Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity

Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 38; pp. 18848 - 18853
Main Authors Zhou, Sha, Williams, A. Park, Berg, Alexis M., Cook, Benjamin I., Zhang, Yao, Hagemann, Stefan, Lorenz, Ruth, Seneviratne, Sonia I., Gentine, Pierre
Format Journal Article
LanguageEnglish
Published Goddard Space Flight Center National Academy of Sciences 17.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land–atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture–precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land–atmosphere feedbacks is projected to increase in the 21st century. Importantly, land–atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone.
AbstractList Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land-atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture-precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land-atmosphere feedbacks is projected to increase in the 21st century. Importantly, land-atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone.Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land-atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture-precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land-atmosphere feedbacks is projected to increase in the 21st century. Importantly, land-atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone.
Soil drought and atmospheric aridity can be disastrous for ecosystems and society. This study demonstrates the critical role of land–atmosphere feedbacks in driving cooccurring soil drought and atmospheric aridity. The frequency and intensity of atmospheric aridity are greatly reduced without the feedback of soil moisture to atmospheric temperature and humidity. Soil moisture can also impact precipitation to amplify soil moisture deficits under dry conditions. These land–atmosphere processes lead to high probability of concurrent soil drought and atmospheric aridity. Compared to the historical period, models project future frequency and intensity of concurrent soil drought and atmospheric aridity to be further enhanced by land–atmosphere feedbacks, which may pose large risks to ecosystem services and human well-being in the future. Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land–atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture–precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land–atmosphere feedbacks is projected to increase in the 21st century. Importantly, land–atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone.
Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land–atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture–precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land–atmosphere feedbacks is projected to increase in the 21st century. Importantly, land–atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone.
Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land–atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture–precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land–atmosphere feedbacks is projected to increase in the 21st century. Significantly, land–atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone.
Audience PUBLIC
Author Seneviratne, Sonia I.
Gentine, Pierre
Cook, Benjamin I.
Hagemann, Stefan
Williams, A. Park
Berg, Alexis M.
Zhang, Yao
Zhou, Sha
Lorenz, Ruth
Author_xml – sequence: 1
  givenname: Sha
  surname: Zhou
  fullname: Zhou, Sha
– sequence: 2
  givenname: A. Park
  surname: Williams
  fullname: Williams, A. Park
– sequence: 3
  givenname: Alexis M.
  surname: Berg
  fullname: Berg, Alexis M.
– sequence: 4
  givenname: Benjamin I.
  surname: Cook
  fullname: Cook, Benjamin I.
– sequence: 5
  givenname: Yao
  surname: Zhang
  fullname: Zhang, Yao
– sequence: 6
  givenname: Stefan
  surname: Hagemann
  fullname: Hagemann, Stefan
– sequence: 7
  givenname: Ruth
  surname: Lorenz
  fullname: Lorenz, Ruth
– sequence: 8
  givenname: Sonia I.
  surname: Seneviratne
  fullname: Seneviratne, Sonia I.
– sequence: 9
  givenname: Pierre
  surname: Gentine
  fullname: Gentine, Pierre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31481606$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1581364$$D View this record in Osti.gov
BookMark eNp9kU1vEzEQhi1URNPAmQugFVy4bDtef2T3goQqvqRIXICrZXtnG4eNHWwvojf-A_-QX4KjLQF64GTJ87wz78x7Rk588EjIQwrnFFbsYu91Oqcd8E4ISuUdsqDQ0VryDk7IAqBZ1S1v-Ck5S2kLAJ1o4R45ZZS3VIJckE9r7fuf33_ovAtpv8GI1YDYG20_pwq_aYvR6IyVDd5OMaLPVQpurPoYpqtNroq6OmqdrXR0vcvX98ndQY8JH9y8S_Lx9asPl2_r9fs37y5frmsrxCrX3BiwxtCGA0htmG7BWBCSIuqBDQIoNy2lAq1pqOyl5shQaGOaVrfD0LMleTH33U9mh70t_qIe1T66nY7XKmin_q14t1FX4auSK8FlueCSPJ0bhJSdStZltJuyrEebFRUtZZIX6PnNlBi-TJiy2rlkcRy1xzAl1TQtF1JAxwr67Ba6DVP05QaF6jhfMcEPU5_8bfvo93cuBbiYARtDShGHI0JBHZJXh-TVn-SLQtxSlF10duGwtxv_o3s068q_VgUuRqHUgUEHopQfz-VtyiEeXTSyFUXcsV9VWsdt
CitedBy_id crossref_primary_10_1016_j_geoderma_2025_117168
crossref_primary_10_3390_rs11192301
crossref_primary_10_1016_j_jhydrol_2022_128645
crossref_primary_10_3390_land13122099
crossref_primary_10_1126_sciadv_abe6653
crossref_primary_10_3390_rs14040895
crossref_primary_10_1016_j_ecolind_2024_113062
crossref_primary_10_1002_joc_7887
crossref_primary_10_1038_s41558_022_01499_y
crossref_primary_10_1016_j_jhydrol_2024_130722
crossref_primary_10_1111_1365_2745_14313
crossref_primary_10_1029_2022WR032472
crossref_primary_10_3389_fpls_2023_1213454
crossref_primary_10_1007_s00382_023_06710_0
crossref_primary_10_1029_2023JD040257
crossref_primary_10_5194_essd_12_2725_2020
crossref_primary_10_1029_2022EF003349
crossref_primary_10_1126_sciadv_adp3964
crossref_primary_10_1029_2022EF003466
crossref_primary_10_1038_s41558_020_00945_z
crossref_primary_10_1016_j_jhydrol_2024_131825
crossref_primary_10_1038_s43247_024_01701_3
crossref_primary_10_1111_gcb_16139
crossref_primary_10_1016_j_agrformet_2022_108959
crossref_primary_10_1016_j_scitotenv_2024_169931
crossref_primary_10_1111_gcb_17106
crossref_primary_10_1038_s41467_024_55175_0
crossref_primary_10_1098_rstb_2020_0178
crossref_primary_10_1088_1748_9326_ad7520
crossref_primary_10_3389_frai_2021_647999
crossref_primary_10_1029_2024EF005469
crossref_primary_10_1088_1748_9326_ac7969
crossref_primary_10_3390_su15118865
crossref_primary_10_1029_2023JD040392
crossref_primary_10_1093_treephys_tpaa020
crossref_primary_10_1029_2021GL093678
crossref_primary_10_1016_j_ecolmodel_2025_111024
crossref_primary_10_1007_s10113_020_01710_w
crossref_primary_10_1038_s41467_024_49677_0
crossref_primary_10_1016_j_ecoinf_2023_102374
crossref_primary_10_1111_nph_20182
crossref_primary_10_1111_gcb_70129
crossref_primary_10_3389_ffgc_2021_695269
crossref_primary_10_1029_2020JD032998
crossref_primary_10_1016_j_agrformet_2024_110236
crossref_primary_10_3389_fenvs_2021_689301
crossref_primary_10_1111_gcb_16604
crossref_primary_10_1111_gcb_16725
crossref_primary_10_1016_j_envres_2024_118417
crossref_primary_10_1111_gcb_16607
crossref_primary_10_1016_j_agee_2024_108883
crossref_primary_10_1016_j_jhydrol_2023_129553
crossref_primary_10_1093_aobpla_plae023
crossref_primary_10_1007_s00382_024_07211_4
crossref_primary_10_3390_rs16234387
crossref_primary_10_1016_j_agrformet_2023_109636
crossref_primary_10_3390_atmos13101673
crossref_primary_10_1088_1748_9326_ad8c6a
crossref_primary_10_1016_j_jag_2022_102808
crossref_primary_10_3390_rs14061448
crossref_primary_10_1093_nsr_nwab150
crossref_primary_10_1038_s41612_021_00219_1
crossref_primary_10_1360_N072021_0358
crossref_primary_10_1029_2021WR031860
crossref_primary_10_1016_j_wace_2024_100692
crossref_primary_10_1016_j_agwat_2020_106003
crossref_primary_10_1016_j_scitotenv_2024_175119
crossref_primary_10_1038_s41612_023_00468_2
crossref_primary_10_1016_j_scitotenv_2022_158819
crossref_primary_10_1016_j_scitotenv_2024_177416
crossref_primary_10_1175_EI_D_20_0020_1
crossref_primary_10_1016_j_scitotenv_2024_175113
crossref_primary_10_1016_j_wace_2025_100756
crossref_primary_10_1029_2024WR038600
crossref_primary_10_1016_j_atmosres_2023_106675
crossref_primary_10_1088_1748_9326_ac507a
crossref_primary_10_3390_w14233847
crossref_primary_10_1016_j_jhydrol_2025_132877
crossref_primary_10_1038_s43247_024_01352_4
crossref_primary_10_1016_j_jhydrol_2025_133043
crossref_primary_10_1029_2023GL102939
crossref_primary_10_1088_1748_9326_ad893e
crossref_primary_10_1007_s00704_024_05053_y
crossref_primary_10_5194_bg_21_3571_2024
crossref_primary_10_1038_s41612_023_00543_8
crossref_primary_10_1016_j_agwat_2025_109367
crossref_primary_10_3390_w14132019
crossref_primary_10_1007_s13143_023_00337_1
crossref_primary_10_1007_s00382_023_06769_9
crossref_primary_10_1111_gcb_15069
crossref_primary_10_3390_f13070986
crossref_primary_10_1029_2023MS004142
crossref_primary_10_1088_1748_9326_ada6df
crossref_primary_10_3390_rs16040630
crossref_primary_10_1016_j_atmosres_2023_107199
crossref_primary_10_1016_j_earscirev_2022_104241
crossref_primary_10_1029_2022GL098952
crossref_primary_10_1029_2023JG007593
crossref_primary_10_1111_gcb_17315
crossref_primary_10_1088_1748_9326_ad7279
crossref_primary_10_1002_joc_7965
crossref_primary_10_1016_j_jhydrol_2024_131732
crossref_primary_10_1016_j_atmosres_2023_106666
crossref_primary_10_1016_j_scitotenv_2023_167817
crossref_primary_10_1029_2023EF003617
crossref_primary_10_3390_rs15102675
crossref_primary_10_1029_2024JD041603
crossref_primary_10_3389_fgene_2020_00543
crossref_primary_10_5194_hess_29_1103_2025
crossref_primary_10_1088_1748_9326_ac2348
crossref_primary_10_1016_j_scitotenv_2020_144820
crossref_primary_10_1029_2019EF001461
crossref_primary_10_1002_hyp_14503
crossref_primary_10_1016_j_gloplacha_2024_104621
crossref_primary_10_1007_s11430_021_9990_5
crossref_primary_10_1016_j_gloplacha_2024_104624
crossref_primary_10_1088_1748_9326_abe828
crossref_primary_10_1002_hyp_14183
crossref_primary_10_1016_j_jhydrol_2022_127757
crossref_primary_10_1029_2021JD034529
crossref_primary_10_1016_j_catena_2024_108542
crossref_primary_10_1016_j_wace_2023_100592
crossref_primary_10_1175_JHM_D_21_0114_1
crossref_primary_10_1038_s41598_020_68872_9
crossref_primary_10_1016_j_jhydrol_2024_131626
crossref_primary_10_1038_s41467_021_25254_7
crossref_primary_10_1038_s43247_023_00907_1
crossref_primary_10_1126_sciadv_abo1638
crossref_primary_10_1016_j_earscirev_2022_104232
crossref_primary_10_1029_2023EF003740
crossref_primary_10_5194_hess_25_3805_2021
crossref_primary_10_1016_j_wace_2022_100528
crossref_primary_10_1029_2024JG008356
crossref_primary_10_1002_agj2_21254
crossref_primary_10_1016_j_atmosres_2022_106553
crossref_primary_10_3390_w16182677
crossref_primary_10_3390_w15183219
crossref_primary_10_1029_2020GL090238
crossref_primary_10_1038_s43247_023_00922_2
crossref_primary_10_1016_j_scitotenv_2022_156021
crossref_primary_10_1177_00194662231199238
crossref_primary_10_1088_1748_9326_ac2ce8
crossref_primary_10_3390_su16052153
crossref_primary_10_1016_j_rse_2024_114489
crossref_primary_10_1093_nsr_nwad108
crossref_primary_10_1111_gcb_16214
crossref_primary_10_1016_j_scitotenv_2024_170133
crossref_primary_10_1016_j_ejrh_2024_101838
crossref_primary_10_1029_2023GL105453
crossref_primary_10_1038_s41612_025_00913_4
crossref_primary_10_3390_rs16193552
crossref_primary_10_1007_s11430_024_1519_2
crossref_primary_10_1016_j_totert_2023_100079
crossref_primary_10_1111_gcb_15832
crossref_primary_10_3389_feart_2020_00213
crossref_primary_10_1016_j_agrformet_2023_109831
crossref_primary_10_3389_feart_2021_745185
crossref_primary_10_1029_2024MS004308
crossref_primary_10_1029_2024WR038353
crossref_primary_10_1111_pce_14846
crossref_primary_10_1029_2022WR032846
crossref_primary_10_1038_s41612_024_00626_0
crossref_primary_10_1007_s00484_024_02702_9
crossref_primary_10_1029_2020GL091410
crossref_primary_10_1038_s41467_022_28752_4
crossref_primary_10_1126_sciadv_adj4289
crossref_primary_10_3390_su142215223
crossref_primary_10_1038_s41598_020_68472_7
crossref_primary_10_1111_gcb_16365
crossref_primary_10_1029_2022GL097726
crossref_primary_10_1016_j_rse_2020_112233
crossref_primary_10_1038_s41893_022_01024_1
crossref_primary_10_1016_j_ejrh_2024_101846
crossref_primary_10_1038_s43247_024_01555_9
crossref_primary_10_1029_2023GL105324
crossref_primary_10_1038_s41612_024_00614_4
crossref_primary_10_3390_agriculture13020265
crossref_primary_10_5194_cp_19_2511_2023
crossref_primary_10_3390_w12061807
crossref_primary_10_1002_ece3_70139
crossref_primary_10_1016_j_jhydrol_2024_130875
crossref_primary_10_3390_f15122187
crossref_primary_10_1088_1748_9326_ab9967
crossref_primary_10_1016_j_agsy_2024_104056
crossref_primary_10_1029_2020EF001697
crossref_primary_10_1016_j_wace_2024_100666
crossref_primary_10_1007_s00477_024_02675_6
crossref_primary_10_1016_j_fecs_2023_100107
crossref_primary_10_3390_w17050653
crossref_primary_10_1016_j_scitotenv_2024_175708
crossref_primary_10_1029_2021EF002487
crossref_primary_10_1029_2022JD037745
crossref_primary_10_1029_2020GB006758
crossref_primary_10_3390_w13070978
crossref_primary_10_1016_j_scitotenv_2022_158109
crossref_primary_10_3389_fenvs_2022_949564
crossref_primary_10_1016_j_agrformet_2023_109817
crossref_primary_10_1103_PhysRevFluids_8_040501
crossref_primary_10_3390_atmos15020221
crossref_primary_10_1016_j_agrformet_2021_108605
crossref_primary_10_1029_2020JD033587
crossref_primary_10_1029_2024EF005179
crossref_primary_10_1093_treephys_tpad125
crossref_primary_10_1016_j_jhydrol_2023_129292
crossref_primary_10_1029_2023EF003936
crossref_primary_10_1017_eds_2024_7
crossref_primary_10_1088_1748_9326_ad0c87
crossref_primary_10_1016_j_scitotenv_2022_156214
crossref_primary_10_1016_j_ecolind_2024_112814
crossref_primary_10_1111_gcb_16422
crossref_primary_10_1016_j_catena_2025_108740
crossref_primary_10_3390_f15081416
crossref_primary_10_1016_j_jhydrol_2024_132181
crossref_primary_10_1029_2023GL104075
crossref_primary_10_1029_2023EF004117
crossref_primary_10_1029_2023GL106598
crossref_primary_10_1088_1748_9326_ac4291
crossref_primary_10_1038_s43247_024_01934_2
crossref_primary_10_1007_s00382_024_07413_w
crossref_primary_10_1007_s40641_024_00198_4
crossref_primary_10_1111_gcb_16657
crossref_primary_10_1016_j_scitotenv_2024_178366
crossref_primary_10_1073_pnas_2220400120
crossref_primary_10_1029_2021WR030838
crossref_primary_10_5194_bg_20_2727_2023
crossref_primary_10_5194_gmd_17_2265_2024
crossref_primary_10_1016_j_atmosres_2021_105998
crossref_primary_10_1016_j_agrformet_2024_110074
crossref_primary_10_1016_j_agrformet_2024_110193
crossref_primary_10_1126_sciadv_adn9389
crossref_primary_10_1038_s41612_023_00491_3
crossref_primary_10_1029_2020GB006613
crossref_primary_10_2166_nh_2023_022
crossref_primary_10_3354_cr01715
crossref_primary_10_1016_j_cosust_2021_04_008
crossref_primary_10_1016_j_rse_2024_114168
crossref_primary_10_1029_2022GL100880
crossref_primary_10_1093_biosci_biad105
crossref_primary_10_1007_s11430_023_1281_y
crossref_primary_10_1016_j_jhydrol_2023_130387
crossref_primary_10_1088_1748_9326_ac97ac
crossref_primary_10_1093_aob_mcae029
crossref_primary_10_1088_2515_7620_abe8e3
crossref_primary_10_3390_rs14194862
crossref_primary_10_3389_feart_2022_1079131
crossref_primary_10_5194_soil_10_1_2024
crossref_primary_10_1016_j_scitotenv_2023_166507
crossref_primary_10_1038_s41612_024_00571_y
crossref_primary_10_1016_j_agrformet_2022_109085
crossref_primary_10_1016_j_ecoinf_2020_101052
crossref_primary_10_1029_2021JG006525
crossref_primary_10_1016_j_jag_2024_104072
crossref_primary_10_1111_gcb_16201
crossref_primary_10_1088_1748_9326_abaf1d
crossref_primary_10_1029_2021AV000619
crossref_primary_10_1088_1748_9326_abc8bc
crossref_primary_10_1016_j_scitotenv_2024_176826
crossref_primary_10_1016_j_ecolind_2024_112238
crossref_primary_10_1029_2023EF003963
crossref_primary_10_1093_erae_jbad006
crossref_primary_10_5194_hess_28_1873_2024
crossref_primary_10_1109_JSTARS_2024_3362833
crossref_primary_10_1029_2021JD034740
crossref_primary_10_1038_s43247_024_01935_1
crossref_primary_10_1016_j_earscirev_2023_104597
crossref_primary_10_1038_s41612_024_00820_0
crossref_primary_10_1088_1748_9326_ace921
crossref_primary_10_1360_SSTe_2022_0308
crossref_primary_10_1029_2020GL087091
crossref_primary_10_1029_2023EF003604
crossref_primary_10_1002_joc_6626
crossref_primary_10_1002_joc_8809
crossref_primary_10_1029_2024JG008605
crossref_primary_10_3390_w15091675
crossref_primary_10_3390_rs15133410
crossref_primary_10_1007_s10584_023_03481_9
crossref_primary_10_1088_1748_9326_ab7b97
crossref_primary_10_3390_rs16224163
crossref_primary_10_1016_j_geoderma_2022_116270
crossref_primary_10_1016_j_atmosres_2021_105692
crossref_primary_10_1007_s00376_024_3256_1
crossref_primary_10_3389_feart_2022_914437
crossref_primary_10_1016_j_atmosres_2025_107915
crossref_primary_10_3390_atmos15070761
crossref_primary_10_1029_2024EF005256
crossref_primary_10_1016_j_atmosres_2023_106700
crossref_primary_10_1016_j_jhydrol_2022_128680
crossref_primary_10_1016_j_scitotenv_2024_171080
crossref_primary_10_1016_j_jhydrol_2024_131339
crossref_primary_10_1016_j_agrformet_2024_110166
crossref_primary_10_1038_s41612_024_00579_4
crossref_primary_10_5194_hess_26_5955_2022
crossref_primary_10_1007_s10661_022_10853_8
crossref_primary_10_1016_j_isci_2022_105377
crossref_primary_10_3390_rs16183372
crossref_primary_10_5194_gi_12_25_2023
crossref_primary_10_1038_s41612_023_00531_y
crossref_primary_10_1016_j_agwat_2025_109378
crossref_primary_10_3390_agriculture14071090
crossref_primary_10_1038_s41612_023_00553_6
crossref_primary_10_1029_2024JD041566
crossref_primary_10_5194_hess_26_3847_2022
crossref_primary_10_1038_s41467_022_28652_7
crossref_primary_10_1016_j_jhydrol_2024_131901
crossref_primary_10_1002_joc_8303
crossref_primary_10_1088_1748_9326_acd2ef
crossref_primary_10_1088_1748_9326_ad4975
crossref_primary_10_1016_j_rse_2023_113933
crossref_primary_10_1038_s43017_022_00329_1
crossref_primary_10_3390_agronomy14092173
crossref_primary_10_1038_s43247_025_02145_z
crossref_primary_10_1088_1748_9326_ad9293
crossref_primary_10_1002_ecy_4109
crossref_primary_10_1029_2023EF003901
crossref_primary_10_1029_2023GL104539
crossref_primary_10_1016_j_agrformet_2025_110451
crossref_primary_10_1038_s41598_023_48694_1
crossref_primary_10_1029_2019JD031943
crossref_primary_10_1016_j_agrformet_2024_110151
crossref_primary_10_1073_pnas_2108124119
crossref_primary_10_1029_2019GL086933
crossref_primary_10_1038_s41598_022_11293_7
crossref_primary_10_1007_s00382_024_07452_3
crossref_primary_10_1029_2020EF001718
crossref_primary_10_1038_s43017_021_00144_0
crossref_primary_10_1016_j_scib_2023_01_014
crossref_primary_10_1038_s41467_023_41851_0
crossref_primary_10_1061_JHYEFF_HEENG_5872
crossref_primary_10_1038_s41558_020_0709_0
crossref_primary_10_1061__ASCE_HE_1943_5584_0001991
crossref_primary_10_1038_s41612_025_00895_3
crossref_primary_10_5194_gmd_16_3407_2023
crossref_primary_10_5194_esd_12_919_2021
crossref_primary_10_1029_2021JD035004
crossref_primary_10_1016_j_isci_2023_106972
crossref_primary_10_1016_j_agrformet_2022_108980
crossref_primary_10_1016_j_agrformet_2022_109158
crossref_primary_10_1016_j_agrformet_2021_108785
crossref_primary_10_3389_feart_2021_673495
crossref_primary_10_1360_SSTe_2024_0245
crossref_primary_10_1029_2023MS003822
crossref_primary_10_1016_j_scitotenv_2023_167885
crossref_primary_10_1016_j_jhydrol_2023_130062
crossref_primary_10_1007_s11430_022_1117_x
crossref_primary_10_1016_j_jhydrol_2023_129517
crossref_primary_10_1029_2022JD038421
crossref_primary_10_1038_s41612_022_00325_8
crossref_primary_10_1016_j_agwat_2025_109294
crossref_primary_10_1360_SSTe_2023_0294
crossref_primary_10_1038_s44304_025_00073_8
crossref_primary_10_2139_ssrn_4048959
crossref_primary_10_1002_hyp_70021
crossref_primary_10_1007_s00382_023_06927_z
crossref_primary_10_1016_j_rse_2024_114428
crossref_primary_10_5194_hess_28_5087_2024
crossref_primary_10_1038_s43017_022_00368_8
crossref_primary_10_1016_j_agrformet_2022_109029
crossref_primary_10_1038_s41586_021_03325_5
crossref_primary_10_1016_j_agrformet_2023_109326
crossref_primary_10_1016_j_scitotenv_2020_144669
crossref_primary_10_1016_j_wace_2020_100300
crossref_primary_10_1029_2023GL107909
crossref_primary_10_1038_s41467_024_50690_6
crossref_primary_10_1016_j_scitotenv_2023_167755
crossref_primary_10_1016_j_foreco_2023_120853
crossref_primary_10_3390_f11101103
crossref_primary_10_5194_essd_16_3017_2024
crossref_primary_10_1029_2021EF002642
crossref_primary_10_1007_s00477_024_02826_9
crossref_primary_10_1111_gcb_70102
crossref_primary_10_1080_10256016_2022_2056599
Cites_doi 10.1038/ngeo2141
10.1175/JHM-D-12-0137.1
10.1126/sciadv.aau5740
10.1016/j.agrformet.2017.08.031
10.1111/gcb.13946
10.1073/pnas.1422945112
10.1038/nclimate1832
10.1016/j.earscirev.2010.02.004
10.1002/grl.50956
10.1007/978-0-387-71887-3_9
10.1038/s41558-018-0156-3
10.1038/nclimate3114
10.1175/JCLI-D-16-0758.1
10.1016/j.agrformet.2015.12.065
10.1175/JCLI-D-14-00001.1
10.1002/2014GL062308
10.1038/ngeo1032
10.1038/s41558-018-0138-5
10.1002/2015JD024053
10.1038/nclimate1635
10.1038/nclimate3029
10.5194/gmd-10-1903-2017
10.1017/CBO9781139177245
10.1175/JCLI-D-16-0493.1
10.1002/2016GL068487
10.1890/ES15-00203.1
10.1038/nclimate2470
10.1175/JHM-D-11-0104.1
10.1016/j.jmva.2009.08.002
10.1175/JCLI-D-15-0877.1
10.1175/JAMC-D-14-0053.1
10.1038/nature03972
10.1002/wcc.394
10.1175/JCLI-D-16-0192.1
10.1007/s00382-014-2075-y
10.1111/nph.12321
10.1007/s00382-010-0807-1
10.1126/science.1185188
10.1126/sciadv.1700263
10.1002/grl.50495
10.1175/BAMS-D-17-0149.1
10.1016/j.foreco.2009.09.001
10.1016/j.palwor.2013.02.002
10.1130/G25329A.1
ContentType Journal Article
Copyright Copyright National Academy of Sciences Sep 17, 2019
2019
Copyright_xml – notice: Copyright National Academy of Sciences Sep 17, 2019
– notice: 2019
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID CYE
CYI
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1073/pnas.1904955116
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Virology and AIDS Abstracts
MEDLINE


CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Environmental Sciences
EISSN 1091-6490
EndPage 18853
ExternalDocumentID PMC6754607
1581364
31481606
10_1073_pnas_1904955116
20190030905
26851639
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation 80NSSC17K0265
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CYE
CYI
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
79B
AAPBV
ABPTK
ADZLD
ASUFR
DNJUQ
DWIUU
JSODD
OIOZB
OTOTI
PQEST
ZA5
5PM
ID FETCH-LOGICAL-c557t-4bb0cbb124006ab3a80bc0561eeaf3f5014b8115ecb216d6a4e3e5abb28a8ffd3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:46:33 EDT 2025
Thu May 18 22:40:02 EDT 2023
Fri Jul 11 03:50:39 EDT 2025
Sat Aug 23 12:56:34 EDT 2025
Wed Feb 19 02:30:57 EST 2025
Tue Jul 01 03:40:08 EDT 2025
Thu Apr 24 23:04:52 EDT 2025
Fri Aug 15 15:19:45 EDT 2025
Thu May 29 14:19:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords Vapor Pressure Deficit
Compound Extreme Events
Glace-Cmip5
GLACE-CMIP5
soil moisture
compound extreme events
vapor pressure deficit
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c557t-4bb0cbb124006ab3a80bc0561eeaf3f5014b8115ecb216d6a4e3e5abb28a8ffd3
Notes GSFC
GSFC-E-DAA-TN72966
ISSN: 0027-8424
Report Number: GSFC-E-DAA-TN72966
Goddard Space Flight Center
E-ISSN: 1091-6490
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
AC02-05CH11231
National Science Foundation (NSF)
Edited by Paul A. Dirmeyer, George Mason University, Fairfax, VA, and accepted by Editorial Board Member Robert E. Dickinson July 30, 2019 (received for review March 22, 2019)
Author contributions: S.Z. designed research; S.Z., A.P.W., A.M.B., B.I.C., Y.Z., S.H., R.L., S.I.S., and P.G. performed research; S.Z. and Y.Z. analyzed data; A.P.W., A.M.B., B.I.C., Y.Z., S.H., R.L., S.I.S., and P.G. edited the paper; and S.Z. wrote the paper.
ORCID 0000-0002-7580-2521
0000-0001-8176-8166
0000-0002-0845-8345
0000-0002-3986-1268
0000-0001-9528-2917
0000-0001-7161-5959
0000-0002-7468-2409
0000000171615959
0000000239861268
0000000274682409
0000000181768166
OpenAccessLink https://www.osti.gov/servlets/purl/1581364
PMID 31481606
PQID 2294473547
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6754607
osti_scitechconnect_1581364
proquest_miscellaneous_2284565093
proquest_journals_2294473547
pubmed_primary_31481606
crossref_primary_10_1073_pnas_1904955116
crossref_citationtrail_10_1073_pnas_1904955116
nasa_ntrs_20190030905
jstor_primary_26851639
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-17
PublicationDateYYYYMMDD 2019-09-17
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-17
  day: 17
PublicationDecade 2010
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
– name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
Nelsen R. B. (e_1_3_3_29_2) 2007
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_16_2
  doi: 10.1038/ngeo2141
– ident: e_1_3_3_31_2
  doi: 10.1175/JHM-D-12-0137.1
– ident: e_1_3_3_9_2
  doi: 10.1126/sciadv.aau5740
– ident: e_1_3_3_36_2
  doi: 10.1016/j.agrformet.2017.08.031
– ident: e_1_3_3_42_2
  doi: 10.1111/gcb.13946
– ident: e_1_3_3_2_2
  doi: 10.1073/pnas.1422945112
– ident: e_1_3_3_5_2
  doi: 10.1038/nclimate1832
– ident: e_1_3_3_21_2
  doi: 10.1016/j.earscirev.2010.02.004
– ident: e_1_3_3_27_2
  doi: 10.1002/grl.50956
– ident: e_1_3_3_45_2
  doi: 10.1007/978-0-387-71887-3_9
– ident: e_1_3_3_1_2
  doi: 10.1038/s41558-018-0156-3
– ident: e_1_3_3_3_2
  doi: 10.1038/nclimate3114
– ident: e_1_3_3_25_2
  doi: 10.1175/JCLI-D-16-0758.1
– ident: e_1_3_3_37_2
  doi: 10.1016/j.agrformet.2015.12.065
– ident: e_1_3_3_34_2
  doi: 10.1175/JCLI-D-14-00001.1
– ident: e_1_3_3_43_2
  doi: 10.1002/2014GL062308
– ident: e_1_3_3_19_2
  doi: 10.1038/ngeo1032
– ident: e_1_3_3_23_2
  doi: 10.1038/s41558-018-0138-5
– ident: e_1_3_3_28_2
  doi: 10.1002/2015JD024053
– ident: e_1_3_3_7_2
  doi: 10.1038/nclimate1635
– ident: e_1_3_3_15_2
  doi: 10.1038/nclimate3029
– ident: e_1_3_3_26_2
  doi: 10.5194/gmd-10-1903-2017
– ident: e_1_3_3_10_2
  doi: 10.1017/CBO9781139177245
– ident: e_1_3_3_13_2
  doi: 10.1175/JCLI-D-16-0493.1
– ident: e_1_3_3_33_2
  doi: 10.1002/2016GL068487
– ident: e_1_3_3_41_2
  doi: 10.1890/ES15-00203.1
– ident: e_1_3_3_6_2
  doi: 10.1038/nclimate2470
– ident: e_1_3_3_22_2
  doi: 10.1175/JHM-D-11-0104.1
– ident: e_1_3_3_30_2
  doi: 10.1016/j.jmva.2009.08.002
– ident: e_1_3_3_18_2
  doi: 10.1175/JCLI-D-15-0877.1
– ident: e_1_3_3_39_2
  doi: 10.1175/JAMC-D-14-0053.1
– ident: e_1_3_3_4_2
  doi: 10.1038/nature03972
– volume-title: An Introduction to Copulas
  year: 2007
  ident: e_1_3_3_29_2
– ident: e_1_3_3_38_2
  doi: 10.1002/wcc.394
– ident: e_1_3_3_17_2
  doi: 10.1175/JCLI-D-16-0192.1
– ident: e_1_3_3_24_2
  doi: 10.1007/s00382-014-2075-y
– ident: e_1_3_3_40_2
  doi: 10.1111/nph.12321
– ident: e_1_3_3_11_2
  doi: 10.1007/s00382-010-0807-1
– ident: e_1_3_3_12_2
  doi: 10.1126/science.1185188
– ident: e_1_3_3_44_2
  doi: 10.1126/sciadv.1700263
– ident: e_1_3_3_20_2
  doi: 10.1002/grl.50495
– ident: e_1_3_3_46_2
– ident: e_1_3_3_35_2
  doi: 10.1175/BAMS-D-17-0149.1
– ident: e_1_3_3_8_2
  doi: 10.1016/j.foreco.2009.09.001
– ident: e_1_3_3_32_2
  doi: 10.1016/j.palwor.2013.02.002
– ident: e_1_3_3_14_2
  doi: 10.1130/G25329A.1
SSID ssj0009580
Score 2.696365
Snippet Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and...
Soil drought and atmospheric aridity can be disastrous for ecosystems and society. This study demonstrates the critical role of land–atmosphere feedbacks in...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
nasa
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18848
SubjectTerms Aridity
Atmosphere
Atmosphere - chemistry
Atmospheric models
Climate Change
Climate models
compound extreme events
Coupling
Drought
Droughts
ENVIRONMENTAL SCIENCES
Feedback
Geographic Mapping
Geophysics
GLACE-CMIP5
Humidity
Models, Theoretical
Physical Sciences
Precipitation
Pressure
Soil - chemistry
Soil moisture
Soils
Stress (physiology)
Vapor pressure
vapor pressure deficit
Vapors
Weather
Title Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity
URI https://www.jstor.org/stable/26851639
https://ntrs.nasa.gov/citations/20190030905
https://www.ncbi.nlm.nih.gov/pubmed/31481606
https://www.proquest.com/docview/2294473547
https://www.proquest.com/docview/2284565093
https://www.osti.gov/servlets/purl/1581364
https://pubmed.ncbi.nlm.nih.gov/PMC6754607
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCGGwQNlCQeBiKUvLhfPSxmjZNqJQ-tFLFS2Q7jlq0JWhJJcRfz53tJE0p0uClqhLbsXK_XO4ud78j5IMnfQpA8FweBblLQbBuKgV1BUsKn4oUTAB0FL_M4psl_byKVn1USVWXNHwkfh2sK_kfqcIxkCtWyf6DZLtF4QD8B_nCL0gYfh8k4ykrc5c1d1WN5ADSKeBVxLFo3pE_mYAbBoYk5pULQ8JUV5tbJ1eNeXRieTcXWVvvN_mmGXzlnXdvt7rNJZi1wcNJX4pi9EPtuM581jc2_rautiq4uu5V_050Z-LMB3VCOs1sogg6-xjtJTgBCoOy_M7uNqWJ8po4ha8SsXRZplGtYJm4MdXNQUfywLFWH-viSwM8zf1i1KufppqX8w_FD5oKuxWXrB6BiQNeX9QuM6DYnn3NrpfTaba4Wi0ekycB-BaB0ua7TM2pprAwW2v5oJLw097yA1NGZ7PCix3GgJFzVIGGPuS17Cff7lgzi-fkmXFD7InG1DF5JMsX5LgVpH1h2Mg_viSLPZDZHcjsHmR2DzIbQWYbkNkw194BmW1AdkKW11eLyxvXtOJwRRQlDTzE3BOc-5hxHDMestTjAp1PKVkRFvhxmqfgXEjBAz_OY0ZlKCPGeZCytCjy8BRuTFXK18QeJzJHs8nLC0m9RHBRxLwQRSJhrTSgFhm1dzUThqce26XcZipfIgkzFEPWi8EiF92EH5qi5e9DT5WYunFBDB4HGOkWOUG5ZXClOkP0qhQBL7LIGQoyA3MUOZUFJp-JJvOj1A9j2Op5K9_MqAWYHYwp9vOmiUXed6dBaeOXOFbKaotjUvSkvHFokVcaDt2WQp-ChvRgr8kAKN0AJIQfnik3a0UMD84_jb3kzQOue0ae9g_pOTlq7rfyLZjXDX-nHoffByjRQQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land-atmosphere+feedbacks+exacerbate+concurrent+soil+drought+and+atmospheric+aridity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhou%2C+Sha&rft.au=Williams%2C+A+Park&rft.au=Berg%2C+Alexis+M&rft.au=Cook%2C+Benjamin+I&rft.date=2019-09-17&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=116&rft.issue=38&rft.spage=18848&rft_id=info:doi/10.1073%2Fpnas.1904955116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon