ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation
Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blockin...
Saved in:
Published in | Developmental cell Vol. 56; no. 4; pp. 427 - 442.e5 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
22.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19.
[Display omitted]
•SARS-CoV-2 virus infection or expression of ORF3a blocks formation of autolysosomes•SARS-CoV-2 ORF3a sequestrates the HOPS component VPS39 on late endosomes•SARS-CoV-2 ORF3a impairs the assembly of the STX17-SNAP29-VAMP8 SNARE complex•SARS virus ORF3a fails to interact with VPS39 or affect autophagy activity
Miao et al. demonstrate that late endosome-localized ORF3a of the COVID-19 virus SARS-CoV-2 sequestrates the HOPS component VPS39. ORF3a blocks autophagosome/amphisome fusion with lysosomes by preventing the assembly of the STX17-SNAP29-VAMP8 SNARE complex. SARS-CoV-2-infected cells also exhibit a defect in autophagosome maturation and sequestration of VPS39 on late endosomes. |
---|---|
AbstractList | Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19.Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19. Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19. Miao et al. demonstrate that late endosome-localized ORF3a of the COVID-19 virus SARS-CoV-2 sequestrates the HOPS component VPS39. ORF3a blocks autophagosome/amphisome fusion with lysosomes by preventing the assembly of the STX17-SNAP29-VAMP8 SNARE complex. SARS-CoV-2-infected cells also exhibit a defect in autophagosome maturation and sequestration of VPS39 on late endosomes. Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19. [Display omitted] •SARS-CoV-2 virus infection or expression of ORF3a blocks formation of autolysosomes•SARS-CoV-2 ORF3a sequestrates the HOPS component VPS39 on late endosomes•SARS-CoV-2 ORF3a impairs the assembly of the STX17-SNAP29-VAMP8 SNARE complex•SARS virus ORF3a fails to interact with VPS39 or affect autophagy activity Miao et al. demonstrate that late endosome-localized ORF3a of the COVID-19 virus SARS-CoV-2 sequestrates the HOPS component VPS39. ORF3a blocks autophagosome/amphisome fusion with lysosomes by preventing the assembly of the STX17-SNAP29-VAMP8 SNARE complex. SARS-CoV-2-infected cells also exhibit a defect in autophagosome maturation and sequestration of VPS39 on late endosomes. Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19. |
Author | Shi, Yi Wang, Peihui Miao, Guangyan Bi, Yuhai Li, Yan Zhao, Hongyu Zhang, Hong Ji, Mingming Chen, Yong |
Author_xml | – sequence: 1 givenname: Guangyan surname: Miao fullname: Miao, Guangyan organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China – sequence: 2 givenname: Hongyu surname: Zhao fullname: Zhao, Hongyu organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China – sequence: 3 givenname: Yan surname: Li fullname: Li, Yan organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China – sequence: 4 givenname: Mingming surname: Ji fullname: Ji, Mingming organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China – sequence: 5 givenname: Yong surname: Chen fullname: Chen, Yong organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China – sequence: 6 givenname: Yi surname: Shi fullname: Shi, Yi organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China – sequence: 7 givenname: Yuhai surname: Bi fullname: Bi, Yuhai organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China – sequence: 8 givenname: Peihui surname: Wang fullname: Wang, Peihui organization: Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China – sequence: 9 givenname: Hong surname: Zhang fullname: Zhang, Hong email: hongzhang@ibp.ac.cn organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33422265$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctuEzEUtVARfcAfIOQlmwl-zoMFUpS2tFJFUALdWh7PHergGaf2TEQ-gP_GIQkCFiAvbF2fx9U55-ik9z0g9JKSCSU0f7OaNLAx4CaMsDRiE0LJE3RGy6LMqJT0JL0lF5ksSXGKzmNckUSjJXmGTjkXjLFcnqHv88U119i3eHgAPJvf315mtMIbG8aIl9PFMpv5-4zh2nnzNeKb-cclNr5bO_iWddBYPUCDdYzQ1W57lFl-mC6ujjAc4HG0IcFaH7AeB--20UffwW7Q6cH6_jl62moX4cXhvkCfr68-zW6yu_n729n0LjNSFkOWs4qIpjFaAxemFkZUoq50UQPRQpQFKYByWTaVyIGWUEPbSiZEnddMi3T4BXq3112PddreQD8E7dQ62E6HrfLaqj9_evugvviNKkrOGJdJ4PVBIPjHEeKgOhtTCU734MeomCjyUnKWkwR99bvXL5Nj9gnwdg8wwccYoFXGDj_jSNbWKUrUrmi1Uvui1a5oRZlKRSey-It81P8P7RAApJQ3FoKKxkJvUpMBzKAab_8t8ANrdMTJ |
CitedBy_id | crossref_primary_10_1007_s10735_025_10375_w crossref_primary_10_1016_j_bbadis_2022_166484 crossref_primary_10_1080_15548627_2023_2238579 crossref_primary_10_3389_fcell_2021_766142 crossref_primary_10_3389_fcimb_2022_794264 crossref_primary_10_1002_wrna_1727 crossref_primary_10_3390_v14051092 crossref_primary_10_1016_j_cellin_2022_100068 crossref_primary_10_3390_biomedicines9111651 crossref_primary_10_1080_15548627_2021_1936359 crossref_primary_10_3390_v15040855 crossref_primary_10_7554_eLife_84477 crossref_primary_10_3390_ijms24097734 crossref_primary_10_1016_j_diabet_2022_101359 crossref_primary_10_3389_fbioe_2023_1124100 crossref_primary_10_3390_biom12081052 crossref_primary_10_1038_s41564_021_00958_0 crossref_primary_10_1007_s12275_022_1525_1 crossref_primary_10_1007_s10142_024_01454_4 crossref_primary_10_1186_s43556_022_00083_2 crossref_primary_10_1080_22221751_2022_2164217 crossref_primary_10_3389_fmicb_2022_854567 crossref_primary_10_1038_s41392_022_01043_6 crossref_primary_10_1128_mmbr_00026_21 crossref_primary_10_1002_jmv_28630 crossref_primary_10_1080_15548627_2024_2375785 crossref_primary_10_1128_spectrum_01219_22 crossref_primary_10_1091_mbc_E23_08_0328 crossref_primary_10_3389_fimmu_2024_1460023 crossref_primary_10_23736_S2724_542X_23_03013_4 crossref_primary_10_1126_sciimmunol_abm5505 crossref_primary_10_1038_s41392_022_00884_5 crossref_primary_10_1021_acsomega_3c06485 crossref_primary_10_3390_cells14060418 crossref_primary_10_1083_jcb_202203083 crossref_primary_10_1016_j_isci_2022_105394 crossref_primary_10_1016_j_celrep_2024_115115 crossref_primary_10_1038_s41467_022_32957_y crossref_primary_10_3389_fcimb_2023_1166839 crossref_primary_10_1080_22221751_2021_1872353 crossref_primary_10_3390_cells12091282 crossref_primary_10_4103_1673_5374_327333 crossref_primary_10_1083_jcb_202112081 crossref_primary_10_3389_fimmu_2024_1363572 crossref_primary_10_1016_j_antiviral_2023_105601 crossref_primary_10_1016_j_cophys_2022_100596 crossref_primary_10_7554_eLife_80901 crossref_primary_10_3390_ijms23179739 crossref_primary_10_1007_s00203_024_03838_3 crossref_primary_10_1038_s41586_022_05164_4 crossref_primary_10_3389_fmicb_2023_1152249 crossref_primary_10_1038_s42003_023_05414_9 crossref_primary_10_1080_15548627_2021_2002109 crossref_primary_10_1128_mbio_03030_23 crossref_primary_10_1007_s11033_023_08835_1 crossref_primary_10_3390_v13112165 crossref_primary_10_1186_s12890_024_02921_1 crossref_primary_10_1186_s40779_024_00581_0 crossref_primary_10_3389_fphar_2022_832750 crossref_primary_10_1016_j_cellin_2022_100031 crossref_primary_10_1016_j_vetmic_2023_109972 crossref_primary_10_3390_v15112229 crossref_primary_10_3390_v16091491 crossref_primary_10_1371_journal_ppat_1012156 crossref_primary_10_1038_s41401_023_01189_1 crossref_primary_10_31083_j_fbl2810273 crossref_primary_10_3390_ijms23031716 crossref_primary_10_1016_j_crviro_2021_100013 crossref_primary_10_1038_s41467_024_52818_0 crossref_primary_10_1038_s41579_023_01003_z crossref_primary_10_1128_mbio_01020_23 crossref_primary_10_3390_cells10082022 crossref_primary_10_1016_j_ijbiomac_2024_134850 crossref_primary_10_1016_j_cell_2021_10_017 crossref_primary_10_3389_fcimb_2022_845580 crossref_primary_10_3390_ijms24054928 crossref_primary_10_1080_15548627_2022_2116677 crossref_primary_10_1016_j_mam_2021_100966 crossref_primary_10_3390_cells10051118 crossref_primary_10_1080_27694127_2023_2179287 crossref_primary_10_1038_s41579_023_00995_y crossref_primary_10_3390_v15040920 crossref_primary_10_1002_cbf_3883 crossref_primary_10_1111_febs_16163 crossref_primary_10_1128_jvi_00426_23 crossref_primary_10_1089_dna_2023_0002 crossref_primary_10_1016_j_semcdb_2022_02_024 crossref_primary_10_1093_femsre_fuac041 crossref_primary_10_1016_j_rpth_2023_102140 crossref_primary_10_1016_j_bbrc_2023_03_004 crossref_primary_10_1038_s44298_024_00076_8 crossref_primary_10_1038_s41467_024_49137_9 crossref_primary_10_3389_fimmu_2022_975918 crossref_primary_10_3390_ijms22136991 crossref_primary_10_3390_v16091478 crossref_primary_10_1128_jvi_01408_23 crossref_primary_10_1128_JVI_00402_21 crossref_primary_10_1128_jvi_01943_22 crossref_primary_10_1128_mbio_03168_21 crossref_primary_10_3389_fmicb_2023_1251065 crossref_primary_10_3389_fimmu_2022_890549 crossref_primary_10_3389_fcell_2021_772965 crossref_primary_10_3389_fgene_2022_908826 crossref_primary_10_1016_j_biocel_2022_106185 crossref_primary_10_3389_fimmu_2023_1249607 crossref_primary_10_3390_cimb45010023 crossref_primary_10_3390_v13050897 crossref_primary_10_1016_j_coviro_2021_08_007 crossref_primary_10_3390_antiox10091440 crossref_primary_10_1016_j_coviro_2021_08_006 crossref_primary_10_1371_journal_pcbi_1010517 crossref_primary_10_1016_j_celrep_2023_112286 crossref_primary_10_1093_jmcb_mjab013 crossref_primary_10_2147_IJGM_S354885 crossref_primary_10_3389_fcimb_2021_786348 crossref_primary_10_3390_cells12020262 crossref_primary_10_1083_jcb_202312119 crossref_primary_10_1016_j_celrep_2023_112835 crossref_primary_10_1016_j_lfs_2024_122653 crossref_primary_10_1051_medsci_2021100 crossref_primary_10_1016_j_tcb_2023_12_006 crossref_primary_10_1016_j_bbadis_2022_166517 crossref_primary_10_1038_s41467_024_54628_w crossref_primary_10_1038_s41392_023_01510_8 crossref_primary_10_1371_journal_ppat_1010506 crossref_primary_10_1371_journal_ppat_1011958 crossref_primary_10_3390_ani14030448 crossref_primary_10_15698_mic2024_10_838 crossref_primary_10_1038_s41421_021_00268_z crossref_primary_10_1080_15548627_2022_2039992 crossref_primary_10_1016_j_biochi_2024_04_011 crossref_primary_10_3389_fcimb_2024_1457617 crossref_primary_10_1002_advs_202411737 crossref_primary_10_1111_raq_12785 crossref_primary_10_1016_j_jhazmat_2024_135597 crossref_primary_10_3389_pore_2021_1609976 crossref_primary_10_1016_j_antiviral_2023_105590 crossref_primary_10_1007_s00702_021_02431_y crossref_primary_10_1016_j_heliyon_2023_e18754 crossref_primary_10_1016_j_isci_2023_106169 crossref_primary_10_1016_j_celrep_2021_109126 crossref_primary_10_3390_cells12060956 crossref_primary_10_1016_j_isci_2022_103967 crossref_primary_10_1038_s41598_023_31764_9 crossref_primary_10_1002_jmv_29200 crossref_primary_10_3233_JAD_220105 crossref_primary_10_1038_s41594_021_00619_0 crossref_primary_10_1080_15548627_2022_2084686 crossref_primary_10_1128_spectrum_04386_22 crossref_primary_10_1002_jcb_30396 crossref_primary_10_1002_iub_2582 crossref_primary_10_1016_j_intimp_2022_108531 crossref_primary_10_3389_fimmu_2023_1268854 crossref_primary_10_3390_pathogens13030266 crossref_primary_10_3389_fmicb_2022_846543 crossref_primary_10_3389_fmicb_2022_889835 crossref_primary_10_1186_s12964_024_01680_0 crossref_primary_10_3389_fimmu_2023_1324516 crossref_primary_10_1016_j_bbadis_2021_166260 crossref_primary_10_1080_14728222_2021_1952987 crossref_primary_10_3389_fimmu_2022_870216 crossref_primary_10_1080_0889311X_2023_2173744 crossref_primary_10_1126_scisignal_abh3628 crossref_primary_10_1002_bies_202100261 crossref_primary_10_1038_s41423_023_01104_y crossref_primary_10_3389_fcell_2022_896618 crossref_primary_10_1016_j_xpro_2021_100781 crossref_primary_10_1038_s41423_025_01272_z crossref_primary_10_15252_msb_202110387 crossref_primary_10_1002_mco2_150 crossref_primary_10_3389_fcell_2022_1011221 crossref_primary_10_1128_MCB_00185_21 crossref_primary_10_1016_j_isci_2023_107118 crossref_primary_10_1096_fj_202300149R crossref_primary_10_3389_fviro_2021_815388 crossref_primary_10_1016_j_biopha_2021_112015 crossref_primary_10_1111_febs_16986 crossref_primary_10_1186_s12985_023_02069_0 crossref_primary_10_31083_j_fbl2702065 crossref_primary_10_3390_cells11152262 crossref_primary_10_1128_jvi_02049_24 crossref_primary_10_3390_ijms222011241 crossref_primary_10_1083_jcb_202110151 crossref_primary_10_1111_jre_13069 crossref_primary_10_3390_pathogens13121117 crossref_primary_10_1002_jmv_27965 crossref_primary_10_3390_v13112201 crossref_primary_10_15252_embj_2021108863 crossref_primary_10_3390_cimb46030142 crossref_primary_10_1016_j_trsl_2022_08_007 crossref_primary_10_1080_22221751_2022_2128434 crossref_primary_10_1016_j_ijbiomac_2021_11_074 crossref_primary_10_1016_j_ymthe_2022_12_008 crossref_primary_10_4049_jimmunol_2200477 crossref_primary_10_1038_s41417_022_00477_y crossref_primary_10_3390_ijms23094576 crossref_primary_10_1016_j_biopha_2024_116918 crossref_primary_10_1111_mmi_14907 crossref_primary_10_3390_cells10051068 crossref_primary_10_1007_s40588_022_00186_y crossref_primary_10_3389_fmicb_2021_752597 crossref_primary_10_1016_j_mib_2024_102466 crossref_primary_10_1080_15548627_2022_2099206 crossref_primary_10_3390_ijms24054523 crossref_primary_10_3389_fgene_2024_1249501 crossref_primary_10_15252_embj_2022112542 crossref_primary_10_3389_fimmu_2022_1010911 crossref_primary_10_3390_cells13060500 crossref_primary_10_3390_ijms23073649 crossref_primary_10_3390_molecules26226945 crossref_primary_10_1016_j_devcel_2021_10_006 crossref_primary_10_3389_fmicb_2023_1162470 crossref_primary_10_1265_ehpm_23_00361 crossref_primary_10_1016_j_bbapap_2021_140693 crossref_primary_10_1016_j_tcb_2024_11_008 crossref_primary_10_1083_jcb_202207091 crossref_primary_10_3390_nu15183885 crossref_primary_10_1016_j_clim_2022_109093 crossref_primary_10_1038_s41580_021_00392_4 crossref_primary_10_1128_JVI_01537_21 crossref_primary_10_1002_jmv_28959 crossref_primary_10_3390_cells11030487 crossref_primary_10_1016_j_jpha_2021_03_012 crossref_primary_10_12688_f1000research_72904_1 crossref_primary_10_12688_f1000research_72904_2 crossref_primary_10_3389_fmicb_2022_933983 crossref_primary_10_1016_j_coi_2023_102344 crossref_primary_10_1002_jcb_30166 crossref_primary_10_1016_j_gene_2021_145963 crossref_primary_10_3390_v13122467 crossref_primary_10_1128_spectrum_01509_22 crossref_primary_10_15252_embr_202357224 crossref_primary_10_3390_applmicrobiol2030045 crossref_primary_10_1038_s41467_024_46417_2 crossref_primary_10_1002_jmv_28967 crossref_primary_10_3389_fgene_2022_801382 crossref_primary_10_1016_j_virs_2023_05_003 crossref_primary_10_1126_sciadv_adl5012 crossref_primary_10_3389_fcell_2021_716208 crossref_primary_10_1016_j_expneurol_2023_114463 crossref_primary_10_1111_boc_202200073 crossref_primary_10_1038_s42003_024_07442_5 crossref_primary_10_1016_j_ijbiomac_2024_136978 crossref_primary_10_3389_fimmu_2021_708264 crossref_primary_10_1016_j_heliyon_2023_e19759 crossref_primary_10_3390_v14010132 crossref_primary_10_1002_jmv_28175 |
Cites_doi | 10.1016/j.chom.2010.05.013 10.1016/S0140-6736(20)31305-2 10.1083/jcb.201810099 10.4161/auto.7.11.16642 10.1038/s41556-020-00583-9 10.1038/s41586-020-2008-3 10.1242/jcs.107805 10.1016/j.ab.2012.02.033 10.1038/nrm2002 10.1371/journal.pbio.0060226 10.1038/nrm3696 10.1091/mbc.e13-08-0449 10.1038/s41579-018-0003-6 10.1016/j.antiviral.2006.05.010 10.1074/jbc.M110.111633 10.1128/mSystems.00266-20 10.1016/j.chom.2014.04.004 10.4161/auto.4451 10.1080/15548627.2015.1063871 10.1111/tra.12283 10.1016/j.celrep.2018.02.090 10.1091/mbc.e13-08-0447 10.1073/pnas.1401437111 10.1083/jcb.201712058 10.1038/nri3532 10.1016/j.chom.2006.12.001 10.1371/journal.pbio.3000715 10.1038/s41419-018-0917-y 10.1083/jcb.201711083 10.1016/j.jmb.2018.04.018 10.1128/JVI.01662-09 10.1073/pnas.0605402103 10.1016/j.molcel.2019.10.035 10.1080/15548627.2015.1100356 10.15252/embr.201438618 10.1074/jbc.REV120.013930 10.1126/science.abd3629 10.1016/j.cell.2020.10.039 10.1128/JVI.74.19.8953-8965.2000 10.1016/j.bbamcr.2008.10.016 10.1073/pnas.1117797109 10.1038/nature14147 10.1038/s41586-020-2286-9 10.1146/annurev-cellbio-092910-154005 10.1096/fj.201802418R 10.1128/mBio.00801-13 10.1146/annurev-cellbio-111315-125407 10.1111/febs.12151 10.1016/j.virol.2015.03.042 10.1111/tra.12027 10.1038/s41467-018-05254-w 10.1038/nature09782 10.1016/S0140-6736(20)30185-9 10.1016/j.biocel.2009.04.019 10.1038/ncb3066 10.1091/mbc.10.1.119 10.1016/j.semcdb.2019.07.013 10.1038/ncomms2360 10.1371/journal.pbio.0030156 10.1016/j.cell.2012.11.001 10.4161/auto.29309 10.4161/auto.6.6.12709 10.1038/cr.2013.168 10.1083/jcb.200803137 10.1016/j.immuni.2011.06.009 10.1091/mbc.e10-03-0260 10.4161/auto.4782 10.1128/JVI.00641-08 10.1128/mBio.02325-17 10.1016/j.celrep.2018.03.003 10.1016/j.molcel.2017.08.005 10.1016/j.molcel.2016.08.021 10.1038/nrm1985 10.1016/j.cell.2020.02.052 10.1074/jbc.M101778200 10.1371/journal.pone.0008342 10.1128/JVI.01417-10 10.1016/j.cub.2012.06.029 10.4161/cc.9.7.11109 10.1091/mbc.e11-09-0785 10.1073/pnas.2003138117 10.1128/JVI.00551-16 10.1016/j.ceb.2018.04.003 10.1016/j.xcrm.2020.100059 10.1038/s41586-020-2012-7 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. 2020 Elsevier Inc. 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: 2020 Elsevier Inc. 2020 Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.devcel.2020.12.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1878-1551 |
EndPage | 442.e5 |
ExternalDocumentID | PMC7832235 33422265 10_1016_j_devcel_2020_12_010 S1534580720310169 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 1~5 2WC 4.4 457 4G. 5GY 62- 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 29F 53G 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- RIG UHS CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c557t-62904ddcaae34cb4c494b9a7be0a448707e1358d946e18ebeff5244b6b2a4a4a3 |
IEDL.DBID | IXB |
ISSN | 1534-5807 1878-1551 |
IngestDate | Thu Aug 21 13:44:57 EDT 2025 Fri Jul 11 16:26:23 EDT 2025 Thu Apr 03 06:58:29 EDT 2025 Thu Apr 24 22:58:35 EDT 2025 Tue Jul 01 00:48:12 EDT 2025 Fri Feb 23 02:44:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | COVID-19 SARS-CoV-2 autophagy HOPS DMV ORF3a SNARE |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-62904ddcaae34cb4c494b9a7be0a448707e1358d946e18ebeff5244b6b2a4a4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7832235 |
PMID | 33422265 |
PQID | 2476853260 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7832235 proquest_miscellaneous_2476853260 pubmed_primary_33422265 crossref_citationtrail_10_1016_j_devcel_2020_12_010 crossref_primary_10_1016_j_devcel_2020_12_010 elsevier_sciencedirect_doi_10_1016_j_devcel_2020_12_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-22 |
PublicationDateYYYYMMDD | 2021-02-22 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Developmental cell |
PublicationTitleAlternate | Dev Cell |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Balderhaar, Ungermann (bib3) 2013; 126 Solinger, Spang (bib63) 2013; 280 Shang, Wan, Luo, Ye, Geng, Auerbach, Li (bib60) 2020; 117 Knoops, Kikkert, Worm, Zevenhoven-Dobbe, van der Meer, Koster, Mommaas, Snijder (bib41) 2008; 6 Yue, Nabar, Shi, Kamenyeva, Xiao, Hwang, Wang, Kehrl (bib79) 2018; 9 Bradley, Maioli, Johnston, Chaudhry, Fink, Xu, Najafian, Deutsch, Lacy, Williams (bib6) 2020; 396 Zhao, Zhang (bib82) 2019; 218 Jackson, Giddings, Taylor, Mulinyawe, Rabinovitch, Kopito, Kirkegaard (bib34) 2005; 3 Pizzorno, Padey, Julien, Trouillet-Assant, Traversier, Errazuriz-Cerda, Fouret, Dubois, Gaymard, Lescure (bib53) 2020; 1 Pols, van Meel, Oorschot, ten Brink, Fukuda, Swetha, Mayor, Klumperman (bib56) 2013; 4 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib84) 2020; 579 Diao, Liu, Rong, Zhao, Zhang, Lai, Zhou, Wilz, Li, Vivona (bib18) 2015; 520 Wolff, Limpens, Zevenhoven-Dobbe, Laugks, Zheng, de Jong, Koning, Agard, Grünewald, Koster (bib73) 2020; 369 Wu, Cheng, Zhao, Zou, Yoshina, Mitani, Zhang, Wang (bib78) 2014; 15 Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib28) 2020; 181 Tan, Lim, Hong (bib67) 2006; 72 Lu, Zheng, Xu, Schwarz, Du, Wong, Chen, Duan, Deubel, Sun (bib44) 2006; 103 Wong, Xu, Zhang, Griffiths, Lowe, Subramaniam, Seow, Hong (bib76) 1999; 10 Aits, Kricker, Liu, Ellegaard, Hämälistö, Tvingsholm, Corcelle-Termeau, Høgh, Farkas, Holm Jonassen (bib1) 2015; 11 Gordon, Jang, Bouhaddou, Xu, Obernier, White, O'Meara, Rezelj, Guo, Swaney (bib25) 2020; 583 Castaño-Rodriguez, Honrubia, Gutiérrez-Álvarez, DeDiego, Nieto-Torres, Jimenez-Guardeño, Regla-Nava, Fernandez-Delgado, Verdia-Báguena, Queralt-Martín (bib9) 2018; 9 Nakamura, Shigeyama, Minami, Shima, Akayama, Matsuda, Esposito, Napolitano, Kuma, Namba-Hamano (bib50) 2020; 22 Velikkakath, Nishimura, Oita, Ishihara, Mizushima (bib68) 2012; 23 Wartosch, Günesdogan, Graham, Luzio (bib72) 2015; 16 Wong, Zhang, Si, Gao, Mao, McManus, Luo (bib75) 2008; 82 Freundt, Yu, Goldsmith, Welsh, Cheng, Yount, Liu, Frieman, Buchholz, Screaton (bib22) 2010; 84 Feng, He, Yao, Klionsky (bib21) 2014; 24 Ghosh, Dellibovi-Ragheb, Kerviel, Pak, Qiu, Fisher, Takvorian, Bleck, Hsu, Fehr (bib24) 2020; 183 Mohamud, Shi, Qu, Poon, Xue, Deng, Zhang, Luo (bib49) 2018; 22 Humphries, Payne (bib29) 2012; 424 Bonifacino, Rojas (bib5) 2006; 7 Wu, Zhao, Yu, Chen, Wang, Song, Hu, Tao, Tian, Pei (bib77) 2020; 579 Cebollero, van der Vaart, Zhao, Rieter, Klionsky, Helms, Reggiori (bib10) 2012; 22 Garg, Sharma, Ung, Tuli, Barral, Hava, Veerapen, Besra, Hacohen, Brenner (bib23) 2011; 35 Maier, Hawes, Cottam, Mantell, Verkade, Monaghan, Wileman, Britton (bib85) 2013; 4 Cottam, Maier, Manifava, Vaux, Chandra-Schoenfelder, Gerner, Britton, Ktistakis, Wileman (bib15) 2011; 7 Cheng, Xie, Zhou, Huang, Farfel-Becker, Sheng (bib12) 2018; 217 Issa, Merhi, Panossian, Salloum, Tokajian (bib30) 2020; 5 Mizushima, Yoshimori, Ohsumi (bib48) 2011; 27 Plemel, Lobingier, Brett, Angers, Nickerson, Paulsel, Sprague, Merz (bib54) 2011; 22 Suhy, Giddings, Kirkegaard (bib64) 2000; 74 Choi, Bowman, Jung (bib13) 2018; 16 Chan, Tsoi, Chan, Zhai, Wong, Yao, Chan, Tsui, Chan (bib11) 2009; 41 Ding, Zhang, Yang, Zhang, Chen, Yan, Xu, Banerjee, Chen (bib19) 2014; 15 Jackson (bib33) 2015; 479–480 Matsui, Jiang, Nakano, Sakamaki, Yamamoto, Mizushima (bib45) 2018; 217 Wang, Horby, Hayden, Gao (bib70) 2020; 395 Reggiori, Monastyrska, Verheije, Calì, Ulasli, Bianchi, Bernasconi, de Haan, Molinari (bib58) 2010; 7 Peralta, Martin, Edinger (bib52) 2010; 285 Braulke, Bonifacino (bib7) 2009; 1793 Hartenian, Nandakumar, Lari, Ly, Tucker, Glaunsinger (bib27) 2020; 295 Pols, ten Brink, Gosavi, Oorschot, Klumperman (bib55) 2013; 14 Snijder, Limpens, de Wilde, de Jong, Zevenhoven-Dobbe, Maier, Faas, Koster, Bárcena (bib62) 2020; 18 Orvedahl, Alexander, Tallóczy, Sun, Wei, Zhang, Burns, Leib, Levine (bib51) 2007; 1 Takahashi, He, Tang, Hattori, Liu, Young, Serfass, Chen, Gebru, Chen (bib65) 2018; 9 Axe, Walker, Manifava, Chandra, Roderick, Habermann, Griffiths, Ktistakis (bib2) 2008; 182 Corona, Saulsbery, Corona Velazquez, Jackson (bib14) 2018; 22 Zhao, Chen, Miao, Zhao, Qu, Li, Wang, Liu, Li, Chen (bib80) 2017; 67 Kimura, Noda, Yoshimori (bib39) 2007; 3 Takáts, Pircs, Nagy, Varga, Kárpáti, Hegedűs, Kramer, Kovács, Sass, Juhász (bib66) 2014; 25 Itakura, Mizushima (bib32) 2010; 6 Kim, Krämer, Yamamoto, Kominami, Kohsaka, Akazawa (bib38) 2001; 276 Klionsky, Abdelmohsen, Abe, Abedin, Abeliovich, Acevedo Arozena, Adachi, Adams, Adams, Adeli (bib40) 2016; 12 Levine, Mizushima, Virgin (bib43) 2011; 469 Bird, Maynard, Covert, Kirkegaard (bib4) 2014; 111 Raben, Puertollano (bib57) 2016; 32 Siu, Yuen, Castaño-Rodriguez, Ye, Yeung, Fung, Yuan, Chan, Yuen, Enjuanes, Jin (bib61) 2019; 33 Lamb, Yoshimori, Tooze (bib42) 2013; 14 Viret, Rozières, Faure (bib69) 2018; 430 Ren, Elgner, Jiang, Himmelsbach, Medvedev, Ploen, Hildt (bib59) 2016; 90 Wong, Sanyal (bib74) 2020; 101 Miao, Zhang, Chen, Zhang (bib46) 2020; 77 Wang, Miao, Xue, Guo, Yuan, Wang, Zhang, Chen, Feng, Hu, Zhang (bib71) 2016; 63 Dreux, Chisari (bib20) 2010; 9 Zhao, Thackray, Miller, Lynn, Becker, Ward, Mizushima, Denison, Virgin (bib83) 2007; 3 Deretic, Saitoh, Akira (bib17) 2013; 13 Guo, Liang, Li, Hu, Wu, Zhang, Ma, Zhao, Kovács, Zhang (bib26) 2014; 16 Minakshi, Padhan, Rani, Khan, Ahmad, Jameel (bib47) 2009; 4 Kemball, Alirezaei, Flynn, Wood, Harkins, Kiosses, Whitton (bib37) 2010; 84 Zhao, Zhang (bib81) 2018; 53 Bröcker, Kuhlee, Gatsogiannis, Balderhaar, Hönscher, Engelbrecht-Vandré, Ungermann, Raunser (bib8) 2012; 109 Cottam, Whelband, Wileman (bib16) 2014; 10 Itakura, Kishi-Itakura, Mizushima (bib31) 2012; 151 Jiang, Nishimura, Sakamaki, Itakura, Hatta, Natsume, Mizushima (bib36) 2014; 25 Jahn, Scheller (bib35) 2006; 7 Issa (10.1016/j.devcel.2020.12.010_bib30) 2020; 5 Nakamura (10.1016/j.devcel.2020.12.010_bib50) 2020; 22 Wu (10.1016/j.devcel.2020.12.010_bib77) 2020; 579 Snijder (10.1016/j.devcel.2020.12.010_bib62) 2020; 18 Velikkakath (10.1016/j.devcel.2020.12.010_bib68) 2012; 23 Wolff (10.1016/j.devcel.2020.12.010_bib73) 2020; 369 Yue (10.1016/j.devcel.2020.12.010_bib79) 2018; 9 Siu (10.1016/j.devcel.2020.12.010_bib61) 2019; 33 Aits (10.1016/j.devcel.2020.12.010_bib1) 2015; 11 Dreux (10.1016/j.devcel.2020.12.010_bib20) 2010; 9 Jahn (10.1016/j.devcel.2020.12.010_bib35) 2006; 7 Gordon (10.1016/j.devcel.2020.12.010_bib25) 2020; 583 Klionsky (10.1016/j.devcel.2020.12.010_bib40) 2016; 12 Hartenian (10.1016/j.devcel.2020.12.010_bib27) 2020; 295 Lamb (10.1016/j.devcel.2020.12.010_bib42) 2013; 14 Maier (10.1016/j.devcel.2020.12.010_bib85) 2013; 4 Wu (10.1016/j.devcel.2020.12.010_bib78) 2014; 15 Ding (10.1016/j.devcel.2020.12.010_bib19) 2014; 15 Reggiori (10.1016/j.devcel.2020.12.010_bib58) 2010; 7 Balderhaar (10.1016/j.devcel.2020.12.010_bib3) 2013; 126 Braulke (10.1016/j.devcel.2020.12.010_bib7) 2009; 1793 Cheng (10.1016/j.devcel.2020.12.010_bib12) 2018; 217 Kemball (10.1016/j.devcel.2020.12.010_bib37) 2010; 84 Minakshi (10.1016/j.devcel.2020.12.010_bib47) 2009; 4 Hoffmann (10.1016/j.devcel.2020.12.010_bib28) 2020; 181 Raben (10.1016/j.devcel.2020.12.010_bib57) 2016; 32 Wang (10.1016/j.devcel.2020.12.010_bib70) 2020; 395 Wang (10.1016/j.devcel.2020.12.010_bib71) 2016; 63 Cottam (10.1016/j.devcel.2020.12.010_bib15) 2011; 7 Jiang (10.1016/j.devcel.2020.12.010_bib36) 2014; 25 Mohamud (10.1016/j.devcel.2020.12.010_bib49) 2018; 22 Miao (10.1016/j.devcel.2020.12.010_bib46) 2020; 77 Takáts (10.1016/j.devcel.2020.12.010_bib66) 2014; 25 Ghosh (10.1016/j.devcel.2020.12.010_bib24) 2020; 183 Cottam (10.1016/j.devcel.2020.12.010_bib16) 2014; 10 Diao (10.1016/j.devcel.2020.12.010_bib18) 2015; 520 Zhao (10.1016/j.devcel.2020.12.010_bib82) 2019; 218 Pols (10.1016/j.devcel.2020.12.010_bib56) 2013; 4 Axe (10.1016/j.devcel.2020.12.010_bib2) 2008; 182 Zhao (10.1016/j.devcel.2020.12.010_bib83) 2007; 3 Zhao (10.1016/j.devcel.2020.12.010_bib81) 2018; 53 Feng (10.1016/j.devcel.2020.12.010_bib21) 2014; 24 Garg (10.1016/j.devcel.2020.12.010_bib23) 2011; 35 Guo (10.1016/j.devcel.2020.12.010_bib26) 2014; 16 Matsui (10.1016/j.devcel.2020.12.010_bib45) 2018; 217 Deretic (10.1016/j.devcel.2020.12.010_bib17) 2013; 13 Pols (10.1016/j.devcel.2020.12.010_bib55) 2013; 14 Chan (10.1016/j.devcel.2020.12.010_bib11) 2009; 41 Tan (10.1016/j.devcel.2020.12.010_bib67) 2006; 72 Lu (10.1016/j.devcel.2020.12.010_bib44) 2006; 103 Zhao (10.1016/j.devcel.2020.12.010_bib80) 2017; 67 Kimura (10.1016/j.devcel.2020.12.010_bib39) 2007; 3 Takahashi (10.1016/j.devcel.2020.12.010_bib65) 2018; 9 Orvedahl (10.1016/j.devcel.2020.12.010_bib51) 2007; 1 Solinger (10.1016/j.devcel.2020.12.010_bib63) 2013; 280 Pizzorno (10.1016/j.devcel.2020.12.010_bib53) 2020; 1 Jackson (10.1016/j.devcel.2020.12.010_bib33) 2015; 479–480 Cebollero (10.1016/j.devcel.2020.12.010_bib10) 2012; 22 Corona (10.1016/j.devcel.2020.12.010_bib14) 2018; 22 Jackson (10.1016/j.devcel.2020.12.010_bib34) 2005; 3 Levine (10.1016/j.devcel.2020.12.010_bib43) 2011; 469 Knoops (10.1016/j.devcel.2020.12.010_bib41) 2008; 6 Zhou (10.1016/j.devcel.2020.12.010_bib84) 2020; 579 Peralta (10.1016/j.devcel.2020.12.010_bib52) 2010; 285 Wong (10.1016/j.devcel.2020.12.010_bib74) 2020; 101 Freundt (10.1016/j.devcel.2020.12.010_bib22) 2010; 84 Bonifacino (10.1016/j.devcel.2020.12.010_bib5) 2006; 7 Ren (10.1016/j.devcel.2020.12.010_bib59) 2016; 90 Itakura (10.1016/j.devcel.2020.12.010_bib31) 2012; 151 Bröcker (10.1016/j.devcel.2020.12.010_bib8) 2012; 109 Wartosch (10.1016/j.devcel.2020.12.010_bib72) 2015; 16 Bird (10.1016/j.devcel.2020.12.010_bib4) 2014; 111 Mizushima (10.1016/j.devcel.2020.12.010_bib48) 2011; 27 Choi (10.1016/j.devcel.2020.12.010_bib13) 2018; 16 Shang (10.1016/j.devcel.2020.12.010_bib60) 2020; 117 Wong (10.1016/j.devcel.2020.12.010_bib75) 2008; 82 Wong (10.1016/j.devcel.2020.12.010_bib76) 1999; 10 Bradley (10.1016/j.devcel.2020.12.010_bib6) 2020; 396 Itakura (10.1016/j.devcel.2020.12.010_bib32) 2010; 6 Kim (10.1016/j.devcel.2020.12.010_bib38) 2001; 276 Suhy (10.1016/j.devcel.2020.12.010_bib64) 2000; 74 Castaño-Rodriguez (10.1016/j.devcel.2020.12.010_bib9) 2018; 9 Viret (10.1016/j.devcel.2020.12.010_bib69) 2018; 430 Humphries (10.1016/j.devcel.2020.12.010_bib29) 2012; 424 Plemel (10.1016/j.devcel.2020.12.010_bib54) 2011; 22 33621488 - Dev Cell. 2021 Feb 22;56(4):400-402 |
References_xml | – volume: 10 start-page: 119 year: 1999 end-page: 134 ident: bib76 article-title: GS32, a novel Golgi SNARE of 32 kDa, interacts preferentially with syntaxin 6 publication-title: Mol. Biol. Cell – volume: 276 start-page: 29393 year: 2001 end-page: 29402 ident: bib38 article-title: Molecular characterization of mammalian homologues of class C Vps proteins that interact with syntaxin-7 publication-title: J. Biol. Chem. – volume: 22 start-page: 1252 year: 2020 end-page: 1263 ident: bib50 article-title: LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury publication-title: Nat. Cell Biol. – volume: 25 start-page: 1338 year: 2014 end-page: 1354 ident: bib66 article-title: Interaction of the HOPS complex with syntaxin 17 mediates autophagosome clearance in Drosophila publication-title: Mol. Biol. Cell – volume: 396 start-page: 320 year: 2020 end-page: 332 ident: bib6 article-title: Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington state: a case series publication-title: Lancet – volume: 12 start-page: 1 year: 2016 end-page: 222 ident: bib40 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy, (3rd Edition) publication-title: Autophagy – volume: 14 start-page: 219 year: 2013 end-page: 232 ident: bib55 article-title: The HOPS proteins hVps41 and hVps39 are required for homotypic and heterotypic late endosome fusion publication-title: Traffic – volume: 33 start-page: 8865 year: 2019 end-page: 8877 ident: bib61 article-title: Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC publication-title: FASEB J. – volume: 217 start-page: 3127 year: 2018 end-page: 3139 ident: bib12 article-title: Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons publication-title: J. Cell Biol. – volume: 469 start-page: 323 year: 2011 end-page: 335 ident: bib43 article-title: Autophagy in immunity and inflammation publication-title: Nature – volume: 41 start-page: 2232 year: 2009 end-page: 2239 ident: bib11 article-title: The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function publication-title: Int. J. Biochem. Cell Biol. – volume: 151 start-page: 1256 year: 2012 end-page: 1269 ident: bib31 article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes publication-title: Cell – volume: 25 start-page: 1327 year: 2014 end-page: 1337 ident: bib36 article-title: The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17 publication-title: Mol. Biol. Cell – volume: 520 start-page: 563 year: 2015 end-page: 566 ident: bib18 article-title: ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes publication-title: Nature – volume: 117 start-page: 11727 year: 2020 end-page: 11734 ident: bib60 article-title: Cell entry mechanisms of SARS-CoV-2 publication-title: Proc. Natl. Acad. Sci. USA – volume: 579 start-page: 265 year: 2020 end-page: 269 ident: bib77 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature – volume: 9 year: 2018 ident: bib9 article-title: Role of severe acute respiratory syndrome coronavirus Viroporins E, 3a, and 8a in replication and pathogenesis publication-title: mBio – volume: 3 start-page: 581 year: 2007 end-page: 585 ident: bib83 article-title: Coronavirus replication does not require the autophagy gene ATG5 publication-title: Autophagy – volume: 6 start-page: 764 year: 2010 end-page: 776 ident: bib32 article-title: Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins publication-title: Autophagy – volume: 72 start-page: 78 year: 2006 end-page: 88 ident: bib67 article-title: Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus publication-title: Antiviral Res. – volume: 285 start-page: 16814 year: 2010 end-page: 16821 ident: bib52 article-title: Differential effects of TBC1D15 and mammalian Vps39 on Rab7 activation state, lysosomal morphology, and growth factor dependence publication-title: J. Biol. Chem. – volume: 424 start-page: 178 year: 2012 end-page: 183 ident: bib29 article-title: Imaging lysosomal enzyme activity in live cells using self-quenched substrates publication-title: Anal. Biochem. – volume: 583 start-page: 459 year: 2020 end-page: 468 ident: bib25 article-title: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing publication-title: Nature – volume: 18 start-page: e3000715 year: 2020 ident: bib62 article-title: A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis publication-title: PLoS Biol. – volume: 217 start-page: 2633 year: 2018 end-page: 2645 ident: bib45 article-title: Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17 publication-title: J. Cell Biol. – volume: 22 start-page: 3292 year: 2018 end-page: 3303 ident: bib49 article-title: Enteroviral infection inhibits autophagic flux via disruption of the SNARE complex to enhance viral replication publication-title: Cell Rep. – volume: 1 start-page: 100059 year: 2020 ident: bib53 article-title: Characterization and treatment of SARS-CoV-2 in nasal and bronchial human airway epithelia publication-title: Cell. Rep. Med. – volume: 1793 start-page: 605 year: 2009 end-page: 614 ident: bib7 article-title: Sorting of lysosomal proteins publication-title: Biochim. Biophys. Acta – volume: 90 start-page: 5989 year: 2016 end-page: 6000 ident: bib59 article-title: The autophagosomal SNARE protein syntaxin 17 is an essential factor for the hepatitis C virus life cycle publication-title: J. Virol. – volume: 3 start-page: e156 year: 2005 ident: bib34 article-title: Subversion of cellular autophagosomal machinery by RNA viruses publication-title: PLoS Biol. – volume: 63 start-page: 781 year: 2016 end-page: 795 ident: bib71 article-title: The vici syndrome protein EPG5 Is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes publication-title: Mol. Cell – volume: 181 start-page: 271 year: 2020 end-page: 280.e8 ident: bib28 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell – volume: 7 start-page: 568 year: 2006 end-page: 579 ident: bib5 article-title: Retrograde transport from endosomes to the trans-Golgi network publication-title: Nat. Rev. Mol. Cell Biol. – volume: 5 year: 2020 ident: bib30 article-title: SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis publication-title: mSystems – volume: 11 start-page: 1408 year: 2015 end-page: 1424 ident: bib1 article-title: Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay publication-title: Autophagy – volume: 109 start-page: 1991 year: 2012 end-page: 1996 ident: bib8 article-title: Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex publication-title: Proc. Natl. Acad. Sci. USA – volume: 280 start-page: 2743 year: 2013 end-page: 2757 ident: bib63 article-title: Tethering complexes in the endocytic pathway: CORVET and HOPS publication-title: FEBS Journal – volume: 369 start-page: 1395 year: 2020 end-page: 1398 ident: bib73 article-title: A molecular pore spans the double membrane of the coronavirus replication organelle publication-title: Science – volume: 9 start-page: 904 year: 2018 ident: bib79 article-title: SARS-coronavirus open reading Frame-3a drives multimodal necrotic cell death publication-title: Cell Death Dis. – volume: 74 start-page: 8953 year: 2000 end-page: 8965 ident: bib64 article-title: Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles publication-title: J. Virol. – volume: 14 start-page: 759 year: 2013 end-page: 774 ident: bib42 article-title: The autophagosome: origins unknown, biogenesis complex publication-title: Nat. Rev. Mol. Cell Biol.. – volume: 27 start-page: 107 year: 2011 end-page: 132 ident: bib48 article-title: The role of Atg proteins in autophagosome formation publication-title: Annu. Rev. Cell Dev. Biol. – volume: 82 start-page: 9143 year: 2008 end-page: 9153 ident: bib75 article-title: Autophagosome supports coxsackievirus B3 replication in host cells publication-title: J. Virol. – volume: 9 start-page: 1295 year: 2010 end-page: 1307 ident: bib20 article-title: Viruses and the autophagy machinery publication-title: Cell Cycle – volume: 16 start-page: 727 year: 2015 end-page: 742 ident: bib72 article-title: Recruitment of VPS33A to HOPS by VPS16 is required for lysosome fusion with endosomes and autophagosomes publication-title: Traffic – volume: 15 start-page: 973 year: 2014 end-page: 981 ident: bib78 article-title: PI3P phosphatase activity is required for autophagosome maturation and autolysosome formation publication-title: EMBO Rep. – volume: 23 start-page: 896 year: 2012 end-page: 909 ident: bib68 article-title: Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets publication-title: Mol. Biol. Cell – volume: 103 start-page: 12540 year: 2006 end-page: 12545 ident: bib44 article-title: Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release publication-title: Proc. Natl. Acad. Sci. USA – volume: 182 start-page: 685 year: 2008 end-page: 701 ident: bib2 article-title: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum publication-title: J. Cell Biol. – volume: 32 start-page: 255 year: 2016 end-page: 278 ident: bib57 article-title: TFEB and TFE3: linking lysosomes to cellular adaptation to stress publication-title: Annu. Rev. Cell Dev. Biol. – volume: 16 start-page: 1215 year: 2014 end-page: 1226 ident: bib26 article-title: O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation publication-title: Nat. Cell Biol. – volume: 7 start-page: 631 year: 2006 end-page: 643 ident: bib35 article-title: SNAREs--engines for membrane fusion publication-title: Nat. Rev. Mol. Cell Biol. – volume: 13 start-page: 722 year: 2013 end-page: 737 ident: bib17 article-title: Autophagy in infection, inflammation and immunity publication-title: Nat. Rev. Immunol. – volume: 22 start-page: 1545 year: 2012 end-page: 1553 ident: bib10 article-title: Phosphatidylinositol-3-phosphate clearance plays a key role in autophagosome completion publication-title: Curr. Biol. – volume: 395 start-page: 470 year: 2020 end-page: 473 ident: bib70 article-title: A novel coronavirus outbreak of global health concern publication-title: Lancet – volume: 4 start-page: e8342 year: 2009 ident: bib47 article-title: The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor publication-title: PLoS One – volume: 67 start-page: 974 year: 2017 end-page: 989.e6 ident: bib80 article-title: The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation publication-title: Mol. Cell – volume: 126 start-page: 1307 year: 2013 end-page: 1316 ident: bib3 article-title: CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion publication-title: J. Cell Sci. – volume: 22 start-page: 3304 year: 2018 end-page: 3314 ident: bib14 article-title: Enteroviruses remodel autophagic trafficking through regulation of host SNARE proteins to promote virus replication and cell exit publication-title: Cell Rep. – volume: 53 start-page: 29 year: 2018 end-page: 36 ident: bib81 article-title: Formation and maturation of autophagosomes in higher eukaryotes: a social network publication-title: Curr. Opin. Cell Biol. – volume: 6 start-page: e226 year: 2008 ident: bib41 article-title: SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum publication-title: PLoS Biol – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib84 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 4 year: 2013 ident: bib85 article-title: Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes publication-title: mBio. – volume: 7 start-page: 500 year: 2010 end-page: 508 ident: bib58 article-title: Coronaviruses hijack the LC3-I-Positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication publication-title: Cell Host Microbe – volume: 3 start-page: 452 year: 2007 end-page: 460 ident: bib39 article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 publication-title: Autophagy – volume: 430 start-page: 1696 year: 2018 end-page: 1713 ident: bib69 article-title: Autophagy during early virus-host cell interactions publication-title: J. Mol. Biol. – volume: 479–480 start-page: 450 year: 2015 end-page: 456 ident: bib33 article-title: Viruses and the autophagy pathway publication-title: Virology – volume: 7 start-page: 1335 year: 2011 end-page: 1347 ident: bib15 article-title: Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate publication-title: Autophagy – volume: 84 start-page: 1097 year: 2010 end-page: 1109 ident: bib22 article-title: The open reading frame 3a Protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death publication-title: J. Virol. – volume: 35 start-page: 182 year: 2011 end-page: 193 ident: bib23 article-title: Lysosomal trafficking, antigen presentation, and microbial killing are controlled by the Arf-like GTPase Arl8b publication-title: Immunity – volume: 9 start-page: 2855 year: 2018 ident: bib65 article-title: An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure publication-title: Nat. Commun. – volume: 16 start-page: 341 year: 2018 end-page: 354 ident: bib13 article-title: Autophagy during viral infection - a double-edged sword publication-title: Nat. Rev. Microbiol. – volume: 10 start-page: 1426 year: 2014 end-page: 1441 ident: bib16 article-title: Coronavirus NSP6 restricts autophagosome expansion publication-title: Autophagy – volume: 15 start-page: 564 year: 2014 end-page: 577 ident: bib19 article-title: Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome-lysosome fusion to increase virus production publication-title: Cell Host Microbe – volume: 22 start-page: 1353 year: 2011 end-page: 1363 ident: bib54 article-title: Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic publication-title: Mol. Biol. Cell – volume: 111 start-page: 13081 year: 2014 end-page: 13086 ident: bib4 article-title: Nonlytic viral spread enhanced by autophagy components publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 24 year: 2014 end-page: 41 ident: bib21 article-title: The machinery of macroautophagy publication-title: Cell Res. – volume: 183 start-page: 1520 year: 2020 end-page: 1535.e14 ident: bib24 article-title: β-coronaviruses use lysosomes for Egress instead of the biosynthetic secretory pathway publication-title: Cell – volume: 84 start-page: 12110 year: 2010 end-page: 12124 ident: bib37 article-title: Coxsackievirus infection induces autophagy-like vesicles and Megaphagosomes in pancreatic acinar cells in vivo publication-title: J. Virol. – volume: 101 start-page: 3 year: 2020 end-page: 11 ident: bib74 article-title: Manipulation of autophagy by (+) RNA viruses publication-title: Semin. Cell Dev. Biol. – volume: 218 start-page: 757 year: 2019 end-page: 770 ident: bib82 article-title: Autophagosome maturation: an epic journey from the ER to lysosomes publication-title: J. Cell Biol. – volume: 77 start-page: 618 year: 2020 end-page: 632.e5 ident: bib46 article-title: The ER-localized transmembrane protein TMEM39A/SUSR2 regulates autophagy by controlling the trafficking of the PtdIns(4)P phosphatase SAC1 publication-title: Mol. Cell – volume: 1 start-page: 23 year: 2007 end-page: 35 ident: bib51 article-title: HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein publication-title: Cell Host Microbe – volume: 4 start-page: 1361 year: 2013 ident: bib56 article-title: hVps41 and VAMP7 function in direct TGN to late endosome transport of lysosomal membrane proteins publication-title: Nat. Commun. – volume: 295 start-page: 12910 year: 2020 end-page: 12934 ident: bib27 article-title: The molecular virology of coronaviruses publication-title: J. Biol. Chem. – volume: 7 start-page: 500 year: 2010 ident: 10.1016/j.devcel.2020.12.010_bib58 article-title: Coronaviruses hijack the LC3-I-Positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.05.013 – volume: 396 start-page: 320 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib6 article-title: Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington state: a case series publication-title: Lancet doi: 10.1016/S0140-6736(20)31305-2 – volume: 218 start-page: 757 year: 2019 ident: 10.1016/j.devcel.2020.12.010_bib82 article-title: Autophagosome maturation: an epic journey from the ER to lysosomes publication-title: J. Cell Biol. doi: 10.1083/jcb.201810099 – volume: 7 start-page: 1335 year: 2011 ident: 10.1016/j.devcel.2020.12.010_bib15 article-title: Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate publication-title: Autophagy doi: 10.4161/auto.7.11.16642 – volume: 22 start-page: 1252 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib50 article-title: LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-00583-9 – volume: 579 start-page: 265 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib77 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 126 start-page: 1307 year: 2013 ident: 10.1016/j.devcel.2020.12.010_bib3 article-title: CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion publication-title: J. Cell Sci. doi: 10.1242/jcs.107805 – volume: 424 start-page: 178 year: 2012 ident: 10.1016/j.devcel.2020.12.010_bib29 article-title: Imaging lysosomal enzyme activity in live cells using self-quenched substrates publication-title: Anal. Biochem. doi: 10.1016/j.ab.2012.02.033 – volume: 7 start-page: 631 year: 2006 ident: 10.1016/j.devcel.2020.12.010_bib35 article-title: SNAREs--engines for membrane fusion publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2002 – volume: 6 start-page: e226 year: 2008 ident: 10.1016/j.devcel.2020.12.010_bib41 article-title: SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060226 – volume: 14 start-page: 759 year: 2013 ident: 10.1016/j.devcel.2020.12.010_bib42 article-title: The autophagosome: origins unknown, biogenesis complex publication-title: Nat. Rev. Mol. Cell Biol.. doi: 10.1038/nrm3696 – volume: 25 start-page: 1338 year: 2014 ident: 10.1016/j.devcel.2020.12.010_bib66 article-title: Interaction of the HOPS complex with syntaxin 17 mediates autophagosome clearance in Drosophila publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e13-08-0449 – volume: 16 start-page: 341 year: 2018 ident: 10.1016/j.devcel.2020.12.010_bib13 article-title: Autophagy during viral infection - a double-edged sword publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0003-6 – volume: 72 start-page: 78 year: 2006 ident: 10.1016/j.devcel.2020.12.010_bib67 article-title: Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2006.05.010 – volume: 285 start-page: 16814 year: 2010 ident: 10.1016/j.devcel.2020.12.010_bib52 article-title: Differential effects of TBC1D15 and mammalian Vps39 on Rab7 activation state, lysosomal morphology, and growth factor dependence publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.111633 – volume: 5 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib30 article-title: SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis publication-title: mSystems doi: 10.1128/mSystems.00266-20 – volume: 15 start-page: 564 year: 2014 ident: 10.1016/j.devcel.2020.12.010_bib19 article-title: Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome-lysosome fusion to increase virus production publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.04.004 – volume: 3 start-page: 452 year: 2007 ident: 10.1016/j.devcel.2020.12.010_bib39 article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 publication-title: Autophagy doi: 10.4161/auto.4451 – volume: 11 start-page: 1408 year: 2015 ident: 10.1016/j.devcel.2020.12.010_bib1 article-title: Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay publication-title: Autophagy doi: 10.1080/15548627.2015.1063871 – volume: 16 start-page: 727 year: 2015 ident: 10.1016/j.devcel.2020.12.010_bib72 article-title: Recruitment of VPS33A to HOPS by VPS16 is required for lysosome fusion with endosomes and autophagosomes publication-title: Traffic doi: 10.1111/tra.12283 – volume: 22 start-page: 3292 year: 2018 ident: 10.1016/j.devcel.2020.12.010_bib49 article-title: Enteroviral infection inhibits autophagic flux via disruption of the SNARE complex to enhance viral replication publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.02.090 – volume: 25 start-page: 1327 year: 2014 ident: 10.1016/j.devcel.2020.12.010_bib36 article-title: The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e13-08-0447 – volume: 111 start-page: 13081 year: 2014 ident: 10.1016/j.devcel.2020.12.010_bib4 article-title: Nonlytic viral spread enhanced by autophagy components publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1401437111 – volume: 217 start-page: 2633 year: 2018 ident: 10.1016/j.devcel.2020.12.010_bib45 article-title: Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17 publication-title: J. Cell Biol. doi: 10.1083/jcb.201712058 – volume: 13 start-page: 722 year: 2013 ident: 10.1016/j.devcel.2020.12.010_bib17 article-title: Autophagy in infection, inflammation and immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3532 – volume: 1 start-page: 23 year: 2007 ident: 10.1016/j.devcel.2020.12.010_bib51 article-title: HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein publication-title: Cell Host Microbe doi: 10.1016/j.chom.2006.12.001 – volume: 18 start-page: e3000715 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib62 article-title: A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000715 – volume: 9 start-page: 904 year: 2018 ident: 10.1016/j.devcel.2020.12.010_bib79 article-title: SARS-coronavirus open reading Frame-3a drives multimodal necrotic cell death publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0917-y – volume: 217 start-page: 3127 year: 2018 ident: 10.1016/j.devcel.2020.12.010_bib12 article-title: Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons publication-title: J. Cell Biol. doi: 10.1083/jcb.201711083 – volume: 430 start-page: 1696 year: 2018 ident: 10.1016/j.devcel.2020.12.010_bib69 article-title: Autophagy during early virus-host cell interactions publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2018.04.018 – volume: 84 start-page: 1097 year: 2010 ident: 10.1016/j.devcel.2020.12.010_bib22 article-title: The open reading frame 3a Protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death publication-title: J. Virol. doi: 10.1128/JVI.01662-09 – volume: 103 start-page: 12540 year: 2006 ident: 10.1016/j.devcel.2020.12.010_bib44 article-title: Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0605402103 – volume: 77 start-page: 618 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib46 article-title: The ER-localized transmembrane protein TMEM39A/SUSR2 regulates autophagy by controlling the trafficking of the PtdIns(4)P phosphatase SAC1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.10.035 – volume: 12 start-page: 1 year: 2016 ident: 10.1016/j.devcel.2020.12.010_bib40 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy, (3rd Edition) publication-title: Autophagy doi: 10.1080/15548627.2015.1100356 – volume: 15 start-page: 973 year: 2014 ident: 10.1016/j.devcel.2020.12.010_bib78 article-title: PI3P phosphatase activity is required for autophagosome maturation and autolysosome formation publication-title: EMBO Rep. doi: 10.15252/embr.201438618 – volume: 295 start-page: 12910 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib27 article-title: The molecular virology of coronaviruses publication-title: J. Biol. Chem. doi: 10.1074/jbc.REV120.013930 – volume: 369 start-page: 1395 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib73 article-title: A molecular pore spans the double membrane of the coronavirus replication organelle publication-title: Science doi: 10.1126/science.abd3629 – volume: 183 start-page: 1520 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib24 article-title: β-coronaviruses use lysosomes for Egress instead of the biosynthetic secretory pathway publication-title: Cell doi: 10.1016/j.cell.2020.10.039 – volume: 74 start-page: 8953 year: 2000 ident: 10.1016/j.devcel.2020.12.010_bib64 article-title: Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles publication-title: J. Virol. doi: 10.1128/JVI.74.19.8953-8965.2000 – volume: 1793 start-page: 605 year: 2009 ident: 10.1016/j.devcel.2020.12.010_bib7 article-title: Sorting of lysosomal proteins publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2008.10.016 – volume: 109 start-page: 1991 year: 2012 ident: 10.1016/j.devcel.2020.12.010_bib8 article-title: Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1117797109 – volume: 520 start-page: 563 year: 2015 ident: 10.1016/j.devcel.2020.12.010_bib18 article-title: ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes publication-title: Nature doi: 10.1038/nature14147 – volume: 583 start-page: 459 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib25 article-title: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing publication-title: Nature doi: 10.1038/s41586-020-2286-9 – volume: 27 start-page: 107 year: 2011 ident: 10.1016/j.devcel.2020.12.010_bib48 article-title: The role of Atg proteins in autophagosome formation publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-092910-154005 – volume: 33 start-page: 8865 year: 2019 ident: 10.1016/j.devcel.2020.12.010_bib61 article-title: Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC publication-title: FASEB J. doi: 10.1096/fj.201802418R – volume: 4 year: 2013 ident: 10.1016/j.devcel.2020.12.010_bib85 article-title: Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes publication-title: mBio. doi: 10.1128/mBio.00801-13 – volume: 32 start-page: 255 year: 2016 ident: 10.1016/j.devcel.2020.12.010_bib57 article-title: TFEB and TFE3: linking lysosomes to cellular adaptation to stress publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-111315-125407 – volume: 280 start-page: 2743 year: 2013 ident: 10.1016/j.devcel.2020.12.010_bib63 article-title: Tethering complexes in the endocytic pathway: CORVET and HOPS publication-title: FEBS Journal doi: 10.1111/febs.12151 – volume: 479–480 start-page: 450 year: 2015 ident: 10.1016/j.devcel.2020.12.010_bib33 article-title: Viruses and the autophagy pathway publication-title: Virology doi: 10.1016/j.virol.2015.03.042 – volume: 14 start-page: 219 year: 2013 ident: 10.1016/j.devcel.2020.12.010_bib55 article-title: The HOPS proteins hVps41 and hVps39 are required for homotypic and heterotypic late endosome fusion publication-title: Traffic doi: 10.1111/tra.12027 – volume: 9 start-page: 2855 year: 2018 ident: 10.1016/j.devcel.2020.12.010_bib65 article-title: An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure publication-title: Nat. Commun. doi: 10.1038/s41467-018-05254-w – volume: 469 start-page: 323 year: 2011 ident: 10.1016/j.devcel.2020.12.010_bib43 article-title: Autophagy in immunity and inflammation publication-title: Nature doi: 10.1038/nature09782 – volume: 395 start-page: 470 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib70 article-title: A novel coronavirus outbreak of global health concern publication-title: Lancet doi: 10.1016/S0140-6736(20)30185-9 – volume: 41 start-page: 2232 year: 2009 ident: 10.1016/j.devcel.2020.12.010_bib11 article-title: The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2009.04.019 – volume: 16 start-page: 1215 year: 2014 ident: 10.1016/j.devcel.2020.12.010_bib26 article-title: O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation publication-title: Nat. Cell Biol. doi: 10.1038/ncb3066 – volume: 10 start-page: 119 year: 1999 ident: 10.1016/j.devcel.2020.12.010_bib76 article-title: GS32, a novel Golgi SNARE of 32 kDa, interacts preferentially with syntaxin 6 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.10.1.119 – volume: 101 start-page: 3 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib74 article-title: Manipulation of autophagy by (+) RNA viruses publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2019.07.013 – volume: 4 start-page: 1361 year: 2013 ident: 10.1016/j.devcel.2020.12.010_bib56 article-title: hVps41 and VAMP7 function in direct TGN to late endosome transport of lysosomal membrane proteins publication-title: Nat. Commun. doi: 10.1038/ncomms2360 – volume: 3 start-page: e156 year: 2005 ident: 10.1016/j.devcel.2020.12.010_bib34 article-title: Subversion of cellular autophagosomal machinery by RNA viruses publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030156 – volume: 151 start-page: 1256 year: 2012 ident: 10.1016/j.devcel.2020.12.010_bib31 article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes publication-title: Cell doi: 10.1016/j.cell.2012.11.001 – volume: 10 start-page: 1426 year: 2014 ident: 10.1016/j.devcel.2020.12.010_bib16 article-title: Coronavirus NSP6 restricts autophagosome expansion publication-title: Autophagy doi: 10.4161/auto.29309 – volume: 6 start-page: 764 year: 2010 ident: 10.1016/j.devcel.2020.12.010_bib32 article-title: Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins publication-title: Autophagy doi: 10.4161/auto.6.6.12709 – volume: 24 start-page: 24 year: 2014 ident: 10.1016/j.devcel.2020.12.010_bib21 article-title: The machinery of macroautophagy publication-title: Cell Res. doi: 10.1038/cr.2013.168 – volume: 182 start-page: 685 year: 2008 ident: 10.1016/j.devcel.2020.12.010_bib2 article-title: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum publication-title: J. Cell Biol. doi: 10.1083/jcb.200803137 – volume: 35 start-page: 182 year: 2011 ident: 10.1016/j.devcel.2020.12.010_bib23 article-title: Lysosomal trafficking, antigen presentation, and microbial killing are controlled by the Arf-like GTPase Arl8b publication-title: Immunity doi: 10.1016/j.immuni.2011.06.009 – volume: 22 start-page: 1353 year: 2011 ident: 10.1016/j.devcel.2020.12.010_bib54 article-title: Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e10-03-0260 – volume: 3 start-page: 581 year: 2007 ident: 10.1016/j.devcel.2020.12.010_bib83 article-title: Coronavirus replication does not require the autophagy gene ATG5 publication-title: Autophagy doi: 10.4161/auto.4782 – volume: 82 start-page: 9143 year: 2008 ident: 10.1016/j.devcel.2020.12.010_bib75 article-title: Autophagosome supports coxsackievirus B3 replication in host cells publication-title: J. Virol. doi: 10.1128/JVI.00641-08 – volume: 9 year: 2018 ident: 10.1016/j.devcel.2020.12.010_bib9 article-title: Role of severe acute respiratory syndrome coronavirus Viroporins E, 3a, and 8a in replication and pathogenesis publication-title: mBio doi: 10.1128/mBio.02325-17 – volume: 22 start-page: 3304 year: 2018 ident: 10.1016/j.devcel.2020.12.010_bib14 article-title: Enteroviruses remodel autophagic trafficking through regulation of host SNARE proteins to promote virus replication and cell exit publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.03.003 – volume: 67 start-page: 974 year: 2017 ident: 10.1016/j.devcel.2020.12.010_bib80 article-title: The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.08.005 – volume: 63 start-page: 781 year: 2016 ident: 10.1016/j.devcel.2020.12.010_bib71 article-title: The vici syndrome protein EPG5 Is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.08.021 – volume: 7 start-page: 568 year: 2006 ident: 10.1016/j.devcel.2020.12.010_bib5 article-title: Retrograde transport from endosomes to the trans-Golgi network publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1985 – volume: 181 start-page: 271 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib28 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 276 start-page: 29393 year: 2001 ident: 10.1016/j.devcel.2020.12.010_bib38 article-title: Molecular characterization of mammalian homologues of class C Vps proteins that interact with syntaxin-7 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M101778200 – volume: 4 start-page: e8342 year: 2009 ident: 10.1016/j.devcel.2020.12.010_bib47 article-title: The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor publication-title: PLoS One doi: 10.1371/journal.pone.0008342 – volume: 84 start-page: 12110 year: 2010 ident: 10.1016/j.devcel.2020.12.010_bib37 article-title: Coxsackievirus infection induces autophagy-like vesicles and Megaphagosomes in pancreatic acinar cells in vivo publication-title: J. Virol. doi: 10.1128/JVI.01417-10 – volume: 22 start-page: 1545 year: 2012 ident: 10.1016/j.devcel.2020.12.010_bib10 article-title: Phosphatidylinositol-3-phosphate clearance plays a key role in autophagosome completion publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.06.029 – volume: 9 start-page: 1295 year: 2010 ident: 10.1016/j.devcel.2020.12.010_bib20 article-title: Viruses and the autophagy machinery publication-title: Cell Cycle doi: 10.4161/cc.9.7.11109 – volume: 23 start-page: 896 year: 2012 ident: 10.1016/j.devcel.2020.12.010_bib68 article-title: Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-09-0785 – volume: 117 start-page: 11727 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib60 article-title: Cell entry mechanisms of SARS-CoV-2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2003138117 – volume: 90 start-page: 5989 year: 2016 ident: 10.1016/j.devcel.2020.12.010_bib59 article-title: The autophagosomal SNARE protein syntaxin 17 is an essential factor for the hepatitis C virus life cycle publication-title: J. Virol. doi: 10.1128/JVI.00551-16 – volume: 53 start-page: 29 year: 2018 ident: 10.1016/j.devcel.2020.12.010_bib81 article-title: Formation and maturation of autophagosomes in higher eukaryotes: a social network publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2018.04.003 – volume: 1 start-page: 100059 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib53 article-title: Characterization and treatment of SARS-CoV-2 in nasal and bronchial human airway epithelia publication-title: Cell. Rep. Med. doi: 10.1016/j.xcrm.2020.100059 – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.devcel.2020.12.010_bib84 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – reference: 33621488 - Dev Cell. 2021 Feb 22;56(4):400-402 |
SSID | ssj0016180 |
Score | 2.6887522 |
Snippet | Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 427 |
SubjectTerms | Autophagosomes - metabolism Autophagy Autophagy-Related Proteins - metabolism COVID-19 COVID-19 - metabolism COVID-19 - virology DMV HEK293 Cells HeLa Cells HOPS Humans Lysosomes - metabolism ORF3a Protein Binding SARS-CoV-2 SARS-CoV-2 - metabolism SARS-CoV-2 - pathogenicity SNARE SNARE Proteins - metabolism Vesicular Transport Proteins - metabolism Viroporin Proteins - genetics Viroporin Proteins - metabolism |
Title | ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation |
URI | https://dx.doi.org/10.1016/j.devcel.2020.12.010 https://www.ncbi.nlm.nih.gov/pubmed/33422265 https://www.proquest.com/docview/2476853260 https://pubmed.ncbi.nlm.nih.gov/PMC7832235 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLQqGX0nfTFyr0KmJbki0f03RDWuimxN0lN6GXadqsvcTJ0vyA_u-O5AdNW1govtljW2hG0ifNfDMIvVUiZVnKSgJYVREmjCZac050pFheKqFVINJ-Ok_nF-zjiq9O0LTnwviwym7ub-f0MFt3d8Zdb46v1-txAWOVcRF5P6LfgnoSH2UikPhW7wZPQhqH6mlemHjpnj4XYrysuzHOOyCSKBwKeh7tv5env-Hnn1GUvy1Ls_voXocn8aRt8gN04qqH6E5bYfLwCP1cLGdU4brEAPTwdHH54T2Jc3yz3u4bXEyWBZnWlyTBGta07w2eLz4XOESZux8kkEoAkGLA1-5Kbw79Z4rzyfKsF8Nb54OJQQzgL1b7Xb05NHVTXzk8ECMfo4vZ2ZfpnHSVF4jhPNuRNMkjZq1RylFmNDMsZzpXmXagQtjiRJmLKRc2Z6mLBdhBWXLACTrViWJw0SfotKor9wxhxqm1sTaW5jGz1GnrhI2cMEYwm8RshGjf4dJ0acl9dYyN7OPPvslWTdKrScaJBDWNEBneum7Tctwin_W6lEfmJWHluOXNN73qJYw8705Rlav3jUzAyAHswIZwhJ62pjC0hVJ_tJZy-O-RkQwCPqv38ZNq_TVk9878HEv58_9u8Qt0N_GBN553n7xEp7vt3r0C5LTTr8PQ-AUaPRgP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4k14GgmOVnb92MeBQ0gbJbRNULatcnPttSMCabbKJoX8AH4Rf5DxvkQAqRJStbdde3fW45n57JnxIPRWRQEPAz4lgFUV4VGqidZCEO0pHk9VpFWRSHs0DPon_ONETHbQzzoXxoVVVrq_1OmFtq7utKvRbF_MZu0EZJWLyHN-RLcEjavIygO7-Qbrtvz9YA-Y_I7S3v5xt0-q0gIkFSJckYDGHjcmVcoynmqe8pjrWIXaAo2A4b3Q-kxEJuaB9SP40elUgCHUgaaKw8XgvTfQTUAfodMGg8mHxnUR-EW5NkcdceTV-XpFUJmxl6l1Hg_qFbuQLnH33_bwb7z7Z9jmb3awdw_drQAs7pRjdB_t2MUDdKssabl5iH6Mxj2mcDbFgCxxd3Q62CN-jC9ny3WOk844Id3slFCswYh-zXF_9CnBRVi7_U6KLBZAwBgAvT3X8039mmTYGe_XzfDSuuhlaAZ4G6v1Kptv8izPzi1uMjEfoZNr4cdjtLvIFvYpwlwwY3ydGhb73DCrjY2MZ6M0jbihPm8hVg-4TKtz0F05jrmsA96-yJJN0rFJ-lQCm1qINL0uynNArmgf1ryUW_NZgqm6ouebmvUSRN35b9TCZutcUpAqQFewAm2hJ-VUaGhhzO3lBQK-uzVJmgbuGPHtJ4vZ5-I48dApdSae_TfFr9Ht_vHRoTwcDA-eozvURf24pH_6Au2ulmv7EmDbSr8qxASjs-uWy18Hq1Yh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ORF3a+of+the+COVID-19+virus+SARS-CoV-2+blocks+HOPS+complex-mediated+assembly+of+the+SNARE+complex+required+for+autolysosome+formation&rft.jtitle=Developmental+cell&rft.au=Miao%2C+Guangyan&rft.au=Zhao%2C+Hongyu&rft.au=Li%2C+Yan&rft.au=Ji%2C+Mingming&rft.date=2021-02-22&rft.pub=Elsevier+Inc&rft.issn=1534-5807&rft.eissn=1878-1551&rft.volume=56&rft.issue=4&rft.spage=427&rft.epage=442.e5&rft_id=info:doi/10.1016%2Fj.devcel.2020.12.010&rft_id=info%3Apmid%2F33422265&rft.externalDocID=PMC7832235 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-5807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-5807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-5807&client=summon |