Predicting time-to-conversion for dementia of Alzheimer's type using multi-modal deep survival analysis
Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of tim...
Saved in:
Published in | Neurobiology of aging Vol. 121; pp. 139 - 156 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of time-to-conversion to DAT for preclinical subjects at various stages of disease development. We used a deep-learning model designed for survival analyses to predict subjects’ time-to-conversion to DAT using the baseline data of 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, Demographic, and CSF) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our study demonstrated that CDC data outperform genetic or MRI data in predicting DAT time-to-conversion for subjects with Mild Cognitive Impairment (MCI). On the other hand, genetic data provided the most predictive power for subjects with Normal Cognition (NC) at the time of the visit. Furthermore, combining MRI and genetic features improved the time-to-event prediction over using either modality alone. Finally, adding CDC to any combination of features only worked as well as using only the CDC features. |
---|---|
AbstractList | Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of time-to-conversion to DAT for preclinical subjects at various stages of disease development. We used a deep-learning model designed for survival analyses to predict subjects' time-to-conversion to DAT using the baseline data of 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, Demographic, and CSF) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our study demonstrated that CDC data outperform genetic or MRI data in predicting DAT time-to-conversion for subjects with Mild Cognitive Impairment (MCI). On the other hand, genetic data provided the most predictive power for subjects with Normal Cognition (NC) at the time of the visit. Furthermore, combining MRI and genetic features improved the time-to-event prediction over using either modality alone. Finally, adding CDC to any combination of features only worked as well as using only the CDC features. Dementia of Alzheimer’s Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of time-to-conversion to DAT for preclinical subjects at various stages of disease development. We used a deep-learning model designed for survival analyses to predict subjects’ time-to-conversion to DAT using the baseline data of 401 subjects with 63 features from MRI, genetic, and CDC ( C ognitive tests, D emographic, and C SF) data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our study demonstrated that CDC data outperform genetic or MRI data in predicting DAT time-to-conversion for subjects with Mild Cognitive Impairment (MCI). On the other hand, genetic data provided the most predictive power for subjects with Normal Cognition (NC) at the time of the visit. Furthermore, combining MRI and genetic features improved the time-to-event prediction over using either modality alone. Finally, adding CDC to any combination of features only worked as well as using only the CDC features. Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of time-to-conversion to DAT for preclinical subjects at various stages of disease development. We used a deep-learning model designed for survival analyses to predict subjects' time-to-conversion to DAT using the baseline data of 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, Demographic, and CSF) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our study demonstrated that CDC data outperform genetic or MRI data in predicting DAT time-to-conversion for subjects with Mild Cognitive Impairment (MCI). On the other hand, genetic data provided the most predictive power for subjects with Normal Cognition (NC) at the time of the visit. Furthermore, combining MRI and genetic features improved the time-to-event prediction over using either modality alone. Finally, adding CDC to any combination of features only worked as well as using only the CDC features.Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of time-to-conversion to DAT for preclinical subjects at various stages of disease development. We used a deep-learning model designed for survival analyses to predict subjects' time-to-conversion to DAT using the baseline data of 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, Demographic, and CSF) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our study demonstrated that CDC data outperform genetic or MRI data in predicting DAT time-to-conversion for subjects with Mild Cognitive Impairment (MCI). On the other hand, genetic data provided the most predictive power for subjects with Normal Cognition (NC) at the time of the visit. Furthermore, combining MRI and genetic features improved the time-to-event prediction over using either modality alone. Finally, adding CDC to any combination of features only worked as well as using only the CDC features. |
Author | Mirabnahrazam, Ghazal Popuri, Karteek Lee, Hyunwoo Ma, Da Cao, Jiguo Galvin, James E Beaulac, Cédric Wang, Lei Beg, Mirza Faisal Lee, Sieun |
AuthorAffiliation | f Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada h Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA g Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada a School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada c Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada e Department of Computer Science, Memorial University of Newfoundland, St. John’s, Newfoundland & Labrador, Canada b School of Medicine, Wake Forest University, Winston-Salem, NC, USA d Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK i Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA |
AuthorAffiliation_xml | – name: c Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada – name: g Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada – name: b School of Medicine, Wake Forest University, Winston-Salem, NC, USA – name: f Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada – name: e Department of Computer Science, Memorial University of Newfoundland, St. John’s, Newfoundland & Labrador, Canada – name: i Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA – name: a School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada – name: h Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA – name: d Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK |
Author_xml | – sequence: 1 givenname: Ghazal orcidid: 0000-0003-3263-465X surname: Mirabnahrazam fullname: Mirabnahrazam, Ghazal organization: School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada – sequence: 2 givenname: Da surname: Ma fullname: Ma, Da email: dma@wakehealth.edu organization: School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada – sequence: 3 givenname: Cédric surname: Beaulac fullname: Beaulac, Cédric organization: School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada – sequence: 4 givenname: Sieun surname: Lee fullname: Lee, Sieun organization: School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada – sequence: 5 givenname: Karteek surname: Popuri fullname: Popuri, Karteek organization: School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada – sequence: 6 givenname: Hyunwoo surname: Lee fullname: Lee, Hyunwoo organization: Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada – sequence: 7 givenname: Jiguo surname: Cao fullname: Cao, Jiguo organization: Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada – sequence: 8 givenname: James E surname: Galvin fullname: Galvin, James E organization: Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA – sequence: 9 givenname: Lei surname: Wang fullname: Wang, Lei organization: Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA – sequence: 10 givenname: Mirza Faisal orcidid: 0000-0003-4229-9613 surname: Beg fullname: Beg, Mirza Faisal email: faisal-lab@sfu.ca organization: School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36442416$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9rFDEUxYNU7Lb6FWQeBH2ZNclMkhkQpPaPCgV96HtIMne2WTPJmmQW1k9vlm3F9mmfQrjn_s7lnDN04oMHhN4RvCSY8I_rpYc5Bm2DUyvrV0uKKS2jJcbsBVoQxrqatL04QQtMelG3rMOn6CylNcZYtIK_QqcNb1vaEr5Aq58RBmtyAVXZTlDnUJvgtxCTDb4aQ6wGmMBnq6owVhfuzz0UWXyfqrzbQDWn_eY0u2zrKQzKFTlsqjTHrd2Wn_LK7ZJNr9HLUbkEbx7ec3R3c313-a2-_fH1--XFbW0YE7lmLR8x7QbV6Y4b0JQKMbJBc6JgHNhIqGmE7rt-EEpzYxg0nTHQAeZa97o5R58P2M2sJxhMOTwqJzfRTiruZFBWPp14ey9XYSsJZg1reF8IHx4IMfyeIWU52WTAOeUhzElS0VLOetaKIn37v9k_l8d0i-DLQWBiSCnCKI3NKpdgi7d1xVTuK5Vr-bRSua90Py2VFsinZ5BHnyPXbw7rUFLfWogyGQvelNYjmCyHYI8FXT0DGWe9Ncr9gt3xmL_y7-Ny |
CitedBy_id | crossref_primary_10_1002_sta4_70014 crossref_primary_10_3233_JAD_230208 crossref_primary_10_1016_j_eclinm_2023_102247 crossref_primary_10_1016_j_neuroimage_2023_120073 crossref_primary_10_1038_s41746_024_01207_4 crossref_primary_10_1038_s44220_024_00259_5 crossref_primary_10_3390_brainsci14030201 crossref_primary_10_3390_jcm13144202 crossref_primary_10_1186_s40708_023_00211_w crossref_primary_10_1093_jamiaopen_ooae087 crossref_primary_10_1371_journal_pone_0314725 crossref_primary_10_1109_JBHI_2024_3472462 crossref_primary_10_1038_s41746_024_01123_7 crossref_primary_10_3389_fnins_2024_1331677 |
Cites_doi | 10.1016/j.media.2020.101871 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5 10.1101/836510 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 10.3389/fneur.2019.00756 10.1038/srep45269 10.1016/j.patcog.2020.107247 10.1186/s12874-018-0482-1 10.1002/hbm.24463 10.1023/A:1010933404324 10.1111/j.2517-6161.1972.tb00899.x 10.1016/j.patrec.2008.01.010 10.3233/JAD-200830 10.1016/j.biopsych.2008.06.020 10.7717/peerj.6257 10.1016/j.compmedimag.2021.102000 10.1016/j.neuroimage.2008.07.013 10.1609/aaai.v32i1.11842 10.3233/JAD-190967 10.1016/j.neucom.2019.07.010 10.1002/hbm.25115 10.1007/978-3-030-43823-4_37 10.1038/s41467-021-26703-z 10.1038/s41588-018-0311-9 10.1016/S1474-4422(16)00070-3 10.3233/JAD-201591 10.3233/JAD-220021 10.1001/jama.1982.03320430047030 10.1002/sim.4780140108 10.1016/j.jalz.2005.06.003 10.1016/S0169-7439(00)00122-2 10.1093/braincomms/fcaa057 10.1186/alzrt47 10.1038/ng.2802 10.1002/hbm.24428 10.1016/j.nicl.2018.03.007 10.1002/ana.21038 10.1038/s41598-020-74399-w 10.1038/s41598-020-77220-w 10.1002/sim.2427 10.4061/2010/606802 10.1038/s41588-019-0358-2 10.1038/s41467-020-20655-6 10.1080/01621459.1958.10501452 10.3389/fnhum.2017.00033 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
CorporateAuthor | the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.neurobiolaging.2022.10.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1558-1497 |
EndPage | 156 |
ExternalDocumentID | PMC10535369 36442416 10_1016_j_neurobiolaging_2022_10_005 S0197458022002196 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG055121 – fundername: NIA NIH HHS grantid: R01 AG071514 – fundername: NIA NIH HHS grantid: P30 AG072947 – fundername: NIA NIH HHS grantid: R01 AG069765 – fundername: NINDS NIH HHS grantid: R01 NS101483 – fundername: NIA NIH HHS grantid: U01 AG024904 |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JO AABNK AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABGSF ABIVO ABJNI ABLJU ABMAC ABMZM ABOYX ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDW HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LX8 M29 M2V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OD~ OKEIE OO0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SSB SSH SSN SSU SSY SSZ T5K WUQ Z5R ZGI ~G- AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AFYLN AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c557t-546f028da8b86ceb2277f5db61aefd5f12c37b989d7ab6cc5e38cce8e06bb9b3 |
IEDL.DBID | .~1 |
ISSN | 0197-4580 1558-1497 |
IngestDate | Thu Aug 21 18:36:24 EDT 2025 Fri Jul 11 06:36:41 EDT 2025 Mon Jul 21 05:53:42 EDT 2025 Thu Apr 24 22:52:49 EDT 2025 Tue Jul 01 01:28:31 EDT 2025 Fri Feb 23 02:42:15 EST 2024 Tue Aug 26 16:40:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Survival analysis Multi-modal data Neuroimage genomics Alzheimer's disease Early detection |
Language | English |
License | Copyright © 2022 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-546f028da8b86ceb2277f5db61aefd5f12c37b989d7ab6cc5e38cce8e06bb9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Data used in preparation of this article were obtained from the Alzheimer’s disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf First Author |
ORCID | 0000-0003-4229-9613 0000-0003-3263-465X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10535369 |
PMID | 36442416 |
PQID | 2742659547 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10535369 proquest_miscellaneous_2742659547 pubmed_primary_36442416 crossref_citationtrail_10_1016_j_neurobiolaging_2022_10_005 crossref_primary_10_1016_j_neurobiolaging_2022_10_005 elsevier_sciencedirect_doi_10_1016_j_neurobiolaging_2022_10_005 elsevier_clinicalkey_doi_10_1016_j_neurobiolaging_2022_10_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of aging |
PublicationTitleAlternate | Neurobiol Aging |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ma, Yee, Stocks, Jenkins, Popuri, Chausse, Wang, Probst, Beg (bib0034) 2021; 80 Lei, Yang, Yang, Zhou, Hou, Zou, Li, Wang, Xiao, Wang (bib0029) 2020; 102 Li, Wang, Zhou, Ye (bib0030) 2019; 364 Anoop, Singh, Jacob, Maji (bib0003) 2010; 2010 Mirabnahrazam, Ma, Lee, Popuri, Lee, Cao, Wang, Galvin, Beg, Alzheimer...s Disease Neuroimaging Initiative (bib0036) 2022; 87 Grassi, Rouleaux, Caldirola, Loewenstein, Schruers, Perna, Dumontier (bib0017) 2019; 10 Lee, Zame, Yoon, van der Schaar (bib0028) 2018; 32 Popuri, Balachandar, Alpert, Lu, Bhalla, Mackenzie, Hsiung, Wang, Beg (bib0044) 2018; 18 Spooner, Chen, Sowmya, Sachdev, Kochan, Trollor, Brodaty (bib0048) 2020; 10 Hua, Leow, Parikshak, Lee, Chiang, Toga, Jack, Weiner, Thompson (bib0020) 2008; 43 Olsson, Lautner, Andreasson, Öhrfelt, Portelius, Bjerke, Hölttä (bib0039) 2016; 15 Aschwanden, Aichele, Ghisletta, Terracciano, Kliegel, Sutin, Brown, Allemand (bib0005) 2020; 75 Liu, Chen, Yao, Guo (bib0031) 2017; 11 Srivastava, Hinton, Krizhevsky, Salakhutdinov (bib0049) 2014; 15 Access date: 2007. Peng, Gong, Beckmann, Vedaldi, Smith (bib0042) 2021; 68 Abrol, Anees, Zening Fu, Mustafa Salman, Rogers Silva, Yuhui Du, Sergey Plis, and Vince Calhoun. 2021. “Deep Learning Encodes Robust Discriminative Neuroimaging Representations to Outperform Standard Machine Learning.” Nature Communications 12 (1): 353. Zhou, Han Thung, Zhu, Shen (bib0057) 2019; 40 Devanand, Liu, Tabert, Pradhaban, Cuasay, Bell, Leon, Doty, Stern, Pelton (bib0011) 2008; 64 Kvamme, Håvard, and Ørnulf Borgan. 2019. “Continuous and discrete-time survival prediction with neural networks.” Available at Antolini, Boracchi, Biganzoli (bib0004) 2005; 24 Graf, Schmoor, Sauerbrei, Schumacher (bib0016) 1999; 18 Cox (bib0010) 1972; 34 Yee, Ma, Popuri, Chen, Lee, Chow, Ma, Wang, Beg (bib5003) 2022; 95 Yang, Nasrallah, Shou, Wen, Doshi, Habes, Erus, Abdulkadir, Resnick, Albert, Maruff (bib5001) 2021; 12 . Popuri, Ma, Wang, Beg (bib0045) 2020; 41 Access date: 2018-04-26. Harrell, Calif, Pryor, Lee, Rosati (bib0019) 1982; 247 Loshchilov, Ilya, and Frank Hutter. 2017. “Decoupled Weight Decay Regularization,” November. Lambert, Ibrahim-Verbaas, Harold, Naj, Sims, Bellenguez, Jun (bib0027) 2013; 45 Twala, Jones, Hand (bib0051) 2008; 29 Steck, Harald, Balaji Krishnapuram, Cary Dehing-oberije, Philippe Lambin, and Vikas C Raykar. 2008. “On ranking in survival analysis: bounds on the concordance index.” In Advances in Neural Information Processing Systems, edited by J. Platt, D. Koller, Y. Singer, and S. Roweis. Vol. 20. Vancouver: Curran Associates, Inc. Available at Kvamme, Borgan, Scheel (bib0026) 2019; 20 Breslow (bib0008) 1972; 34 Jansen, Savage, Watanabe, Bryois, Williams, Steinberg, Sealock, Karlsson, Hägg, Athanasiu, Voyle, Proitsi, Witoelar, Stringer, Aarsland, Almdahl, Andersen, Bergh, Bettella, Bjornsson, Brækhus, Bråthen, Leeuw, Desikan, Djurovic, Dumitrescu, Fladby, Hohman, Jonsson, Kiddle, Rongve, Saltvedt, Sando, Selbæk, Shoai, Skene, Snaedal, Stordal, Ulstein, Wang, White, Hardy, Hjerling-Leffler, Sullivan, van der Flier, Dobson, Davis, Stefansson, Stefansson, Pedersen, Ripke, Andreassen, Posthuma (bib0021) 2019; 51 Xu, Liang (bib0054) 2001; 56 Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib0037) 2005; 1 Nakagawa, Ishida, Naito, Nagai, Yamaguchi, Onoda (bib0038) 2020; 2 Finehout, Franck, Choe, Relkin, Lee (bib0014) 2007; 61 Venugopalan, Tong, Hassanzadeh, Wang (bib0053) 2021; 11 Schwartzentruber, Cooper, Liu, Barrio-Hernandez, Bello, Kumasaka, Young, Frabjkub, Johnson, Estrada, Gaffney, Beltrao, Bassett (bib0046) 2021 Gensheimer, Narasimhan (bib0015) 2019 Beaulac, Rosenthal, Pei, Friedman, Wolden, Hodgson (bib0006) 2020; 34 An, Adeli, Liu, Zhang, Lee, Shen (bib0002) 2017; 7 Katzman, Shaham, Cloninger, Bates, Jiang, Kluger (bib0023) 2018; 18 Kunkle, Grenier-Boley, Sims, Bis, Damotte, Naj, Boland (bib0024) 2019; 51 Brier (bib0009) 1950; 78 Vemuri, Prashanthi, and Clifford R Jack. 2010. “Role of structural MRI in Alzheimer's disease.” Alzheimer's research and therapy. BioMed Central. https://doi.org/10.1186/alzrt47. Lu, Colliot (bib0033) 2021 Ma, Popuri, Bhalla, Sangha, Lu, Cao, Jacova, Wang, Beg (bib0035) 2019; 40 (bib0001) 2021; 17 Faraggi, Simon (bib0013) 1995; 14 Yee, Ma, Popuri, Wang, Beg (bib0055) 2021; 79 Smith (bib0047) 2017 Breiman (bib0007) 2001; 45 Kaplan, Meier (bib0022) 1958; 53 Pölsterl, Sebastian, Ignacio Sarasua, Benjamín Gutiérrez-Becker, and Christian Wachinger. 2019. “A wide and deep neural network for survival analysis from anatomical shape and tabular clinical data,” 453–64. https://doi.org/10.1007/978-3-030-43823-4_37. Orozco-Sanchez, Jorge, Victor Trevino, Emmanuel Martinez-Ledesma, Joshua Farber, and Jose Tamez-Peña. 2019. “Exploring survival models associated with MCI to AD conversion: a machine learning approach.” BioRxiv Preprint. Beaulac, Cédric, Jeffrey S. Rosenthal, Qinglin Pei, Debra Friedman, Suzanne Wolden, and David Hodgson. 2020. “An evaluation of machine learning techniques to predict the outcome of children treated for hodgkin-lymphoma on the AHOD0031 Trial: A Report from the Children's Oncology Group,”. https://doi.org/10.1080/08839514.2020.1815151. Steck, Harald, Balaji Krishnapuram, Cary Dehing-oberije, Philippe Lambin, and Vikas C Raykar. 2008. “On ranking in survival analysis: bounds on the concordance index.” In Advances in Neural Information Processing Systems, edited by J. Platt, D. Koller, Y. Singer, and S. Roweis. Vol. 20. Curran Associates, Inc. Available at Dziura, Post, Zhao, Fu, Peduzzi (bib0012) 2013; 86 Pandey, Anurag. 2019. “Survival analysis: intuition & implementation in python.” Accessed January 6, 2019. Available at Zhou, Jiang, Lu, Wang, Zhang, Zuo (bib0056) 2019; 12 Lee, Changhee, William R Zame, Jinsung Yoon, and Mihaela Van Der Schaar. 2018. “DeepHit: a deep learning approach to survival analysis with competing risks.” Available at Mirabnahrazam, Ghazal, Da Ma, Sieun Lee, Karteek Popuri, Hyunwoo Lee, Jiguo Cao, Lei Wang, James E Galvin, Mirza Faisal Beg, and the Alzheimer's Disease Neuroimaging Initiative. 2022. “Machine Learning Based Multimodal Neuroimaging Genomics Dementia Score for Predicting Future Conversion to Alzheimer's Disease,” March. Cox, D R. 1972. “Regression models and life-tables.” Research Section, on Wednesday. Guo, Cheng, and Felix Berkhahn. 2016. “Entity embeddings of categorical variables,”. Schwartzentruber, Cooper, Liu, Barrio-Hernandez, Bello, Kumasaka, Young (bib0046) 2021 Jansen, Savage, Watanabe, Bryois, Williams, Steinberg, Sealock (bib0021) 2019; 51 Graf (10.1016/j.neurobiolaging.2022.10.005_bib0016) 1999; 18 Ma (10.1016/j.neurobiolaging.2022.10.005_bib0035) 2019; 40 Olsson (10.1016/j.neurobiolaging.2022.10.005_bib0039) 2016; 15 10.1016/j.neurobiolaging.2022.10.005_bib5002 Antolini (10.1016/j.neurobiolaging.2022.10.005_bib0004) 2005; 24 Faraggi (10.1016/j.neurobiolaging.2022.10.005_bib0013) 1995; 14 Devanand (10.1016/j.neurobiolaging.2022.10.005_bib0011) 2008; 64 Breiman (10.1016/j.neurobiolaging.2022.10.005_bib0007) 2001; 45 10.1016/j.neurobiolaging.2022.10.005_bib0025 Ma (10.1016/j.neurobiolaging.2022.10.005_bib0034) 2021; 80 Lee (10.1016/j.neurobiolaging.2022.10.005_bib0028) 2018; 32 Kaplan (10.1016/j.neurobiolaging.2022.10.005_bib0022) 1958; 53 Liu (10.1016/j.neurobiolaging.2022.10.005_bib0031) 2017; 11 Breslow (10.1016/j.neurobiolaging.2022.10.005_bib0008) 1972; 34 Nakagawa (10.1016/j.neurobiolaging.2022.10.005_bib0038) 2020; 2 An (10.1016/j.neurobiolaging.2022.10.005_bib0002) 2017; 7 Lu (10.1016/j.neurobiolaging.2022.10.005_bib0033) 2021 Cox (10.1016/j.neurobiolaging.2022.10.005_bib0010) 1972; 34 Mueller (10.1016/j.neurobiolaging.2022.10.005_bib0037) 2005; 1 Lambert (10.1016/j.neurobiolaging.2022.10.005_bib0027) 2013; 45 Smith (10.1016/j.neurobiolaging.2022.10.005_bib0047) 2017 Yee (10.1016/j.neurobiolaging.2022.10.005_bib5003) 2022; 95 Harrell (10.1016/j.neurobiolaging.2022.10.005_bib0019) 1982; 247 Mirabnahrazam (10.1016/j.neurobiolaging.2022.10.005_bib0036) 2022; 87 Twala (10.1016/j.neurobiolaging.2022.10.005_bib0051) 2008; 29 Spooner (10.1016/j.neurobiolaging.2022.10.005_bib0048) 2020; 10 Grassi (10.1016/j.neurobiolaging.2022.10.005_bib0017) 2019; 10 Kvamme (10.1016/j.neurobiolaging.2022.10.005_bib0026) 2019; 20 Finehout (10.1016/j.neurobiolaging.2022.10.005_bib0014) 2007; 61 Aschwanden (10.1016/j.neurobiolaging.2022.10.005_bib0005) 2020; 75 Katzman (10.1016/j.neurobiolaging.2022.10.005_bib0023) 2018; 18 Gensheimer (10.1016/j.neurobiolaging.2022.10.005_bib0015) 2019 10.1016/j.neurobiolaging.2022.10.005_bib0052 10.1016/j.neurobiolaging.2022.10.005_bib0050 Yang (10.1016/j.neurobiolaging.2022.10.005_bib5001) 2021; 12 Schwartzentruber (10.1016/j.neurobiolaging.2022.10.005_bib0046) 2021 Anoop (10.1016/j.neurobiolaging.2022.10.005_bib0003) 2010; 2010 Popuri (10.1016/j.neurobiolaging.2022.10.005_bib0044) 2018; 18 Zhou (10.1016/j.neurobiolaging.2022.10.005_bib0057) 2019; 40 10.1016/j.neurobiolaging.2022.10.005_bib0043 Popuri (10.1016/j.neurobiolaging.2022.10.005_bib0045) 2020; 41 Kunkle (10.1016/j.neurobiolaging.2022.10.005_bib0024) 2019; 51 Yee (10.1016/j.neurobiolaging.2022.10.005_bib0055) 2021; 79 Venugopalan (10.1016/j.neurobiolaging.2022.10.005_bib0053) 2021; 11 Hua (10.1016/j.neurobiolaging.2022.10.005_bib0020) 2008; 43 Peng (10.1016/j.neurobiolaging.2022.10.005_bib0042) 2021; 68 Jansen (10.1016/j.neurobiolaging.2022.10.005_bib0021) 2019; 51 10.1016/j.neurobiolaging.2022.10.005_bib0040 Beaulac (10.1016/j.neurobiolaging.2022.10.005_bib0006) 2020; 34 (10.1016/j.neurobiolaging.2022.10.005_bib0001) 2021; 17 Srivastava (10.1016/j.neurobiolaging.2022.10.005_bib0049) 2014; 15 Li (10.1016/j.neurobiolaging.2022.10.005_bib0030) 2019; 364 Brier (10.1016/j.neurobiolaging.2022.10.005_bib0009) 1950; 78 10.1016/j.neurobiolaging.2022.10.005_bib0032 Xu (10.1016/j.neurobiolaging.2022.10.005_bib0054) 2001; 56 Lei (10.1016/j.neurobiolaging.2022.10.005_bib0029) 2020; 102 |
References_xml | – reference: Access date: 2018-04-26. – volume: 51 start-page: 404 year: 2019 end-page: 413 ident: bib0021 article-title: Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk publication-title: Nat. Genet. – volume: 18 start-page: 802 year: 2018 end-page: 813 ident: bib0044 article-title: Development and validation of a novel Dementia of Alzheimer's Type (DAT) score based on metabolism FDG-PET imaging publication-title: NeuroImage – volume: 17 start-page: 327 year: 2021 end-page: 406 ident: bib0001 article-title: 2021 Alzheimer's Disease Facts and Figures Special Report Race, Ethnicity and Alzheimer's in America publication-title: Alzheimer's Assoc. – volume: 53 start-page: 457 year: 1958 end-page: 481 ident: bib0022 article-title: Nonparametric estimation from incomplete observations publication-title: J. Am. Stats. Assoc. – start-page: 1 year: 2021 end-page: 11 ident: bib0046 article-title: Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes publication-title: Nat. Genet. – volume: 64 start-page: 871 year: 2008 end-page: 879 ident: bib0011 article-title: Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer's disease publication-title: Biol. Psychiatr. – volume: 10 year: 2019 ident: bib0017 article-title: A novel ensemble-based machine learning algorithm to predict the conversion from mild cognitive impairment to Alzheimer's disease using socio-demographic characteristics, clinical information, and neuropsychological measures publication-title: Front. Neurol. – volume: 79 start-page: 47 year: 2021 end-page: 58 ident: bib0055 article-title: Construction of MRI-Based Alzheimer's disease score based on efficient 3D convolutional neural network: comprehensive validation on 7,902 images from a multi-center dataset publication-title: J. Alzheimers Dis. – volume: 29 start-page: 950 year: 2008 end-page: 956 ident: bib0051 article-title: Good methods for coping with missing data in decision trees publication-title: Pattern Recognition Lett. – volume: 41 start-page: 4127 year: 2020 end-page: 4147 ident: bib0045 article-title: Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer's disease into dementia score: independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases publication-title: Hum Brain Mapp. – volume: 61 start-page: 120 year: 2007 end-page: 129 ident: bib0014 article-title: Cerebrospinal fluid proteomic biomarkers for Alzheimer's disease publication-title: Ann Neurol – volume: 51 start-page: 414 year: 2019 end-page: 430 ident: bib0024 article-title: Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, Tau, immunity and lipid processing publication-title: Nat. Genet. – volume: 40 start-page: 1001 year: 2019 end-page: 1016 ident: bib0057 article-title: Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis publication-title: Hum. Brain Mapp. – volume: 95 start-page: 102000 year: 2022 ident: bib5003 article-title: 3D hemisphere-based convolutional neural network for whole-brain MRI segmentation publication-title: Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society – volume: 2010 start-page: 1 year: 2010 end-page: 12 ident: bib0003 article-title: CSF biomarkers for alzheimer's disease diagnosis publication-title: Int. J. Alzheimer's Dis. – reference: Access date: 2007. – reference: Vemuri, Prashanthi, and Clifford R Jack. 2010. “Role of structural MRI in Alzheimer's disease.” Alzheimer's research and therapy. BioMed Central. https://doi.org/10.1186/alzrt47. – volume: 10 start-page: 20410 year: 2020 ident: bib0048 article-title: A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction publication-title: Sci. Rep. – start-page: 1 year: 2021 ident: bib0033 article-title: Multilevel survival modeling with structured penalties for disease prediction from imaging genetics data publication-title: IEEE J. Biomed. Health Informat. – reference: Pölsterl, Sebastian, Ignacio Sarasua, Benjamín Gutiérrez-Becker, and Christian Wachinger. 2019. “A wide and deep neural network for survival analysis from anatomical shape and tabular clinical data,” 453–64. https://doi.org/10.1007/978-3-030-43823-4_37. – volume: 15 start-page: 673 year: 2016 end-page: 684 ident: bib0039 article-title: CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis publication-title: Lancet Neurol. – volume: 87 start-page: 1345 year: 2022 end-page: 1365 ident: bib0036 article-title: Machine learning based multimodal neuroimaging genomics dementia score for predicting future conversion to Alzheimer's disease publication-title: J. Alzheimers Dis. – volume: 2 year: 2020 ident: bib0038 article-title: Prediction of conversion to Alzheimer's disease using deep survival analysis of MRI images publication-title: Brain Commun. – volume: 18 start-page: 2529 year: 1999 end-page: 2545 ident: bib0016 article-title: Assessment and comparison of prognostic classification schemes for survival data publication-title: Stat. Med. – reference: Abrol, Anees, Zening Fu, Mustafa Salman, Rogers Silva, Yuhui Du, Sergey Plis, and Vince Calhoun. 2021. “Deep Learning Encodes Robust Discriminative Neuroimaging Representations to Outperform Standard Machine Learning.” Nature Communications 12 (1): 353. – volume: 45 start-page: 1452 year: 2013 end-page: 1458 ident: bib0027 article-title: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease publication-title: Nat. Genet. – volume: 32 year: 2018 ident: bib0028 article-title: DeepHit: A Deep Learning Approach to Survival Analysis With Competing Risks publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 14 start-page: 73 year: 1995 end-page: 82 ident: bib0013 article-title: A neural network model for survival data publication-title: Stats. Med. – volume: 43 start-page: 458 year: 2008 end-page: 469 ident: bib0020 article-title: Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI Study of 676 AD, MCI, and normal subjects publication-title: NeuroImage. – volume: 1 start-page: 55 year: 2005 end-page: 66 ident: bib0037 article-title: Ways toward an early diagnosis in Alzheimer's Disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI) publication-title: Alzheimer's & Dement. – reference: Steck, Harald, Balaji Krishnapuram, Cary Dehing-oberije, Philippe Lambin, and Vikas C Raykar. 2008. “On ranking in survival analysis: bounds on the concordance index.” In Advances in Neural Information Processing Systems, edited by J. Platt, D. Koller, Y. Singer, and S. Roweis. Vol. 20. Vancouver: Curran Associates, Inc. Available at: – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib0049 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 20 start-page: 1 year: 2019 end-page: 30 ident: bib0026 article-title: Time-to-event prediction with neural networks and cox regression publication-title: J. Mach. Learn. Res. – volume: 56 start-page: 1 year: 2001 end-page: 11 ident: bib0054 article-title: Monte Carlo Cross Validation publication-title: Chemometr. Intell. Laborat. Syst. – volume: 24 start-page: 3927 year: 2005 end-page: 3944 ident: bib0004 article-title: A time-dependent discrimination index for survival data publication-title: Stats. Med. – volume: 34 start-page: 1100 year: 2020 end-page: 1114 ident: bib0006 article-title: An evaluation of machine learning techniques to predict the outcome of children treated for Hodgkin-Lymphoma on the AHOD0031 trial: A report from the Children’s Oncology Group. Applied artificial intelligence publication-title: AAI – volume: 12 start-page: 1 year: 2021 end-page: 15 ident: bib5001 article-title: A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure publication-title: Nature communications – volume: 11 year: 2017 ident: bib0031 article-title: Prediction of mild cognitive impairment conversion using a combination of independent component analysis and the cox model publication-title: Front. Hum. Neurosci – year: 2019 ident: bib0015 article-title: A scalable discrete-time survival model for neural networks publication-title: PeerJ. PeerJ Inc. – reference: Loshchilov, Ilya, and Frank Hutter. 2017. “Decoupled Weight Decay Regularization,” November. – volume: 80 start-page: 715 year: 2021 end-page: 726 ident: bib0034 article-title: Blinded clinical evaluation for dementia of Alzheimer's type classification using FDG-PET: a comparison between feature-engineered and non-feature-engineered machine learning methods publication-title: J. Alzheimers Dis. JAD – volume: 11 start-page: 1 year: 2021 end-page: 13 ident: bib0053 article-title: Multimodal deep learning models for early detection of Alzheimer's disease stage publication-title: Sci. Rep. – volume: 364 start-page: 95 year: 2019 end-page: 107 ident: bib0030 article-title: Multi-task learning based survival analysis for multi-source block-wise missing data publication-title: Neurocomputing – volume: 247 start-page: 2543 year: 1982 ident: bib0019 article-title: Evaluating the yield of medical tests publication-title: JAMA. – volume: 34 start-page: 187 year: 1972 end-page: 220 ident: bib0010 article-title: Regression Models and Life-Tables publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – volume: 34 start-page: 216 year: 1972 end-page: 217 ident: bib0008 article-title: Contribution to discussion of paper by DR Cox publication-title: J. Roy. Statist. Soc., Ser. B – volume: 102 year: 2020 ident: bib0029 article-title: Deep and joint learning of longitudinal data for Alzheimer's disease prediction publication-title: Pattern Recogn. – volume: 40 start-page: 1507 year: 2019 end-page: 1527 ident: bib0035 article-title: Quantitative assessment of field strength, total intracranial volume, sex, and age effects on the goodness of harmonization for volumetric analysis on the ADNI database publication-title: Hum. Brain Mapp. – volume: 78 start-page: 1 year: 1950 end-page: 3 ident: bib0009 article-title: Verification of forecasts expressed in terms of probability publication-title: Monthly Weather Rev. – reference: . – reference: Kvamme, Håvard, and Ørnulf Borgan. 2019. “Continuous and discrete-time survival prediction with neural networks.” Available at: – start-page: 464 year: 2017 end-page: 472 ident: bib0047 article-title: Cyclical Learning Rates for Training Neural Networks publication-title: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) – volume: 7 start-page: 1 year: 2017 end-page: 11 ident: bib0002 article-title: A hierarchical feature and sample selection framework and its application for alzheimer's disease diagnosis publication-title: Sci. Rep. – volume: 18 year: 2018 ident: bib0023 article-title: DeepSurv: personalized treatment recommender system using a cox proportional hazards deep neural network publication-title: BMC Med. Res. Methodol. – volume: 75 start-page: 717 year: 2020 end-page: 728 ident: bib0005 article-title: Predicting cognitive impairment and dementia: a machine learning approach publication-title: J. Alzheimer's Dis. – reference: Orozco-Sanchez, Jorge, Victor Trevino, Emmanuel Martinez-Ledesma, Joshua Farber, and Jose Tamez-Peña. 2019. “Exploring survival models associated with MCI to AD conversion: a machine learning approach.” BioRxiv Preprint. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0007 article-title: Random forests publication-title: Machine Learning. – volume: 68 year: 2021 ident: bib0042 article-title: Accurate brain age prediction with lightweight deep neural networks publication-title: Med. Image Anal. – reference: Cox, D R. 1972. “Regression models and life-tables.” Research Section, on Wednesday. – reference: Mirabnahrazam, Ghazal, Da Ma, Sieun Lee, Karteek Popuri, Hyunwoo Lee, Jiguo Cao, Lei Wang, James E Galvin, Mirza Faisal Beg, and the Alzheimer's Disease Neuroimaging Initiative. 2022. “Machine Learning Based Multimodal Neuroimaging Genomics Dementia Score for Predicting Future Conversion to Alzheimer's Disease,” March. – volume: 12 year: 2019 ident: bib0056 article-title: Dual-model radiomic biomarkers predict development of mild cognitive impairment progression to Alzheimer's Disease publication-title: Front Neurosci – reference: Guo, Cheng, and Felix Berkhahn. 2016. “Entity embeddings of categorical variables,”. – reference: Lee, Changhee, William R Zame, Jinsung Yoon, and Mihaela Van Der Schaar. 2018. “DeepHit: a deep learning approach to survival analysis with competing risks.” Available at: – volume: 18 year: 1999 ident: bib0016 article-title: Assessment and comparison of prognostic classification schemes for survival data publication-title: Stat. Med. – volume: 51 start-page: 404 year: 2019 end-page: 413 ident: bib0021 article-title: Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk publication-title: Nat. Genet. – reference: Steck, Harald, Balaji Krishnapuram, Cary Dehing-oberije, Philippe Lambin, and Vikas C Raykar. 2008. “On ranking in survival analysis: bounds on the concordance index.” In Advances in Neural Information Processing Systems, edited by J. Platt, D. Koller, Y. Singer, and S. Roweis. Vol. 20. Curran Associates, Inc. Available at: – reference: Beaulac, Cédric, Jeffrey S. Rosenthal, Qinglin Pei, Debra Friedman, Suzanne Wolden, and David Hodgson. 2020. “An evaluation of machine learning techniques to predict the outcome of children treated for hodgkin-lymphoma on the AHOD0031 Trial: A Report from the Children's Oncology Group,”. https://doi.org/10.1080/08839514.2020.1815151. – reference: Pandey, Anurag. 2019. “Survival analysis: intuition & implementation in python.” Accessed January 6, 2019. Available at: – start-page: 1 year: 2021 end-page: 11 ident: bib0046 article-title: Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer's disease risk genes publication-title: Nat. Genet. – volume: 20 year: 2019 ident: bib0026 article-title: Time-to-event prediction with neural networks and cox regression publication-title: J. Mach. Learn. Res. – volume: 15 year: 2014 ident: bib0049 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 86 year: 2013 ident: bib0012 article-title: Strategies for dealing with missing data in clinical trials: from design to analysis publication-title: Yale J. Biol. Med – volume: 68 year: 2021 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0042 article-title: Accurate brain age prediction with lightweight deep neural networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101871 – volume: 18 start-page: 2529 year: 1999 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0016 article-title: Assessment and comparison of prognostic classification schemes for survival data publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5 – ident: 10.1016/j.neurobiolaging.2022.10.005_bib0040 doi: 10.1101/836510 – volume: 34 start-page: 216 year: 1972 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0008 article-title: Contribution to discussion of paper by DR Cox publication-title: J. Roy. Statist. Soc., Ser. B – volume: 78 start-page: 1 issue: 1 year: 1950 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0009 article-title: Verification of forecasts expressed in terms of probability publication-title: Monthly Weather Rev. doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 – volume: 10 year: 2019 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0017 article-title: A novel ensemble-based machine learning algorithm to predict the conversion from mild cognitive impairment to Alzheimer's disease using socio-demographic characteristics, clinical information, and neuropsychological measures publication-title: Front. Neurol. doi: 10.3389/fneur.2019.00756 – ident: 10.1016/j.neurobiolaging.2022.10.005_bib0050 – volume: 20 start-page: 1 year: 2019 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0026 article-title: Time-to-event prediction with neural networks and cox regression publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0002 article-title: A hierarchical feature and sample selection framework and its application for alzheimer's disease diagnosis publication-title: Sci. Rep. doi: 10.1038/srep45269 – volume: 102 year: 2020 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0029 article-title: Deep and joint learning of longitudinal data for Alzheimer's disease prediction publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2020.107247 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0049 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 18 issue: 1 year: 2018 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0023 article-title: DeepSurv: personalized treatment recommender system using a cox proportional hazards deep neural network publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-018-0482-1 – volume: 40 start-page: 1507 issue: 5 year: 2019 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0035 article-title: Quantitative assessment of field strength, total intracranial volume, sex, and age effects on the goodness of harmonization for volumetric analysis on the ADNI database publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24463 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0007 article-title: Random forests publication-title: Machine Learning. doi: 10.1023/A:1010933404324 – volume: 34 start-page: 187 issue: 2 year: 1972 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0010 article-title: Regression Models and Life-Tables publication-title: Journal of the Royal Statistical Society. Series B (Methodological) doi: 10.1111/j.2517-6161.1972.tb00899.x – volume: 29 start-page: 950 issue: 7 year: 2008 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0051 article-title: Good methods for coping with missing data in decision trees publication-title: Pattern Recognition Lett. doi: 10.1016/j.patrec.2008.01.010 – start-page: 464 year: 2017 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0047 article-title: Cyclical Learning Rates for Training Neural Networks – start-page: 1 year: 2021 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0033 article-title: Multilevel survival modeling with structured penalties for disease prediction from imaging genetics data publication-title: IEEE J. Biomed. Health Informat. – volume: 79 start-page: 47 year: 2021 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0055 article-title: Construction of MRI-Based Alzheimer's disease score based on efficient 3D convolutional neural network: comprehensive validation on 7,902 images from a multi-center dataset publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-200830 – volume: 64 start-page: 871 issue: 10 year: 2008 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0011 article-title: Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer's disease publication-title: Biol. Psychiatr. doi: 10.1016/j.biopsych.2008.06.020 – year: 2019 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0015 article-title: A scalable discrete-time survival model for neural networks publication-title: PeerJ. PeerJ Inc. doi: 10.7717/peerj.6257 – volume: 95 start-page: 102000 year: 2022 ident: 10.1016/j.neurobiolaging.2022.10.005_bib5003 article-title: 3D hemisphere-based convolutional neural network for whole-brain MRI segmentation publication-title: Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society doi: 10.1016/j.compmedimag.2021.102000 – volume: 43 start-page: 458 issue: 3 year: 2008 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0020 article-title: Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI Study of 676 AD, MCI, and normal subjects publication-title: NeuroImage. doi: 10.1016/j.neuroimage.2008.07.013 – volume: 32 issue: 1 year: 2018 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0028 article-title: DeepHit: A Deep Learning Approach to Survival Analysis With Competing Risks publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v32i1.11842 – volume: 75 start-page: 717 issue: 3 year: 2020 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0005 article-title: Predicting cognitive impairment and dementia: a machine learning approach publication-title: J. Alzheimer's Dis. doi: 10.3233/JAD-190967 – volume: 364 start-page: 95 year: 2019 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0030 article-title: Multi-task learning based survival analysis for multi-source block-wise missing data publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.07.010 – volume: 41 start-page: 4127 issue: 14 year: 2020 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0045 article-title: Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer's disease into dementia score: independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases publication-title: Hum Brain Mapp. doi: 10.1002/hbm.25115 – ident: 10.1016/j.neurobiolaging.2022.10.005_bib0043 doi: 10.1007/978-3-030-43823-4_37 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.neurobiolaging.2022.10.005_bib5001 article-title: A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure publication-title: Nature communications doi: 10.1038/s41467-021-26703-z – volume: 51 start-page: 404 issue: 3 year: 2019 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0021 article-title: Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk publication-title: Nat. Genet. doi: 10.1038/s41588-018-0311-9 – volume: 15 start-page: 673 issue: 7 year: 2016 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0039 article-title: CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(16)00070-3 – volume: 80 start-page: 715 year: 2021 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0034 article-title: Blinded clinical evaluation for dementia of Alzheimer's type classification using FDG-PET: a comparison between feature-engineered and non-feature-engineered machine learning methods publication-title: J. Alzheimers Dis. JAD doi: 10.3233/JAD-201591 – volume: 87 start-page: 1345 issue: 3 year: 2022 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0036 article-title: Machine learning based multimodal neuroimaging genomics dementia score for predicting future conversion to Alzheimer's disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-220021 – volume: 247 start-page: 2543 issue: 18 year: 1982 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0019 article-title: Evaluating the yield of medical tests publication-title: JAMA. doi: 10.1001/jama.1982.03320430047030 – volume: 14 start-page: 73 issue: 1 year: 1995 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0013 article-title: A neural network model for survival data publication-title: Stats. Med. doi: 10.1002/sim.4780140108 – volume: 1 start-page: 55 issue: 1 year: 2005 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0037 article-title: Ways toward an early diagnosis in Alzheimer's Disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI) publication-title: Alzheimer's & Dement. doi: 10.1016/j.jalz.2005.06.003 – volume: 56 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0054 article-title: Monte Carlo Cross Validation publication-title: Chemometr. Intell. Laborat. Syst. doi: 10.1016/S0169-7439(00)00122-2 – volume: 34 start-page: 1100 issue: 14 year: 2020 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0006 article-title: An evaluation of machine learning techniques to predict the outcome of children treated for Hodgkin-Lymphoma on the AHOD0031 trial: A report from the Children’s Oncology Group. Applied artificial intelligence publication-title: AAI – volume: 2 issue: 1 year: 2020 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0038 article-title: Prediction of conversion to Alzheimer's disease using deep survival analysis of MRI images publication-title: Brain Commun. doi: 10.1093/braincomms/fcaa057 – start-page: 1 year: 2021 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0046 article-title: Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes publication-title: Nat. Genet. – ident: 10.1016/j.neurobiolaging.2022.10.005_bib0052 doi: 10.1186/alzrt47 – volume: 45 start-page: 1452 issue: 12 year: 2013 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0027 article-title: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease publication-title: Nat. Genet. doi: 10.1038/ng.2802 – volume: 40 start-page: 1001 issue: 3 year: 2019 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0057 article-title: Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24428 – volume: 18 start-page: 802 year: 2018 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0044 article-title: Development and validation of a novel Dementia of Alzheimer's Type (DAT) score based on metabolism FDG-PET imaging publication-title: NeuroImage doi: 10.1016/j.nicl.2018.03.007 – volume: 61 start-page: 120 issue: 2 year: 2007 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0014 article-title: Cerebrospinal fluid proteomic biomarkers for Alzheimer's disease publication-title: Ann Neurol doi: 10.1002/ana.21038 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0053 article-title: Multimodal deep learning models for early detection of Alzheimer's disease stage publication-title: Sci. Rep. doi: 10.1038/s41598-020-74399-w – volume: 10 start-page: 20410 issue: 1 year: 2020 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0048 article-title: A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction publication-title: Sci. Rep. doi: 10.1038/s41598-020-77220-w – volume: 24 start-page: 3927 issue: 24 year: 2005 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0004 article-title: A time-dependent discrimination index for survival data publication-title: Stats. Med. doi: 10.1002/sim.2427 – ident: 10.1016/j.neurobiolaging.2022.10.005_bib0032 – volume: 2010 start-page: 1 year: 2010 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0003 article-title: CSF biomarkers for alzheimer's disease diagnosis publication-title: Int. J. Alzheimer's Dis. doi: 10.4061/2010/606802 – volume: 51 start-page: 414 issue: 3 year: 2019 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0024 article-title: Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, Tau, immunity and lipid processing publication-title: Nat. Genet. doi: 10.1038/s41588-019-0358-2 – ident: 10.1016/j.neurobiolaging.2022.10.005_bib5002 doi: 10.1038/s41467-020-20655-6 – ident: 10.1016/j.neurobiolaging.2022.10.005_bib0025 – volume: 17 start-page: 327 issue: 3 year: 2021 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0001 article-title: 2021 Alzheimer's Disease Facts and Figures Special Report Race, Ethnicity and Alzheimer's in America publication-title: Alzheimer's Assoc. – volume: 53 start-page: 457 issue: 282 year: 1958 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0022 article-title: Nonparametric estimation from incomplete observations publication-title: J. Am. Stats. Assoc. doi: 10.1080/01621459.1958.10501452 – volume: 11 year: 2017 ident: 10.1016/j.neurobiolaging.2022.10.005_bib0031 article-title: Prediction of mild cognitive impairment conversion using a combination of independent component analysis and the cox model publication-title: Front. Hum. Neurosci doi: 10.3389/fnhum.2017.00033 |
SSID | ssj0007476 |
Score | 2.5168643 |
Snippet | Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from... Dementia of Alzheimer’s Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 139 |
SubjectTerms | Alzheimer Disease - diagnostic imaging Alzheimer Disease - genetics Alzheimer's disease Cognitive Dysfunction - diagnosis Cognitive Dysfunction - genetics Deep learning Disease Progression Early detection Humans Magnetic Resonance Imaging - methods Multi-modal data Neuroimage genomics Neuroimaging - methods Survival Analysis |
Title | Predicting time-to-conversion for dementia of Alzheimer's type using multi-modal deep survival analysis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0197458022002196 https://dx.doi.org/10.1016/j.neurobiolaging.2022.10.005 https://www.ncbi.nlm.nih.gov/pubmed/36442416 https://www.proquest.com/docview/2742659547 https://pubmed.ncbi.nlm.nih.gov/PMC10535369 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD6IheKLtLXq9iJTkPYpbjaZS0IpZZHKVkEKteBbyNx0RZNlLw_1wd_ecybJ2m0pWHzcJJNNcs6c882Zb74B2PeY1RKHHSmOyzjiVmmMgwK7u5Y-NUoZ7gLb4lSOfvDjc3G-BofdWhiiVbaxv4npIVq3R_rt1-xPxuP-dwQniouwVBQTVU6y25wr8vKDu3uaB8Jl2SyZJn3vLH4K-_ccr6AZSWpHYUcgHC0myUHgeol_pam_YeifbMrf0tPRM9hscSUbNo_-HNZc9QK2hhWOqW9-svcsMD1DCX0LLr5NaXqGCM-M9paP5nUU2OehdMYQxjIbqobjktWeDa9vLx1eNv0wY1SxZcSVv2CBihjd1Bb_1jo3YbMFhh10XFa2Qicv4ezoy9nhKGo3XIiMEGoeCS494g1bZjqTBsfciVJeWC0HpfNW-EFiUqXzLLeq1NIYgUY2xmUullrnOt2G9aqu3C6wEu2Mw3TMjsJyhV5ijU5z6blOfKxj14OP3ectTCtGTntiXBcd6-yqWDVOQcahs2icHohl60kjyvHAdp86SxbdwlMMlQVmjwe2_7xsv-Kk_3GHd50DFdiPaXKmrFy9mBU0ZU7ajlz1YKdxqOW7pQhaEWnJHmQrrra8gDTCV89U48ugFT4g_Z5U5q8e_eivYQN_pU356Q2sz6cL9xYB2VzvhR63B0-GX09Gp78ARzk-HA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD5BSJQXIuJlQXBMiD6V7bZzaWOM2RDIqkhMXBPeJp0bLIF2s5cHfeC3e2baLqzGBONrp7Pt9lznzDffAdh3GNUSi4YUx0UcUSMU-kGG5q64S7UQmtqAtjjlg-_00xk7W4HD9iyMh1U2vr_26cFbN1e6zdfsjkej7jdMTgRl4agoBqqcP4A1iubr2xgc3NziPDBf5vWZaU_wncUPYf8W5BVIIz3dUWgJhMvFJDkIYC_2tzj1Zx76O5zyTnw6fgwbTWJJ-vW7b8KKLZ_AVr_ERfX1D_KGBKhnqKFvwfnXid-f8Yhn4pvLR7MqCvDzUDsjmMcSE8qGo4JUjvSvfl5YvG3ydkp8yZZ4sPw5CVjE6Loy-Fhj7ZhM5-h3UHNJ0TCdPIXh8dHwcBA1HRcizZiYRYxyhwmHKTKVcY2L7kQIx4zivcI6w1wv0alQeZYbUSiuNUMpa20zG3OlcpU-g9WyKu0LIAUKGtfpGB6ZoQLVxGiV5txRlbhYxbYD79rPK3XDRu6bYlzJFnZ2KZeFI71w_CgKpwNsMXtcs3Lcc977VpKyPXmKvlJi-Ljn_A-L-Uta-g-_8LpVIImG7HdnitJW86n0e-ae3JGKDjyvFWrx31LMWjHV4h3IllRtcYMnCV8eKUcXgSy85wl8Up5v__erv4JHg-GXE3ny8fTzDqzjSFrXol7C6mwyt7uYnc3UXrC-XykHP6o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+time-to-conversion+for+dementia+of+Alzheimer%27s+type+using+multi-modal+deep+survival+analysis&rft.jtitle=Neurobiology+of+aging&rft.au=Mirabnahrazam%2C+Ghazal&rft.au=Ma%2C+Da&rft.au=Beaulac%2C+C%C3%A9dric&rft.au=Lee%2C+Sieun&rft.date=2023-01-01&rft.issn=1558-1497&rft.eissn=1558-1497&rft.volume=121&rft.spage=139&rft_id=info:doi/10.1016%2Fj.neurobiolaging.2022.10.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-4580&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-4580&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-4580&client=summon |