Predicting time-to-conversion for dementia of Alzheimer's type using multi-modal deep survival analysis

Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of tim...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of aging Vol. 121; pp. 139 - 156
Main Authors Mirabnahrazam, Ghazal, Ma, Da, Beaulac, Cédric, Lee, Sieun, Popuri, Karteek, Lee, Hyunwoo, Cao, Jiguo, Galvin, James E, Wang, Lei, Beg, Mirza Faisal
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of time-to-conversion to DAT for preclinical subjects at various stages of disease development. We used a deep-learning model designed for survival analyses to predict subjects’ time-to-conversion to DAT using the baseline data of 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, Demographic, and CSF) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our study demonstrated that CDC data outperform genetic or MRI data in predicting DAT time-to-conversion for subjects with Mild Cognitive Impairment (MCI). On the other hand, genetic data provided the most predictive power for subjects with Normal Cognition (NC) at the time of the visit. Furthermore, combining MRI and genetic features improved the time-to-event prediction over using either modality alone. Finally, adding CDC to any combination of features only worked as well as using only the CDC features.
AbstractList Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of time-to-conversion to DAT for preclinical subjects at various stages of disease development. We used a deep-learning model designed for survival analyses to predict subjects' time-to-conversion to DAT using the baseline data of 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, Demographic, and CSF) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our study demonstrated that CDC data outperform genetic or MRI data in predicting DAT time-to-conversion for subjects with Mild Cognitive Impairment (MCI). On the other hand, genetic data provided the most predictive power for subjects with Normal Cognition (NC) at the time of the visit. Furthermore, combining MRI and genetic features improved the time-to-event prediction over using either modality alone. Finally, adding CDC to any combination of features only worked as well as using only the CDC features.
Dementia of Alzheimer’s Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of time-to-conversion to DAT for preclinical subjects at various stages of disease development. We used a deep-learning model designed for survival analyses to predict subjects’ time-to-conversion to DAT using the baseline data of 401 subjects with 63 features from MRI, genetic, and CDC ( C ognitive tests, D emographic, and C SF) data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our study demonstrated that CDC data outperform genetic or MRI data in predicting DAT time-to-conversion for subjects with Mild Cognitive Impairment (MCI). On the other hand, genetic data provided the most predictive power for subjects with Normal Cognition (NC) at the time of the visit. Furthermore, combining MRI and genetic features improved the time-to-event prediction over using either modality alone. Finally, adding CDC to any combination of features only worked as well as using only the CDC features.
Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of time-to-conversion to DAT for preclinical subjects at various stages of disease development. We used a deep-learning model designed for survival analyses to predict subjects' time-to-conversion to DAT using the baseline data of 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, Demographic, and CSF) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our study demonstrated that CDC data outperform genetic or MRI data in predicting DAT time-to-conversion for subjects with Mild Cognitive Impairment (MCI). On the other hand, genetic data provided the most predictive power for subjects with Normal Cognition (NC) at the time of the visit. Furthermore, combining MRI and genetic features improved the time-to-event prediction over using either modality alone. Finally, adding CDC to any combination of features only worked as well as using only the CDC features.Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of time-to-conversion to DAT for preclinical subjects at various stages of disease development. We used a deep-learning model designed for survival analyses to predict subjects' time-to-conversion to DAT using the baseline data of 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, Demographic, and CSF) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our study demonstrated that CDC data outperform genetic or MRI data in predicting DAT time-to-conversion for subjects with Mild Cognitive Impairment (MCI). On the other hand, genetic data provided the most predictive power for subjects with Normal Cognition (NC) at the time of the visit. Furthermore, combining MRI and genetic features improved the time-to-event prediction over using either modality alone. Finally, adding CDC to any combination of features only worked as well as using only the CDC features.
Author Mirabnahrazam, Ghazal
Popuri, Karteek
Lee, Hyunwoo
Ma, Da
Cao, Jiguo
Galvin, James E
Beaulac, Cédric
Wang, Lei
Beg, Mirza Faisal
Lee, Sieun
AuthorAffiliation f Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
h Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
g Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
a School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
c Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada
e Department of Computer Science, Memorial University of Newfoundland, St. John’s, Newfoundland & Labrador, Canada
b School of Medicine, Wake Forest University, Winston-Salem, NC, USA
d Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
i Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
AuthorAffiliation_xml – name: c Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada
– name: g Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
– name: b School of Medicine, Wake Forest University, Winston-Salem, NC, USA
– name: f Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
– name: e Department of Computer Science, Memorial University of Newfoundland, St. John’s, Newfoundland & Labrador, Canada
– name: i Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
– name: a School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
– name: h Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
– name: d Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
Author_xml – sequence: 1
  givenname: Ghazal
  orcidid: 0000-0003-3263-465X
  surname: Mirabnahrazam
  fullname: Mirabnahrazam, Ghazal
  organization: School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
– sequence: 2
  givenname: Da
  surname: Ma
  fullname: Ma, Da
  email: dma@wakehealth.edu
  organization: School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
– sequence: 3
  givenname: Cédric
  surname: Beaulac
  fullname: Beaulac, Cédric
  organization: School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
– sequence: 4
  givenname: Sieun
  surname: Lee
  fullname: Lee, Sieun
  organization: School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
– sequence: 5
  givenname: Karteek
  surname: Popuri
  fullname: Popuri, Karteek
  organization: School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
– sequence: 6
  givenname: Hyunwoo
  surname: Lee
  fullname: Lee, Hyunwoo
  organization: Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
– sequence: 7
  givenname: Jiguo
  surname: Cao
  fullname: Cao, Jiguo
  organization: Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
– sequence: 8
  givenname: James E
  surname: Galvin
  fullname: Galvin, James E
  organization: Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
– sequence: 9
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
– sequence: 10
  givenname: Mirza Faisal
  orcidid: 0000-0003-4229-9613
  surname: Beg
  fullname: Beg, Mirza Faisal
  email: faisal-lab@sfu.ca
  organization: School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36442416$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9rFDEUxYNU7Lb6FWQeBH2ZNclMkhkQpPaPCgV96HtIMne2WTPJmmQW1k9vlm3F9mmfQrjn_s7lnDN04oMHhN4RvCSY8I_rpYc5Bm2DUyvrV0uKKS2jJcbsBVoQxrqatL04QQtMelG3rMOn6CylNcZYtIK_QqcNb1vaEr5Aq58RBmtyAVXZTlDnUJvgtxCTDb4aQ6wGmMBnq6owVhfuzz0UWXyfqrzbQDWn_eY0u2zrKQzKFTlsqjTHrd2Wn_LK7ZJNr9HLUbkEbx7ec3R3c313-a2-_fH1--XFbW0YE7lmLR8x7QbV6Y4b0JQKMbJBc6JgHNhIqGmE7rt-EEpzYxg0nTHQAeZa97o5R58P2M2sJxhMOTwqJzfRTiruZFBWPp14ey9XYSsJZg1reF8IHx4IMfyeIWU52WTAOeUhzElS0VLOetaKIn37v9k_l8d0i-DLQWBiSCnCKI3NKpdgi7d1xVTuK5Vr-bRSua90Py2VFsinZ5BHnyPXbw7rUFLfWogyGQvelNYjmCyHYI8FXT0DGWe9Ncr9gt3xmL_y7-Ny
CitedBy_id crossref_primary_10_1002_sta4_70014
crossref_primary_10_3233_JAD_230208
crossref_primary_10_1016_j_eclinm_2023_102247
crossref_primary_10_1016_j_neuroimage_2023_120073
crossref_primary_10_1038_s41746_024_01207_4
crossref_primary_10_1038_s44220_024_00259_5
crossref_primary_10_3390_brainsci14030201
crossref_primary_10_3390_jcm13144202
crossref_primary_10_1186_s40708_023_00211_w
crossref_primary_10_1093_jamiaopen_ooae087
crossref_primary_10_1371_journal_pone_0314725
crossref_primary_10_1109_JBHI_2024_3472462
crossref_primary_10_1038_s41746_024_01123_7
crossref_primary_10_3389_fnins_2024_1331677
Cites_doi 10.1016/j.media.2020.101871
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
10.1101/836510
10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.3389/fneur.2019.00756
10.1038/srep45269
10.1016/j.patcog.2020.107247
10.1186/s12874-018-0482-1
10.1002/hbm.24463
10.1023/A:1010933404324
10.1111/j.2517-6161.1972.tb00899.x
10.1016/j.patrec.2008.01.010
10.3233/JAD-200830
10.1016/j.biopsych.2008.06.020
10.7717/peerj.6257
10.1016/j.compmedimag.2021.102000
10.1016/j.neuroimage.2008.07.013
10.1609/aaai.v32i1.11842
10.3233/JAD-190967
10.1016/j.neucom.2019.07.010
10.1002/hbm.25115
10.1007/978-3-030-43823-4_37
10.1038/s41467-021-26703-z
10.1038/s41588-018-0311-9
10.1016/S1474-4422(16)00070-3
10.3233/JAD-201591
10.3233/JAD-220021
10.1001/jama.1982.03320430047030
10.1002/sim.4780140108
10.1016/j.jalz.2005.06.003
10.1016/S0169-7439(00)00122-2
10.1093/braincomms/fcaa057
10.1186/alzrt47
10.1038/ng.2802
10.1002/hbm.24428
10.1016/j.nicl.2018.03.007
10.1002/ana.21038
10.1038/s41598-020-74399-w
10.1038/s41598-020-77220-w
10.1002/sim.2427
10.4061/2010/606802
10.1038/s41588-019-0358-2
10.1038/s41467-020-20655-6
10.1080/01621459.1958.10501452
10.3389/fnhum.2017.00033
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
CorporateAuthor the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.neurobiolaging.2022.10.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1558-1497
EndPage 156
ExternalDocumentID PMC10535369
36442416
10_1016_j_neurobiolaging_2022_10_005
S0197458022002196
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG055121
– fundername: NIA NIH HHS
  grantid: R01 AG071514
– fundername: NIA NIH HHS
  grantid: P30 AG072947
– fundername: NIA NIH HHS
  grantid: R01 AG069765
– fundername: NINDS NIH HHS
  grantid: R01 NS101483
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABGSF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABOYX
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDW
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LX8
M29
M2V
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OD~
OKEIE
OO0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNS
SPCBC
SSB
SSH
SSN
SSU
SSY
SSZ
T5K
WUQ
Z5R
ZGI
~G-
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AFYLN
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c557t-546f028da8b86ceb2277f5db61aefd5f12c37b989d7ab6cc5e38cce8e06bb9b3
IEDL.DBID .~1
ISSN 0197-4580
1558-1497
IngestDate Thu Aug 21 18:36:24 EDT 2025
Fri Jul 11 06:36:41 EDT 2025
Mon Jul 21 05:53:42 EDT 2025
Thu Apr 24 22:52:49 EDT 2025
Tue Jul 01 01:28:31 EDT 2025
Fri Feb 23 02:42:15 EST 2024
Tue Aug 26 16:40:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Survival analysis
Multi-modal data
Neuroimage genomics
Alzheimer's disease
Early detection
Language English
License Copyright © 2022 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-546f028da8b86ceb2277f5db61aefd5f12c37b989d7ab6cc5e38cce8e06bb9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Data used in preparation of this article were obtained from the Alzheimer’s disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
First Author
ORCID 0000-0003-4229-9613
0000-0003-3263-465X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10535369
PMID 36442416
PQID 2742659547
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10535369
proquest_miscellaneous_2742659547
pubmed_primary_36442416
crossref_citationtrail_10_1016_j_neurobiolaging_2022_10_005
crossref_primary_10_1016_j_neurobiolaging_2022_10_005
elsevier_sciencedirect_doi_10_1016_j_neurobiolaging_2022_10_005
elsevier_clinicalkey_doi_10_1016_j_neurobiolaging_2022_10_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of aging
PublicationTitleAlternate Neurobiol Aging
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ma, Yee, Stocks, Jenkins, Popuri, Chausse, Wang, Probst, Beg (bib0034) 2021; 80
Lei, Yang, Yang, Zhou, Hou, Zou, Li, Wang, Xiao, Wang (bib0029) 2020; 102
Li, Wang, Zhou, Ye (bib0030) 2019; 364
Anoop, Singh, Jacob, Maji (bib0003) 2010; 2010
Mirabnahrazam, Ma, Lee, Popuri, Lee, Cao, Wang, Galvin, Beg, Alzheimer...s Disease Neuroimaging Initiative (bib0036) 2022; 87
Grassi, Rouleaux, Caldirola, Loewenstein, Schruers, Perna, Dumontier (bib0017) 2019; 10
Lee, Zame, Yoon, van der Schaar (bib0028) 2018; 32
Popuri, Balachandar, Alpert, Lu, Bhalla, Mackenzie, Hsiung, Wang, Beg (bib0044) 2018; 18
Spooner, Chen, Sowmya, Sachdev, Kochan, Trollor, Brodaty (bib0048) 2020; 10
Hua, Leow, Parikshak, Lee, Chiang, Toga, Jack, Weiner, Thompson (bib0020) 2008; 43
Olsson, Lautner, Andreasson, Öhrfelt, Portelius, Bjerke, Hölttä (bib0039) 2016; 15
Aschwanden, Aichele, Ghisletta, Terracciano, Kliegel, Sutin, Brown, Allemand (bib0005) 2020; 75
Liu, Chen, Yao, Guo (bib0031) 2017; 11
Srivastava, Hinton, Krizhevsky, Salakhutdinov (bib0049) 2014; 15
Access date: 2007.
Peng, Gong, Beckmann, Vedaldi, Smith (bib0042) 2021; 68
Abrol, Anees, Zening Fu, Mustafa Salman, Rogers Silva, Yuhui Du, Sergey Plis, and Vince Calhoun. 2021. “Deep Learning Encodes Robust Discriminative Neuroimaging Representations to Outperform Standard Machine Learning.” Nature Communications 12 (1): 353.
Zhou, Han Thung, Zhu, Shen (bib0057) 2019; 40
Devanand, Liu, Tabert, Pradhaban, Cuasay, Bell, Leon, Doty, Stern, Pelton (bib0011) 2008; 64
Kvamme, Håvard, and Ørnulf Borgan. 2019. “Continuous and discrete-time survival prediction with neural networks.” Available at
Antolini, Boracchi, Biganzoli (bib0004) 2005; 24
Graf, Schmoor, Sauerbrei, Schumacher (bib0016) 1999; 18
Cox (bib0010) 1972; 34
Yee, Ma, Popuri, Chen, Lee, Chow, Ma, Wang, Beg (bib5003) 2022; 95
Yang, Nasrallah, Shou, Wen, Doshi, Habes, Erus, Abdulkadir, Resnick, Albert, Maruff (bib5001) 2021; 12
.
Popuri, Ma, Wang, Beg (bib0045) 2020; 41
Access date: 2018-04-26.
Harrell, Calif, Pryor, Lee, Rosati (bib0019) 1982; 247
Loshchilov, Ilya, and Frank Hutter. 2017. “Decoupled Weight Decay Regularization,” November.
Lambert, Ibrahim-Verbaas, Harold, Naj, Sims, Bellenguez, Jun (bib0027) 2013; 45
Twala, Jones, Hand (bib0051) 2008; 29
Steck, Harald, Balaji Krishnapuram, Cary Dehing-oberije, Philippe Lambin, and Vikas C Raykar. 2008. “On ranking in survival analysis: bounds on the concordance index.” In Advances in Neural Information Processing Systems, edited by J. Platt, D. Koller, Y. Singer, and S. Roweis. Vol. 20. Vancouver: Curran Associates, Inc. Available at
Kvamme, Borgan, Scheel (bib0026) 2019; 20
Breslow (bib0008) 1972; 34
Jansen, Savage, Watanabe, Bryois, Williams, Steinberg, Sealock, Karlsson, Hägg, Athanasiu, Voyle, Proitsi, Witoelar, Stringer, Aarsland, Almdahl, Andersen, Bergh, Bettella, Bjornsson, Brækhus, Bråthen, Leeuw, Desikan, Djurovic, Dumitrescu, Fladby, Hohman, Jonsson, Kiddle, Rongve, Saltvedt, Sando, Selbæk, Shoai, Skene, Snaedal, Stordal, Ulstein, Wang, White, Hardy, Hjerling-Leffler, Sullivan, van der Flier, Dobson, Davis, Stefansson, Stefansson, Pedersen, Ripke, Andreassen, Posthuma (bib0021) 2019; 51
Xu, Liang (bib0054) 2001; 56
Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib0037) 2005; 1
Nakagawa, Ishida, Naito, Nagai, Yamaguchi, Onoda (bib0038) 2020; 2
Finehout, Franck, Choe, Relkin, Lee (bib0014) 2007; 61
Venugopalan, Tong, Hassanzadeh, Wang (bib0053) 2021; 11
Schwartzentruber, Cooper, Liu, Barrio-Hernandez, Bello, Kumasaka, Young, Frabjkub, Johnson, Estrada, Gaffney, Beltrao, Bassett (bib0046) 2021
Gensheimer, Narasimhan (bib0015) 2019
Beaulac, Rosenthal, Pei, Friedman, Wolden, Hodgson (bib0006) 2020; 34
An, Adeli, Liu, Zhang, Lee, Shen (bib0002) 2017; 7
Katzman, Shaham, Cloninger, Bates, Jiang, Kluger (bib0023) 2018; 18
Kunkle, Grenier-Boley, Sims, Bis, Damotte, Naj, Boland (bib0024) 2019; 51
Brier (bib0009) 1950; 78
Vemuri, Prashanthi, and Clifford R Jack. 2010. “Role of structural MRI in Alzheimer's disease.” Alzheimer's research and therapy. BioMed Central. https://doi.org/10.1186/alzrt47.
Lu, Colliot (bib0033) 2021
Ma, Popuri, Bhalla, Sangha, Lu, Cao, Jacova, Wang, Beg (bib0035) 2019; 40
(bib0001) 2021; 17
Faraggi, Simon (bib0013) 1995; 14
Yee, Ma, Popuri, Wang, Beg (bib0055) 2021; 79
Smith (bib0047) 2017
Breiman (bib0007) 2001; 45
Kaplan, Meier (bib0022) 1958; 53
Pölsterl, Sebastian, Ignacio Sarasua, Benjamín Gutiérrez-Becker, and Christian Wachinger. 2019. “A wide and deep neural network for survival analysis from anatomical shape and tabular clinical data,” 453–64. https://doi.org/10.1007/978-3-030-43823-4_37.
Orozco-Sanchez, Jorge, Victor Trevino, Emmanuel Martinez-Ledesma, Joshua Farber, and Jose Tamez-Peña. 2019. “Exploring survival models associated with MCI to AD conversion: a machine learning approach.” BioRxiv Preprint.
Beaulac, Cédric, Jeffrey S. Rosenthal, Qinglin Pei, Debra Friedman, Suzanne Wolden, and David Hodgson. 2020. “An evaluation of machine learning techniques to predict the outcome of children treated for hodgkin-lymphoma on the AHOD0031 Trial: A Report from the Children's Oncology Group,”. https://doi.org/10.1080/08839514.2020.1815151.
Steck, Harald, Balaji Krishnapuram, Cary Dehing-oberije, Philippe Lambin, and Vikas C Raykar. 2008. “On ranking in survival analysis: bounds on the concordance index.” In Advances in Neural Information Processing Systems, edited by J. Platt, D. Koller, Y. Singer, and S. Roweis. Vol. 20. Curran Associates, Inc. Available at
Dziura, Post, Zhao, Fu, Peduzzi (bib0012) 2013; 86
Pandey, Anurag. 2019. “Survival analysis: intuition & implementation in python.” Accessed January 6, 2019. Available at
Zhou, Jiang, Lu, Wang, Zhang, Zuo (bib0056) 2019; 12
Lee, Changhee, William R Zame, Jinsung Yoon, and Mihaela Van Der Schaar. 2018. “DeepHit: a deep learning approach to survival analysis with competing risks.” Available at
Mirabnahrazam, Ghazal, Da Ma, Sieun Lee, Karteek Popuri, Hyunwoo Lee, Jiguo Cao, Lei Wang, James E Galvin, Mirza Faisal Beg, and the Alzheimer's Disease Neuroimaging Initiative. 2022. “Machine Learning Based Multimodal Neuroimaging Genomics Dementia Score for Predicting Future Conversion to Alzheimer's Disease,” March.
Cox, D R. 1972. “Regression models and life-tables.” Research Section, on Wednesday.
Guo, Cheng, and Felix Berkhahn. 2016. “Entity embeddings of categorical variables,”.
Schwartzentruber, Cooper, Liu, Barrio-Hernandez, Bello, Kumasaka, Young (bib0046) 2021
Jansen, Savage, Watanabe, Bryois, Williams, Steinberg, Sealock (bib0021) 2019; 51
Graf (10.1016/j.neurobiolaging.2022.10.005_bib0016) 1999; 18
Ma (10.1016/j.neurobiolaging.2022.10.005_bib0035) 2019; 40
Olsson (10.1016/j.neurobiolaging.2022.10.005_bib0039) 2016; 15
10.1016/j.neurobiolaging.2022.10.005_bib5002
Antolini (10.1016/j.neurobiolaging.2022.10.005_bib0004) 2005; 24
Faraggi (10.1016/j.neurobiolaging.2022.10.005_bib0013) 1995; 14
Devanand (10.1016/j.neurobiolaging.2022.10.005_bib0011) 2008; 64
Breiman (10.1016/j.neurobiolaging.2022.10.005_bib0007) 2001; 45
10.1016/j.neurobiolaging.2022.10.005_bib0025
Ma (10.1016/j.neurobiolaging.2022.10.005_bib0034) 2021; 80
Lee (10.1016/j.neurobiolaging.2022.10.005_bib0028) 2018; 32
Kaplan (10.1016/j.neurobiolaging.2022.10.005_bib0022) 1958; 53
Liu (10.1016/j.neurobiolaging.2022.10.005_bib0031) 2017; 11
Breslow (10.1016/j.neurobiolaging.2022.10.005_bib0008) 1972; 34
Nakagawa (10.1016/j.neurobiolaging.2022.10.005_bib0038) 2020; 2
An (10.1016/j.neurobiolaging.2022.10.005_bib0002) 2017; 7
Lu (10.1016/j.neurobiolaging.2022.10.005_bib0033) 2021
Cox (10.1016/j.neurobiolaging.2022.10.005_bib0010) 1972; 34
Mueller (10.1016/j.neurobiolaging.2022.10.005_bib0037) 2005; 1
Lambert (10.1016/j.neurobiolaging.2022.10.005_bib0027) 2013; 45
Smith (10.1016/j.neurobiolaging.2022.10.005_bib0047) 2017
Yee (10.1016/j.neurobiolaging.2022.10.005_bib5003) 2022; 95
Harrell (10.1016/j.neurobiolaging.2022.10.005_bib0019) 1982; 247
Mirabnahrazam (10.1016/j.neurobiolaging.2022.10.005_bib0036) 2022; 87
Twala (10.1016/j.neurobiolaging.2022.10.005_bib0051) 2008; 29
Spooner (10.1016/j.neurobiolaging.2022.10.005_bib0048) 2020; 10
Grassi (10.1016/j.neurobiolaging.2022.10.005_bib0017) 2019; 10
Kvamme (10.1016/j.neurobiolaging.2022.10.005_bib0026) 2019; 20
Finehout (10.1016/j.neurobiolaging.2022.10.005_bib0014) 2007; 61
Aschwanden (10.1016/j.neurobiolaging.2022.10.005_bib0005) 2020; 75
Katzman (10.1016/j.neurobiolaging.2022.10.005_bib0023) 2018; 18
Gensheimer (10.1016/j.neurobiolaging.2022.10.005_bib0015) 2019
10.1016/j.neurobiolaging.2022.10.005_bib0052
10.1016/j.neurobiolaging.2022.10.005_bib0050
Yang (10.1016/j.neurobiolaging.2022.10.005_bib5001) 2021; 12
Schwartzentruber (10.1016/j.neurobiolaging.2022.10.005_bib0046) 2021
Anoop (10.1016/j.neurobiolaging.2022.10.005_bib0003) 2010; 2010
Popuri (10.1016/j.neurobiolaging.2022.10.005_bib0044) 2018; 18
Zhou (10.1016/j.neurobiolaging.2022.10.005_bib0057) 2019; 40
10.1016/j.neurobiolaging.2022.10.005_bib0043
Popuri (10.1016/j.neurobiolaging.2022.10.005_bib0045) 2020; 41
Kunkle (10.1016/j.neurobiolaging.2022.10.005_bib0024) 2019; 51
Yee (10.1016/j.neurobiolaging.2022.10.005_bib0055) 2021; 79
Venugopalan (10.1016/j.neurobiolaging.2022.10.005_bib0053) 2021; 11
Hua (10.1016/j.neurobiolaging.2022.10.005_bib0020) 2008; 43
Peng (10.1016/j.neurobiolaging.2022.10.005_bib0042) 2021; 68
Jansen (10.1016/j.neurobiolaging.2022.10.005_bib0021) 2019; 51
10.1016/j.neurobiolaging.2022.10.005_bib0040
Beaulac (10.1016/j.neurobiolaging.2022.10.005_bib0006) 2020; 34
(10.1016/j.neurobiolaging.2022.10.005_bib0001) 2021; 17
Srivastava (10.1016/j.neurobiolaging.2022.10.005_bib0049) 2014; 15
Li (10.1016/j.neurobiolaging.2022.10.005_bib0030) 2019; 364
Brier (10.1016/j.neurobiolaging.2022.10.005_bib0009) 1950; 78
10.1016/j.neurobiolaging.2022.10.005_bib0032
Xu (10.1016/j.neurobiolaging.2022.10.005_bib0054) 2001; 56
Lei (10.1016/j.neurobiolaging.2022.10.005_bib0029) 2020; 102
References_xml – reference: Access date: 2018-04-26.
– volume: 51
  start-page: 404
  year: 2019
  end-page: 413
  ident: bib0021
  article-title: Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk
  publication-title: Nat. Genet.
– volume: 18
  start-page: 802
  year: 2018
  end-page: 813
  ident: bib0044
  article-title: Development and validation of a novel Dementia of Alzheimer's Type (DAT) score based on metabolism FDG-PET imaging
  publication-title: NeuroImage
– volume: 17
  start-page: 327
  year: 2021
  end-page: 406
  ident: bib0001
  article-title: 2021 Alzheimer's Disease Facts and Figures Special Report Race, Ethnicity and Alzheimer's in America
  publication-title: Alzheimer's Assoc.
– volume: 53
  start-page: 457
  year: 1958
  end-page: 481
  ident: bib0022
  article-title: Nonparametric estimation from incomplete observations
  publication-title: J. Am. Stats. Assoc.
– start-page: 1
  year: 2021
  end-page: 11
  ident: bib0046
  article-title: Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes
  publication-title: Nat. Genet.
– volume: 64
  start-page: 871
  year: 2008
  end-page: 879
  ident: bib0011
  article-title: Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer's disease
  publication-title: Biol. Psychiatr.
– volume: 10
  year: 2019
  ident: bib0017
  article-title: A novel ensemble-based machine learning algorithm to predict the conversion from mild cognitive impairment to Alzheimer's disease using socio-demographic characteristics, clinical information, and neuropsychological measures
  publication-title: Front. Neurol.
– volume: 79
  start-page: 47
  year: 2021
  end-page: 58
  ident: bib0055
  article-title: Construction of MRI-Based Alzheimer's disease score based on efficient 3D convolutional neural network: comprehensive validation on 7,902 images from a multi-center dataset
  publication-title: J. Alzheimers Dis.
– volume: 29
  start-page: 950
  year: 2008
  end-page: 956
  ident: bib0051
  article-title: Good methods for coping with missing data in decision trees
  publication-title: Pattern Recognition Lett.
– volume: 41
  start-page: 4127
  year: 2020
  end-page: 4147
  ident: bib0045
  article-title: Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer's disease into dementia score: independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases
  publication-title: Hum Brain Mapp.
– volume: 61
  start-page: 120
  year: 2007
  end-page: 129
  ident: bib0014
  article-title: Cerebrospinal fluid proteomic biomarkers for Alzheimer's disease
  publication-title: Ann Neurol
– volume: 51
  start-page: 414
  year: 2019
  end-page: 430
  ident: bib0024
  article-title: Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, Tau, immunity and lipid processing
  publication-title: Nat. Genet.
– volume: 40
  start-page: 1001
  year: 2019
  end-page: 1016
  ident: bib0057
  article-title: Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis
  publication-title: Hum. Brain Mapp.
– volume: 95
  start-page: 102000
  year: 2022
  ident: bib5003
  article-title: 3D hemisphere-based convolutional neural network for whole-brain MRI segmentation
  publication-title: Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 12
  ident: bib0003
  article-title: CSF biomarkers for alzheimer's disease diagnosis
  publication-title: Int. J. Alzheimer's Dis.
– reference: Access date: 2007.
– reference: Vemuri, Prashanthi, and Clifford R Jack. 2010. “Role of structural MRI in Alzheimer's disease.” Alzheimer's research and therapy. BioMed Central. https://doi.org/10.1186/alzrt47.
– volume: 10
  start-page: 20410
  year: 2020
  ident: bib0048
  article-title: A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction
  publication-title: Sci. Rep.
– start-page: 1
  year: 2021
  ident: bib0033
  article-title: Multilevel survival modeling with structured penalties for disease prediction from imaging genetics data
  publication-title: IEEE J. Biomed. Health Informat.
– reference: Pölsterl, Sebastian, Ignacio Sarasua, Benjamín Gutiérrez-Becker, and Christian Wachinger. 2019. “A wide and deep neural network for survival analysis from anatomical shape and tabular clinical data,” 453–64. https://doi.org/10.1007/978-3-030-43823-4_37.
– volume: 15
  start-page: 673
  year: 2016
  end-page: 684
  ident: bib0039
  article-title: CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis
  publication-title: Lancet Neurol.
– volume: 87
  start-page: 1345
  year: 2022
  end-page: 1365
  ident: bib0036
  article-title: Machine learning based multimodal neuroimaging genomics dementia score for predicting future conversion to Alzheimer's disease
  publication-title: J. Alzheimers Dis.
– volume: 2
  year: 2020
  ident: bib0038
  article-title: Prediction of conversion to Alzheimer's disease using deep survival analysis of MRI images
  publication-title: Brain Commun.
– volume: 18
  start-page: 2529
  year: 1999
  end-page: 2545
  ident: bib0016
  article-title: Assessment and comparison of prognostic classification schemes for survival data
  publication-title: Stat. Med.
– reference: Abrol, Anees, Zening Fu, Mustafa Salman, Rogers Silva, Yuhui Du, Sergey Plis, and Vince Calhoun. 2021. “Deep Learning Encodes Robust Discriminative Neuroimaging Representations to Outperform Standard Machine Learning.” Nature Communications 12 (1): 353.
– volume: 45
  start-page: 1452
  year: 2013
  end-page: 1458
  ident: bib0027
  article-title: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease
  publication-title: Nat. Genet.
– volume: 32
  year: 2018
  ident: bib0028
  article-title: DeepHit: A Deep Learning Approach to Survival Analysis With Competing Risks
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 14
  start-page: 73
  year: 1995
  end-page: 82
  ident: bib0013
  article-title: A neural network model for survival data
  publication-title: Stats. Med.
– volume: 43
  start-page: 458
  year: 2008
  end-page: 469
  ident: bib0020
  article-title: Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI Study of 676 AD, MCI, and normal subjects
  publication-title: NeuroImage.
– volume: 1
  start-page: 55
  year: 2005
  end-page: 66
  ident: bib0037
  article-title: Ways toward an early diagnosis in Alzheimer's Disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI)
  publication-title: Alzheimer's & Dement.
– reference: Steck, Harald, Balaji Krishnapuram, Cary Dehing-oberije, Philippe Lambin, and Vikas C Raykar. 2008. “On ranking in survival analysis: bounds on the concordance index.” In Advances in Neural Information Processing Systems, edited by J. Platt, D. Koller, Y. Singer, and S. Roweis. Vol. 20. Vancouver: Curran Associates, Inc. Available at:
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0049
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 30
  ident: bib0026
  article-title: Time-to-event prediction with neural networks and cox regression
  publication-title: J. Mach. Learn. Res.
– volume: 56
  start-page: 1
  year: 2001
  end-page: 11
  ident: bib0054
  article-title: Monte Carlo Cross Validation
  publication-title: Chemometr. Intell. Laborat. Syst.
– volume: 24
  start-page: 3927
  year: 2005
  end-page: 3944
  ident: bib0004
  article-title: A time-dependent discrimination index for survival data
  publication-title: Stats. Med.
– volume: 34
  start-page: 1100
  year: 2020
  end-page: 1114
  ident: bib0006
  article-title: An evaluation of machine learning techniques to predict the outcome of children treated for Hodgkin-Lymphoma on the AHOD0031 trial: A report from the Children’s Oncology Group. Applied artificial intelligence
  publication-title: AAI
– volume: 12
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib5001
  article-title: A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure
  publication-title: Nature communications
– volume: 11
  year: 2017
  ident: bib0031
  article-title: Prediction of mild cognitive impairment conversion using a combination of independent component analysis and the cox model
  publication-title: Front. Hum. Neurosci
– year: 2019
  ident: bib0015
  article-title: A scalable discrete-time survival model for neural networks
  publication-title: PeerJ. PeerJ Inc.
– reference: Loshchilov, Ilya, and Frank Hutter. 2017. “Decoupled Weight Decay Regularization,” November.
– volume: 80
  start-page: 715
  year: 2021
  end-page: 726
  ident: bib0034
  article-title: Blinded clinical evaluation for dementia of Alzheimer's type classification using FDG-PET: a comparison between feature-engineered and non-feature-engineered machine learning methods
  publication-title: J. Alzheimers Dis. JAD
– volume: 11
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib0053
  article-title: Multimodal deep learning models for early detection of Alzheimer's disease stage
  publication-title: Sci. Rep.
– volume: 364
  start-page: 95
  year: 2019
  end-page: 107
  ident: bib0030
  article-title: Multi-task learning based survival analysis for multi-source block-wise missing data
  publication-title: Neurocomputing
– volume: 247
  start-page: 2543
  year: 1982
  ident: bib0019
  article-title: Evaluating the yield of medical tests
  publication-title: JAMA.
– volume: 34
  start-page: 187
  year: 1972
  end-page: 220
  ident: bib0010
  article-title: Regression Models and Life-Tables
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 34
  start-page: 216
  year: 1972
  end-page: 217
  ident: bib0008
  article-title: Contribution to discussion of paper by DR Cox
  publication-title: J. Roy. Statist. Soc., Ser. B
– volume: 102
  year: 2020
  ident: bib0029
  article-title: Deep and joint learning of longitudinal data for Alzheimer's disease prediction
  publication-title: Pattern Recogn.
– volume: 40
  start-page: 1507
  year: 2019
  end-page: 1527
  ident: bib0035
  article-title: Quantitative assessment of field strength, total intracranial volume, sex, and age effects on the goodness of harmonization for volumetric analysis on the ADNI database
  publication-title: Hum. Brain Mapp.
– volume: 78
  start-page: 1
  year: 1950
  end-page: 3
  ident: bib0009
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Monthly Weather Rev.
– reference: .
– reference: Kvamme, Håvard, and Ørnulf Borgan. 2019. “Continuous and discrete-time survival prediction with neural networks.” Available at:
– start-page: 464
  year: 2017
  end-page: 472
  ident: bib0047
  article-title: Cyclical Learning Rates for Training Neural Networks
  publication-title: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV)
– volume: 7
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib0002
  article-title: A hierarchical feature and sample selection framework and its application for alzheimer's disease diagnosis
  publication-title: Sci. Rep.
– volume: 18
  year: 2018
  ident: bib0023
  article-title: DeepSurv: personalized treatment recommender system using a cox proportional hazards deep neural network
  publication-title: BMC Med. Res. Methodol.
– volume: 75
  start-page: 717
  year: 2020
  end-page: 728
  ident: bib0005
  article-title: Predicting cognitive impairment and dementia: a machine learning approach
  publication-title: J. Alzheimer's Dis.
– reference: Orozco-Sanchez, Jorge, Victor Trevino, Emmanuel Martinez-Ledesma, Joshua Farber, and Jose Tamez-Peña. 2019. “Exploring survival models associated with MCI to AD conversion: a machine learning approach.” BioRxiv Preprint.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0007
  article-title: Random forests
  publication-title: Machine Learning.
– volume: 68
  year: 2021
  ident: bib0042
  article-title: Accurate brain age prediction with lightweight deep neural networks
  publication-title: Med. Image Anal.
– reference: Cox, D R. 1972. “Regression models and life-tables.” Research Section, on Wednesday.
– reference: Mirabnahrazam, Ghazal, Da Ma, Sieun Lee, Karteek Popuri, Hyunwoo Lee, Jiguo Cao, Lei Wang, James E Galvin, Mirza Faisal Beg, and the Alzheimer's Disease Neuroimaging Initiative. 2022. “Machine Learning Based Multimodal Neuroimaging Genomics Dementia Score for Predicting Future Conversion to Alzheimer's Disease,” March.
– volume: 12
  year: 2019
  ident: bib0056
  article-title: Dual-model radiomic biomarkers predict development of mild cognitive impairment progression to Alzheimer's Disease
  publication-title: Front Neurosci
– reference: Guo, Cheng, and Felix Berkhahn. 2016. “Entity embeddings of categorical variables,”.
– reference: Lee, Changhee, William R Zame, Jinsung Yoon, and Mihaela Van Der Schaar. 2018. “DeepHit: a deep learning approach to survival analysis with competing risks.” Available at:
– volume: 18
  year: 1999
  ident: bib0016
  article-title: Assessment and comparison of prognostic classification schemes for survival data
  publication-title: Stat. Med.
– volume: 51
  start-page: 404
  year: 2019
  end-page: 413
  ident: bib0021
  article-title: Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk
  publication-title: Nat. Genet.
– reference: Steck, Harald, Balaji Krishnapuram, Cary Dehing-oberije, Philippe Lambin, and Vikas C Raykar. 2008. “On ranking in survival analysis: bounds on the concordance index.” In Advances in Neural Information Processing Systems, edited by J. Platt, D. Koller, Y. Singer, and S. Roweis. Vol. 20. Curran Associates, Inc. Available at:
– reference: Beaulac, Cédric, Jeffrey S. Rosenthal, Qinglin Pei, Debra Friedman, Suzanne Wolden, and David Hodgson. 2020. “An evaluation of machine learning techniques to predict the outcome of children treated for hodgkin-lymphoma on the AHOD0031 Trial: A Report from the Children's Oncology Group,”. https://doi.org/10.1080/08839514.2020.1815151.
– reference: Pandey, Anurag. 2019. “Survival analysis: intuition & implementation in python.” Accessed January 6, 2019. Available at:
– start-page: 1
  year: 2021
  end-page: 11
  ident: bib0046
  article-title: Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer's disease risk genes
  publication-title: Nat. Genet.
– volume: 20
  year: 2019
  ident: bib0026
  article-title: Time-to-event prediction with neural networks and cox regression
  publication-title: J. Mach. Learn. Res.
– volume: 15
  year: 2014
  ident: bib0049
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 86
  year: 2013
  ident: bib0012
  article-title: Strategies for dealing with missing data in clinical trials: from design to analysis
  publication-title: Yale J. Biol. Med
– volume: 68
  year: 2021
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0042
  article-title: Accurate brain age prediction with lightweight deep neural networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101871
– volume: 18
  start-page: 2529
  year: 1999
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0016
  article-title: Assessment and comparison of prognostic classification schemes for survival data
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
– ident: 10.1016/j.neurobiolaging.2022.10.005_bib0040
  doi: 10.1101/836510
– volume: 34
  start-page: 216
  year: 1972
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0008
  article-title: Contribution to discussion of paper by DR Cox
  publication-title: J. Roy. Statist. Soc., Ser. B
– volume: 78
  start-page: 1
  issue: 1
  year: 1950
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0009
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Monthly Weather Rev.
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– volume: 10
  year: 2019
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0017
  article-title: A novel ensemble-based machine learning algorithm to predict the conversion from mild cognitive impairment to Alzheimer's disease using socio-demographic characteristics, clinical information, and neuropsychological measures
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2019.00756
– ident: 10.1016/j.neurobiolaging.2022.10.005_bib0050
– volume: 20
  start-page: 1
  year: 2019
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0026
  article-title: Time-to-event prediction with neural networks and cox regression
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0002
  article-title: A hierarchical feature and sample selection framework and its application for alzheimer's disease diagnosis
  publication-title: Sci. Rep.
  doi: 10.1038/srep45269
– volume: 102
  year: 2020
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0029
  article-title: Deep and joint learning of longitudinal data for Alzheimer's disease prediction
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2020.107247
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0049
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 18
  issue: 1
  year: 2018
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0023
  article-title: DeepSurv: personalized treatment recommender system using a cox proportional hazards deep neural network
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-018-0482-1
– volume: 40
  start-page: 1507
  issue: 5
  year: 2019
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0035
  article-title: Quantitative assessment of field strength, total intracranial volume, sex, and age effects on the goodness of harmonization for volumetric analysis on the ADNI database
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24463
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0007
  article-title: Random forests
  publication-title: Machine Learning.
  doi: 10.1023/A:1010933404324
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0010
  article-title: Regression Models and Life-Tables
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 29
  start-page: 950
  issue: 7
  year: 2008
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0051
  article-title: Good methods for coping with missing data in decision trees
  publication-title: Pattern Recognition Lett.
  doi: 10.1016/j.patrec.2008.01.010
– start-page: 464
  year: 2017
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0047
  article-title: Cyclical Learning Rates for Training Neural Networks
– start-page: 1
  year: 2021
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0033
  article-title: Multilevel survival modeling with structured penalties for disease prediction from imaging genetics data
  publication-title: IEEE J. Biomed. Health Informat.
– volume: 79
  start-page: 47
  year: 2021
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0055
  article-title: Construction of MRI-Based Alzheimer's disease score based on efficient 3D convolutional neural network: comprehensive validation on 7,902 images from a multi-center dataset
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-200830
– volume: 64
  start-page: 871
  issue: 10
  year: 2008
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0011
  article-title: Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer's disease
  publication-title: Biol. Psychiatr.
  doi: 10.1016/j.biopsych.2008.06.020
– year: 2019
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0015
  article-title: A scalable discrete-time survival model for neural networks
  publication-title: PeerJ. PeerJ Inc.
  doi: 10.7717/peerj.6257
– volume: 95
  start-page: 102000
  year: 2022
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib5003
  article-title: 3D hemisphere-based convolutional neural network for whole-brain MRI segmentation
  publication-title: Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
  doi: 10.1016/j.compmedimag.2021.102000
– volume: 43
  start-page: 458
  issue: 3
  year: 2008
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0020
  article-title: Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI Study of 676 AD, MCI, and normal subjects
  publication-title: NeuroImage.
  doi: 10.1016/j.neuroimage.2008.07.013
– volume: 32
  issue: 1
  year: 2018
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0028
  article-title: DeepHit: A Deep Learning Approach to Survival Analysis With Competing Risks
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v32i1.11842
– volume: 75
  start-page: 717
  issue: 3
  year: 2020
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0005
  article-title: Predicting cognitive impairment and dementia: a machine learning approach
  publication-title: J. Alzheimer's Dis.
  doi: 10.3233/JAD-190967
– volume: 364
  start-page: 95
  year: 2019
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0030
  article-title: Multi-task learning based survival analysis for multi-source block-wise missing data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.010
– volume: 41
  start-page: 4127
  issue: 14
  year: 2020
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0045
  article-title: Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer's disease into dementia score: independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases
  publication-title: Hum Brain Mapp.
  doi: 10.1002/hbm.25115
– ident: 10.1016/j.neurobiolaging.2022.10.005_bib0043
  doi: 10.1007/978-3-030-43823-4_37
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib5001
  article-title: A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure
  publication-title: Nature communications
  doi: 10.1038/s41467-021-26703-z
– volume: 51
  start-page: 404
  issue: 3
  year: 2019
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0021
  article-title: Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0311-9
– volume: 15
  start-page: 673
  issue: 7
  year: 2016
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0039
  article-title: CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(16)00070-3
– volume: 80
  start-page: 715
  year: 2021
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0034
  article-title: Blinded clinical evaluation for dementia of Alzheimer's type classification using FDG-PET: a comparison between feature-engineered and non-feature-engineered machine learning methods
  publication-title: J. Alzheimers Dis. JAD
  doi: 10.3233/JAD-201591
– volume: 87
  start-page: 1345
  issue: 3
  year: 2022
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0036
  article-title: Machine learning based multimodal neuroimaging genomics dementia score for predicting future conversion to Alzheimer's disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-220021
– volume: 247
  start-page: 2543
  issue: 18
  year: 1982
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0019
  article-title: Evaluating the yield of medical tests
  publication-title: JAMA.
  doi: 10.1001/jama.1982.03320430047030
– volume: 14
  start-page: 73
  issue: 1
  year: 1995
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0013
  article-title: A neural network model for survival data
  publication-title: Stats. Med.
  doi: 10.1002/sim.4780140108
– volume: 1
  start-page: 55
  issue: 1
  year: 2005
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0037
  article-title: Ways toward an early diagnosis in Alzheimer's Disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI)
  publication-title: Alzheimer's & Dement.
  doi: 10.1016/j.jalz.2005.06.003
– volume: 56
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0054
  article-title: Monte Carlo Cross Validation
  publication-title: Chemometr. Intell. Laborat. Syst.
  doi: 10.1016/S0169-7439(00)00122-2
– volume: 34
  start-page: 1100
  issue: 14
  year: 2020
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0006
  article-title: An evaluation of machine learning techniques to predict the outcome of children treated for Hodgkin-Lymphoma on the AHOD0031 trial: A report from the Children’s Oncology Group. Applied artificial intelligence
  publication-title: AAI
– volume: 2
  issue: 1
  year: 2020
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0038
  article-title: Prediction of conversion to Alzheimer's disease using deep survival analysis of MRI images
  publication-title: Brain Commun.
  doi: 10.1093/braincomms/fcaa057
– start-page: 1
  year: 2021
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0046
  article-title: Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes
  publication-title: Nat. Genet.
– ident: 10.1016/j.neurobiolaging.2022.10.005_bib0052
  doi: 10.1186/alzrt47
– volume: 45
  start-page: 1452
  issue: 12
  year: 2013
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0027
  article-title: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2802
– volume: 40
  start-page: 1001
  issue: 3
  year: 2019
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0057
  article-title: Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24428
– volume: 18
  start-page: 802
  year: 2018
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0044
  article-title: Development and validation of a novel Dementia of Alzheimer's Type (DAT) score based on metabolism FDG-PET imaging
  publication-title: NeuroImage
  doi: 10.1016/j.nicl.2018.03.007
– volume: 61
  start-page: 120
  issue: 2
  year: 2007
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0014
  article-title: Cerebrospinal fluid proteomic biomarkers for Alzheimer's disease
  publication-title: Ann Neurol
  doi: 10.1002/ana.21038
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0053
  article-title: Multimodal deep learning models for early detection of Alzheimer's disease stage
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74399-w
– volume: 10
  start-page: 20410
  issue: 1
  year: 2020
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0048
  article-title: A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-77220-w
– volume: 24
  start-page: 3927
  issue: 24
  year: 2005
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0004
  article-title: A time-dependent discrimination index for survival data
  publication-title: Stats. Med.
  doi: 10.1002/sim.2427
– ident: 10.1016/j.neurobiolaging.2022.10.005_bib0032
– volume: 2010
  start-page: 1
  year: 2010
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0003
  article-title: CSF biomarkers for alzheimer's disease diagnosis
  publication-title: Int. J. Alzheimer's Dis.
  doi: 10.4061/2010/606802
– volume: 51
  start-page: 414
  issue: 3
  year: 2019
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0024
  article-title: Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, Tau, immunity and lipid processing
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0358-2
– ident: 10.1016/j.neurobiolaging.2022.10.005_bib5002
  doi: 10.1038/s41467-020-20655-6
– ident: 10.1016/j.neurobiolaging.2022.10.005_bib0025
– volume: 17
  start-page: 327
  issue: 3
  year: 2021
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0001
  article-title: 2021 Alzheimer's Disease Facts and Figures Special Report Race, Ethnicity and Alzheimer's in America
  publication-title: Alzheimer's Assoc.
– volume: 53
  start-page: 457
  issue: 282
  year: 1958
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0022
  article-title: Nonparametric estimation from incomplete observations
  publication-title: J. Am. Stats. Assoc.
  doi: 10.1080/01621459.1958.10501452
– volume: 11
  year: 2017
  ident: 10.1016/j.neurobiolaging.2022.10.005_bib0031
  article-title: Prediction of mild cognitive impairment conversion using a combination of independent component analysis and the cox model
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2017.00033
SSID ssj0007476
Score 2.5168643
Snippet Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from...
Dementia of Alzheimer’s Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 139
SubjectTerms Alzheimer Disease - diagnostic imaging
Alzheimer Disease - genetics
Alzheimer's disease
Cognitive Dysfunction - diagnosis
Cognitive Dysfunction - genetics
Deep learning
Disease Progression
Early detection
Humans
Magnetic Resonance Imaging - methods
Multi-modal data
Neuroimage genomics
Neuroimaging - methods
Survival Analysis
Title Predicting time-to-conversion for dementia of Alzheimer's type using multi-modal deep survival analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0197458022002196
https://dx.doi.org/10.1016/j.neurobiolaging.2022.10.005
https://www.ncbi.nlm.nih.gov/pubmed/36442416
https://www.proquest.com/docview/2742659547
https://pubmed.ncbi.nlm.nih.gov/PMC10535369
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD6IheKLtLXq9iJTkPYpbjaZS0IpZZHKVkEKteBbyNx0RZNlLw_1wd_ecybJ2m0pWHzcJJNNcs6c882Zb74B2PeY1RKHHSmOyzjiVmmMgwK7u5Y-NUoZ7gLb4lSOfvDjc3G-BofdWhiiVbaxv4npIVq3R_rt1-xPxuP-dwQniouwVBQTVU6y25wr8vKDu3uaB8Jl2SyZJn3vLH4K-_ccr6AZSWpHYUcgHC0myUHgeol_pam_YeifbMrf0tPRM9hscSUbNo_-HNZc9QK2hhWOqW9-svcsMD1DCX0LLr5NaXqGCM-M9paP5nUU2OehdMYQxjIbqobjktWeDa9vLx1eNv0wY1SxZcSVv2CBihjd1Bb_1jo3YbMFhh10XFa2Qicv4ezoy9nhKGo3XIiMEGoeCS494g1bZjqTBsfciVJeWC0HpfNW-EFiUqXzLLeq1NIYgUY2xmUullrnOt2G9aqu3C6wEu2Mw3TMjsJyhV5ijU5z6blOfKxj14OP3ectTCtGTntiXBcd6-yqWDVOQcahs2icHohl60kjyvHAdp86SxbdwlMMlQVmjwe2_7xsv-Kk_3GHd50DFdiPaXKmrFy9mBU0ZU7ajlz1YKdxqOW7pQhaEWnJHmQrrra8gDTCV89U48ugFT4g_Z5U5q8e_eivYQN_pU356Q2sz6cL9xYB2VzvhR63B0-GX09Gp78ARzk-HA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD5BSJQXIuJlQXBMiD6V7bZzaWOM2RDIqkhMXBPeJp0bLIF2s5cHfeC3e2baLqzGBONrp7Pt9lznzDffAdh3GNUSi4YUx0UcUSMU-kGG5q64S7UQmtqAtjjlg-_00xk7W4HD9iyMh1U2vr_26cFbN1e6zdfsjkej7jdMTgRl4agoBqqcP4A1iubr2xgc3NziPDBf5vWZaU_wncUPYf8W5BVIIz3dUWgJhMvFJDkIYC_2tzj1Zx76O5zyTnw6fgwbTWJJ-vW7b8KKLZ_AVr_ERfX1D_KGBKhnqKFvwfnXid-f8Yhn4pvLR7MqCvDzUDsjmMcSE8qGo4JUjvSvfl5YvG3ydkp8yZZ4sPw5CVjE6Loy-Fhj7ZhM5-h3UHNJ0TCdPIXh8dHwcBA1HRcizZiYRYxyhwmHKTKVcY2L7kQIx4zivcI6w1wv0alQeZYbUSiuNUMpa20zG3OlcpU-g9WyKu0LIAUKGtfpGB6ZoQLVxGiV5txRlbhYxbYD79rPK3XDRu6bYlzJFnZ2KZeFI71w_CgKpwNsMXtcs3Lcc977VpKyPXmKvlJi-Ljn_A-L-Uta-g-_8LpVIImG7HdnitJW86n0e-ae3JGKDjyvFWrx31LMWjHV4h3IllRtcYMnCV8eKUcXgSy85wl8Up5v__erv4JHg-GXE3ny8fTzDqzjSFrXol7C6mwyt7uYnc3UXrC-XykHP6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+time-to-conversion+for+dementia+of+Alzheimer%27s+type+using+multi-modal+deep+survival+analysis&rft.jtitle=Neurobiology+of+aging&rft.au=Mirabnahrazam%2C+Ghazal&rft.au=Ma%2C+Da&rft.au=Beaulac%2C+C%C3%A9dric&rft.au=Lee%2C+Sieun&rft.date=2023-01-01&rft.issn=1558-1497&rft.eissn=1558-1497&rft.volume=121&rft.spage=139&rft_id=info:doi/10.1016%2Fj.neurobiolaging.2022.10.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-4580&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-4580&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-4580&client=summon