary_10_1016_j_geoderma_2017_06_002
crossref_primary_10_1016_j_eng_2023_09_013
crossref_primary_10_1016_j_soilbio_2014_02_011
crossref_primary_10_1111_gcb_16392
crossref_primary_10_1016_j_soilbio_2018_02_015
crossref_primary_10_1016_j_ibiod_2020_105136
crossref_primary_10_1016_j_pedsph_2024_12_006
crossref_primary_10_3390_land13030333
crossref_primary_10_1111_1462_2920_12339
crossref_primary_10_3390_f13122160
crossref_primary_10_3390_life12111806
crossref_primary_10_1016_j_soilbio_2024_109595
crossref_primary_10_1186_s40793_023_00503_y
crossref_primary_10_1016_j_soilbio_2014_09_028
crossref_primary_10_1093_femsle_fnw052
crossref_primary_10_1016_S1002_0160_19_60803_9
crossref_primary_10_1016_j_soilbio_2015_12_017
crossref_primary_10_1007_s11356_019_07347_5
crossref_primary_10_1371_journal_pone_0299518
crossref_primary_10_3389_fmicb_2022_926592
crossref_primary_10_1016_j_foreco_2023_120907
crossref_primary_10_1016_j_jenvman_2018_02_032
crossref_primary_10_1093_femsec_fiae072
crossref_primary_10_1016_j_pedsph_2022_09_004
crossref_primary_10_1016_j_cej_2018_10_234
crossref_primary_10_1016_j_soilbio_2024_109423
crossref_primary_10_1016_j_jes_2022_02_038
crossref_primary_10_1016_j_geoderma_2024_116835
crossref_primary_10_1016_j_apsoil_2021_104188
crossref_primary_10_1016_j_soilbio_2014_02_009
crossref_primary_10_1007_s11368_014_0888_2
crossref_primary_10_1016_j_geoderma_2020_114814
crossref_primary_10_3390_nitrogen2020011
crossref_primary_10_1080_03650340_2022_2104452
crossref_primary_10_1111_1462_2920_12398
crossref_primary_10_1111_1574_6941_12391
crossref_primary_10_1042_ETLS20180018
crossref_primary_10_1007_s00248_021_01763_2
crossref_primary_10_3390_agronomy13051279
crossref_primary_10_1016_j_apsoil_2019_08_004
crossref_primary_10_1038_s41598_022_23084_1
crossref_primary_10_1007_s00374_019_01405_3
crossref_primary_10_1016_j_soilbio_2016_12_007
crossref_primary_10_1007_s42832_023_0199_x
crossref_primary_10_1016_j_scitotenv_2020_143048
crossref_primary_10_3390_su12030953
crossref_primary_10_1007_s11356_018_3565_y
crossref_primary_10_1038_s41598_022_10711_0
crossref_primary_10_1111_1462_2920_14457
crossref_primary_10_1016_j_jenvman_2022_115271
crossref_primary_10_1111_1462_2920_12481
crossref_primary_10_1128_msystems_00546_21
crossref_primary_10_1016_j_soilbio_2016_06_002
crossref_primary_10_1016_j_apsoil_2020_103837
crossref_primary_10_3389_fmicb_2020_01737
crossref_primary_10_1016_j_soilbio_2021_108231
crossref_primary_10_1002_ece3_2714
crossref_primary_10_1016_j_soilbio_2024_109687
crossref_primary_10_1111_gcb_17333
crossref_primary_10_1007_s00374_020_01538_w
crossref_primary_10_1007_s00203_020_02130_4
crossref_primary_10_1007_s13213_015_1143_9
crossref_primary_10_1016_j_geoderma_2018_07_038
crossref_primary_10_3389_fmicb_2017_00630
crossref_primary_10_1038_srep30349
crossref_primary_10_1111_1462_2920_14553
crossref_primary_10_1016_j_apsoil_2024_105831
crossref_primary_10_1007_s11368_018_2108_y
crossref_primary_10_1016_j_soilbio_2015_09_008
crossref_primary_10_3390_agronomy10071003
crossref_primary_10_1016_j_scitotenv_2022_154311
crossref_primary_10_7717_peerj_13504
crossref_primary_10_1111_1758_2229_12109
crossref_primary_10_1016_j_apsoil_2018_06_017
crossref_primary_10_1016_j_watres_2018_08_066
crossref_primary_10_2136_sssaj2019_05_0134
crossref_primary_10_1016_j_soilbio_2021_108242
crossref_primary_10_3389_fmicb_2018_00171
crossref_primary_10_3389_fpls_2022_1099689
crossref_primary_10_1016_j_soilbio_2025_109730
crossref_primary_10_1007_s11104_018_3860_x
crossref_primary_10_1016_j_scitotenv_2024_171227
crossref_primary_10_1016_j_soilbio_2015_11_017
crossref_primary_10_1111_ejss_12921
crossref_primary_10_1016_j_apsoil_2017_05_034
crossref_primary_10_1111_j_1462_2920_2012_02882_x
crossref_primary_10_1016_j_ejsobi_2018_05_008
crossref_primary_10_1021_acs_est_5b01293
crossref_primary_10_1016_j_agee_2025_109510
crossref_primary_10_1016_j_still_2019_104443
crossref_primary_10_3390_horticulturae10070754
crossref_primary_10_1016_j_scitotenv_2023_169005
crossref_primary_10_1007_s11368_020_02562_x
crossref_primary_10_1016_j_pedobi_2015_11_002
crossref_primary_10_1007_s11356_020_07952_9
crossref_primary_10_1016_j_jclepro_2021_126259
crossref_primary_10_1007_s11368_017_1851_9
crossref_primary_10_3724_SP_J_1003_2012_10129
crossref_primary_10_3390_microorganisms8060933
crossref_primary_10_1128_AEM_00308_12
crossref_primary_10_1016_j_soilbio_2018_11_008
crossref_primary_10_1007_s11368_014_0864_x
crossref_primary_10_1016_j_apsoil_2014_09_003
crossref_primary_10_1186_s13568_021_01211_x
crossref_primary_10_1016_j_jmarsys_2018_03_003
crossref_primary_10_1038_srep40848
crossref_primary_10_3389_fmicb_2014_00515
crossref_primary_10_5194_bg_12_3499_2015
crossref_primary_10_1186_s13568_017_0426_x
crossref_primary_10_1007_s00248_023_02180_3
crossref_primary_10_3389_fpls_2022_913204
crossref_primary_10_1007_s11104_018_3648_z
crossref_primary_10_1016_j_scitotenv_2017_07_146
crossref_primary_10_1016_j_scitotenv_2016_10_172
crossref_primary_10_1016_j_scitotenv_2025_178776
crossref_primary_10_1016_j_soilbio_2017_01_022
crossref_primary_10_1016_j_soilbio_2019_107673
crossref_primary_10_1071_SR15359
crossref_primary_10_1071_SR16327
crossref_primary_10_1016_j_apsoil_2015_11_009
crossref_primary_10_1002_saj2_20325
crossref_primary_10_1007_s00253_017_8435_x
crossref_primary_10_1007_s10646_014_1334_3
crossref_primary_10_1016_j_biortech_2017_06_102
crossref_primary_10_1007_s11356_017_1155_z
crossref_primary_10_1111_gcb_13853
crossref_primary_10_3389_fpls_2022_960641
crossref_primary_10_1016_j_apsoil_2022_104456
crossref_primary_10_1016_j_scitotenv_2018_05_356
crossref_primary_10_1016_j_aquaeng_2017_01_004
crossref_primary_10_1016_j_watres_2021_117331
crossref_primary_10_3389_fmicb_2015_00982
crossref_primary_10_1016_j_jenvman_2023_119078
crossref_primary_10_1016_j_still_2019_104347
crossref_primary_10_1128_AEM_00092_21
crossref_primary_10_1016_j_soilbio_2021_108153
crossref_primary_10_1016_j_ecoleng_2018_12_029
crossref_primary_10_1016_j_ejsobi_2021_103288
crossref_primary_10_1111_gcb_70096
crossref_primary_10_1016_j_soilbio_2016_07_007
crossref_primary_10_1111_1462_2920_14905
crossref_primary_10_1128_AEM_00342_18
crossref_primary_10_1016_j_agee_2023_108439
crossref_primary_10_1007_s11368_018_1997_0
crossref_primary_10_1016_j_catena_2024_107955
crossref_primary_10_1016_j_envres_2022_114419
crossref_primary_10_1007_s42729_023_01600_0
crossref_primary_10_1080_09168451_2014_915735
crossref_primary_10_1155_2016_3762159
crossref_primary_10_1002_mbo3_488
crossref_primary_10_1038_s41598_023_35134_3
crossref_primary_10_1038_ismej_2016_192
crossref_primary_10_1038_ismej_2016_191
crossref_primary_10_5194_bg_16_4277_2019
crossref_primary_10_1021_acs_est_7b00392
crossref_primary_10_1016_j_scitotenv_2018_08_372
crossref_primary_10_1016_j_geoderma_2021_115395
crossref_primary_10_1007_s12665_013_2773_5
crossref_primary_10_1016_j_apsoil_2023_104926
crossref_primary_10_1128_AEM_01701_19
crossref_primary_10_1099_ijsem_0_006387
crossref_primary_10_1016_j_soilbio_2017_09_007
crossref_primary_10_1071_MA18007
crossref_primary_10_1111_gcb_17082
crossref_primary_10_1016_j_scitotenv_2017_12_084
crossref_primary_10_1111_ejss_13017
crossref_primary_10_1038_s41598_018_32059_0
crossref_primary_10_1371_journal_pone_0169554
crossref_primary_10_3389_fenvs_2021_656708
crossref_primary_10_1016_j_soilbio_2020_107925
crossref_primary_10_1111_1462_2920_13872
crossref_primary_10_1016_j_ecolmodel_2017_08_016
crossref_primary_10_1007_s11356_013_1825_4
crossref_primary_10_1007_s11368_018_2039_7
crossref_primary_10_1016_j_scitotenv_2022_158032
crossref_primary_10_1016_j_soilbio_2018_02_008
crossref_primary_10_1002_ecy_1863
crossref_primary_10_1016_j_scitotenv_2020_143212
crossref_primary_10_1128_AEM_00061_13
crossref_primary_10_1007_s10653_017_0022_7
crossref_primary_10_1007_s00253_024_13170_x
crossref_primary_10_1007_s11368_015_1321_1
crossref_primary_10_1007_s11356_024_32707_1
crossref_primary_10_1007_s11356_020_09120_5
crossref_primary_10_1007_s11368_019_02442_z
crossref_primary_10_3389_fmicb_2020_581283
crossref_primary_10_1016_j_soilbio_2013_04_003
crossref_primary_10_3389_fenvs_2022_976618
crossref_primary_10_3390_microorganisms9040709
crossref_primary_10_1016_j_apsoil_2017_12_008
crossref_primary_10_3389_fmicb_2023_1095937
crossref_primary_10_1016_j_jenvman_2024_120119
crossref_primary_10_1111_1751_7915_12354
crossref_primary_10_1093_femsec_fiu023
crossref_primary_10_1016_j_scitotenv_2020_142113
crossref_primary_10_3103_S1063455X16040093
crossref_primary_10_1016_j_envpol_2020_114140
crossref_primary_10_1016_j_apsoil_2014_01_011
crossref_primary_10_1016_j_ejsobi_2024_103658
crossref_primary_10_1016_j_apsoil_2021_104113
crossref_primary_10_1146_annurev_micro_092412_155614
crossref_primary_10_1016_j_eja_2022_126692
crossref_primary_10_1016_j_soilbio_2016_09_001
crossref_primary_10_1007_s11356_016_7519_y
crossref_primary_10_1007_s11368_019_02540_y
crossref_primary_10_1016_j_jia_2024_03_047
crossref_primary_10_1038_srep30733
crossref_primary_10_1128_AEM_01807_20
crossref_primary_10_1007_s00374_023_01775_9
crossref_primary_10_1016_j_apsoil_2025_106037
crossref_primary_10_1038_s41612_022_00265_3
crossref_primary_10_1007_s00253_018_8873_0
crossref_primary_10_1016_j_ejsobi_2023_103570
crossref_primary_10_3389_fmicb_2024_1377721
crossref_primary_10_1007_s42729_024_02015_1
crossref_primary_10_3389_fmicb_2023_1140487
crossref_primary_10_1016_j_envpol_2015_12_023
crossref_primary_10_1016_j_soilbio_2019_107609
crossref_primary_10_1038_srep22903
crossref_primary_10_1007_s11104_022_05609_9
crossref_primary_10_1038_srep16587
crossref_primary_10_1016_j_soilad_2024_100021
crossref_primary_10_3389_fmicb_2015_00938
crossref_primary_10_1016_j_soilbio_2021_108192
crossref_primary_10_1007_s11368_019_02552_8
crossref_primary_10_1016_j_chemosphere_2023_139685
crossref_primary_10_1016_j_soilbio_2016_09_013
crossref_primary_10_1016_j_apsoil_2019_01_010
crossref_primary_10_1016_j_rsma_2022_102314
crossref_primary_10_4236_as_2018_93025
crossref_primary_10_1016_j_resmic_2014_08_003
crossref_primary_10_1016_j_scitotenv_2012_08_091
crossref_primary_10_1016_j_apsoil_2022_104785
crossref_primary_10_1007_s00253_013_5174_5
crossref_primary_10_3389_fmicb_2022_1013408
crossref_primary_10_1007_s12275_014_4114_0
crossref_primary_10_1016_j_apsoil_2021_104139
crossref_primary_10_1016_j_mex_2018_06_015
crossref_primary_10_1016_j_marpolbul_2024_116046
crossref_primary_10_1007_s11356_024_34762_0
crossref_primary_10_1016_j_watres_2013_01_042
Cites_doi 10.1038/ismej.2010.191
10.1007/s11104-006-9123-2
10.1128/AEM.69.6.3129-3136.2003
10.1007/BF01054805
10.1126/science.1093857
10.1016/j.tim.2010.06.003
10.1073/pnas.0506625102
10.1016/j.agee.2009.07.010
10.1111/j.1574-6941.2009.00748.x
10.1038/nature04983
10.1038/ismej.2011.5
10.1128/AEM.00136-11
10.1038/ngeo613
10.1038/nrmicro1619
10.1016/S0038-0717(96)00133-2
10.1371/journal.pbio.0040095
10.1111/j.1462-2920.2009.01891.x
10.1080/00103628909368195
10.1016/j.soilbio.2010.05.003
10.1126/science.1149976
10.1111/j.1462-2920.2007.01358.x
10.1073/pnas.1013488108
10.1073/pnas.89.12.5685
10.1016/S0038-0717(00)00247-9
10.1073/pnas.1004947107
10.1126/science.1182570
10.1093/molbev/msm092
10.1038/nrmicro1852
10.1111/j.1574-6941.2010.00971.x
10.1016/j.soilbio.2006.11.003
10.1073/pnas.0913533107
10.1073/pnas.1010981108
10.1038/nature08465
10.1073/pnas.1107196108
10.1128/AEM.66.12.5488-5491.2000
10.1128/AEM.68.10.4751-4757.2002
10.1128/AEM.00595-10
10.1128/AEM.71.1.197-206.2005
10.1111/j.1462-2920.2005.00947.x
10.2136/sssaj2001.653849x
10.1016/j.tim.2006.03.004
10.1080/00103629409369010
10.1111/j.1574-6941.2007.00310.x
10.1111/j.1574-6941.2010.00861.x
10.1111/j.1462-2920.2008.01701.x
10.1111/j.1574-6941.2009.00725.x
10.1111/j.1574-6941.1999.tb00646.x
10.1111/j.1574-6941.2007.00335.x
10.1038/nature03911
10.1007/BF00009558
10.1111/j.1462-2920.2007.01563.x
10.1128/AEM.64.9.3480-3485.1998
10.1128/aem.54.6.1536-1540.1988
10.1128/jb.120.1.556-558.1974
10.1128/aem.63.12.4704-4712.1997
ContentType Journal Article
Copyright International Society for Microbial Ecology 2012
Copyright Nature Publishing Group May 2012
Copyright © 2012 International Society for Microbial Ecology 2012 International Society for Microbial Ecology
Copyright_xml – notice: International Society for Microbial Ecology 2012
– notice: Copyright Nature Publishing Group May 2012
– notice: Copyright © 2012 International Society for Microbial Ecology 2012 International Society for Microbial Ecology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7ST
7T7
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7X8
5PM
DOI 10.1038/ismej.2011.168
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Engineering Research Database
ProQuest Central Student

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Agriculture
DocumentTitleAlternate Relative roles of AOA and AOB in acidic soils
EISSN 1751-7370
EndPage 1045
ExternalDocumentID PMC3329103
2635509001
22134644
10_1038_ismej_2011_168
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-Q-
0R~
123
29J
39C
3V.
4.4
406
53G
70F
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAHBH
AANZL
AAZLF
ABAKF
ABAWZ
ABDBF
ABEJV
ABGNP
ABJNI
ABLJU
ABUWG
ABXVV
ACGFS
ACKTT
ACPRK
ACRQY
ACUHS
ACZOJ
ADBBV
ADHDB
AEFQL
AEJRE
AENEX
AEUYN
AEVLU
AEXYK
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AILAN
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMYLF
AOIJS
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DNIVK
DPUIP
DU5
EBS
EDH
EE.
EIOEI
EJD
EMOBN
ESX
F5P
FDQFY
FEDTE
FERAY
FIZPM
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HYE
HZ~
I-F
IWAJR
JSO
KQ8
LK8
M1P
M7P
MM.
NAO
NQJWS
O9-
OK1
PATMY
PQQKQ
PROAC
PSQYO
PYCSY
RNT
RNTTT
ROX
RPM
SNX
SNYQT
SOHCF
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TOX
TR2
TSG
TUS
UKHRP
~02
~8M
AAYXX
ACSTC
AYFIA
CITATION
JZLTJ
PHGZM
PHGZT
CGR
CUY
CVF
ECGQY
ECM
EIF
GROUPED_DOAJ
NPM
PJZUB
PPXIY
PQGLB
7QL
7SN
7ST
7T7
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H13
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c557t-67eb5b696121ba054bddb559c7020e3e060186e4a26ebbd385b1d08732e9a43
IEDL.DBID BENPR
ISSN 1751-7362
1751-7370
IngestDate Thu Aug 21 18:14:58 EDT 2025
Sun Aug 24 03:28:35 EDT 2025
Mon Jul 21 09:27:42 EDT 2025
Wed Aug 13 07:17:27 EDT 2025
Mon Jul 21 06:05:26 EDT 2025
Tue Jul 01 01:04:17 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Fri Feb 21 02:39:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords ammonia-oxidizing bacteria
stable isotope probing
dicyandiamide
acidic soil
nitrification
ammonia-oxidizing archaea
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-67eb5b696121ba054bddb559c7020e3e060186e4a26ebbd385b1d08732e9a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
These authors contributed equally to this work.
OpenAccessLink https://www.nature.com/articles/ismej2011168.pdf
PMID 22134644
PQID 1001018199
PQPubID 536304
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3329103
proquest_miscellaneous_1017959555
proquest_miscellaneous_1002568382
proquest_journals_1001018199
pubmed_primary_22134644
crossref_primary_10_1038_ismej_2011_168
crossref_citationtrail_10_1038_ismej_2011_168
springer_journals_10_1038_ismej_2011_168
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle Multidisciplinary Journal of Microbial Ecology
PublicationTitle The ISME Journal
PublicationTitleAbbrev ISME J
PublicationTitleAlternate ISME J
PublicationYear 2012
Publisher Nature Publishing Group UK
Oxford University Press
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Oxford University Press
– name: Nature Publishing Group
References Berg, Kockelkorn, Buckel, Fuchs (CR2) 2007; 318
Gubry-Rangin, Nicol, Prosser (CR12) 2010; 74
Xue, Yao, Huang (CR52) 2006; 288
Di, Cameron, Shen, Winefield, O’Callaghan, Bowatte (CR7) 2009; 2
Kettler, Doran, Gilbert (CR22) 2001; 65
Lehtovirta, Prosser, Nicol (CR24) 2009; 70
Tourna, Freitag, Nicol, Prosser (CR42) 2008; 10
Tourna, Stieglmeier, Spang, Könneke, Schintlmeister, Urich (CR43) 2011; 108
Zaman, Blennerhassett (CR55) 2010; 136
Mintie, Heichen, Cromack, Myrold, Bottomley (CR28) 2003; 69
Bollmann, Bar-Gilissen, Laanbroek (CR3) 2002; 68
Leininger, Urich, Schloter, Schwark, Qi, Nicol (CR26) 2006; 442
O’Callaghan, Gerard, Carter, Lardner, Sarathchandra, Burch (CR31) 2010; 42
Schmidt, Hultman, Robinson, Killham, Prosser (CR35) 2007; 61
Schramm, de Beer, Wagner, Amann (CR36) 1998; 64
Jiang, Bakken (CR19) 1999; 30
Walker, de la Torre, Klotz, Urakawa, Pinel, Arp (CR49) 2010; 107
Zacherl, Amberger (CR54) 1990; 22
Delong (CR6) 1992; 89
Xia, Zhang, Zeng, Feng, Weng, Lin (CR51) 2011; 5
Freitag, Chang, Prosser (CR10) 2006; 8
Vitousek, Aber, Howarth, Likens, Matson, Schindler (CR47) 1997; 7
Wallace (CR50) 1994; 25
Spang, Hatzenpichler, Brochier-Armanet, Rattei, Tischler, Spieck (CR37) 2010; 18
Lehtovirta, Stoecker, Vilcinskas, Prosser, Nicol (CR25) 2011; 108
Yao, Gao, Nicol, Campbell, Prosser, Zhang (CR53) 2011; 77
Rotthauwe, Witzel, Liesack (CR34) 1997; 63
Stark, Firestone (CR38) 1996; 28
Vonuexkull, Mutert (CR48) 1995; 171
De Boer, Kowalchuk (CR5) 2001; 33
Tamura, Dudley, Nei, Kumar (CR41) 2007; 24
Griffiths, Whiteley, O’Donnell, Bailey (CR11) 2000; 66
Islam, Chen, White (CR17) 2007; 39
Stopnisek, Gubry-Rangin, Hofferle, Nicol, Mandic-Mulec, Prosser (CR39) 2010; 76
Zhang, Offre, He, Verhamme, Nicol, Prosser (CR56) 2010; 107
Hallam, Mincer, Schleper, Preston, Roberts, Richardson (CR14) 2006; 4
Jia, Conrad (CR18) 2009; 11
Venter, Remington, Heidelberg, Halpern, Rusch, Eisen (CR45) 2004; 304
Brochier-Armanet, Boussau, Gribaldo, Forterre (CR4) 2008; 6
Offre, Prosser, Nicol (CR32) 2009; 70
Amberger (CR1) 1989; 20
Hankinson, Schmidt (CR15) 1988; 54
Valentine (CR44) 2007; 5
Di, Cameron, Shen, Winefield, O’Callaghan, Bowatte (CR8) 2010; 72
Pratscher, Dumont, Conrad (CR33) 2011; 108
He, Shen, Zhang, Zhu, Zheng, Xu (CR16) 2007; 9
Nicol, Schleper (CR30) 2006; 14
Martens-Habbena, Berube, Urakawa, de la Torre, Stahl (CR27) 2009; 461
Suzuki, Dular, Kwok (CR40) 1974; 120
Francis, Roberts, Beman, Santoro, Oakley (CR9) 2005; 102
Verhamme, Prosser, Nicol (CR46) 2011; 5
Guo, Liu, Zhang, Shen, Han, Zhang (CR13) 2010; 327
Nicol, Leininger, Schleper, Prosser (CR29) 2008; 10
Jordan, Cantera, Fenn, Stein (CR20) 2005; 71
Könneke, Bernhard, de la Torre, Walker, Waterbury, Stahl (CR23) 2005; 437
Kemnitz, Kolb, Conrad (CR21) 2007; 60
Suzuki (2024020118235281700_CR40) 1974; 120
Vitousek (2024020118235281700_CR47) 1997; 7
Kettler (2024020118235281700_CR22) 2001; 65
Bollmann (2024020118235281700_CR3) 2002; 68
Griffiths (2024020118235281700_CR11) 2000; 66
Pratscher (2024020118235281700_CR33) 2011; 108
Rotthauwe (2024020118235281700_CR34) 1997; 63
Xue (2024020118235281700_CR52) 2006; 288
De Boer (2024020118235281700_CR5) 2001; 33
Stopnisek (2024020118235281700_CR39) 2010; 76
He (2024020118235281700_CR16) 2007; 9
O’Callaghan (2024020118235281700_CR31) 2010; 42
Lehtovirta (2024020118235281700_CR25) 2011; 108
Könneke (2024020118235281700_CR23) 2005; 437
Martens-Habbena (2024020118235281700_CR27) 2009; 461
Valentine (2024020118235281700_CR44) 2007; 5
Vonuexkull (2024020118235281700_CR48) 1995; 171
Berg (2024020118235281700_CR2) 2007; 318
Di (2024020118235281700_CR7) 2009; 2
Nicol (2024020118235281700_CR29) 2008; 10
Offre (2024020118235281700_CR32) 2009; 70
Delong (2024020118235281700_CR6) 1992; 89
Jordan (2024020118235281700_CR20) 2005; 71
Spang (2024020118235281700_CR37) 2010; 18
Mintie (2024020118235281700_CR28) 2003; 69
Leininger (2024020118235281700_CR26) 2006; 442
Venter (2024020118235281700_CR45) 2004; 304
Jiang (2024020118235281700_CR19) 1999; 30
Tamura (2024020118235281700_CR41) 2007; 24
Wallace (2024020118235281700_CR50) 1994; 25
Walker (2024020118235281700_CR49) 2010; 107
Tourna (2024020118235281700_CR42) 2008; 10
Brochier-Armanet (2024020118235281700_CR4) 2008; 6
Guo (2024020118235281700_CR13) 2010; 327
Islam (2024020118235281700_CR17) 2007; 39
Di (2024020118235281700_CR8) 2010; 72
Hankinson (2024020118235281700_CR15) 1988; 54
Verhamme (2024020118235281700_CR46) 2011; 5
Freitag (2024020118235281700_CR10) 2006; 8
Gubry-Rangin (2024020118235281700_CR12) 2010; 74
Kemnitz (2024020118235281700_CR21) 2007; 60
Tourna (2024020118235281700_CR43) 2011; 108
Nicol (2024020118235281700_CR30) 2006; 14
Yao (2024020118235281700_CR53) 2011; 77
Zaman (2024020118235281700_CR55) 2010; 136
Lehtovirta (2024020118235281700_CR24) 2009; 70
Jia (2024020118235281700_CR18) 2009; 11
Francis (2024020118235281700_CR9) 2005; 102
Stark (2024020118235281700_CR38) 1996; 28
Xia (2024020118235281700_CR51) 2011; 5
Schramm (2024020118235281700_CR36) 1998; 64
Zhang (2024020118235281700_CR56) 2010; 107
Schmidt (2024020118235281700_CR35) 2007; 61
Amberger (2024020118235281700_CR1) 1989; 20
Zacherl (2024020118235281700_CR54) 1990; 22
Hallam (2024020118235281700_CR14) 2006; 4
16603359 - Trends Microbiol. 2006 May;14(5):207-12
19236445 - Environ Microbiol. 2009 Jul;11(7):1658-71
16177789 - Nature. 2005 Sep 22;437(7058):543-6
15640188 - Appl Environ Microbiol. 2005 Jan;71(1):197-206
17334387 - Nat Rev Microbiol. 2007 Apr;5(4):316-23
18325029 - Environ Microbiol. 2008 May;10(5):1357-64
20889787 - Appl Environ Microbiol. 2010 Nov;76(22):7626-34
1608980 - Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685-9
4422399 - J Bacteriol. 1974 Oct;120(1):556-8
16915287 - Nature. 2006 Aug 17;442(7104):806-9
21228892 - ISME J. 2011 Jun;5(6):1067-71
21571885 - Appl Environ Microbiol. 2011 Jul;77(13):4618-25
12324316 - Appl Environ Microbiol. 2002 Oct;68(10):4751-7
17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
18079405 - Science. 2007 Dec 14;318(5857):1782-6
21326337 - ISME J. 2011 Jul;5(7):1226-36
21525411 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8420-5
16584480 - Environ Microbiol. 2006 Apr;8(4):684-96
21368116 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4170-5
21039653 - FEMS Microbiol Ecol. 2010 Dec;74(3):566-74
17391330 - FEMS Microbiol Ecol. 2007 Jun;60(3):442-8
19732147 - FEMS Microbiol Ecol. 2009 Dec;70(3):367-76
10508942 - FEMS Microbiol Ecol. 1999 Oct 1;30(2):171-186
20150447 - Science. 2010 Feb 19;327(5968):1008-10
18707610 - Environ Microbiol. 2008 Nov;10(11):2966-78
20421470 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8818-23
17686032 - Environ Microbiol. 2007 Sep;9(9):2364-74
11097934 - Appl Environ Microbiol. 2000 Dec;66(12):5488-91
20598889 - Trends Microbiol. 2010 Aug;18(8):331-40
17573939 - FEMS Microbiol Ecol. 2007 Aug;61(2):305-16
20855593 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17240-5
12788707 - Appl Environ Microbiol. 2003 Jun;69(6):3129-36
20370827 - FEMS Microbiol Ecol. 2010 Jun;72(3):386-94
16186488 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14683-8
9406389 - Appl Environ Microbiol. 1997 Dec;63(12):4704-12
19656195 - FEMS Microbiol Ecol. 2009 Oct;70(1):99-108
19794413 - Nature. 2009 Oct 15;461(7266):976-9
16533068 - PLoS Biol. 2006 Apr;4(4):e95
15001713 - Science. 2004 Apr 2;304(5667):66-74
18274537 - Nat Rev Microbiol. 2008 Mar;6(3):245-52
21896746 - Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15892-7
16347664 - Appl Environ Microbiol. 1988 Jun;54(6):1536-40
9726900 - Appl Environ Microbiol. 1998 Sep;64(9):3480-5
References_xml – volume: 5
  start-page: 1067
  year: 2011
  end-page: 1071
  ident: CR46
  article-title: Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms
  publication-title: ISME J
  doi: 10.1038/ismej.2010.191
– volume: 288
  start-page: 319
  year: 2006
  end-page: 331
  ident: CR52
  article-title: Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9123-2
– volume: 54
  start-page: 1536
  year: 1988
  end-page: 1540
  ident: CR15
  article-title: An acidophilic and a neutrophilic nitrobacter strain isolated from the numerically predominant nitrite-oxidizing population of an acid forest soil
  publication-title: Appl Environ Microbiol
– volume: 69
  start-page: 3129
  year: 2003
  end-page: 3136
  ident: CR28
  article-title: Ammonia-oxidizing bacteria along meadow-to-forest transects in the oregon cascade mountains
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.6.3129-3136.2003
– volume: 22
  start-page: 37
  year: 1990
  end-page: 44
  ident: CR54
  article-title: Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thiourea on nitrosomonas-europaea
  publication-title: Fert Res
  doi: 10.1007/BF01054805
– volume: 304
  start-page: 66
  year: 2004
  end-page: 74
  ident: CR45
  article-title: Environmental genome shotgun sequencing of the sargasso sea
  publication-title: Science
  doi: 10.1126/science.1093857
– volume: 18
  start-page: 331
  year: 2010
  end-page: 340
  ident: CR37
  article-title: Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum thaumarchaeota
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2010.06.003
– volume: 102
  start-page: 14683
  year: 2005
  end-page: 14688
  ident: CR9
  article-title: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0506625102
– volume: 7
  start-page: 737
  year: 1997
  end-page: 750
  ident: CR47
  article-title: Human alteration of the global nitrogen cycle: sources and consequences
  publication-title: Ecol Appl
– volume: 136
  start-page: 236
  year: 2010
  end-page: 246
  ident: CR55
  article-title: Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2009.07.010
– volume: 70
  start-page: 367
  year: 2009
  end-page: 376
  ident: CR24
  article-title: Soil pH regulates the abundance and diversity of group 1.1c crenarchaeota
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2009.00748.x
– volume: 442
  start-page: 806
  year: 2006
  end-page: 809
  ident: CR26
  article-title: Archaea predominate among ammonia-oxidizing prokaryotes in soils
  publication-title: Nature
  doi: 10.1038/nature04983
– volume: 5
  start-page: 1226
  year: 2011
  end-page: 1236
  ident: CR51
  article-title: Autotrophic growth of nitrifying community in an agricultural soil
  publication-title: ISME J
  doi: 10.1038/ismej.2011.5
– volume: 77
  start-page: 4618
  year: 2011
  end-page: 4625
  ident: CR53
  article-title: Links between ammonia oxidizer community structure, abundance and nitrification potential in acidic soils
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00136-11
– volume: 2
  start-page: 621
  year: 2009
  end-page: 624
  ident: CR7
  article-title: Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils
  publication-title: Nat Geosci
  doi: 10.1038/ngeo613
– volume: 5
  start-page: 316
  year: 2007
  end-page: 323
  ident: CR44
  article-title: Adaptations to energy stress dictate the ecology and evolution of the archaea
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1619
– volume: 28
  start-page: 1307
  year: 1996
  end-page: 1317
  ident: CR38
  article-title: Kinetic characteristics of ammonium-oxidizer communities in a california oak woodland-annual grassland
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(96)00133-2
– volume: 4
  start-page: 520
  year: 2006
  end-page: 536
  ident: CR14
  article-title: Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine crenarchaeota
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040095
– volume: 11
  start-page: 1658
  year: 2009
  end-page: 1671
  ident: CR18
  article-title: Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2009.01891.x
– volume: 20
  start-page: 1933
  year: 1989
  end-page: 1955
  ident: CR1
  article-title: Research on dicyandiamide as a nitrification inhibitor and future outlook
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103628909368195
– volume: 42
  start-page: 1425
  year: 2010
  end-page: 1436
  ident: CR31
  article-title: Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2010.05.003
– volume: 318
  start-page: 1782
  year: 2007
  end-page: 1786
  ident: CR2
  article-title: A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea
  publication-title: Science
  doi: 10.1126/science.1149976
– volume: 9
  start-page: 2364
  year: 2007
  end-page: 2374
  ident: CR16
  article-title: Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2007.01358.x
– volume: 108
  start-page: 8420
  year: 2011
  end-page: 8425
  ident: CR43
  article-title: , an ammonia oxidizing archaeon from soil
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1013488108
– volume: 63
  start-page: 4704
  year: 1997
  end-page: 4712
  ident: CR34
  article-title: The ammonia monooxygenase structural gene as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations
  publication-title: Appl Environ Microbiol
– volume: 89
  start-page: 5685
  year: 1992
  end-page: 5689
  ident: CR6
  article-title: Archaea in coastal marine environments
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.89.12.5685
– volume: 33
  start-page: 853
  year: 2001
  end-page: 866
  ident: CR5
  article-title: Nitrification in acid soils: micro-organisms and mechanisms
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(00)00247-9
– volume: 107
  start-page: 17240
  year: 2010
  end-page: 17245
  ident: CR56
  article-title: Autotrophic ammonia oxidation by soil thaumarchaea
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1004947107
– volume: 327
  start-page: 1008
  year: 2010
  end-page: 1010
  ident: CR13
  article-title: Significant acidification in major Chinese croplands
  publication-title: Science
  doi: 10.1126/science.1182570
– volume: 24
  start-page: 1596
  year: 2007
  end-page: 1599
  ident: CR41
  article-title: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm092
– volume: 6
  start-page: 245
  year: 2008
  end-page: 252
  ident: CR4
  article-title: Mesophilic crenarchaeota: proposal for a third archaeal phylum, the thaumarchaeota
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1852
– volume: 74
  start-page: 566
  year: 2010
  end-page: 574
  ident: CR12
  article-title: Archaea rather than bacteria control nitrification in two agricultural acidic soils
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2010.00971.x
– volume: 39
  start-page: 972
  year: 2007
  end-page: 975
  ident: CR17
  article-title: Heterotrophic and autotrophic nitrification in two acid pasture soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2006.11.003
– volume: 107
  start-page: 8818
  year: 2010
  end-page: 8823
  ident: CR49
  article-title: genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0913533107
– volume: 108
  start-page: 4170
  year: 2011
  end-page: 4175
  ident: CR33
  article-title: Ammonia oxidation coupled to CO fixation by archaea and bacteria in an agricultural soil
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1010981108
– volume: 461
  start-page: 976
  year: 2009
  end-page: 979
  ident: CR27
  article-title: Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria
  publication-title: Nature
  doi: 10.1038/nature08465
– volume: 108
  start-page: 15892
  year: 2011
  end-page: 15897
  ident: CR25
  article-title: Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1107196108
– volume: 66
  start-page: 5488
  year: 2000
  end-page: 5491
  ident: CR11
  article-title: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.12.5488-5491.2000
– volume: 68
  start-page: 4751
  year: 2002
  end-page: 4757
  ident: CR3
  article-title: Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.68.10.4751-4757.2002
– volume: 76
  start-page: 7626
  year: 2010
  end-page: 7634
  ident: CR39
  article-title: Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00595-10
– volume: 120
  start-page: 556
  year: 1974
  end-page: 558
  ident: CR40
  article-title: Ammonia or ammonium ion as substrate for oxidation by nitrosomonas-europaea cells and extracts
  publication-title: J Bacteriol
– volume: 71
  start-page: 197
  year: 2005
  end-page: 206
  ident: CR20
  article-title: Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.1.197-206.2005
– volume: 8
  start-page: 684
  year: 2006
  end-page: 696
  ident: CR10
  article-title: Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2005.00947.x
– volume: 65
  start-page: 849
  year: 2001
  end-page: 852
  ident: CR22
  article-title: Simplified method for soil particle-size determination to accompany soil-quality analyses
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2001.653849x
– volume: 14
  start-page: 207
  year: 2006
  end-page: 212
  ident: CR30
  article-title: Ammonia-oxidising crenarchaeota: important players in the nitrogen cycle?
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2006.03.004
– volume: 25
  start-page: 87
  year: 1994
  end-page: 92
  ident: CR50
  article-title: Soil acidification from use of too much fertilizer
  publication-title: Commun Soil Sci Plan Anal
  doi: 10.1080/00103629409369010
– volume: 60
  start-page: 442
  year: 2007
  end-page: 448
  ident: CR21
  article-title: High abundance of crenarchaeota in a temperate acidic forest soil
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2007.00310.x
– volume: 72
  start-page: 386
  year: 2010
  end-page: 394
  ident: CR8
  article-title: Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2010.00861.x
– volume: 10
  start-page: 2966
  year: 2008
  end-page: 2978
  ident: CR29
  article-title: The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2008.01701.x
– volume: 70
  start-page: 99
  year: 2009
  end-page: 108
  ident: CR32
  article-title: Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2009.00725.x
– volume: 30
  start-page: 171
  year: 1999
  end-page: 186
  ident: CR19
  article-title: Comparison of nitrosospira strains isolated from terrestrial environments
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.1999.tb00646.x
– volume: 61
  start-page: 305
  year: 2007
  end-page: 316
  ident: CR35
  article-title: PCR profiling of ammonia-oxidizer communities in acidic soils subjected to nitrogen and sulphur deposition
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2007.00335.x
– volume: 437
  start-page: 543
  year: 2005
  end-page: 546
  ident: CR23
  article-title: Isolation of an autotrophic ammonia-oxidizing marine archaeon
  publication-title: Nature
  doi: 10.1038/nature03911
– volume: 171
  start-page: 1
  year: 1995
  end-page: 15
  ident: CR48
  article-title: Global extent, development and economic-impact of acid soils
  publication-title: Plant Soil
  doi: 10.1007/BF00009558
– volume: 10
  start-page: 1357
  year: 2008
  end-page: 1364
  ident: CR42
  article-title: Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2007.01563.x
– volume: 64
  start-page: 3480
  year: 1998
  end-page: 3485
  ident: CR36
  article-title: Identification and activities of nitrosospira and nitrospira spp. As dominant populations in a nitrifying fluidized bed reactor
  publication-title: Appl Environ Microbiol
– volume: 6
  start-page: 245
  year: 2008
  ident: 2024020118235281700_CR4
  article-title: Mesophilic crenarchaeota: proposal for a third archaeal phylum, the thaumarchaeota
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1852
– volume: 9
  start-page: 2364
  year: 2007
  ident: 2024020118235281700_CR16
  article-title: Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2007.01358.x
– volume: 136
  start-page: 236
  year: 2010
  ident: 2024020118235281700_CR55
  article-title: Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2009.07.010
– volume: 107
  start-page: 17240
  year: 2010
  ident: 2024020118235281700_CR56
  article-title: Autotrophic ammonia oxidation by soil thaumarchaea
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1004947107
– volume: 70
  start-page: 99
  year: 2009
  ident: 2024020118235281700_CR32
  article-title: Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2009.00725.x
– volume: 5
  start-page: 1226
  year: 2011
  ident: 2024020118235281700_CR51
  article-title: Autotrophic growth of nitrifying community in an agricultural soil
  publication-title: ISME J
  doi: 10.1038/ismej.2011.5
– volume: 64
  start-page: 3480
  year: 1998
  ident: 2024020118235281700_CR36
  article-title: Identification and activities in situ of nitrosospira and nitrospira spp. As dominant populations in a nitrifying fluidized bed reactor
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.64.9.3480-3485.1998
– volume: 71
  start-page: 197
  year: 2005
  ident: 2024020118235281700_CR20
  article-title: Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.1.197-206.2005
– volume: 76
  start-page: 7626
  year: 2010
  ident: 2024020118235281700_CR39
  article-title: Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00595-10
– volume: 304
  start-page: 66
  year: 2004
  ident: 2024020118235281700_CR45
  article-title: Environmental genome shotgun sequencing of the sargasso sea
  publication-title: Science
  doi: 10.1126/science.1093857
– volume: 65
  start-page: 849
  year: 2001
  ident: 2024020118235281700_CR22
  article-title: Simplified method for soil particle-size determination to accompany soil-quality analyses
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2001.653849x
– volume: 54
  start-page: 1536
  year: 1988
  ident: 2024020118235281700_CR15
  article-title: An acidophilic and a neutrophilic nitrobacter strain isolated from the numerically predominant nitrite-oxidizing population of an acid forest soil
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.54.6.1536-1540.1988
– volume: 61
  start-page: 305
  year: 2007
  ident: 2024020118235281700_CR35
  article-title: PCR profiling of ammonia-oxidizer communities in acidic soils subjected to nitrogen and sulphur deposition
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2007.00335.x
– volume: 5
  start-page: 1067
  year: 2011
  ident: 2024020118235281700_CR46
  article-title: Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms
  publication-title: ISME J
  doi: 10.1038/ismej.2010.191
– volume: 70
  start-page: 367
  year: 2009
  ident: 2024020118235281700_CR24
  article-title: Soil pH regulates the abundance and diversity of group 1.1c crenarchaeota
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2009.00748.x
– volume: 25
  start-page: 87
  year: 1994
  ident: 2024020118235281700_CR50
  article-title: Soil acidification from use of too much fertilizer
  publication-title: Commun Soil Sci Plan Anal
  doi: 10.1080/00103629409369010
– volume: 66
  start-page: 5488
  year: 2000
  ident: 2024020118235281700_CR11
  article-title: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.12.5488-5491.2000
– volume: 69
  start-page: 3129
  year: 2003
  ident: 2024020118235281700_CR28
  article-title: Ammonia-oxidizing bacteria along meadow-to-forest transects in the oregon cascade mountains
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.6.3129-3136.2003
– volume: 8
  start-page: 684
  year: 2006
  ident: 2024020118235281700_CR10
  article-title: Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2005.00947.x
– volume: 30
  start-page: 171
  year: 1999
  ident: 2024020118235281700_CR19
  article-title: Comparison of nitrosospira strains isolated from terrestrial environments
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.1999.tb00646.x
– volume: 28
  start-page: 1307
  year: 1996
  ident: 2024020118235281700_CR38
  article-title: Kinetic characteristics of ammonium-oxidizer communities in a california oak woodland-annual grassland
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(96)00133-2
– volume: 10
  start-page: 2966
  year: 2008
  ident: 2024020118235281700_CR29
  article-title: The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2008.01701.x
– volume: 10
  start-page: 1357
  year: 2008
  ident: 2024020118235281700_CR42
  article-title: Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2007.01563.x
– volume: 318
  start-page: 1782
  year: 2007
  ident: 2024020118235281700_CR2
  article-title: A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea
  publication-title: Science
  doi: 10.1126/science.1149976
– volume: 89
  start-page: 5685
  year: 1992
  ident: 2024020118235281700_CR6
  article-title: Archaea in coastal marine environments
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.89.12.5685
– volume: 60
  start-page: 442
  year: 2007
  ident: 2024020118235281700_CR21
  article-title: High abundance of crenarchaeota in a temperate acidic forest soil
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2007.00310.x
– volume: 7
  start-page: 737
  year: 1997
  ident: 2024020118235281700_CR47
  article-title: Human alteration of the global nitrogen cycle: sources and consequences
  publication-title: Ecol Appl
– volume: 14
  start-page: 207
  year: 2006
  ident: 2024020118235281700_CR30
  article-title: Ammonia-oxidising crenarchaeota: important players in the nitrogen cycle?
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2006.03.004
– volume: 77
  start-page: 4618
  year: 2011
  ident: 2024020118235281700_CR53
  article-title: Links between ammonia oxidizer community structure, abundance and nitrification potential in acidic soils
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00136-11
– volume: 33
  start-page: 853
  year: 2001
  ident: 2024020118235281700_CR5
  article-title: Nitrification in acid soils: micro-organisms and mechanisms
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(00)00247-9
– volume: 108
  start-page: 4170
  year: 2011
  ident: 2024020118235281700_CR33
  article-title: Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1010981108
– volume: 437
  start-page: 543
  year: 2005
  ident: 2024020118235281700_CR23
  article-title: Isolation of an autotrophic ammonia-oxidizing marine archaeon
  publication-title: Nature
  doi: 10.1038/nature03911
– volume: 24
  start-page: 1596
  year: 2007
  ident: 2024020118235281700_CR41
  article-title: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm092
– volume: 74
  start-page: 566
  year: 2010
  ident: 2024020118235281700_CR12
  article-title: Archaea rather than bacteria control nitrification in two agricultural acidic soils
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2010.00971.x
– volume: 120
  start-page: 556
  year: 1974
  ident: 2024020118235281700_CR40
  article-title: Ammonia or ammonium ion as substrate for oxidation by nitrosomonas-europaea cells and extracts
  publication-title: J Bacteriol
  doi: 10.1128/jb.120.1.556-558.1974
– volume: 171
  start-page: 1
  year: 1995
  ident: 2024020118235281700_CR48
  article-title: Global extent, development and economic-impact of acid soils
  publication-title: Plant Soil
  doi: 10.1007/BF00009558
– volume: 11
  start-page: 1658
  year: 2009
  ident: 2024020118235281700_CR18
  article-title: Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2009.01891.x
– volume: 327
  start-page: 1008
  year: 2010
  ident: 2024020118235281700_CR13
  article-title: Significant acidification in major Chinese croplands
  publication-title: Science
  doi: 10.1126/science.1182570
– volume: 108
  start-page: 15892
  year: 2011
  ident: 2024020118235281700_CR25
  article-title: Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1107196108
– volume: 39
  start-page: 972
  year: 2007
  ident: 2024020118235281700_CR17
  article-title: Heterotrophic and autotrophic nitrification in two acid pasture soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2006.11.003
– volume: 102
  start-page: 14683
  year: 2005
  ident: 2024020118235281700_CR9
  article-title: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0506625102
– volume: 2
  start-page: 621
  year: 2009
  ident: 2024020118235281700_CR7
  article-title: Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils
  publication-title: Nat Geosci
  doi: 10.1038/ngeo613
– volume: 63
  start-page: 4704
  year: 1997
  ident: 2024020118235281700_CR34
  article-title: The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.63.12.4704-4712.1997
– volume: 22
  start-page: 37
  year: 1990
  ident: 2024020118235281700_CR54
  article-title: Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thiourea on nitrosomonas-europaea
  publication-title: Fert Res
  doi: 10.1007/BF01054805
– volume: 72
  start-page: 386
  year: 2010
  ident: 2024020118235281700_CR8
  article-title: Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2010.00861.x
– volume: 20
  start-page: 1933
  year: 1989
  ident: 2024020118235281700_CR1
  article-title: Research on dicyandiamide as a nitrification inhibitor and future outlook
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103628909368195
– volume: 442
  start-page: 806
  year: 2006
  ident: 2024020118235281700_CR26
  article-title: Archaea predominate among ammonia-oxidizing prokaryotes in soils
  publication-title: Nature
  doi: 10.1038/nature04983
– volume: 42
  start-page: 1425
  year: 2010
  ident: 2024020118235281700_CR31
  article-title: Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2010.05.003
– volume: 18
  start-page: 331
  year: 2010
  ident: 2024020118235281700_CR37
  article-title: Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum thaumarchaeota
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2010.06.003
– volume: 461
  start-page: 976
  year: 2009
  ident: 2024020118235281700_CR27
  article-title: Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria
  publication-title: Nature
  doi: 10.1038/nature08465
– volume: 108
  start-page: 8420
  year: 2011
  ident: 2024020118235281700_CR43
  article-title: Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1013488108
– volume: 4
  start-page: 520
  year: 2006
  ident: 2024020118235281700_CR14
  article-title: Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine crenarchaeota
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040095
– volume: 107
  start-page: 8818
  year: 2010
  ident: 2024020118235281700_CR49
  article-title: Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0913533107
– volume: 288
  start-page: 319
  year: 2006
  ident: 2024020118235281700_CR52
  article-title: Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9123-2
– volume: 5
  start-page: 316
  year: 2007
  ident: 2024020118235281700_CR44
  article-title: Adaptations to energy stress dictate the ecology and evolution of the archaea
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1619
– volume: 68
  start-page: 4751
  year: 2002
  ident: 2024020118235281700_CR3
  article-title: Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.68.10.4751-4757.2002
– reference: 17686032 - Environ Microbiol. 2007 Sep;9(9):2364-74
– reference: 16533068 - PLoS Biol. 2006 Apr;4(4):e95
– reference: 21228892 - ISME J. 2011 Jun;5(6):1067-71
– reference: 16186488 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14683-8
– reference: 10508942 - FEMS Microbiol Ecol. 1999 Oct 1;30(2):171-186
– reference: 18325029 - Environ Microbiol. 2008 May;10(5):1357-64
– reference: 15640188 - Appl Environ Microbiol. 2005 Jan;71(1):197-206
– reference: 21571885 - Appl Environ Microbiol. 2011 Jul;77(13):4618-25
– reference: 19656195 - FEMS Microbiol Ecol. 2009 Oct;70(1):99-108
– reference: 19236445 - Environ Microbiol. 2009 Jul;11(7):1658-71
– reference: 20889787 - Appl Environ Microbiol. 2010 Nov;76(22):7626-34
– reference: 12788707 - Appl Environ Microbiol. 2003 Jun;69(6):3129-36
– reference: 16347664 - Appl Environ Microbiol. 1988 Jun;54(6):1536-40
– reference: 16177789 - Nature. 2005 Sep 22;437(7058):543-6
– reference: 16915287 - Nature. 2006 Aug 17;442(7104):806-9
– reference: 20598889 - Trends Microbiol. 2010 Aug;18(8):331-40
– reference: 18707610 - Environ Microbiol. 2008 Nov;10(11):2966-78
– reference: 4422399 - J Bacteriol. 1974 Oct;120(1):556-8
– reference: 17391330 - FEMS Microbiol Ecol. 2007 Jun;60(3):442-8
– reference: 21896746 - Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15892-7
– reference: 9406389 - Appl Environ Microbiol. 1997 Dec;63(12):4704-12
– reference: 11097934 - Appl Environ Microbiol. 2000 Dec;66(12):5488-91
– reference: 12324316 - Appl Environ Microbiol. 2002 Oct;68(10):4751-7
– reference: 16603359 - Trends Microbiol. 2006 May;14(5):207-12
– reference: 18079405 - Science. 2007 Dec 14;318(5857):1782-6
– reference: 17334387 - Nat Rev Microbiol. 2007 Apr;5(4):316-23
– reference: 19794413 - Nature. 2009 Oct 15;461(7266):976-9
– reference: 1608980 - Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685-9
– reference: 21368116 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4170-5
– reference: 21525411 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8420-5
– reference: 16584480 - Environ Microbiol. 2006 Apr;8(4):684-96
– reference: 20370827 - FEMS Microbiol Ecol. 2010 Jun;72(3):386-94
– reference: 15001713 - Science. 2004 Apr 2;304(5667):66-74
– reference: 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
– reference: 20855593 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17240-5
– reference: 20150447 - Science. 2010 Feb 19;327(5968):1008-10
– reference: 19732147 - FEMS Microbiol Ecol. 2009 Dec;70(3):367-76
– reference: 21326337 - ISME J. 2011 Jul;5(7):1226-36
– reference: 21039653 - FEMS Microbiol Ecol. 2010 Dec;74(3):566-74
– reference: 20421470 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8818-23
– reference: 9726900 - Appl Environ Microbiol. 1998 Sep;64(9):3480-5
– reference: 17573939 - FEMS Microbiol Ecol. 2007 Aug;61(2):305-16
– reference: 18274537 - Nat Rev Microbiol. 2008 Mar;6(3):245-52
SSID ssj0057667
Score 2.5611622
Snippet Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1032
SubjectTerms Abundance
Acidic soils
Agriculture
Ammonia
Ammonia - metabolism
ammonia-oxidizing bacteria
Ammonium
amoA gene
Archaea
Archaea - classification
Archaea - genetics
Archaea - metabolism
Autotrophic Processes
Bacteria
Bacteria - classification
Bacteria - genetics
Bacteria - metabolism
Biomedical and Life Sciences
Carbon dioxide
Carbon dioxide fixation
Carbon Isotopes - analysis
Carbon sources
China
Denaturing Gradient Gel Electrophoresis
Deoxyribonucleic acid
DNA
Ecology
Electrophoresis
Evolutionary Biology
Gel electrophoresis
Guanidines - chemistry
Isotopes
Life Sciences
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microcosms
Nitrate
Nitrates
Nitrification
Nitrogen Cycle
Original
original-article
Oxidation
Oxidation-Reduction
Phylogeny
rRNA 16S
Soil
Soil - chemistry
Soil Microbiology
Soils (acid)
Stable isotopes
Title Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils
URI https://link.springer.com/article/10.1038/ismej.2011.168
https://www.ncbi.nlm.nih.gov/pubmed/22134644
https://www.proquest.com/docview/1001018199
https://www.proquest.com/docview/1002568382
https://www.proquest.com/docview/1017959555
https://pubmed.ncbi.nlm.nih.gov/PMC3329103
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RrZC4VLxJKZWRkOBiNbGT2DmhglpVSFSIh7S3yK_QoG3SNltEe-pPZ-w8aFnoeSaWnbHHn2dG3wC8kk6ylNuKIlZOaep4RXWFQC7WjutCsyoN9MUfD_ODb-mHeTYfAm7dUFY5-sTgqG1rfIx8JwlsaHh_FW9PTqnvGuWzq0MLjTVYRxcssxmsv9s7_PR59MUIpkMPWbwjEyrQV4-0jVzu1N2x-9FzeCaeaPX6tbSCNVdLJv_Km4braP8-bAw4kuz2hn8Ad1zzEO72nSUvHsHVrp9wrWj7q7b1JQ5BAiuSU-RI_XTEl9eS-jiA72ZJfI0h8UF0ola-0z2fsyL1JCVeGkxK2op0Ppr-fXFBlMFvDOnaetE9hi_7e1_fH9Ch2QI1WSaWNBdOZzovPKOYVgjktLUanxtGIKB03HneFpm7VLHcaW25zHRiYyk4c4VK-ROYNW3jngHBN05urImZToo0sYnmtsDB4lgJrnMjIqDjny7NwEPu22EsypAP57IMlim9ZUq0TASvJ_2TnoHjv5pbo-HK4SR25Z99E8HLSYxnyCdGVOPa86CDyE9yyW7TSXxb9izLInja74VpOszT4iGwjEDc2CWTgufwvilp6qPA5c05Q8DGI3gz7qfrU__XKjdvX-VzuIearK_J3ILZ8uzcvUDctNTbsCbmYns4Ir8BJaIbzw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgguiDcpBYwEgovVxM7DOSBUoNWWtisEReqpkR07NNU2KWQLLCd-ED-SsfOgZaG3nj227MyM57M9-QbgiTCChVwXFLFySEPDC6oKBHK-MlylihWhoy_eGcejj-HbvWhvAX71_8LYtMp-T3Qbta5ze0e-Gjg2NIxf6cvjz9RWjbKvq30JjdYstszsGx7Zmhebb1C_TxnbWN99PaJdVQGaR1EypXFiVKTi1FJnKYmIRWmtEFfnCSInw40lKBGxCSWLjVKai0gF2hcJZyaVIcdRL8ESgowUfWjp1fr43ft-50fo7irWYkQOaIKRoSeJ5GK1bI7MYcsYGlha19NBcA7Zzido_vVK64LfxnW41qFWstaa2Q1YMNVNuNzWsZzdgp9r9vOUktbfS13-wCGI42AykhzIr4bYZF5SHjmoX02JzWgk9sqeyLl-qmWPlqQcWoltdQZE6oI09u7-02RGZI59ctLU5aS5DR8uQAl3YLGqK3MPCJ6o4lznPlNBGgY6UFynOJjvy4SrOE88oP2XzvKO9dwW35hk7vWdi8xpJrOayVAzHjwb5I9bvo__Sq70iss6v2-yP1bqweOhGT3WPsPIytQnTgZxpuCCnScT2CLwURR5cLe1hWE6zJLwIYz1IDljJYOAZQw_21KVB445nHOG8JB78Ly3p9NT_9cql89f5SO4Mtrd2c62N8db9-Eq9mIuGzRegcXplxPzABHbVD3sHIXA_sV65m9ieFXy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEgou1iZ2Hc0Co0K5aCquKh9QTkR07NGibFLIFlhM_i5_H2HnQstBbzx5bdmbs-eyZfAPwUBjBQq4Lilg5pKHhBVUFAjlfGa5SxYrQ0Re_nsZb78OXe9HeCvzq_4WxaZX9megOal3n9o18HDg2NPRf6bjo0iJ2NybPDj9TW0HKRlr7chqtieyYxTe8vjVPtzdQ148Ym2y-e7FFuwoDNI-iZE7jxKhIxaml0VIS0YvSWiHGzhNEUYYbS1YiYhNKFhulNBeRCrQvEs5MKkOOo56D1QR9ohjB6vPN6e6b3gsgjHfVa9E7BzRBL9ETRnIxLpsD86llDw0sxetxh7iEcpeTNf-K2DpHOLkMlzoES9Zbk7sCK6a6CufbmpaLa_Bz3X6eUtL6e6nLHzgEcXxMRpJ9-dUQm9hLygMH-6s5sdmNxD7fE7nUT7VM0pKUQyuxrc6YSF2Qxr7jf5wtiMyxT06aupw11-HtGSjhBoyqujK3gODtKs517jMVpGGgA8V1ioP5vky4ivPEA9p_6SzvGNBtIY5Z5iLxXGROM5nVTIaa8eDxIH_Ycn_8V3KtV1zWnQFN9sdiPXgwNOPutSEZWZn6yMkg5hRcsNNkAlsQPooiD262tjBMh1lCPoS0HiQnrGQQsOzhJ1uqct-xiHPOECpyD5709nR86v9a5e3TV3kfLuCOzF5tT3fuwEXsxNqo2xqM5l-OzF0Eb3N1r9snBD6c7cb8DQIJWho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ammonia-oxidizing+archaea+have+more+important+role+than+ammonia-oxidizing+bacteria+in+ammonia+oxidation+of+strongly+acidic+soils&rft.jtitle=The+ISME+Journal&rft.au=Zhang%2C+Li-Mei&rft.au=Hu%2C+Hang-Wei&rft.au=Shen%2C+Ju-Pei&rft.au=He%2C+Ji-Zheng&rft.date=2012-05-01&rft.issn=1751-7362&rft.eissn=1751-7370&rft.volume=6&rft.issue=5&rft.spage=1032&rft.epage=1045&rft_id=info:doi/10.1038%2Fismej.2011.168&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_ismej_2011_168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7362&client=summon