MGFKD: A semi-supervised multi-source domain adaptation algorithm for cross-subject EEG emotion recognition

Currently, most models rarely consider the negative transfer problem in the research field of cross-subject EEG emotion recognition. To solve this problem, this paper proposes a semi-supervised domain adaptive algorithm based on few labeled samples of target subject, which called multi-domain geodes...

Full description

Saved in:
Bibliographic Details
Published inBrain research bulletin Vol. 208; p. 110901
Main Authors Zhang, Rui, Guo, Huifeng, Xu, Zongxin, Hu, Yuxia, Chen, Mingming, Zhang, Lipeng
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, most models rarely consider the negative transfer problem in the research field of cross-subject EEG emotion recognition. To solve this problem, this paper proposes a semi-supervised domain adaptive algorithm based on few labeled samples of target subject, which called multi-domain geodesic flow kernel dynamic distribution alignment (MGFKD). It consists of three modules: 1) GFK common feature extractor: projects the feature distribution of source and target subjects to the Grassmann manifold space, and obtains the latent common features of the two feature distributions through GFK method. 2) Source domain selector: obtains pseudo-labels of the target subject through weak classifier, finds "golden source subjects" by using few known labels of target subjects. 3) Label corrector: uses a dynamic distribution balance strategy to correct the pseudo-labels of the target subject. We conducted comparison experiments on the SEED and SEED-IV datasets, and the results show that MGFKD outperforms unsupervised and semi-supervised domain adaptation algorithms, achieving an average accuracy of 87.51±7.68% and 68.79±8.25% on the SEED and SEED-IV datasets with only one labeled sample per video for target subject. Especially when the number of source domains is set as 6 and the number of known labels is set as 5, the accuracy increase to 90.20±7.57% and 69.99±7.38%, respectively. The above results prove that our proposed algorithm can efficiently and quickly improve the cross-subject EEG emotion classification performance. Since it only need a small number of labeled samples of new subjects, making it has strong application value in future EEG-based emotion recognition applications. •A semi-supervised DA algorithm for cross-subject emotion recognition is proposed.•The proposed algorithm achieves higher accuracy in SEED and SEED-IV datasets.•It is a non-deep learning method with strong interpretability and short running time.•It could build efficient emotion decoding model for new subject quickly in real-life.
AbstractList Currently, most models rarely consider the negative transfer problem in the research field of cross-subject EEG emotion recognition. To solve this problem, this paper proposes a semi-supervised domain adaptive algorithm based on few labeled samples of target subject, which called multi-domain geodesic flow kernel dynamic distribution alignment (MGFKD). It consists of three modules: 1) GFK common feature extractor: projects the feature distribution of source and target subjects to the Grassmann manifold space, and obtains the latent common features of the two feature distributions through GFK method. 2) Source domain selector: obtains pseudo-labels of the target subject through weak classifier, finds "golden source subjects" by using few known labels of target subjects. 3) Label corrector: uses a dynamic distribution balance strategy to correct the pseudo-labels of the target subject. We conducted comparison experiments on the SEED and SEED-IV datasets, and the results show that MGFKD outperforms unsupervised and semi-supervised domain adaptation algorithms, achieving an average accuracy of 87.51±7.68% and 68.79±8.25% on the SEED and SEED-IV datasets with only one labeled sample per video for target subject. Especially when the number of source domains is set as 6 and the number of known labels is set as 5, the accuracy increase to 90.20±7.57% and 69.99±7.38%, respectively. The above results prove that our proposed algorithm can efficiently and quickly improve the cross-subject EEG emotion classification performance. Since it only need a small number of labeled samples of new subjects, making it has strong application value in future EEG-based emotion recognition applications.
Currently, most models rarely consider the negative transfer problem in the research field of cross-subject EEG emotion recognition. To solve this problem, this paper proposes a semi-supervised domain adaptive algorithm based on few labeled samples of target subject, which called multi-domain geodesic flow kernel dynamic distribution alignment (MGFKD). It consists of three modules: 1) GFK common feature extractor: projects the feature distribution of source and target subjects to the Grassmann manifold space, and obtains the latent common features of the two feature distributions through GFK method. 2) Source domain selector: obtains pseudo-labels of the target subject through weak classifier, finds "golden source subjects" by using few known labels of target subjects. 3) Label corrector: uses a dynamic distribution balance strategy to correct the pseudo-labels of the target subject. We conducted comparison experiments on the SEED and SEED-IV datasets, and the results show that MGFKD outperforms unsupervised and semi-supervised domain adaptation algorithms, achieving an average accuracy of 87.51±7.68% and 68.79±8.25% on the SEED and SEED-IV datasets with only one labeled sample per video for target subject. Especially when the number of source domains is set as 6 and the number of known labels is set as 5, the accuracy increase to 90.20±7.57% and 69.99±7.38%, respectively. The above results prove that our proposed algorithm can efficiently and quickly improve the cross-subject EEG emotion classification performance. Since it only need a small number of labeled samples of new subjects, making it has strong application value in future EEG-based emotion recognition applications. •A semi-supervised DA algorithm for cross-subject emotion recognition is proposed.•The proposed algorithm achieves higher accuracy in SEED and SEED-IV datasets.•It is a non-deep learning method with strong interpretability and short running time.•It could build efficient emotion decoding model for new subject quickly in real-life.
Currently, most models rarely consider the negative transfer problem in the research field of cross-subject EEG emotion recognition. To solve this problem, this paper proposes a semi-supervised domain adaptive algorithm based on few labeled samples of target subject, which called multi-domain geodesic flow kernel dynamic distribution alignment (MGFKD). It consists of three modules: 1) GFK common feature extractor: projects the feature distribution of source and target subjects to the Grassmann manifold space, and obtains the latent common features of the two feature distributions through GFK method. 2) Source domain selector: obtains pseudo-labels of the target subject through weak classifier, finds "golden source subjects" by using few known labels of target subjects. 3) Label corrector: uses a dynamic distribution balance strategy to correct the pseudo-labels of the target subject. We conducted comparison experiments on the SEED and SEED-IV datasets, and the results show that MGFKD outperforms unsupervised and semi-supervised domain adaptation algorithms, achieving an average accuracy of 87.51±7.68% and 68.79±8.25% on the SEED and SEED-IV datasets with only one labeled sample per video for target subject. Especially when the number of source domains is set as 6 and the number of known labels is set as 5, the accuracy increase to 90.20±7.57% and 69.99±7.38%, respectively. The above results prove that our proposed algorithm can efficiently and quickly improve the cross-subject EEG emotion classification performance. Since it only need a small number of labeled samples of new subjects, making it has strong application value in future EEG-based emotion recognition applications.Currently, most models rarely consider the negative transfer problem in the research field of cross-subject EEG emotion recognition. To solve this problem, this paper proposes a semi-supervised domain adaptive algorithm based on few labeled samples of target subject, which called multi-domain geodesic flow kernel dynamic distribution alignment (MGFKD). It consists of three modules: 1) GFK common feature extractor: projects the feature distribution of source and target subjects to the Grassmann manifold space, and obtains the latent common features of the two feature distributions through GFK method. 2) Source domain selector: obtains pseudo-labels of the target subject through weak classifier, finds "golden source subjects" by using few known labels of target subjects. 3) Label corrector: uses a dynamic distribution balance strategy to correct the pseudo-labels of the target subject. We conducted comparison experiments on the SEED and SEED-IV datasets, and the results show that MGFKD outperforms unsupervised and semi-supervised domain adaptation algorithms, achieving an average accuracy of 87.51±7.68% and 68.79±8.25% on the SEED and SEED-IV datasets with only one labeled sample per video for target subject. Especially when the number of source domains is set as 6 and the number of known labels is set as 5, the accuracy increase to 90.20±7.57% and 69.99±7.38%, respectively. The above results prove that our proposed algorithm can efficiently and quickly improve the cross-subject EEG emotion classification performance. Since it only need a small number of labeled samples of new subjects, making it has strong application value in future EEG-based emotion recognition applications.
ArticleNumber 110901
Author Hu, Yuxia
Zhang, Lipeng
Zhang, Rui
Guo, Huifeng
Xu, Zongxin
Chen, Mingming
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0002-9815-5101
  surname: Zhang
  fullname: Zhang, Rui
– sequence: 2
  givenname: Huifeng
  surname: Guo
  fullname: Guo, Huifeng
– sequence: 3
  givenname: Zongxin
  surname: Xu
  fullname: Xu, Zongxin
– sequence: 4
  givenname: Yuxia
  surname: Hu
  fullname: Hu, Yuxia
– sequence: 5
  givenname: Mingming
  surname: Chen
  fullname: Chen, Mingming
– sequence: 6
  givenname: Lipeng
  surname: Zhang
  fullname: Zhang, Lipeng
  email: Zhanglipengdjj@163.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38355058$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URLeFr4AiTlyy2M4fOz1R2u1SUcQFzpYzGS_eOvFiJ5X67fFuSoV62pNHo_d-Y713Rk4GPyAhHxhdMsrqT9tlG7QdAsZ2cm7JKS-XjNGGsldkwaQoci5KcUIWtKhZ3vCCnpKzGLeU0lpW9RtyWsiiqmglF-T--_rm2_VFdplF7G0epx2GBxuxy_rJjWnhpwCYdb5PFzPd6d2oR-vT6DY-2PF3nxkfMgg-xuRutwhjtlqtM-z9QRcQ_Gaw-_kteW20i_ju6T0nv25WP6--5nc_1rdXl3c5VJUY85rXgIZrKWRDeSdBlmBKCg1qJruaVrowhiPnDdQCWWkqYKwyJa-g5a2mxTm5nbmd11u1C7bX4VF5bdVh4cNG6TBacKiE5qKrS22glSUD0xYC24ZqzkopRF0k1seZtQv-z4RxVL2NgM7pAf0UFW-4SOL0gSR9_ySd2h6758P_wk6Ci1lwSCugeZYwqvbNqq36v1m1b1bNzSbz5xdmsHMVY7K44xDXMwJT-A8Wg4pgcQDsbGppTOnY4zBfXmDA2cGCdvf4eCzkL8g939g
CitedBy_id crossref_primary_10_32604_cmc_2024_059115
crossref_primary_10_1007_s11571_024_10193_y
crossref_primary_10_1016_j_eswa_2024_125089
Cites_doi 10.1016/j.compbiomed.2023.106860
10.1109/ICDM.2019.00088
10.3389/fnins.2021.778488
10.1109/ACIIW52867.2021.9666360
10.1016/j.compbiomed.2016.10.019
10.1109/TAFFC.2019.2916015
10.1109/TNN.2010.2091281
10.1007/978-3-319-58347-1_10
10.1109/TCYB.2018.2797176
10.1109/T-AFFC.2011.15
10.3390/s22228808
10.1109/TBME.2019.2897651
10.1109/TAMD.2015.2431497
10.1109/JAS.2022.105515
10.1162/089976698300017467
10.1016/j.jneumeth.2023.109841
10.1109/JAS.2022.106004
10.1080/0144341970170117
10.1109/ICDM.2017.150
10.1007/s00521-020-05670-4
10.3390/s17051014
10.1109/TAFFC.2018.2817622
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.brainresbull.2024.110901
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-2747
ExternalDocumentID oai_doaj_org_article_7a27d64afcb841cfb37eb90a21487763
38355058
10_1016_j_brainresbull_2024_110901
S0361923024000340
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
41~
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMQ
HVGLF
HZ~
IHE
J1W
KOM
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
WUQ
Z5R
ZGI
~G-
0SF
6I.
AACTN
AADPK
AAFTH
AAIAV
ABYKQ
ADKLL
AFCTW
AFKWA
AFMIJ
AJBFU
AJOXV
AMFUW
RIG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c557t-626cef2a878902d8c84cf40c9ea18d605a3ff2e229c67e14f5c115f425cb2ba03
IEDL.DBID .~1
ISSN 0361-9230
1873-2747
IngestDate Wed Aug 27 01:30:32 EDT 2025
Fri Jul 11 07:04:01 EDT 2025
Sat Apr 05 01:27:47 EDT 2025
Tue Jul 01 04:30:27 EDT 2025
Thu Apr 24 23:07:38 EDT 2025
Sat Apr 06 16:23:52 EDT 2024
Tue Aug 26 16:34:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Emotion recognition
Golden subjects
Negative transfer
Semi-supervised domain adaptation algorithm
Transfer learning
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-626cef2a878902d8c84cf40c9ea18d605a3ff2e229c67e14f5c115f425cb2ba03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9815-5101
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0361923024000340
PMID 38355058
PQID 2927214115
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7a27d64afcb841cfb37eb90a21487763
proquest_miscellaneous_2927214115
pubmed_primary_38355058
crossref_primary_10_1016_j_brainresbull_2024_110901
crossref_citationtrail_10_1016_j_brainresbull_2024_110901
elsevier_sciencedirect_doi_10_1016_j_brainresbull_2024_110901
elsevier_clinicalkey_doi_10_1016_j_brainresbull_2024_110901
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
20240301
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Brain research bulletin
PublicationTitleAlternate Brain Res Bull
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Chai, Wang, Zhao, Liu, Bai, Li (bib5) 2016; 79
Wang, Qiu, Li, Du, Lu, He (bib33) 2022; 9
She, Shi, Fang, Ma, Zhang (bib26) 2023; 159
Ma, Tang, Zheng, Lu (bib20) 2019
Wei-Long, Bao-Liang (bib34) 2015; 7
Sangineto, Zen, Ricci, Sebe (bib24) 2014
Collobert, Sinz, Weston, Bottou (bib7) 2006
Long, Wang, Ding, Sun, Yu (bib19) 2013
Boqing, Yuan, Fei, Grauman (bib3) 2012
Hou, Han, Zhang, Meng (bib14) 2022; 22
Yao, Doretto (bib35) 2010
Zheng, W.-L., Lu, B.-L., 2016. Personalizing EEG-Based Affective Models with Transfer Learning, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. https://dl.acm.org/doi/10.5555/3060832.3061003.
Schölkopf, Smola, Müller (bib25) 1998; 10
Wang, Feng, Chen, Yu, Huang, Yu (bib32) 2018
Duan, Zhu, Lu (bib8) 2013
Yu, C., Wang, J., Chen, Y., Huang, M., 2019. Transfer Learning with Dynamic Adversarial Adaptation Network.
Koelstra, Muhl, Soleymani, Jong-Seok, Yazdani, Ebrahimi, Pun, Nijholt, Patras (bib16) 2012; 3
Han, Y.S., Yoo, J., Ye, J.C., 2018. Deep Learning with Domain Adaptation for Accelerated Projection-Reconstruction MR.
Li, Liu, Si, Li (bib18) 2019
Chen, Jin, Li, Fan, Li, He (bib6) 2021; 15
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (bib10) 2017
Jia, Lin, Cai, Chen, Gou, Wang (bib15) 2020
Li, Li, Zhang, Li (bib17) 2023
Wang, Zhang, Xu, Ping, Chu (bib30) 2021; 33
Tao, Lu (bib29) 2020
Gao, Zhang, Liu, Tan, Zhao, Han, Cheng, Li, Li, Tian, Li (bib11) 2023; 390
Zhang, Deng, Zhang, Wu (bib37) 2023; 10
Bhatti, A., Behinaein, B., Rodenburg, D., Hungler, P., Etemad, A., 2021. Attentive Cross-modal Connections for Deep Multimodal Wearable-based Emotion Recognition.
.
Song, Zheng, Song, Cui (bib28) 2020; 11
Siddharth, Jung, Sejnowski (bib27) 2022; 13
Qian, Tan, Jiang, Tian (bib22) 2022; 1
Chai, Wang, Zhao, Li, Liu, Liu, Bai (bib4) 2017; 17
Pan, Tsang, Kwok, Yang (bib21) 2011; 22
Zheng, Liu, Lu, Lu, Cichocki (bib38) 2019; 49
Riding, Glass, Butler, Pleydell-Pearce (bib23) 1997; 17
Wang, J., Chen, Y., Hao, S., Feng, W., Shen, Z., 2018a. Balanced Distribution Adaptation for Transfer Learning. http://arxiv.org/abs/1807.00516.
Fernando, Habrard, Sebban, Tuytelaars (bib9) 2013
Hajavi, Etemad (bib12) 2023
Berthelot, D., Roelofs, R., Sohn, K., Carlini, N., Kurakin, A., 2022. AdaMatch: A Unified Approach to Semi-Supervised Learning and Domain Adaptation.
Li (10.1016/j.brainresbull.2024.110901_bib18) 2019
Long (10.1016/j.brainresbull.2024.110901_bib19) 2013
Li (10.1016/j.brainresbull.2024.110901_bib17) 2023
Siddharth (10.1016/j.brainresbull.2024.110901_bib27) 2022; 13
Zhang (10.1016/j.brainresbull.2024.110901_bib37) 2023; 10
Fernando (10.1016/j.brainresbull.2024.110901_bib9) 2013
10.1016/j.brainresbull.2024.110901_bib36
Chai (10.1016/j.brainresbull.2024.110901_bib4) 2017; 17
10.1016/j.brainresbull.2024.110901_bib13
Zheng (10.1016/j.brainresbull.2024.110901_bib38) 2019; 49
Boqing (10.1016/j.brainresbull.2024.110901_bib3) 2012
Gao (10.1016/j.brainresbull.2024.110901_bib11) 2023; 390
10.1016/j.brainresbull.2024.110901_bib31
Chai (10.1016/j.brainresbull.2024.110901_bib5) 2016; 79
Chen (10.1016/j.brainresbull.2024.110901_bib6) 2021; 15
Song (10.1016/j.brainresbull.2024.110901_bib28) 2020; 11
Ganin (10.1016/j.brainresbull.2024.110901_bib10) 2017
Hajavi (10.1016/j.brainresbull.2024.110901_bib12) 2023
Jia (10.1016/j.brainresbull.2024.110901_bib15) 2020
Pan (10.1016/j.brainresbull.2024.110901_bib21) 2011; 22
10.1016/j.brainresbull.2024.110901_bib39
Koelstra (10.1016/j.brainresbull.2024.110901_bib16) 2012; 3
Hou (10.1016/j.brainresbull.2024.110901_bib14) 2022; 22
Sangineto (10.1016/j.brainresbull.2024.110901_bib24) 2014
Ma (10.1016/j.brainresbull.2024.110901_bib20) 2019
She (10.1016/j.brainresbull.2024.110901_bib26) 2023; 159
Collobert (10.1016/j.brainresbull.2024.110901_bib7) 2006
Riding (10.1016/j.brainresbull.2024.110901_bib23) 1997; 17
Duan (10.1016/j.brainresbull.2024.110901_bib8) 2013
10.1016/j.brainresbull.2024.110901_bib2
10.1016/j.brainresbull.2024.110901_bib1
Yao (10.1016/j.brainresbull.2024.110901_bib35) 2010
Qian (10.1016/j.brainresbull.2024.110901_bib22) 2022; 1
Schölkopf (10.1016/j.brainresbull.2024.110901_bib25) 1998; 10
Wang (10.1016/j.brainresbull.2024.110901_bib32) 2018
Tao (10.1016/j.brainresbull.2024.110901_bib29) 2020
Wang (10.1016/j.brainresbull.2024.110901_bib33) 2022; 9
Wang (10.1016/j.brainresbull.2024.110901_bib30) 2021; 33
Wei-Long (10.1016/j.brainresbull.2024.110901_bib34) 2015; 7
References_xml – volume: 11
  start-page: 532
  year: 2020
  end-page: 541
  ident: bib28
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
– volume: 49
  start-page: 1110
  year: 2019
  end-page: 1122
  ident: bib38
  article-title: EmotionMeter: a multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
– reference: Zheng, W.-L., Lu, B.-L., 2016. Personalizing EEG-Based Affective Models with Transfer Learning, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. https://dl.acm.org/doi/10.5555/3060832.3061003.
– year: 2006
  ident: bib7
  article-title: Large scale transductive SVMs
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 199
  year: 2011
  end-page: 210
  ident: bib21
  article-title: Domain Adaptation via Transfer Component Analysis
  publication-title: IEEE Trans. Neural Netw.
– volume: 17
  start-page: 219
  year: 1997
  end-page: 234
  ident: bib23
  article-title: Cognitive style and individual differences in EEG alpha during information processing
  publication-title: Educ. Psychol.
– start-page: 81
  year: 2013
  end-page: 84
  ident: bib8
  article-title: Differential entropy feature for EEG-based emotion classification
  publication-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). Presented at the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)
– volume: 22
  start-page: 8808
  year: 2022
  ident: bib14
  article-title: Pleasantness recognition induced by different odor concentrations using olfactory electroencephalogram signals
  publication-title: Sensors
– volume: 17
  start-page: 1014
  year: 2017
  ident: bib4
  article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography(EEG)-based emotion recognition
  publication-title: Sensors
– volume: 9
  start-page: 1612
  year: 2022
  end-page: 1626
  ident: bib33
  article-title: Multi-modal domain adaptation variational autoencoder for EEG-based emotion recognition
  publication-title: IEEE/CAA J. Autom. Sin.
– start-page: 2960
  year: 2013
  end-page: 2967
  ident: bib9
  article-title: Unsupervised Visual Domain Adaptation Using Subspace Alignment
  publication-title: Proceedings of the IEEE International Conference on Computer Vision. Presented at the 2013 IEEE International Conference on Computer Vision (ICCV)
– volume: 3
  start-page: 18
  year: 2012
  end-page: 31
  ident: bib16
  article-title: DEAP: a database for emotion analysis;using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
– volume: 1
  start-page: 38
  year: 2022
  end-page: 49
  ident: bib22
  article-title: Deep learning with convolutional neural networks for EEG-based music emotion decoding and visualization
  publication-title: Brain-Appar. Commun.: A J. Bacomics
– start-page: 357
  year: 2014
  end-page: 366
  ident: bib24
  article-title: We are not All Equal: Personalizing Models for Facial Expression Analysis with Transductive Parameter Transfer
  publication-title: in: Proceedings of the 22nd ACM International Conference on Multimedia. Presented at the MM ’14
– volume: 13
  start-page: 96
  year: 2022
  end-page: 107
  ident: bib27
  article-title: Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 176
  year: 2019
  end-page: 183
  ident: bib20
  article-title: Emotion Recognition using Multimodal Residual LSTM Network
  publication-title: Proceedings of the 27th ACM International Conference on Multimedia. Presented at the MM ’19: The 27th ACM International Conference on Multimedia
– volume: 159
  year: 2023
  ident: bib26
  article-title: Cross-subject EEG emotion recognition using multi-source domain manifold feature selection
  publication-title: Comput. Biol. Med.
– reference: Wang, J., Chen, Y., Hao, S., Feng, W., Shen, Z., 2018a. Balanced Distribution Adaptation for Transfer Learning. http://arxiv.org/abs/1807.00516.
– start-page: 1
  year: 2023
  end-page: 13
  ident: bib12
  article-title: Fine-grained early frequency attention for deep speaker representation learning
  publication-title: IEEE Trans. Artif. Intell.
– start-page: 2200
  year: 2013
  end-page: 2207
  ident: bib19
  article-title: Transfer Feature Learning with Joint Distribution Adaptation
  publication-title: 2013 IEEE International Conference on Computer Vision. Presented at the 2013 IEEE International Conference on Computer Vision (ICCV)
– volume: 15
  year: 2021
  ident: bib6
  article-title: MS-MDA: multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Front. Neurosci.
– start-page: 402
  year: 2018
  end-page: 410
  ident: bib32
  article-title: Visual Domain Adaptation with Manifold Embedded Distribution Alignment
  publication-title: Proceedings of the 26th ACM International Conference on Multimedia. Presented at the MM ’18: ACM Multimedia Conference
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: bib34
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
– start-page: 189
  year: 2017
  end-page: 209
  ident: bib10
  article-title: Domain-Adversarial Training of Neural Networks
  publication-title: Domain Adaptation in Computer Vision Applications, Advances in Computer Vision and Pattern Recognition
– start-page: 2066
  year: 2012
  end-page: 2073
  ident: bib3
  article-title: Geodesic flow kernel for unsupervised domain adaptation
  publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition. Presented at the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 2869
  year: 2019
  end-page: 2881
  ident: bib18
  article-title: EEG based emotion recognition by combining functional connectivity network and local activations
  publication-title: IEEE Trans. Biomed. Eng.
– reference: Berthelot, D., Roelofs, R., Sohn, K., Carlini, N., Kurakin, A., 2022. AdaMatch: A Unified Approach to Semi-Supervised Learning and Domain Adaptation.
– year: 2023
  ident: bib17
  article-title: Effective emotion recognition by learning discriminative graph topologies in EEG brain networks
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
– reference: .
– volume: 79
  start-page: 205
  year: 2016
  end-page: 214
  ident: bib5
  article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition
  publication-title: Comput. Biol. Med.
– volume: 390
  year: 2023
  ident: bib11
  article-title: An adaptive joint CCA-ICA method for ocular artifact removal and its application to emotion classification
  publication-title: J. Neurosci. Methods
– start-page: 1855
  year: 2010
  end-page: 1862
  ident: bib35
  article-title: Boosting for transfer learning with multiple sources
  publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Presented at the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  ident: bib25
  article-title: Nonlinear Component Analysis as a Kernel Eigenvalue Problem
  publication-title: Neural Comput.
– reference: Han, Y.S., Yoo, J., Ye, J.C., 2018. Deep Learning with Domain Adaptation for Accelerated Projection-Reconstruction MR.
– reference: Yu, C., Wang, J., Chen, Y., Huang, M., 2019. Transfer Learning with Dynamic Adversarial Adaptation Network.
– start-page: 1
  year: 2020
  end-page: 8
  ident: bib29
  article-title: Emotion Recognition under Sleep Deprivation Using a Multimodal Residual LSTM Network
  publication-title: 2020 International Joint Conference on Neural Networks (IJCNN). Presented at the 2020 International Joint Conference on Neural Networks (IJCNN)
– start-page: 2909
  year: 2020
  end-page: 2917
  ident: bib15
  article-title: SST-EmotionNet: Spatial-Spectral-Temporal based Attention 3D Dense Network for EEG Emotion Recognition
  publication-title: Proceedings of the 28th ACM International Conference on Multimedia. Presented at the MM ’20: The 28th ACM International Conference on Multimedia
– volume: 10
  start-page: 305
  year: 2023
  end-page: 329
  ident: bib37
  article-title: A survey on negative transfer
  publication-title: IEEE/CAA J. Autom. Sin.
– reference: Bhatti, A., Behinaein, B., Rodenburg, D., Hungler, P., Etemad, A., 2021. Attentive Cross-modal Connections for Deep Multimodal Wearable-based Emotion Recognition.
– volume: 33
  start-page: 9061
  year: 2021
  end-page: 9073
  ident: bib30
  article-title: A deep multi-source adaptation transfer network for cross-subject electroencephalogram emotion recognition
  publication-title: Neural Comput. Applic
– volume: 159
  year: 2023
  ident: 10.1016/j.brainresbull.2024.110901_bib26
  article-title: Cross-subject EEG emotion recognition using multi-source domain manifold feature selection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106860
– ident: 10.1016/j.brainresbull.2024.110901_bib36
  doi: 10.1109/ICDM.2019.00088
– volume: 15
  year: 2021
  ident: 10.1016/j.brainresbull.2024.110901_bib6
  article-title: MS-MDA: multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.778488
– start-page: 1
  year: 2023
  ident: 10.1016/j.brainresbull.2024.110901_bib12
  article-title: Fine-grained early frequency attention for deep speaker representation learning
  publication-title: IEEE Trans. Artif. Intell.
– ident: 10.1016/j.brainresbull.2024.110901_bib2
  doi: 10.1109/ACIIW52867.2021.9666360
– volume: 79
  start-page: 205
  year: 2016
  ident: 10.1016/j.brainresbull.2024.110901_bib5
  article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.10.019
– volume: 13
  start-page: 96
  year: 2022
  ident: 10.1016/j.brainresbull.2024.110901_bib27
  article-title: Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2019.2916015
– volume: 22
  start-page: 199
  year: 2011
  ident: 10.1016/j.brainresbull.2024.110901_bib21
  article-title: Domain Adaptation via Transfer Component Analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2091281
– start-page: 189
  year: 2017
  ident: 10.1016/j.brainresbull.2024.110901_bib10
  article-title: Domain-Adversarial Training of Neural Networks
  doi: 10.1007/978-3-319-58347-1_10
– ident: 10.1016/j.brainresbull.2024.110901_bib13
– volume: 1
  start-page: 38
  year: 2022
  ident: 10.1016/j.brainresbull.2024.110901_bib22
  article-title: Deep learning with convolutional neural networks for EEG-based music emotion decoding and visualization
  publication-title: Brain-Appar. Commun.: A J. Bacomics
– ident: 10.1016/j.brainresbull.2024.110901_bib1
– volume: 49
  start-page: 1110
  year: 2019
  ident: 10.1016/j.brainresbull.2024.110901_bib38
  article-title: EmotionMeter: a multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2797176
– volume: 3
  start-page: 18
  year: 2012
  ident: 10.1016/j.brainresbull.2024.110901_bib16
  article-title: DEAP: a database for emotion analysis;using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– start-page: 2066
  year: 2012
  ident: 10.1016/j.brainresbull.2024.110901_bib3
  article-title: Geodesic flow kernel for unsupervised domain adaptation
– volume: 22
  start-page: 8808
  year: 2022
  ident: 10.1016/j.brainresbull.2024.110901_bib14
  article-title: Pleasantness recognition induced by different odor concentrations using olfactory electroencephalogram signals
  publication-title: Sensors
  doi: 10.3390/s22228808
– year: 2006
  ident: 10.1016/j.brainresbull.2024.110901_bib7
  article-title: Large scale transductive SVMs
  publication-title: J. Mach. Learn. Res.
– start-page: 2869
  year: 2019
  ident: 10.1016/j.brainresbull.2024.110901_bib18
  article-title: EEG based emotion recognition by combining functional connectivity network and local activations
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2897651
– year: 2023
  ident: 10.1016/j.brainresbull.2024.110901_bib17
  article-title: Effective emotion recognition by learning discriminative graph topologies in EEG brain networks
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
– volume: 7
  start-page: 162
  year: 2015
  ident: 10.1016/j.brainresbull.2024.110901_bib34
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 9
  start-page: 1612
  year: 2022
  ident: 10.1016/j.brainresbull.2024.110901_bib33
  article-title: Multi-modal domain adaptation variational autoencoder for EEG-based emotion recognition
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2022.105515
– volume: 10
  start-page: 1299
  year: 1998
  ident: 10.1016/j.brainresbull.2024.110901_bib25
  article-title: Nonlinear Component Analysis as a Kernel Eigenvalue Problem
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
– start-page: 2960
  year: 2013
  ident: 10.1016/j.brainresbull.2024.110901_bib9
  article-title: Unsupervised Visual Domain Adaptation Using Subspace Alignment
– volume: 390
  year: 2023
  ident: 10.1016/j.brainresbull.2024.110901_bib11
  article-title: An adaptive joint CCA-ICA method for ocular artifact removal and its application to emotion classification
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2023.109841
– volume: 10
  start-page: 305
  year: 2023
  ident: 10.1016/j.brainresbull.2024.110901_bib37
  article-title: A survey on negative transfer
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2022.106004
– volume: 17
  start-page: 219
  year: 1997
  ident: 10.1016/j.brainresbull.2024.110901_bib23
  article-title: Cognitive style and individual differences in EEG alpha during information processing
  publication-title: Educ. Psychol.
  doi: 10.1080/0144341970170117
– start-page: 402
  year: 2018
  ident: 10.1016/j.brainresbull.2024.110901_bib32
  article-title: Visual Domain Adaptation with Manifold Embedded Distribution Alignment
– start-page: 176
  year: 2019
  ident: 10.1016/j.brainresbull.2024.110901_bib20
  article-title: Emotion Recognition using Multimodal Residual LSTM Network
– start-page: 2200
  year: 2013
  ident: 10.1016/j.brainresbull.2024.110901_bib19
  article-title: Transfer Feature Learning with Joint Distribution Adaptation
– ident: 10.1016/j.brainresbull.2024.110901_bib31
  doi: 10.1109/ICDM.2017.150
– start-page: 1
  year: 2020
  ident: 10.1016/j.brainresbull.2024.110901_bib29
  article-title: Emotion Recognition under Sleep Deprivation Using a Multimodal Residual LSTM Network
– start-page: 81
  year: 2013
  ident: 10.1016/j.brainresbull.2024.110901_bib8
  article-title: Differential entropy feature for EEG-based emotion classification
– start-page: 2909
  year: 2020
  ident: 10.1016/j.brainresbull.2024.110901_bib15
  article-title: SST-EmotionNet: Spatial-Spectral-Temporal based Attention 3D Dense Network for EEG Emotion Recognition
– volume: 33
  start-page: 9061
  year: 2021
  ident: 10.1016/j.brainresbull.2024.110901_bib30
  article-title: A deep multi-source adaptation transfer network for cross-subject electroencephalogram emotion recognition
  publication-title: Neural Comput. Applic
  doi: 10.1007/s00521-020-05670-4
– start-page: 1855
  year: 2010
  ident: 10.1016/j.brainresbull.2024.110901_bib35
  article-title: Boosting for transfer learning with multiple sources
– ident: 10.1016/j.brainresbull.2024.110901_bib39
– volume: 17
  start-page: 1014
  year: 2017
  ident: 10.1016/j.brainresbull.2024.110901_bib4
  article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography(EEG)-based emotion recognition
  publication-title: Sensors
  doi: 10.3390/s17051014
– start-page: 357
  year: 2014
  ident: 10.1016/j.brainresbull.2024.110901_bib24
  article-title: We are not All Equal: Personalizing Models for Facial Expression Analysis with Transductive Parameter Transfer
– volume: 11
  start-page: 532
  year: 2020
  ident: 10.1016/j.brainresbull.2024.110901_bib28
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2817622
SSID ssj0006856
Score 2.4865105
Snippet Currently, most models rarely consider the negative transfer problem in the research field of cross-subject EEG emotion recognition. To solve this problem,...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110901
SubjectTerms Algorithms
Electroencephalography
Emotion recognition
Emotions
Golden subjects
Humans
Negative transfer
Recognition, Psychology
Semi-supervised domain adaptation algorithm
Transfer learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqnnpB0PKxUCojIW4Rie0kNojDQndbUZUTlXqzbGcMW7rJqrt74N8ztpOoHFD3wDXSJBPPjP2ePZ4h5C1rQPpCsMyUuUeCoorM2LzJOEYHcCG4k-Gi8OW36vxKfL0ur--1-go5Yak8cBq497VhdVMJ452VonDe8hqsyg1DHF9jcITZF78wkKl-Dq5kWQ0lRmM2lw0NF5DAWiR2yAqZiKU2-1Yww3IUq_b_tSr9C3XG1Wf-mDzqYSOdJnWfkD1oD8nRtEXKvPxN39GYyBl3yI_Ir8uz-cXpBzqla1gusvV2FeaDNTQ0Zg9mab-eNt0SlaWmMat0HE_N7Y_ubrH5uaSIZGlUGKVt2Kmhs9kZhdTyh45JR137lFzNZ9-_nGd9T4XMlWW9yZC_OPDMyHABljXSSeG8yJ0CU8gGuY3h3jNgTLmqhkL40iFm9BjZzjJrcv6M7LddCy8I5cZXJSgGvHKiss5YJbn1wEA5h6-aEDUMrXZ9wfHQ9-JWD5llN_q-WXQwi05mmRA-yq5S2Y2dpD4HC44SoXR2fIAOpXuH0g851IR8HOyvh9upOJ_iixY7qfBplO4xTMImO8u_GVxOY6CH0xvTQrdda6YYsnWB1piQ58kXxx_liKMRysqX_2MAXpGDoFBKtDsm-5u7LbxG5LWxJzHI_gBZXy8d
  priority: 102
  providerName: Directory of Open Access Journals
Title MGFKD: A semi-supervised multi-source domain adaptation algorithm for cross-subject EEG emotion recognition
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0361923024000340
https://dx.doi.org/10.1016/j.brainresbull.2024.110901
https://www.ncbi.nlm.nih.gov/pubmed/38355058
https://www.proquest.com/docview/2927214115
https://doaj.org/article/7a27d64afcb841cfb37eb90a21487763
Volume 208
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcuGCgPJYHisjIW5mE9tJHBCHpex2oWovUKk3y3bsNtBNVvs4cOG3M3acQA9IK3GMlXEcz3g833g8g9BrWlnhUk6JyhIHAKVMidJJRRisDss4Z0b4i8Jn5_nign-5zC4P0HF_F8aHVUbd3-n0oK1jyyTO5mRV15OvoHu9eeKTdPksKx63c154KX_760-YRy6yeF6ZEv92n3g0xHhpX4YBYK0GuAdYkfKQgDMWiOk3qZDL_9Ze9S9bNOxJ8_voXjQm8bQb7wN0YJuH6GjaAJBe_sRvcAjvDH7zI_Tj7GR--ukdnuKNXdZks1t5LbGxFQ4xhaTz4uOqXcJgsarUqjukx-rmql3X2-slBvsWhwEDtfb-GzybnWDbFQLCQyhS2zxCF_PZt-MFiZUWiMmyYksA1RjrqBL-WiythBHcOJ6Y0qpUVIB4FHOOWkpLkxc25S4zYEk6WO9GU60S9hgdNm1jnyLMlMszW1LLcsNzbZQuBdPOUlsaA12NUNlPrTQxDbmvhnEj-3iz7_JvtkjPFtmxZYTYQLvqknHsRfXRc3Cg8Am1Q0O7vpJRomShaFHlXDmjBU-N06ywukwUBbhYgA4eofc9_2V_ZxW0LHRU7zWEDwP1Lenem_5VL3ISlr8_01GNbXcbSUsKGJ4DN0boSSeLw48ysK7BwBXP_vPrz9Fd_9RF3r1Ah9v1zr4EU2yrx2GtjdGd6efTxfk4ODR-A2WiNtQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoALgpbH8ihGQtzCJraTOKAetmW3C-32Qiv1ZtmO3Qa6yWofBy78dsZ2EugBaSWuTsZxPJ7xfPY8EHpHSsNtwkgk09gCQCmSSKq4jChIh6GMUc1doPDsPJtesq9X6dUOOu5iYZxbZav7g0732rptGbazOVxU1fAb6F5nnrgkXS7LCuD2ewzE15Ux-PDrj59HxtP2wjKJ3Otd5lHv5KVcHQbAtQrwHoBFwnwGzrZCTLdL-WT-dzarfxmjflOaPEIPW2sSj8KAH6MdU--h_VENSHr-E7_H3r_TH5zvox-zk8np5494hFdmXkWrzcKpiZUpsXcqjMIxPi6bOQwWy1Iuwi09lrfXzbJa38wxGLjYDxiolTvAwePxCTahEhDufZGa-gm6nIwvjqdRW2oh0mmaryOANdpYIrmLiyUl15xpy2JdGJnwEiCPpNYSQ0ihs9wkzKYaTEkLAq8VUTKmT9Fu3dTmOcJU2iw1BTE00yxTWqqCU2UNMYXW0NUAFd3UCt3mIXflMG5F53D2XfzNFuHYIgJbBoj2tIuQjWMrqiPHwZ7CZdT2Dc3yWrRLSuSS5GXGpNWKs0RbRXOjilgSwIs5KOEB-tTxX3RBq6BmoaNqqyEc9tR3lvfW9G-7JSdA_t2ljqxNs1kJUhAA8Qy4MUDPwlrsf5SCeQ0WLn_xn19_g-5PL2Zn4uzL-elL9MA9CW54r9Duerkxr8EuW6sDL3e_Ad9-N20
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MGFKD%3A+A+semi-supervised+multi-source+domain+adaptation+algorithm+for+cross-subject+EEG+emotion+recognition&rft.jtitle=Brain+research+bulletin&rft.au=Zhang%2C+Rui&rft.au=Guo%2C+Huifeng&rft.au=Xu%2C+Zongxin&rft.au=Hu%2C+Yuxia&rft.date=2024-03-01&rft.issn=0361-9230&rft.volume=208&rft.spage=110901&rft_id=info:doi/10.1016%2Fj.brainresbull.2024.110901&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_brainresbull_2024_110901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-9230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-9230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-9230&client=summon