ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation

Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blockin...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental cell Vol. 56; no. 4; pp. 427 - 442.e5
Main Authors Miao, Guangyan, Zhao, Hongyu, Li, Yan, Ji, Mingming, Chen, Yong, Shi, Yi, Bi, Yuhai, Wang, Peihui, Zhang, Hong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 22.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19. [Display omitted] •SARS-CoV-2 virus infection or expression of ORF3a blocks formation of autolysosomes•SARS-CoV-2 ORF3a sequestrates the HOPS component VPS39 on late endosomes•SARS-CoV-2 ORF3a impairs the assembly of the STX17-SNAP29-VAMP8 SNARE complex•SARS virus ORF3a fails to interact with VPS39 or affect autophagy activity Miao et al. demonstrate that late endosome-localized ORF3a of the COVID-19 virus SARS-CoV-2 sequestrates the HOPS component VPS39. ORF3a blocks autophagosome/amphisome fusion with lysosomes by preventing the assembly of the STX17-SNAP29-VAMP8 SNARE complex. SARS-CoV-2-infected cells also exhibit a defect in autophagosome maturation and sequestration of VPS39 on late endosomes.
AbstractList Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19.Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19.
Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19. Miao et al. demonstrate that late endosome-localized ORF3a of the COVID-19 virus SARS-CoV-2 sequestrates the HOPS component VPS39. ORF3a blocks autophagosome/amphisome fusion with lysosomes by preventing the assembly of the STX17-SNAP29-VAMP8 SNARE complex. SARS-CoV-2-infected cells also exhibit a defect in autophagosome maturation and sequestration of VPS39 on late endosomes.
Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19. [Display omitted] •SARS-CoV-2 virus infection or expression of ORF3a blocks formation of autolysosomes•SARS-CoV-2 ORF3a sequestrates the HOPS component VPS39 on late endosomes•SARS-CoV-2 ORF3a impairs the assembly of the STX17-SNAP29-VAMP8 SNARE complex•SARS virus ORF3a fails to interact with VPS39 or affect autophagy activity Miao et al. demonstrate that late endosome-localized ORF3a of the COVID-19 virus SARS-CoV-2 sequestrates the HOPS component VPS39. ORF3a blocks autophagosome/amphisome fusion with lysosomes by preventing the assembly of the STX17-SNAP29-VAMP8 SNARE complex. SARS-CoV-2-infected cells also exhibit a defect in autophagosome maturation and sequestration of VPS39 on late endosomes.
Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19.
Author Shi, Yi
Wang, Peihui
Miao, Guangyan
Bi, Yuhai
Li, Yan
Zhao, Hongyu
Zhang, Hong
Ji, Mingming
Chen, Yong
Author_xml – sequence: 1
  givenname: Guangyan
  surname: Miao
  fullname: Miao, Guangyan
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
– sequence: 2
  givenname: Hongyu
  surname: Zhao
  fullname: Zhao, Hongyu
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
– sequence: 3
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
– sequence: 4
  givenname: Mingming
  surname: Ji
  fullname: Ji, Mingming
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
– sequence: 5
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
– sequence: 6
  givenname: Yi
  surname: Shi
  fullname: Shi, Yi
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
– sequence: 7
  givenname: Yuhai
  surname: Bi
  fullname: Bi, Yuhai
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
– sequence: 8
  givenname: Peihui
  surname: Wang
  fullname: Wang, Peihui
  organization: Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
– sequence: 9
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  email: hongzhang@ibp.ac.cn
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33422265$$D View this record in MEDLINE/PubMed
BookMark eNqFUctuEzEUtVARfcAfIOQlmwl-zoMFUpS2tFJFUALdWh7PHergGaf2TEQ-gP_GIQkCFiAvbF2fx9U55-ik9z0g9JKSCSU0f7OaNLAx4CaMsDRiE0LJE3RGy6LMqJT0JL0lF5ksSXGKzmNckUSjJXmGTjkXjLFcnqHv88U119i3eHgAPJvf315mtMIbG8aIl9PFMpv5-4zh2nnzNeKb-cclNr5bO_iWddBYPUCDdYzQ1W57lFl-mC6ujjAc4HG0IcFaH7AeB--20UffwW7Q6cH6_jl62moX4cXhvkCfr68-zW6yu_n729n0LjNSFkOWs4qIpjFaAxemFkZUoq50UQPRQpQFKYByWTaVyIGWUEPbSiZEnddMi3T4BXq3112PddreQD8E7dQ62E6HrfLaqj9_evugvviNKkrOGJdJ4PVBIPjHEeKgOhtTCU734MeomCjyUnKWkwR99bvXL5Nj9gnwdg8wwccYoFXGDj_jSNbWKUrUrmi1Uvui1a5oRZlKRSey-It81P8P7RAApJQ3FoKKxkJvUpMBzKAab_8t8ANrdMTJ
CitedBy_id crossref_primary_10_1007_s10735_025_10375_w
crossref_primary_10_1016_j_bbadis_2022_166484
crossref_primary_10_1080_15548627_2023_2238579
crossref_primary_10_3389_fcell_2021_766142
crossref_primary_10_3389_fcimb_2022_794264
crossref_primary_10_1002_wrna_1727
crossref_primary_10_3390_v14051092
crossref_primary_10_1016_j_cellin_2022_100068
crossref_primary_10_3390_biomedicines9111651
crossref_primary_10_1080_15548627_2021_1936359
crossref_primary_10_3390_v15040855
crossref_primary_10_7554_eLife_84477
crossref_primary_10_3390_ijms24097734
crossref_primary_10_1016_j_diabet_2022_101359
crossref_primary_10_3389_fbioe_2023_1124100
crossref_primary_10_3390_biom12081052
crossref_primary_10_1038_s41564_021_00958_0
crossref_primary_10_1007_s12275_022_1525_1
crossref_primary_10_1007_s10142_024_01454_4
crossref_primary_10_1186_s43556_022_00083_2
crossref_primary_10_1080_22221751_2022_2164217
crossref_primary_10_3389_fmicb_2022_854567
crossref_primary_10_1038_s41392_022_01043_6
crossref_primary_10_1128_mmbr_00026_21
crossref_primary_10_1002_jmv_28630
crossref_primary_10_1080_15548627_2024_2375785
crossref_primary_10_1128_spectrum_01219_22
crossref_primary_10_1091_mbc_E23_08_0328
crossref_primary_10_3389_fimmu_2024_1460023
crossref_primary_10_23736_S2724_542X_23_03013_4
crossref_primary_10_1126_sciimmunol_abm5505
crossref_primary_10_1038_s41392_022_00884_5
crossref_primary_10_1021_acsomega_3c06485
crossref_primary_10_3390_cells14060418
crossref_primary_10_1083_jcb_202203083
crossref_primary_10_1016_j_isci_2022_105394
crossref_primary_10_1016_j_celrep_2024_115115
crossref_primary_10_1038_s41467_022_32957_y
crossref_primary_10_3389_fcimb_2023_1166839
crossref_primary_10_1080_22221751_2021_1872353
crossref_primary_10_3390_cells12091282
crossref_primary_10_4103_1673_5374_327333
crossref_primary_10_1083_jcb_202112081
crossref_primary_10_3389_fimmu_2024_1363572
crossref_primary_10_1016_j_antiviral_2023_105601
crossref_primary_10_1016_j_cophys_2022_100596
crossref_primary_10_7554_eLife_80901
crossref_primary_10_3390_ijms23179739
crossref_primary_10_1007_s00203_024_03838_3
crossref_primary_10_1038_s41586_022_05164_4
crossref_primary_10_3389_fmicb_2023_1152249
crossref_primary_10_1038_s42003_023_05414_9
crossref_primary_10_1080_15548627_2021_2002109
crossref_primary_10_1128_mbio_03030_23
crossref_primary_10_1007_s11033_023_08835_1
crossref_primary_10_3390_v13112165
crossref_primary_10_1186_s12890_024_02921_1
crossref_primary_10_1186_s40779_024_00581_0
crossref_primary_10_3389_fphar_2022_832750
crossref_primary_10_1016_j_cellin_2022_100031
crossref_primary_10_1016_j_vetmic_2023_109972
crossref_primary_10_3390_v15112229
crossref_primary_10_3390_v16091491
crossref_primary_10_1371_journal_ppat_1012156
crossref_primary_10_1038_s41401_023_01189_1
crossref_primary_10_31083_j_fbl2810273
crossref_primary_10_3390_ijms23031716
crossref_primary_10_1016_j_crviro_2021_100013
crossref_primary_10_1038_s41467_024_52818_0
crossref_primary_10_1038_s41579_023_01003_z
crossref_primary_10_1128_mbio_01020_23
crossref_primary_10_3390_cells10082022
crossref_primary_10_1016_j_ijbiomac_2024_134850
crossref_primary_10_1016_j_cell_2021_10_017
crossref_primary_10_3389_fcimb_2022_845580
crossref_primary_10_3390_ijms24054928
crossref_primary_10_1080_15548627_2022_2116677
crossref_primary_10_1016_j_mam_2021_100966
crossref_primary_10_3390_cells10051118
crossref_primary_10_1080_27694127_2023_2179287
crossref_primary_10_1038_s41579_023_00995_y
crossref_primary_10_3390_v15040920
crossref_primary_10_1002_cbf_3883
crossref_primary_10_1111_febs_16163
crossref_primary_10_1128_jvi_00426_23
crossref_primary_10_1089_dna_2023_0002
crossref_primary_10_1016_j_semcdb_2022_02_024
crossref_primary_10_1093_femsre_fuac041
crossref_primary_10_1016_j_rpth_2023_102140
crossref_primary_10_1016_j_bbrc_2023_03_004
crossref_primary_10_1038_s44298_024_00076_8
crossref_primary_10_1038_s41467_024_49137_9
crossref_primary_10_3389_fimmu_2022_975918
crossref_primary_10_3390_ijms22136991
crossref_primary_10_3390_v16091478
crossref_primary_10_1128_jvi_01408_23
crossref_primary_10_1128_JVI_00402_21
crossref_primary_10_1128_jvi_01943_22
crossref_primary_10_1128_mbio_03168_21
crossref_primary_10_3389_fmicb_2023_1251065
crossref_primary_10_3389_fimmu_2022_890549
crossref_primary_10_3389_fcell_2021_772965
crossref_primary_10_3389_fgene_2022_908826
crossref_primary_10_1016_j_biocel_2022_106185
crossref_primary_10_3389_fimmu_2023_1249607
crossref_primary_10_3390_cimb45010023
crossref_primary_10_3390_v13050897
crossref_primary_10_1016_j_coviro_2021_08_007
crossref_primary_10_3390_antiox10091440
crossref_primary_10_1016_j_coviro_2021_08_006
crossref_primary_10_1371_journal_pcbi_1010517
crossref_primary_10_1016_j_celrep_2023_112286
crossref_primary_10_1093_jmcb_mjab013
crossref_primary_10_2147_IJGM_S354885
crossref_primary_10_3389_fcimb_2021_786348
crossref_primary_10_3390_cells12020262
crossref_primary_10_1083_jcb_202312119
crossref_primary_10_1016_j_celrep_2023_112835
crossref_primary_10_1016_j_lfs_2024_122653
crossref_primary_10_1051_medsci_2021100
crossref_primary_10_1016_j_tcb_2023_12_006
crossref_primary_10_1016_j_bbadis_2022_166517
crossref_primary_10_1038_s41467_024_54628_w
crossref_primary_10_1038_s41392_023_01510_8
crossref_primary_10_1371_journal_ppat_1010506
crossref_primary_10_1371_journal_ppat_1011958
crossref_primary_10_3390_ani14030448
crossref_primary_10_15698_mic2024_10_838
crossref_primary_10_1038_s41421_021_00268_z
crossref_primary_10_1080_15548627_2022_2039992
crossref_primary_10_1016_j_biochi_2024_04_011
crossref_primary_10_3389_fcimb_2024_1457617
crossref_primary_10_1002_advs_202411737
crossref_primary_10_1111_raq_12785
crossref_primary_10_1016_j_jhazmat_2024_135597
crossref_primary_10_3389_pore_2021_1609976
crossref_primary_10_1016_j_antiviral_2023_105590
crossref_primary_10_1007_s00702_021_02431_y
crossref_primary_10_1016_j_heliyon_2023_e18754
crossref_primary_10_1016_j_isci_2023_106169
crossref_primary_10_1016_j_celrep_2021_109126
crossref_primary_10_3390_cells12060956
crossref_primary_10_1016_j_isci_2022_103967
crossref_primary_10_1038_s41598_023_31764_9
crossref_primary_10_1002_jmv_29200
crossref_primary_10_3233_JAD_220105
crossref_primary_10_1038_s41594_021_00619_0
crossref_primary_10_1080_15548627_2022_2084686
crossref_primary_10_1128_spectrum_04386_22
crossref_primary_10_1002_jcb_30396
crossref_primary_10_1002_iub_2582
crossref_primary_10_1016_j_intimp_2022_108531
crossref_primary_10_3389_fimmu_2023_1268854
crossref_primary_10_3390_pathogens13030266
crossref_primary_10_3389_fmicb_2022_846543
crossref_primary_10_3389_fmicb_2022_889835
crossref_primary_10_1186_s12964_024_01680_0
crossref_primary_10_3389_fimmu_2023_1324516
crossref_primary_10_1016_j_bbadis_2021_166260
crossref_primary_10_1080_14728222_2021_1952987
crossref_primary_10_3389_fimmu_2022_870216
crossref_primary_10_1080_0889311X_2023_2173744
crossref_primary_10_1126_scisignal_abh3628
crossref_primary_10_1002_bies_202100261
crossref_primary_10_1038_s41423_023_01104_y
crossref_primary_10_3389_fcell_2022_896618
crossref_primary_10_1016_j_xpro_2021_100781
crossref_primary_10_1038_s41423_025_01272_z
crossref_primary_10_15252_msb_202110387
crossref_primary_10_1002_mco2_150
crossref_primary_10_3389_fcell_2022_1011221
crossref_primary_10_1128_MCB_00185_21
crossref_primary_10_1016_j_isci_2023_107118
crossref_primary_10_1096_fj_202300149R
crossref_primary_10_3389_fviro_2021_815388
crossref_primary_10_1016_j_biopha_2021_112015
crossref_primary_10_1111_febs_16986
crossref_primary_10_1186_s12985_023_02069_0
crossref_primary_10_31083_j_fbl2702065
crossref_primary_10_3390_cells11152262
crossref_primary_10_1128_jvi_02049_24
crossref_primary_10_3390_ijms222011241
crossref_primary_10_1083_jcb_202110151
crossref_primary_10_1111_jre_13069
crossref_primary_10_3390_pathogens13121117
crossref_primary_10_1002_jmv_27965
crossref_primary_10_3390_v13112201
crossref_primary_10_15252_embj_2021108863
crossref_primary_10_3390_cimb46030142
crossref_primary_10_1016_j_trsl_2022_08_007
crossref_primary_10_1080_22221751_2022_2128434
crossref_primary_10_1016_j_ijbiomac_2021_11_074
crossref_primary_10_1016_j_ymthe_2022_12_008
crossref_primary_10_4049_jimmunol_2200477
crossref_primary_10_1038_s41417_022_00477_y
crossref_primary_10_3390_ijms23094576
crossref_primary_10_1016_j_biopha_2024_116918
crossref_primary_10_1111_mmi_14907
crossref_primary_10_3390_cells10051068
crossref_primary_10_1007_s40588_022_00186_y
crossref_primary_10_3389_fmicb_2021_752597
crossref_primary_10_1016_j_mib_2024_102466
crossref_primary_10_1080_15548627_2022_2099206
crossref_primary_10_3390_ijms24054523
crossref_primary_10_3389_fgene_2024_1249501
crossref_primary_10_15252_embj_2022112542
crossref_primary_10_3389_fimmu_2022_1010911
crossref_primary_10_3390_cells13060500
crossref_primary_10_3390_ijms23073649
crossref_primary_10_3390_molecules26226945
crossref_primary_10_1016_j_devcel_2021_10_006
crossref_primary_10_3389_fmicb_2023_1162470
crossref_primary_10_1265_ehpm_23_00361
crossref_primary_10_1016_j_bbapap_2021_140693
crossref_primary_10_1016_j_tcb_2024_11_008
crossref_primary_10_1083_jcb_202207091
crossref_primary_10_3390_nu15183885
crossref_primary_10_1016_j_clim_2022_109093
crossref_primary_10_1038_s41580_021_00392_4
crossref_primary_10_1128_JVI_01537_21
crossref_primary_10_1002_jmv_28959
crossref_primary_10_3390_cells11030487
crossref_primary_10_1016_j_jpha_2021_03_012
crossref_primary_10_12688_f1000research_72904_1
crossref_primary_10_12688_f1000research_72904_2
crossref_primary_10_3389_fmicb_2022_933983
crossref_primary_10_1016_j_coi_2023_102344
crossref_primary_10_1002_jcb_30166
crossref_primary_10_1016_j_gene_2021_145963
crossref_primary_10_3390_v13122467
crossref_primary_10_1128_spectrum_01509_22
crossref_primary_10_15252_embr_202357224
crossref_primary_10_3390_applmicrobiol2030045
crossref_primary_10_1038_s41467_024_46417_2
crossref_primary_10_1002_jmv_28967
crossref_primary_10_3389_fgene_2022_801382
crossref_primary_10_1016_j_virs_2023_05_003
crossref_primary_10_1126_sciadv_adl5012
crossref_primary_10_3389_fcell_2021_716208
crossref_primary_10_1016_j_expneurol_2023_114463
crossref_primary_10_1111_boc_202200073
crossref_primary_10_1038_s42003_024_07442_5
crossref_primary_10_1016_j_ijbiomac_2024_136978
crossref_primary_10_3389_fimmu_2021_708264
crossref_primary_10_1016_j_heliyon_2023_e19759
crossref_primary_10_3390_v14010132
crossref_primary_10_1002_jmv_28175
Cites_doi 10.1016/j.chom.2010.05.013
10.1016/S0140-6736(20)31305-2
10.1083/jcb.201810099
10.4161/auto.7.11.16642
10.1038/s41556-020-00583-9
10.1038/s41586-020-2008-3
10.1242/jcs.107805
10.1016/j.ab.2012.02.033
10.1038/nrm2002
10.1371/journal.pbio.0060226
10.1038/nrm3696
10.1091/mbc.e13-08-0449
10.1038/s41579-018-0003-6
10.1016/j.antiviral.2006.05.010
10.1074/jbc.M110.111633
10.1128/mSystems.00266-20
10.1016/j.chom.2014.04.004
10.4161/auto.4451
10.1080/15548627.2015.1063871
10.1111/tra.12283
10.1016/j.celrep.2018.02.090
10.1091/mbc.e13-08-0447
10.1073/pnas.1401437111
10.1083/jcb.201712058
10.1038/nri3532
10.1016/j.chom.2006.12.001
10.1371/journal.pbio.3000715
10.1038/s41419-018-0917-y
10.1083/jcb.201711083
10.1016/j.jmb.2018.04.018
10.1128/JVI.01662-09
10.1073/pnas.0605402103
10.1016/j.molcel.2019.10.035
10.1080/15548627.2015.1100356
10.15252/embr.201438618
10.1074/jbc.REV120.013930
10.1126/science.abd3629
10.1016/j.cell.2020.10.039
10.1128/JVI.74.19.8953-8965.2000
10.1016/j.bbamcr.2008.10.016
10.1073/pnas.1117797109
10.1038/nature14147
10.1038/s41586-020-2286-9
10.1146/annurev-cellbio-092910-154005
10.1096/fj.201802418R
10.1128/mBio.00801-13
10.1146/annurev-cellbio-111315-125407
10.1111/febs.12151
10.1016/j.virol.2015.03.042
10.1111/tra.12027
10.1038/s41467-018-05254-w
10.1038/nature09782
10.1016/S0140-6736(20)30185-9
10.1016/j.biocel.2009.04.019
10.1038/ncb3066
10.1091/mbc.10.1.119
10.1016/j.semcdb.2019.07.013
10.1038/ncomms2360
10.1371/journal.pbio.0030156
10.1016/j.cell.2012.11.001
10.4161/auto.29309
10.4161/auto.6.6.12709
10.1038/cr.2013.168
10.1083/jcb.200803137
10.1016/j.immuni.2011.06.009
10.1091/mbc.e10-03-0260
10.4161/auto.4782
10.1128/JVI.00641-08
10.1128/mBio.02325-17
10.1016/j.celrep.2018.03.003
10.1016/j.molcel.2017.08.005
10.1016/j.molcel.2016.08.021
10.1038/nrm1985
10.1016/j.cell.2020.02.052
10.1074/jbc.M101778200
10.1371/journal.pone.0008342
10.1128/JVI.01417-10
10.1016/j.cub.2012.06.029
10.4161/cc.9.7.11109
10.1091/mbc.e11-09-0785
10.1073/pnas.2003138117
10.1128/JVI.00551-16
10.1016/j.ceb.2018.04.003
10.1016/j.xcrm.2020.100059
10.1038/s41586-020-2012-7
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
2020 Elsevier Inc. 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: 2020 Elsevier Inc. 2020 Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.devcel.2020.12.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1878-1551
EndPage 442.e5
ExternalDocumentID PMC7832235
33422265
10_1016_j_devcel_2020_12_010
S1534580720310169
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
1~5
2WC
4.4
457
4G.
5GY
62-
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
29F
53G
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
RIG
UHS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c557t-62904ddcaae34cb4c494b9a7be0a448707e1358d946e18ebeff5244b6b2a4a4a3
IEDL.DBID IXB
ISSN 1534-5807
1878-1551
IngestDate Thu Aug 21 13:44:57 EDT 2025
Fri Jul 11 16:26:23 EDT 2025
Thu Apr 03 06:58:29 EDT 2025
Thu Apr 24 22:58:35 EDT 2025
Tue Jul 01 00:48:12 EDT 2025
Fri Feb 23 02:44:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords COVID-19
SARS-CoV-2
autophagy
HOPS
DMV
ORF3a
SNARE
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-62904ddcaae34cb4c494b9a7be0a448707e1358d946e18ebeff5244b6b2a4a4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7832235
PMID 33422265
PQID 2476853260
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7832235
proquest_miscellaneous_2476853260
pubmed_primary_33422265
crossref_citationtrail_10_1016_j_devcel_2020_12_010
crossref_primary_10_1016_j_devcel_2020_12_010
elsevier_sciencedirect_doi_10_1016_j_devcel_2020_12_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-22
PublicationDateYYYYMMDD 2021-02-22
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Developmental cell
PublicationTitleAlternate Dev Cell
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Balderhaar, Ungermann (bib3) 2013; 126
Solinger, Spang (bib63) 2013; 280
Shang, Wan, Luo, Ye, Geng, Auerbach, Li (bib60) 2020; 117
Knoops, Kikkert, Worm, Zevenhoven-Dobbe, van der Meer, Koster, Mommaas, Snijder (bib41) 2008; 6
Yue, Nabar, Shi, Kamenyeva, Xiao, Hwang, Wang, Kehrl (bib79) 2018; 9
Bradley, Maioli, Johnston, Chaudhry, Fink, Xu, Najafian, Deutsch, Lacy, Williams (bib6) 2020; 396
Zhao, Zhang (bib82) 2019; 218
Jackson, Giddings, Taylor, Mulinyawe, Rabinovitch, Kopito, Kirkegaard (bib34) 2005; 3
Pizzorno, Padey, Julien, Trouillet-Assant, Traversier, Errazuriz-Cerda, Fouret, Dubois, Gaymard, Lescure (bib53) 2020; 1
Pols, van Meel, Oorschot, ten Brink, Fukuda, Swetha, Mayor, Klumperman (bib56) 2013; 4
Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib84) 2020; 579
Diao, Liu, Rong, Zhao, Zhang, Lai, Zhou, Wilz, Li, Vivona (bib18) 2015; 520
Wolff, Limpens, Zevenhoven-Dobbe, Laugks, Zheng, de Jong, Koning, Agard, Grünewald, Koster (bib73) 2020; 369
Wu, Cheng, Zhao, Zou, Yoshina, Mitani, Zhang, Wang (bib78) 2014; 15
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib28) 2020; 181
Tan, Lim, Hong (bib67) 2006; 72
Lu, Zheng, Xu, Schwarz, Du, Wong, Chen, Duan, Deubel, Sun (bib44) 2006; 103
Wong, Xu, Zhang, Griffiths, Lowe, Subramaniam, Seow, Hong (bib76) 1999; 10
Aits, Kricker, Liu, Ellegaard, Hämälistö, Tvingsholm, Corcelle-Termeau, Høgh, Farkas, Holm Jonassen (bib1) 2015; 11
Gordon, Jang, Bouhaddou, Xu, Obernier, White, O'Meara, Rezelj, Guo, Swaney (bib25) 2020; 583
Castaño-Rodriguez, Honrubia, Gutiérrez-Álvarez, DeDiego, Nieto-Torres, Jimenez-Guardeño, Regla-Nava, Fernandez-Delgado, Verdia-Báguena, Queralt-Martín (bib9) 2018; 9
Nakamura, Shigeyama, Minami, Shima, Akayama, Matsuda, Esposito, Napolitano, Kuma, Namba-Hamano (bib50) 2020; 22
Velikkakath, Nishimura, Oita, Ishihara, Mizushima (bib68) 2012; 23
Wartosch, Günesdogan, Graham, Luzio (bib72) 2015; 16
Wong, Zhang, Si, Gao, Mao, McManus, Luo (bib75) 2008; 82
Freundt, Yu, Goldsmith, Welsh, Cheng, Yount, Liu, Frieman, Buchholz, Screaton (bib22) 2010; 84
Feng, He, Yao, Klionsky (bib21) 2014; 24
Ghosh, Dellibovi-Ragheb, Kerviel, Pak, Qiu, Fisher, Takvorian, Bleck, Hsu, Fehr (bib24) 2020; 183
Mohamud, Shi, Qu, Poon, Xue, Deng, Zhang, Luo (bib49) 2018; 22
Humphries, Payne (bib29) 2012; 424
Bonifacino, Rojas (bib5) 2006; 7
Wu, Zhao, Yu, Chen, Wang, Song, Hu, Tao, Tian, Pei (bib77) 2020; 579
Cebollero, van der Vaart, Zhao, Rieter, Klionsky, Helms, Reggiori (bib10) 2012; 22
Garg, Sharma, Ung, Tuli, Barral, Hava, Veerapen, Besra, Hacohen, Brenner (bib23) 2011; 35
Maier, Hawes, Cottam, Mantell, Verkade, Monaghan, Wileman, Britton (bib85) 2013; 4
Cottam, Maier, Manifava, Vaux, Chandra-Schoenfelder, Gerner, Britton, Ktistakis, Wileman (bib15) 2011; 7
Cheng, Xie, Zhou, Huang, Farfel-Becker, Sheng (bib12) 2018; 217
Issa, Merhi, Panossian, Salloum, Tokajian (bib30) 2020; 5
Mizushima, Yoshimori, Ohsumi (bib48) 2011; 27
Plemel, Lobingier, Brett, Angers, Nickerson, Paulsel, Sprague, Merz (bib54) 2011; 22
Suhy, Giddings, Kirkegaard (bib64) 2000; 74
Choi, Bowman, Jung (bib13) 2018; 16
Chan, Tsoi, Chan, Zhai, Wong, Yao, Chan, Tsui, Chan (bib11) 2009; 41
Ding, Zhang, Yang, Zhang, Chen, Yan, Xu, Banerjee, Chen (bib19) 2014; 15
Jackson (bib33) 2015; 479–480
Matsui, Jiang, Nakano, Sakamaki, Yamamoto, Mizushima (bib45) 2018; 217
Wang, Horby, Hayden, Gao (bib70) 2020; 395
Reggiori, Monastyrska, Verheije, Calì, Ulasli, Bianchi, Bernasconi, de Haan, Molinari (bib58) 2010; 7
Peralta, Martin, Edinger (bib52) 2010; 285
Braulke, Bonifacino (bib7) 2009; 1793
Hartenian, Nandakumar, Lari, Ly, Tucker, Glaunsinger (bib27) 2020; 295
Pols, ten Brink, Gosavi, Oorschot, Klumperman (bib55) 2013; 14
Snijder, Limpens, de Wilde, de Jong, Zevenhoven-Dobbe, Maier, Faas, Koster, Bárcena (bib62) 2020; 18
Orvedahl, Alexander, Tallóczy, Sun, Wei, Zhang, Burns, Leib, Levine (bib51) 2007; 1
Takahashi, He, Tang, Hattori, Liu, Young, Serfass, Chen, Gebru, Chen (bib65) 2018; 9
Axe, Walker, Manifava, Chandra, Roderick, Habermann, Griffiths, Ktistakis (bib2) 2008; 182
Corona, Saulsbery, Corona Velazquez, Jackson (bib14) 2018; 22
Zhao, Chen, Miao, Zhao, Qu, Li, Wang, Liu, Li, Chen (bib80) 2017; 67
Kimura, Noda, Yoshimori (bib39) 2007; 3
Takáts, Pircs, Nagy, Varga, Kárpáti, Hegedűs, Kramer, Kovács, Sass, Juhász (bib66) 2014; 25
Itakura, Mizushima (bib32) 2010; 6
Kim, Krämer, Yamamoto, Kominami, Kohsaka, Akazawa (bib38) 2001; 276
Klionsky, Abdelmohsen, Abe, Abedin, Abeliovich, Acevedo Arozena, Adachi, Adams, Adams, Adeli (bib40) 2016; 12
Levine, Mizushima, Virgin (bib43) 2011; 469
Bird, Maynard, Covert, Kirkegaard (bib4) 2014; 111
Raben, Puertollano (bib57) 2016; 32
Siu, Yuen, Castaño-Rodriguez, Ye, Yeung, Fung, Yuan, Chan, Yuen, Enjuanes, Jin (bib61) 2019; 33
Lamb, Yoshimori, Tooze (bib42) 2013; 14
Viret, Rozières, Faure (bib69) 2018; 430
Ren, Elgner, Jiang, Himmelsbach, Medvedev, Ploen, Hildt (bib59) 2016; 90
Wong, Sanyal (bib74) 2020; 101
Miao, Zhang, Chen, Zhang (bib46) 2020; 77
Wang, Miao, Xue, Guo, Yuan, Wang, Zhang, Chen, Feng, Hu, Zhang (bib71) 2016; 63
Dreux, Chisari (bib20) 2010; 9
Zhao, Thackray, Miller, Lynn, Becker, Ward, Mizushima, Denison, Virgin (bib83) 2007; 3
Deretic, Saitoh, Akira (bib17) 2013; 13
Guo, Liang, Li, Hu, Wu, Zhang, Ma, Zhao, Kovács, Zhang (bib26) 2014; 16
Minakshi, Padhan, Rani, Khan, Ahmad, Jameel (bib47) 2009; 4
Kemball, Alirezaei, Flynn, Wood, Harkins, Kiosses, Whitton (bib37) 2010; 84
Zhao, Zhang (bib81) 2018; 53
Bröcker, Kuhlee, Gatsogiannis, Balderhaar, Hönscher, Engelbrecht-Vandré, Ungermann, Raunser (bib8) 2012; 109
Cottam, Whelband, Wileman (bib16) 2014; 10
Itakura, Kishi-Itakura, Mizushima (bib31) 2012; 151
Jiang, Nishimura, Sakamaki, Itakura, Hatta, Natsume, Mizushima (bib36) 2014; 25
Jahn, Scheller (bib35) 2006; 7
Issa (10.1016/j.devcel.2020.12.010_bib30) 2020; 5
Nakamura (10.1016/j.devcel.2020.12.010_bib50) 2020; 22
Wu (10.1016/j.devcel.2020.12.010_bib77) 2020; 579
Snijder (10.1016/j.devcel.2020.12.010_bib62) 2020; 18
Velikkakath (10.1016/j.devcel.2020.12.010_bib68) 2012; 23
Wolff (10.1016/j.devcel.2020.12.010_bib73) 2020; 369
Yue (10.1016/j.devcel.2020.12.010_bib79) 2018; 9
Siu (10.1016/j.devcel.2020.12.010_bib61) 2019; 33
Aits (10.1016/j.devcel.2020.12.010_bib1) 2015; 11
Dreux (10.1016/j.devcel.2020.12.010_bib20) 2010; 9
Jahn (10.1016/j.devcel.2020.12.010_bib35) 2006; 7
Gordon (10.1016/j.devcel.2020.12.010_bib25) 2020; 583
Klionsky (10.1016/j.devcel.2020.12.010_bib40) 2016; 12
Hartenian (10.1016/j.devcel.2020.12.010_bib27) 2020; 295
Lamb (10.1016/j.devcel.2020.12.010_bib42) 2013; 14
Maier (10.1016/j.devcel.2020.12.010_bib85) 2013; 4
Wu (10.1016/j.devcel.2020.12.010_bib78) 2014; 15
Ding (10.1016/j.devcel.2020.12.010_bib19) 2014; 15
Reggiori (10.1016/j.devcel.2020.12.010_bib58) 2010; 7
Balderhaar (10.1016/j.devcel.2020.12.010_bib3) 2013; 126
Braulke (10.1016/j.devcel.2020.12.010_bib7) 2009; 1793
Cheng (10.1016/j.devcel.2020.12.010_bib12) 2018; 217
Kemball (10.1016/j.devcel.2020.12.010_bib37) 2010; 84
Minakshi (10.1016/j.devcel.2020.12.010_bib47) 2009; 4
Hoffmann (10.1016/j.devcel.2020.12.010_bib28) 2020; 181
Raben (10.1016/j.devcel.2020.12.010_bib57) 2016; 32
Wang (10.1016/j.devcel.2020.12.010_bib70) 2020; 395
Wang (10.1016/j.devcel.2020.12.010_bib71) 2016; 63
Cottam (10.1016/j.devcel.2020.12.010_bib15) 2011; 7
Jiang (10.1016/j.devcel.2020.12.010_bib36) 2014; 25
Mohamud (10.1016/j.devcel.2020.12.010_bib49) 2018; 22
Miao (10.1016/j.devcel.2020.12.010_bib46) 2020; 77
Takáts (10.1016/j.devcel.2020.12.010_bib66) 2014; 25
Ghosh (10.1016/j.devcel.2020.12.010_bib24) 2020; 183
Cottam (10.1016/j.devcel.2020.12.010_bib16) 2014; 10
Diao (10.1016/j.devcel.2020.12.010_bib18) 2015; 520
Zhao (10.1016/j.devcel.2020.12.010_bib82) 2019; 218
Pols (10.1016/j.devcel.2020.12.010_bib56) 2013; 4
Axe (10.1016/j.devcel.2020.12.010_bib2) 2008; 182
Zhao (10.1016/j.devcel.2020.12.010_bib83) 2007; 3
Zhao (10.1016/j.devcel.2020.12.010_bib81) 2018; 53
Feng (10.1016/j.devcel.2020.12.010_bib21) 2014; 24
Garg (10.1016/j.devcel.2020.12.010_bib23) 2011; 35
Guo (10.1016/j.devcel.2020.12.010_bib26) 2014; 16
Matsui (10.1016/j.devcel.2020.12.010_bib45) 2018; 217
Deretic (10.1016/j.devcel.2020.12.010_bib17) 2013; 13
Pols (10.1016/j.devcel.2020.12.010_bib55) 2013; 14
Chan (10.1016/j.devcel.2020.12.010_bib11) 2009; 41
Tan (10.1016/j.devcel.2020.12.010_bib67) 2006; 72
Lu (10.1016/j.devcel.2020.12.010_bib44) 2006; 103
Zhao (10.1016/j.devcel.2020.12.010_bib80) 2017; 67
Kimura (10.1016/j.devcel.2020.12.010_bib39) 2007; 3
Takahashi (10.1016/j.devcel.2020.12.010_bib65) 2018; 9
Orvedahl (10.1016/j.devcel.2020.12.010_bib51) 2007; 1
Solinger (10.1016/j.devcel.2020.12.010_bib63) 2013; 280
Pizzorno (10.1016/j.devcel.2020.12.010_bib53) 2020; 1
Jackson (10.1016/j.devcel.2020.12.010_bib33) 2015; 479–480
Cebollero (10.1016/j.devcel.2020.12.010_bib10) 2012; 22
Corona (10.1016/j.devcel.2020.12.010_bib14) 2018; 22
Jackson (10.1016/j.devcel.2020.12.010_bib34) 2005; 3
Levine (10.1016/j.devcel.2020.12.010_bib43) 2011; 469
Knoops (10.1016/j.devcel.2020.12.010_bib41) 2008; 6
Zhou (10.1016/j.devcel.2020.12.010_bib84) 2020; 579
Peralta (10.1016/j.devcel.2020.12.010_bib52) 2010; 285
Wong (10.1016/j.devcel.2020.12.010_bib74) 2020; 101
Freundt (10.1016/j.devcel.2020.12.010_bib22) 2010; 84
Bonifacino (10.1016/j.devcel.2020.12.010_bib5) 2006; 7
Ren (10.1016/j.devcel.2020.12.010_bib59) 2016; 90
Itakura (10.1016/j.devcel.2020.12.010_bib31) 2012; 151
Bröcker (10.1016/j.devcel.2020.12.010_bib8) 2012; 109
Wartosch (10.1016/j.devcel.2020.12.010_bib72) 2015; 16
Bird (10.1016/j.devcel.2020.12.010_bib4) 2014; 111
Mizushima (10.1016/j.devcel.2020.12.010_bib48) 2011; 27
Choi (10.1016/j.devcel.2020.12.010_bib13) 2018; 16
Shang (10.1016/j.devcel.2020.12.010_bib60) 2020; 117
Wong (10.1016/j.devcel.2020.12.010_bib75) 2008; 82
Wong (10.1016/j.devcel.2020.12.010_bib76) 1999; 10
Bradley (10.1016/j.devcel.2020.12.010_bib6) 2020; 396
Itakura (10.1016/j.devcel.2020.12.010_bib32) 2010; 6
Kim (10.1016/j.devcel.2020.12.010_bib38) 2001; 276
Suhy (10.1016/j.devcel.2020.12.010_bib64) 2000; 74
Castaño-Rodriguez (10.1016/j.devcel.2020.12.010_bib9) 2018; 9
Viret (10.1016/j.devcel.2020.12.010_bib69) 2018; 430
Humphries (10.1016/j.devcel.2020.12.010_bib29) 2012; 424
Plemel (10.1016/j.devcel.2020.12.010_bib54) 2011; 22
33621488 - Dev Cell. 2021 Feb 22;56(4):400-402
References_xml – volume: 10
  start-page: 119
  year: 1999
  end-page: 134
  ident: bib76
  article-title: GS32, a novel Golgi SNARE of 32 kDa, interacts preferentially with syntaxin 6
  publication-title: Mol. Biol. Cell
– volume: 276
  start-page: 29393
  year: 2001
  end-page: 29402
  ident: bib38
  article-title: Molecular characterization of mammalian homologues of class C Vps proteins that interact with syntaxin-7
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 1252
  year: 2020
  end-page: 1263
  ident: bib50
  article-title: LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury
  publication-title: Nat. Cell Biol.
– volume: 25
  start-page: 1338
  year: 2014
  end-page: 1354
  ident: bib66
  article-title: Interaction of the HOPS complex with syntaxin 17 mediates autophagosome clearance in Drosophila
  publication-title: Mol. Biol. Cell
– volume: 396
  start-page: 320
  year: 2020
  end-page: 332
  ident: bib6
  article-title: Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington state: a case series
  publication-title: Lancet
– volume: 12
  start-page: 1
  year: 2016
  end-page: 222
  ident: bib40
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy, (3rd Edition)
  publication-title: Autophagy
– volume: 14
  start-page: 219
  year: 2013
  end-page: 232
  ident: bib55
  article-title: The HOPS proteins hVps41 and hVps39 are required for homotypic and heterotypic late endosome fusion
  publication-title: Traffic
– volume: 33
  start-page: 8865
  year: 2019
  end-page: 8877
  ident: bib61
  article-title: Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC
  publication-title: FASEB J.
– volume: 217
  start-page: 3127
  year: 2018
  end-page: 3139
  ident: bib12
  article-title: Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons
  publication-title: J. Cell Biol.
– volume: 469
  start-page: 323
  year: 2011
  end-page: 335
  ident: bib43
  article-title: Autophagy in immunity and inflammation
  publication-title: Nature
– volume: 41
  start-page: 2232
  year: 2009
  end-page: 2239
  ident: bib11
  article-title: The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 151
  start-page: 1256
  year: 2012
  end-page: 1269
  ident: bib31
  article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
  publication-title: Cell
– volume: 25
  start-page: 1327
  year: 2014
  end-page: 1337
  ident: bib36
  article-title: The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17
  publication-title: Mol. Biol. Cell
– volume: 520
  start-page: 563
  year: 2015
  end-page: 566
  ident: bib18
  article-title: ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
  publication-title: Nature
– volume: 117
  start-page: 11727
  year: 2020
  end-page: 11734
  ident: bib60
  article-title: Cell entry mechanisms of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 579
  start-page: 265
  year: 2020
  end-page: 269
  ident: bib77
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
– volume: 9
  year: 2018
  ident: bib9
  article-title: Role of severe acute respiratory syndrome coronavirus Viroporins E, 3a, and 8a in replication and pathogenesis
  publication-title: mBio
– volume: 3
  start-page: 581
  year: 2007
  end-page: 585
  ident: bib83
  article-title: Coronavirus replication does not require the autophagy gene ATG5
  publication-title: Autophagy
– volume: 6
  start-page: 764
  year: 2010
  end-page: 776
  ident: bib32
  article-title: Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
  publication-title: Autophagy
– volume: 72
  start-page: 78
  year: 2006
  end-page: 88
  ident: bib67
  article-title: Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus
  publication-title: Antiviral Res.
– volume: 285
  start-page: 16814
  year: 2010
  end-page: 16821
  ident: bib52
  article-title: Differential effects of TBC1D15 and mammalian Vps39 on Rab7 activation state, lysosomal morphology, and growth factor dependence
  publication-title: J. Biol. Chem.
– volume: 424
  start-page: 178
  year: 2012
  end-page: 183
  ident: bib29
  article-title: Imaging lysosomal enzyme activity in live cells using self-quenched substrates
  publication-title: Anal. Biochem.
– volume: 583
  start-page: 459
  year: 2020
  end-page: 468
  ident: bib25
  article-title: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
  publication-title: Nature
– volume: 18
  start-page: e3000715
  year: 2020
  ident: bib62
  article-title: A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis
  publication-title: PLoS Biol.
– volume: 217
  start-page: 2633
  year: 2018
  end-page: 2645
  ident: bib45
  article-title: Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17
  publication-title: J. Cell Biol.
– volume: 22
  start-page: 3292
  year: 2018
  end-page: 3303
  ident: bib49
  article-title: Enteroviral infection inhibits autophagic flux via disruption of the SNARE complex to enhance viral replication
  publication-title: Cell Rep.
– volume: 1
  start-page: 100059
  year: 2020
  ident: bib53
  article-title: Characterization and treatment of SARS-CoV-2 in nasal and bronchial human airway epithelia
  publication-title: Cell. Rep. Med.
– volume: 1793
  start-page: 605
  year: 2009
  end-page: 614
  ident: bib7
  article-title: Sorting of lysosomal proteins
  publication-title: Biochim. Biophys. Acta
– volume: 90
  start-page: 5989
  year: 2016
  end-page: 6000
  ident: bib59
  article-title: The autophagosomal SNARE protein syntaxin 17 is an essential factor for the hepatitis C virus life cycle
  publication-title: J. Virol.
– volume: 3
  start-page: e156
  year: 2005
  ident: bib34
  article-title: Subversion of cellular autophagosomal machinery by RNA viruses
  publication-title: PLoS Biol.
– volume: 63
  start-page: 781
  year: 2016
  end-page: 795
  ident: bib71
  article-title: The vici syndrome protein EPG5 Is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes
  publication-title: Mol. Cell
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280.e8
  ident: bib28
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
– volume: 7
  start-page: 568
  year: 2006
  end-page: 579
  ident: bib5
  article-title: Retrograde transport from endosomes to the trans-Golgi network
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 5
  year: 2020
  ident: bib30
  article-title: SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis
  publication-title: mSystems
– volume: 11
  start-page: 1408
  year: 2015
  end-page: 1424
  ident: bib1
  article-title: Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay
  publication-title: Autophagy
– volume: 109
  start-page: 1991
  year: 2012
  end-page: 1996
  ident: bib8
  article-title: Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 280
  start-page: 2743
  year: 2013
  end-page: 2757
  ident: bib63
  article-title: Tethering complexes in the endocytic pathway: CORVET and HOPS
  publication-title: FEBS Journal
– volume: 369
  start-page: 1395
  year: 2020
  end-page: 1398
  ident: bib73
  article-title: A molecular pore spans the double membrane of the coronavirus replication organelle
  publication-title: Science
– volume: 9
  start-page: 904
  year: 2018
  ident: bib79
  article-title: SARS-coronavirus open reading Frame-3a drives multimodal necrotic cell death
  publication-title: Cell Death Dis.
– volume: 74
  start-page: 8953
  year: 2000
  end-page: 8965
  ident: bib64
  article-title: Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles
  publication-title: J. Virol.
– volume: 14
  start-page: 759
  year: 2013
  end-page: 774
  ident: bib42
  article-title: The autophagosome: origins unknown, biogenesis complex
  publication-title: Nat. Rev. Mol. Cell Biol..
– volume: 27
  start-page: 107
  year: 2011
  end-page: 132
  ident: bib48
  article-title: The role of Atg proteins in autophagosome formation
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 82
  start-page: 9143
  year: 2008
  end-page: 9153
  ident: bib75
  article-title: Autophagosome supports coxsackievirus B3 replication in host cells
  publication-title: J. Virol.
– volume: 9
  start-page: 1295
  year: 2010
  end-page: 1307
  ident: bib20
  article-title: Viruses and the autophagy machinery
  publication-title: Cell Cycle
– volume: 16
  start-page: 727
  year: 2015
  end-page: 742
  ident: bib72
  article-title: Recruitment of VPS33A to HOPS by VPS16 is required for lysosome fusion with endosomes and autophagosomes
  publication-title: Traffic
– volume: 15
  start-page: 973
  year: 2014
  end-page: 981
  ident: bib78
  article-title: PI3P phosphatase activity is required for autophagosome maturation and autolysosome formation
  publication-title: EMBO Rep.
– volume: 23
  start-page: 896
  year: 2012
  end-page: 909
  ident: bib68
  article-title: Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets
  publication-title: Mol. Biol. Cell
– volume: 103
  start-page: 12540
  year: 2006
  end-page: 12545
  ident: bib44
  article-title: Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 182
  start-page: 685
  year: 2008
  end-page: 701
  ident: bib2
  article-title: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
  publication-title: J. Cell Biol.
– volume: 32
  start-page: 255
  year: 2016
  end-page: 278
  ident: bib57
  article-title: TFEB and TFE3: linking lysosomes to cellular adaptation to stress
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 16
  start-page: 1215
  year: 2014
  end-page: 1226
  ident: bib26
  article-title: O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation
  publication-title: Nat. Cell Biol.
– volume: 7
  start-page: 631
  year: 2006
  end-page: 643
  ident: bib35
  article-title: SNAREs--engines for membrane fusion
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 13
  start-page: 722
  year: 2013
  end-page: 737
  ident: bib17
  article-title: Autophagy in infection, inflammation and immunity
  publication-title: Nat. Rev. Immunol.
– volume: 22
  start-page: 1545
  year: 2012
  end-page: 1553
  ident: bib10
  article-title: Phosphatidylinositol-3-phosphate clearance plays a key role in autophagosome completion
  publication-title: Curr. Biol.
– volume: 395
  start-page: 470
  year: 2020
  end-page: 473
  ident: bib70
  article-title: A novel coronavirus outbreak of global health concern
  publication-title: Lancet
– volume: 4
  start-page: e8342
  year: 2009
  ident: bib47
  article-title: The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor
  publication-title: PLoS One
– volume: 67
  start-page: 974
  year: 2017
  end-page: 989.e6
  ident: bib80
  article-title: The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation
  publication-title: Mol. Cell
– volume: 126
  start-page: 1307
  year: 2013
  end-page: 1316
  ident: bib3
  article-title: CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion
  publication-title: J. Cell Sci.
– volume: 22
  start-page: 3304
  year: 2018
  end-page: 3314
  ident: bib14
  article-title: Enteroviruses remodel autophagic trafficking through regulation of host SNARE proteins to promote virus replication and cell exit
  publication-title: Cell Rep.
– volume: 53
  start-page: 29
  year: 2018
  end-page: 36
  ident: bib81
  article-title: Formation and maturation of autophagosomes in higher eukaryotes: a social network
  publication-title: Curr. Opin. Cell Biol.
– volume: 6
  start-page: e226
  year: 2008
  ident: bib41
  article-title: SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum
  publication-title: PLoS Biol
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib84
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 4
  year: 2013
  ident: bib85
  article-title: Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes
  publication-title: mBio.
– volume: 7
  start-page: 500
  year: 2010
  end-page: 508
  ident: bib58
  article-title: Coronaviruses hijack the LC3-I-Positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication
  publication-title: Cell Host Microbe
– volume: 3
  start-page: 452
  year: 2007
  end-page: 460
  ident: bib39
  article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
  publication-title: Autophagy
– volume: 430
  start-page: 1696
  year: 2018
  end-page: 1713
  ident: bib69
  article-title: Autophagy during early virus-host cell interactions
  publication-title: J. Mol. Biol.
– volume: 479–480
  start-page: 450
  year: 2015
  end-page: 456
  ident: bib33
  article-title: Viruses and the autophagy pathway
  publication-title: Virology
– volume: 7
  start-page: 1335
  year: 2011
  end-page: 1347
  ident: bib15
  article-title: Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate
  publication-title: Autophagy
– volume: 84
  start-page: 1097
  year: 2010
  end-page: 1109
  ident: bib22
  article-title: The open reading frame 3a Protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death
  publication-title: J. Virol.
– volume: 35
  start-page: 182
  year: 2011
  end-page: 193
  ident: bib23
  article-title: Lysosomal trafficking, antigen presentation, and microbial killing are controlled by the Arf-like GTPase Arl8b
  publication-title: Immunity
– volume: 9
  start-page: 2855
  year: 2018
  ident: bib65
  article-title: An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure
  publication-title: Nat. Commun.
– volume: 16
  start-page: 341
  year: 2018
  end-page: 354
  ident: bib13
  article-title: Autophagy during viral infection - a double-edged sword
  publication-title: Nat. Rev. Microbiol.
– volume: 10
  start-page: 1426
  year: 2014
  end-page: 1441
  ident: bib16
  article-title: Coronavirus NSP6 restricts autophagosome expansion
  publication-title: Autophagy
– volume: 15
  start-page: 564
  year: 2014
  end-page: 577
  ident: bib19
  article-title: Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome-lysosome fusion to increase virus production
  publication-title: Cell Host Microbe
– volume: 22
  start-page: 1353
  year: 2011
  end-page: 1363
  ident: bib54
  article-title: Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic
  publication-title: Mol. Biol. Cell
– volume: 111
  start-page: 13081
  year: 2014
  end-page: 13086
  ident: bib4
  article-title: Nonlytic viral spread enhanced by autophagy components
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 24
  start-page: 24
  year: 2014
  end-page: 41
  ident: bib21
  article-title: The machinery of macroautophagy
  publication-title: Cell Res.
– volume: 183
  start-page: 1520
  year: 2020
  end-page: 1535.e14
  ident: bib24
  article-title: β-coronaviruses use lysosomes for Egress instead of the biosynthetic secretory pathway
  publication-title: Cell
– volume: 84
  start-page: 12110
  year: 2010
  end-page: 12124
  ident: bib37
  article-title: Coxsackievirus infection induces autophagy-like vesicles and Megaphagosomes in pancreatic acinar cells in vivo
  publication-title: J. Virol.
– volume: 101
  start-page: 3
  year: 2020
  end-page: 11
  ident: bib74
  article-title: Manipulation of autophagy by (+) RNA viruses
  publication-title: Semin. Cell Dev. Biol.
– volume: 218
  start-page: 757
  year: 2019
  end-page: 770
  ident: bib82
  article-title: Autophagosome maturation: an epic journey from the ER to lysosomes
  publication-title: J. Cell Biol.
– volume: 77
  start-page: 618
  year: 2020
  end-page: 632.e5
  ident: bib46
  article-title: The ER-localized transmembrane protein TMEM39A/SUSR2 regulates autophagy by controlling the trafficking of the PtdIns(4)P phosphatase SAC1
  publication-title: Mol. Cell
– volume: 1
  start-page: 23
  year: 2007
  end-page: 35
  ident: bib51
  article-title: HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein
  publication-title: Cell Host Microbe
– volume: 4
  start-page: 1361
  year: 2013
  ident: bib56
  article-title: hVps41 and VAMP7 function in direct TGN to late endosome transport of lysosomal membrane proteins
  publication-title: Nat. Commun.
– volume: 295
  start-page: 12910
  year: 2020
  end-page: 12934
  ident: bib27
  article-title: The molecular virology of coronaviruses
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 500
  year: 2010
  ident: 10.1016/j.devcel.2020.12.010_bib58
  article-title: Coronaviruses hijack the LC3-I-Positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.05.013
– volume: 396
  start-page: 320
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib6
  article-title: Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington state: a case series
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)31305-2
– volume: 218
  start-page: 757
  year: 2019
  ident: 10.1016/j.devcel.2020.12.010_bib82
  article-title: Autophagosome maturation: an epic journey from the ER to lysosomes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201810099
– volume: 7
  start-page: 1335
  year: 2011
  ident: 10.1016/j.devcel.2020.12.010_bib15
  article-title: Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate
  publication-title: Autophagy
  doi: 10.4161/auto.7.11.16642
– volume: 22
  start-page: 1252
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib50
  article-title: LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-00583-9
– volume: 579
  start-page: 265
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib77
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– volume: 126
  start-page: 1307
  year: 2013
  ident: 10.1016/j.devcel.2020.12.010_bib3
  article-title: CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.107805
– volume: 424
  start-page: 178
  year: 2012
  ident: 10.1016/j.devcel.2020.12.010_bib29
  article-title: Imaging lysosomal enzyme activity in live cells using self-quenched substrates
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2012.02.033
– volume: 7
  start-page: 631
  year: 2006
  ident: 10.1016/j.devcel.2020.12.010_bib35
  article-title: SNAREs--engines for membrane fusion
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2002
– volume: 6
  start-page: e226
  year: 2008
  ident: 10.1016/j.devcel.2020.12.010_bib41
  article-title: SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0060226
– volume: 14
  start-page: 759
  year: 2013
  ident: 10.1016/j.devcel.2020.12.010_bib42
  article-title: The autophagosome: origins unknown, biogenesis complex
  publication-title: Nat. Rev. Mol. Cell Biol..
  doi: 10.1038/nrm3696
– volume: 25
  start-page: 1338
  year: 2014
  ident: 10.1016/j.devcel.2020.12.010_bib66
  article-title: Interaction of the HOPS complex with syntaxin 17 mediates autophagosome clearance in Drosophila
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e13-08-0449
– volume: 16
  start-page: 341
  year: 2018
  ident: 10.1016/j.devcel.2020.12.010_bib13
  article-title: Autophagy during viral infection - a double-edged sword
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0003-6
– volume: 72
  start-page: 78
  year: 2006
  ident: 10.1016/j.devcel.2020.12.010_bib67
  article-title: Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2006.05.010
– volume: 285
  start-page: 16814
  year: 2010
  ident: 10.1016/j.devcel.2020.12.010_bib52
  article-title: Differential effects of TBC1D15 and mammalian Vps39 on Rab7 activation state, lysosomal morphology, and growth factor dependence
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.111633
– volume: 5
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib30
  article-title: SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis
  publication-title: mSystems
  doi: 10.1128/mSystems.00266-20
– volume: 15
  start-page: 564
  year: 2014
  ident: 10.1016/j.devcel.2020.12.010_bib19
  article-title: Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome-lysosome fusion to increase virus production
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.04.004
– volume: 3
  start-page: 452
  year: 2007
  ident: 10.1016/j.devcel.2020.12.010_bib39
  article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
  publication-title: Autophagy
  doi: 10.4161/auto.4451
– volume: 11
  start-page: 1408
  year: 2015
  ident: 10.1016/j.devcel.2020.12.010_bib1
  article-title: Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1063871
– volume: 16
  start-page: 727
  year: 2015
  ident: 10.1016/j.devcel.2020.12.010_bib72
  article-title: Recruitment of VPS33A to HOPS by VPS16 is required for lysosome fusion with endosomes and autophagosomes
  publication-title: Traffic
  doi: 10.1111/tra.12283
– volume: 22
  start-page: 3292
  year: 2018
  ident: 10.1016/j.devcel.2020.12.010_bib49
  article-title: Enteroviral infection inhibits autophagic flux via disruption of the SNARE complex to enhance viral replication
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.02.090
– volume: 25
  start-page: 1327
  year: 2014
  ident: 10.1016/j.devcel.2020.12.010_bib36
  article-title: The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e13-08-0447
– volume: 111
  start-page: 13081
  year: 2014
  ident: 10.1016/j.devcel.2020.12.010_bib4
  article-title: Nonlytic viral spread enhanced by autophagy components
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1401437111
– volume: 217
  start-page: 2633
  year: 2018
  ident: 10.1016/j.devcel.2020.12.010_bib45
  article-title: Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201712058
– volume: 13
  start-page: 722
  year: 2013
  ident: 10.1016/j.devcel.2020.12.010_bib17
  article-title: Autophagy in infection, inflammation and immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3532
– volume: 1
  start-page: 23
  year: 2007
  ident: 10.1016/j.devcel.2020.12.010_bib51
  article-title: HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2006.12.001
– volume: 18
  start-page: e3000715
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib62
  article-title: A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000715
– volume: 9
  start-page: 904
  year: 2018
  ident: 10.1016/j.devcel.2020.12.010_bib79
  article-title: SARS-coronavirus open reading Frame-3a drives multimodal necrotic cell death
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-0917-y
– volume: 217
  start-page: 3127
  year: 2018
  ident: 10.1016/j.devcel.2020.12.010_bib12
  article-title: Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201711083
– volume: 430
  start-page: 1696
  year: 2018
  ident: 10.1016/j.devcel.2020.12.010_bib69
  article-title: Autophagy during early virus-host cell interactions
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2018.04.018
– volume: 84
  start-page: 1097
  year: 2010
  ident: 10.1016/j.devcel.2020.12.010_bib22
  article-title: The open reading frame 3a Protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death
  publication-title: J. Virol.
  doi: 10.1128/JVI.01662-09
– volume: 103
  start-page: 12540
  year: 2006
  ident: 10.1016/j.devcel.2020.12.010_bib44
  article-title: Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0605402103
– volume: 77
  start-page: 618
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib46
  article-title: The ER-localized transmembrane protein TMEM39A/SUSR2 regulates autophagy by controlling the trafficking of the PtdIns(4)P phosphatase SAC1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.10.035
– volume: 12
  start-page: 1
  year: 2016
  ident: 10.1016/j.devcel.2020.12.010_bib40
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy, (3rd Edition)
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1100356
– volume: 15
  start-page: 973
  year: 2014
  ident: 10.1016/j.devcel.2020.12.010_bib78
  article-title: PI3P phosphatase activity is required for autophagosome maturation and autolysosome formation
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201438618
– volume: 295
  start-page: 12910
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib27
  article-title: The molecular virology of coronaviruses
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.REV120.013930
– volume: 369
  start-page: 1395
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib73
  article-title: A molecular pore spans the double membrane of the coronavirus replication organelle
  publication-title: Science
  doi: 10.1126/science.abd3629
– volume: 183
  start-page: 1520
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib24
  article-title: β-coronaviruses use lysosomes for Egress instead of the biosynthetic secretory pathway
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.039
– volume: 74
  start-page: 8953
  year: 2000
  ident: 10.1016/j.devcel.2020.12.010_bib64
  article-title: Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.19.8953-8965.2000
– volume: 1793
  start-page: 605
  year: 2009
  ident: 10.1016/j.devcel.2020.12.010_bib7
  article-title: Sorting of lysosomal proteins
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2008.10.016
– volume: 109
  start-page: 1991
  year: 2012
  ident: 10.1016/j.devcel.2020.12.010_bib8
  article-title: Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1117797109
– volume: 520
  start-page: 563
  year: 2015
  ident: 10.1016/j.devcel.2020.12.010_bib18
  article-title: ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
  publication-title: Nature
  doi: 10.1038/nature14147
– volume: 583
  start-page: 459
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib25
  article-title: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
  publication-title: Nature
  doi: 10.1038/s41586-020-2286-9
– volume: 27
  start-page: 107
  year: 2011
  ident: 10.1016/j.devcel.2020.12.010_bib48
  article-title: The role of Atg proteins in autophagosome formation
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-092910-154005
– volume: 33
  start-page: 8865
  year: 2019
  ident: 10.1016/j.devcel.2020.12.010_bib61
  article-title: Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC
  publication-title: FASEB J.
  doi: 10.1096/fj.201802418R
– volume: 4
  year: 2013
  ident: 10.1016/j.devcel.2020.12.010_bib85
  article-title: Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes
  publication-title: mBio.
  doi: 10.1128/mBio.00801-13
– volume: 32
  start-page: 255
  year: 2016
  ident: 10.1016/j.devcel.2020.12.010_bib57
  article-title: TFEB and TFE3: linking lysosomes to cellular adaptation to stress
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-111315-125407
– volume: 280
  start-page: 2743
  year: 2013
  ident: 10.1016/j.devcel.2020.12.010_bib63
  article-title: Tethering complexes in the endocytic pathway: CORVET and HOPS
  publication-title: FEBS Journal
  doi: 10.1111/febs.12151
– volume: 479–480
  start-page: 450
  year: 2015
  ident: 10.1016/j.devcel.2020.12.010_bib33
  article-title: Viruses and the autophagy pathway
  publication-title: Virology
  doi: 10.1016/j.virol.2015.03.042
– volume: 14
  start-page: 219
  year: 2013
  ident: 10.1016/j.devcel.2020.12.010_bib55
  article-title: The HOPS proteins hVps41 and hVps39 are required for homotypic and heterotypic late endosome fusion
  publication-title: Traffic
  doi: 10.1111/tra.12027
– volume: 9
  start-page: 2855
  year: 2018
  ident: 10.1016/j.devcel.2020.12.010_bib65
  article-title: An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05254-w
– volume: 469
  start-page: 323
  year: 2011
  ident: 10.1016/j.devcel.2020.12.010_bib43
  article-title: Autophagy in immunity and inflammation
  publication-title: Nature
  doi: 10.1038/nature09782
– volume: 395
  start-page: 470
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib70
  article-title: A novel coronavirus outbreak of global health concern
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30185-9
– volume: 41
  start-page: 2232
  year: 2009
  ident: 10.1016/j.devcel.2020.12.010_bib11
  article-title: The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2009.04.019
– volume: 16
  start-page: 1215
  year: 2014
  ident: 10.1016/j.devcel.2020.12.010_bib26
  article-title: O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3066
– volume: 10
  start-page: 119
  year: 1999
  ident: 10.1016/j.devcel.2020.12.010_bib76
  article-title: GS32, a novel Golgi SNARE of 32 kDa, interacts preferentially with syntaxin 6
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.10.1.119
– volume: 101
  start-page: 3
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib74
  article-title: Manipulation of autophagy by (+) RNA viruses
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2019.07.013
– volume: 4
  start-page: 1361
  year: 2013
  ident: 10.1016/j.devcel.2020.12.010_bib56
  article-title: hVps41 and VAMP7 function in direct TGN to late endosome transport of lysosomal membrane proteins
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2360
– volume: 3
  start-page: e156
  year: 2005
  ident: 10.1016/j.devcel.2020.12.010_bib34
  article-title: Subversion of cellular autophagosomal machinery by RNA viruses
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030156
– volume: 151
  start-page: 1256
  year: 2012
  ident: 10.1016/j.devcel.2020.12.010_bib31
  article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.001
– volume: 10
  start-page: 1426
  year: 2014
  ident: 10.1016/j.devcel.2020.12.010_bib16
  article-title: Coronavirus NSP6 restricts autophagosome expansion
  publication-title: Autophagy
  doi: 10.4161/auto.29309
– volume: 6
  start-page: 764
  year: 2010
  ident: 10.1016/j.devcel.2020.12.010_bib32
  article-title: Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
  publication-title: Autophagy
  doi: 10.4161/auto.6.6.12709
– volume: 24
  start-page: 24
  year: 2014
  ident: 10.1016/j.devcel.2020.12.010_bib21
  article-title: The machinery of macroautophagy
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.168
– volume: 182
  start-page: 685
  year: 2008
  ident: 10.1016/j.devcel.2020.12.010_bib2
  article-title: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200803137
– volume: 35
  start-page: 182
  year: 2011
  ident: 10.1016/j.devcel.2020.12.010_bib23
  article-title: Lysosomal trafficking, antigen presentation, and microbial killing are controlled by the Arf-like GTPase Arl8b
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.06.009
– volume: 22
  start-page: 1353
  year: 2011
  ident: 10.1016/j.devcel.2020.12.010_bib54
  article-title: Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e10-03-0260
– volume: 3
  start-page: 581
  year: 2007
  ident: 10.1016/j.devcel.2020.12.010_bib83
  article-title: Coronavirus replication does not require the autophagy gene ATG5
  publication-title: Autophagy
  doi: 10.4161/auto.4782
– volume: 82
  start-page: 9143
  year: 2008
  ident: 10.1016/j.devcel.2020.12.010_bib75
  article-title: Autophagosome supports coxsackievirus B3 replication in host cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.00641-08
– volume: 9
  year: 2018
  ident: 10.1016/j.devcel.2020.12.010_bib9
  article-title: Role of severe acute respiratory syndrome coronavirus Viroporins E, 3a, and 8a in replication and pathogenesis
  publication-title: mBio
  doi: 10.1128/mBio.02325-17
– volume: 22
  start-page: 3304
  year: 2018
  ident: 10.1016/j.devcel.2020.12.010_bib14
  article-title: Enteroviruses remodel autophagic trafficking through regulation of host SNARE proteins to promote virus replication and cell exit
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.03.003
– volume: 67
  start-page: 974
  year: 2017
  ident: 10.1016/j.devcel.2020.12.010_bib80
  article-title: The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.08.005
– volume: 63
  start-page: 781
  year: 2016
  ident: 10.1016/j.devcel.2020.12.010_bib71
  article-title: The vici syndrome protein EPG5 Is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.08.021
– volume: 7
  start-page: 568
  year: 2006
  ident: 10.1016/j.devcel.2020.12.010_bib5
  article-title: Retrograde transport from endosomes to the trans-Golgi network
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1985
– volume: 181
  start-page: 271
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib28
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 276
  start-page: 29393
  year: 2001
  ident: 10.1016/j.devcel.2020.12.010_bib38
  article-title: Molecular characterization of mammalian homologues of class C Vps proteins that interact with syntaxin-7
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M101778200
– volume: 4
  start-page: e8342
  year: 2009
  ident: 10.1016/j.devcel.2020.12.010_bib47
  article-title: The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008342
– volume: 84
  start-page: 12110
  year: 2010
  ident: 10.1016/j.devcel.2020.12.010_bib37
  article-title: Coxsackievirus infection induces autophagy-like vesicles and Megaphagosomes in pancreatic acinar cells in vivo
  publication-title: J. Virol.
  doi: 10.1128/JVI.01417-10
– volume: 22
  start-page: 1545
  year: 2012
  ident: 10.1016/j.devcel.2020.12.010_bib10
  article-title: Phosphatidylinositol-3-phosphate clearance plays a key role in autophagosome completion
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.06.029
– volume: 9
  start-page: 1295
  year: 2010
  ident: 10.1016/j.devcel.2020.12.010_bib20
  article-title: Viruses and the autophagy machinery
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.7.11109
– volume: 23
  start-page: 896
  year: 2012
  ident: 10.1016/j.devcel.2020.12.010_bib68
  article-title: Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-09-0785
– volume: 117
  start-page: 11727
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib60
  article-title: Cell entry mechanisms of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2003138117
– volume: 90
  start-page: 5989
  year: 2016
  ident: 10.1016/j.devcel.2020.12.010_bib59
  article-title: The autophagosomal SNARE protein syntaxin 17 is an essential factor for the hepatitis C virus life cycle
  publication-title: J. Virol.
  doi: 10.1128/JVI.00551-16
– volume: 53
  start-page: 29
  year: 2018
  ident: 10.1016/j.devcel.2020.12.010_bib81
  article-title: Formation and maturation of autophagosomes in higher eukaryotes: a social network
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2018.04.003
– volume: 1
  start-page: 100059
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib53
  article-title: Characterization and treatment of SARS-CoV-2 in nasal and bronchial human airway epithelia
  publication-title: Cell. Rep. Med.
  doi: 10.1016/j.xcrm.2020.100059
– volume: 579
  start-page: 270
  year: 2020
  ident: 10.1016/j.devcel.2020.12.010_bib84
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– reference: 33621488 - Dev Cell. 2021 Feb 22;56(4):400-402
SSID ssj0016180
Score 2.6887522
Snippet Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 427
SubjectTerms Autophagosomes - metabolism
Autophagy
Autophagy-Related Proteins - metabolism
COVID-19
COVID-19 - metabolism
COVID-19 - virology
DMV
HEK293 Cells
HeLa Cells
HOPS
Humans
Lysosomes - metabolism
ORF3a
Protein Binding
SARS-CoV-2
SARS-CoV-2 - metabolism
SARS-CoV-2 - pathogenicity
SNARE
SNARE Proteins - metabolism
Vesicular Transport Proteins - metabolism
Viroporin Proteins - genetics
Viroporin Proteins - metabolism
Title ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation
URI https://dx.doi.org/10.1016/j.devcel.2020.12.010
https://www.ncbi.nlm.nih.gov/pubmed/33422265
https://www.proquest.com/docview/2476853260
https://pubmed.ncbi.nlm.nih.gov/PMC7832235
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLQqGX0nfTFyr0KmJbki0f03RDWuimxN0lN6GXadqsvcTJ0vyA_u-O5AdNW1govtljW2hG0ifNfDMIvVUiZVnKSgJYVREmjCZac050pFheKqFVINJ-Ok_nF-zjiq9O0LTnwviwym7ub-f0MFt3d8Zdb46v1-txAWOVcRF5P6LfgnoSH2UikPhW7wZPQhqH6mlemHjpnj4XYrysuzHOOyCSKBwKeh7tv5env-Hnn1GUvy1Ls_voXocn8aRt8gN04qqH6E5bYfLwCP1cLGdU4brEAPTwdHH54T2Jc3yz3u4bXEyWBZnWlyTBGta07w2eLz4XOESZux8kkEoAkGLA1-5Kbw79Z4rzyfKsF8Nb54OJQQzgL1b7Xb05NHVTXzk8ECMfo4vZ2ZfpnHSVF4jhPNuRNMkjZq1RylFmNDMsZzpXmXagQtjiRJmLKRc2Z6mLBdhBWXLACTrViWJw0SfotKor9wxhxqm1sTaW5jGz1GnrhI2cMEYwm8RshGjf4dJ0acl9dYyN7OPPvslWTdKrScaJBDWNEBneum7Tctwin_W6lEfmJWHluOXNN73qJYw8705Rlav3jUzAyAHswIZwhJ62pjC0hVJ_tJZy-O-RkQwCPqv38ZNq_TVk9878HEv58_9u8Qt0N_GBN553n7xEp7vt3r0C5LTTr8PQ-AUaPRgP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4k14GgmOVnb92MeBQ0gbJbRNULatcnPttSMCabbKJoX8AH4Rf5DxvkQAqRJStbdde3fW45n57JnxIPRWRQEPAz4lgFUV4VGqidZCEO0pHk9VpFWRSHs0DPon_ONETHbQzzoXxoVVVrq_1OmFtq7utKvRbF_MZu0EZJWLyHN-RLcEjavIygO7-Qbrtvz9YA-Y_I7S3v5xt0-q0gIkFSJckYDGHjcmVcoynmqe8pjrWIXaAo2A4b3Q-kxEJuaB9SP40elUgCHUgaaKw8XgvTfQTUAfodMGg8mHxnUR-EW5NkcdceTV-XpFUJmxl6l1Hg_qFbuQLnH33_bwb7z7Z9jmb3awdw_drQAs7pRjdB_t2MUDdKssabl5iH6Mxj2mcDbFgCxxd3Q62CN-jC9ny3WOk844Id3slFCswYh-zXF_9CnBRVi7_U6KLBZAwBgAvT3X8039mmTYGe_XzfDSuuhlaAZ4G6v1Kptv8izPzi1uMjEfoZNr4cdjtLvIFvYpwlwwY3ydGhb73DCrjY2MZ6M0jbihPm8hVg-4TKtz0F05jrmsA96-yJJN0rFJ-lQCm1qINL0uynNArmgf1ryUW_NZgqm6ouebmvUSRN35b9TCZutcUpAqQFewAm2hJ-VUaGhhzO3lBQK-uzVJmgbuGPHtJ4vZ5-I48dApdSae_TfFr9Ht_vHRoTwcDA-eozvURf24pH_6Au2ulmv7EmDbSr8qxASjs-uWy18Hq1Yh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ORF3a+of+the+COVID-19+virus+SARS-CoV-2+blocks+HOPS+complex-mediated+assembly+of+the+SNARE+complex+required+for+autolysosome+formation&rft.jtitle=Developmental+cell&rft.au=Miao%2C+Guangyan&rft.au=Zhao%2C+Hongyu&rft.au=Li%2C+Yan&rft.au=Ji%2C+Mingming&rft.date=2021-02-22&rft.pub=Elsevier+Inc&rft.issn=1534-5807&rft.eissn=1878-1551&rft.volume=56&rft.issue=4&rft.spage=427&rft.epage=442.e5&rft_id=info:doi/10.1016%2Fj.devcel.2020.12.010&rft_id=info%3Apmid%2F33422265&rft.externalDocID=PMC7832235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-5807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-5807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-5807&client=summon