Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity
Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 38; pp. 18848 - 18853 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Goddard Space Flight Center
National Academy of Sciences
17.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land–atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture–precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land–atmosphere feedbacks is projected to increase in the 21st century. Importantly, land–atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone. |
---|---|
AbstractList | Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land-atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture-precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land-atmosphere feedbacks is projected to increase in the 21st century. Importantly, land-atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone.Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land-atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture-precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land-atmosphere feedbacks is projected to increase in the 21st century. Importantly, land-atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone. Soil drought and atmospheric aridity can be disastrous for ecosystems and society. This study demonstrates the critical role of land–atmosphere feedbacks in driving cooccurring soil drought and atmospheric aridity. The frequency and intensity of atmospheric aridity are greatly reduced without the feedback of soil moisture to atmospheric temperature and humidity. Soil moisture can also impact precipitation to amplify soil moisture deficits under dry conditions. These land–atmosphere processes lead to high probability of concurrent soil drought and atmospheric aridity. Compared to the historical period, models project future frequency and intensity of concurrent soil drought and atmospheric aridity to be further enhanced by land–atmosphere feedbacks, which may pose large risks to ecosystem services and human well-being in the future. Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land–atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture–precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land–atmosphere feedbacks is projected to increase in the 21st century. Importantly, land–atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone. Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land–atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture–precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land–atmosphere feedbacks is projected to increase in the 21st century. Importantly, land–atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone. Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land–atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture–precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land–atmosphere feedbacks is projected to increase in the 21st century. Significantly, land–atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone. |
Audience | PUBLIC |
Author | Seneviratne, Sonia I. Gentine, Pierre Cook, Benjamin I. Hagemann, Stefan Williams, A. Park Berg, Alexis M. Zhang, Yao Zhou, Sha Lorenz, Ruth |
Author_xml | – sequence: 1 givenname: Sha surname: Zhou fullname: Zhou, Sha – sequence: 2 givenname: A. Park surname: Williams fullname: Williams, A. Park – sequence: 3 givenname: Alexis M. surname: Berg fullname: Berg, Alexis M. – sequence: 4 givenname: Benjamin I. surname: Cook fullname: Cook, Benjamin I. – sequence: 5 givenname: Yao surname: Zhang fullname: Zhang, Yao – sequence: 6 givenname: Stefan surname: Hagemann fullname: Hagemann, Stefan – sequence: 7 givenname: Ruth surname: Lorenz fullname: Lorenz, Ruth – sequence: 8 givenname: Sonia I. surname: Seneviratne fullname: Seneviratne, Sonia I. – sequence: 9 givenname: Pierre surname: Gentine fullname: Gentine, Pierre |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31481606$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1581364$$D View this record in Osti.gov |
BookMark | eNp9kU1vEzEQhi1URNPAmQugFVy4bDtef2T3goQqvqRIXICrZXtnG4eNHWwvojf-A_-QX4KjLQF64GTJ87wz78x7Rk588EjIQwrnFFbsYu91Oqcd8E4ISuUdsqDQ0VryDk7IAqBZ1S1v-Ck5S2kLAJ1o4R45ZZS3VIJckE9r7fuf33_ovAtpv8GI1YDYG20_pwq_aYvR6IyVDd5OMaLPVQpurPoYpqtNroq6OmqdrXR0vcvX98ndQY8JH9y8S_Lx9asPl2_r9fs37y5frmsrxCrX3BiwxtCGA0htmG7BWBCSIuqBDQIoNy2lAq1pqOyl5shQaGOaVrfD0LMleTH33U9mh70t_qIe1T66nY7XKmin_q14t1FX4auSK8FlueCSPJ0bhJSdStZltJuyrEebFRUtZZIX6PnNlBi-TJiy2rlkcRy1xzAl1TQtF1JAxwr67Ba6DVP05QaF6jhfMcEPU5_8bfvo93cuBbiYARtDShGHI0JBHZJXh-TVn-SLQtxSlF10duGwtxv_o3s068q_VgUuRqHUgUEHopQfz-VtyiEeXTSyFUXcsV9VWsdt |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2025_117168 crossref_primary_10_3390_rs11192301 crossref_primary_10_1016_j_jhydrol_2022_128645 crossref_primary_10_3390_land13122099 crossref_primary_10_1126_sciadv_abe6653 crossref_primary_10_3390_rs14040895 crossref_primary_10_1016_j_ecolind_2024_113062 crossref_primary_10_1002_joc_7887 crossref_primary_10_1038_s41558_022_01499_y crossref_primary_10_1016_j_jhydrol_2024_130722 crossref_primary_10_1111_1365_2745_14313 crossref_primary_10_1029_2022WR032472 crossref_primary_10_3389_fpls_2023_1213454 crossref_primary_10_1007_s00382_023_06710_0 crossref_primary_10_1029_2023JD040257 crossref_primary_10_5194_essd_12_2725_2020 crossref_primary_10_1029_2022EF003349 crossref_primary_10_1126_sciadv_adp3964 crossref_primary_10_1029_2022EF003466 crossref_primary_10_1038_s41558_020_00945_z crossref_primary_10_1016_j_jhydrol_2024_131825 crossref_primary_10_1038_s43247_024_01701_3 crossref_primary_10_1111_gcb_16139 crossref_primary_10_1016_j_agrformet_2022_108959 crossref_primary_10_1016_j_scitotenv_2024_169931 crossref_primary_10_1111_gcb_17106 crossref_primary_10_1038_s41467_024_55175_0 crossref_primary_10_1098_rstb_2020_0178 crossref_primary_10_1088_1748_9326_ad7520 crossref_primary_10_3389_frai_2021_647999 crossref_primary_10_1029_2024EF005469 crossref_primary_10_1088_1748_9326_ac7969 crossref_primary_10_3390_su15118865 crossref_primary_10_1029_2023JD040392 crossref_primary_10_1093_treephys_tpaa020 crossref_primary_10_1029_2021GL093678 crossref_primary_10_1016_j_ecolmodel_2025_111024 crossref_primary_10_1007_s10113_020_01710_w crossref_primary_10_1038_s41467_024_49677_0 crossref_primary_10_1016_j_ecoinf_2023_102374 crossref_primary_10_1111_nph_20182 crossref_primary_10_1111_gcb_70129 crossref_primary_10_3389_ffgc_2021_695269 crossref_primary_10_1029_2020JD032998 crossref_primary_10_1016_j_agrformet_2024_110236 crossref_primary_10_3389_fenvs_2021_689301 crossref_primary_10_1111_gcb_16604 crossref_primary_10_1111_gcb_16725 crossref_primary_10_1016_j_envres_2024_118417 crossref_primary_10_1111_gcb_16607 crossref_primary_10_1016_j_agee_2024_108883 crossref_primary_10_1016_j_jhydrol_2023_129553 crossref_primary_10_1093_aobpla_plae023 crossref_primary_10_1007_s00382_024_07211_4 crossref_primary_10_3390_rs16234387 crossref_primary_10_1016_j_agrformet_2023_109636 crossref_primary_10_3390_atmos13101673 crossref_primary_10_1088_1748_9326_ad8c6a crossref_primary_10_1016_j_jag_2022_102808 crossref_primary_10_3390_rs14061448 crossref_primary_10_1093_nsr_nwab150 crossref_primary_10_1038_s41612_021_00219_1 crossref_primary_10_1360_N072021_0358 crossref_primary_10_1029_2021WR031860 crossref_primary_10_1016_j_wace_2024_100692 crossref_primary_10_1016_j_agwat_2020_106003 crossref_primary_10_1016_j_scitotenv_2024_175119 crossref_primary_10_1038_s41612_023_00468_2 crossref_primary_10_1016_j_scitotenv_2022_158819 crossref_primary_10_1016_j_scitotenv_2024_177416 crossref_primary_10_1175_EI_D_20_0020_1 crossref_primary_10_1016_j_scitotenv_2024_175113 crossref_primary_10_1016_j_wace_2025_100756 crossref_primary_10_1029_2024WR038600 crossref_primary_10_1016_j_atmosres_2023_106675 crossref_primary_10_1088_1748_9326_ac507a crossref_primary_10_3390_w14233847 crossref_primary_10_1016_j_jhydrol_2025_132877 crossref_primary_10_1038_s43247_024_01352_4 crossref_primary_10_1016_j_jhydrol_2025_133043 crossref_primary_10_1029_2023GL102939 crossref_primary_10_1088_1748_9326_ad893e crossref_primary_10_1007_s00704_024_05053_y crossref_primary_10_5194_bg_21_3571_2024 crossref_primary_10_1038_s41612_023_00543_8 crossref_primary_10_1016_j_agwat_2025_109367 crossref_primary_10_3390_w14132019 crossref_primary_10_1007_s13143_023_00337_1 crossref_primary_10_1007_s00382_023_06769_9 crossref_primary_10_1111_gcb_15069 crossref_primary_10_3390_f13070986 crossref_primary_10_1029_2023MS004142 crossref_primary_10_1088_1748_9326_ada6df crossref_primary_10_3390_rs16040630 crossref_primary_10_1016_j_atmosres_2023_107199 crossref_primary_10_1016_j_earscirev_2022_104241 crossref_primary_10_1029_2022GL098952 crossref_primary_10_1029_2023JG007593 crossref_primary_10_1111_gcb_17315 crossref_primary_10_1088_1748_9326_ad7279 crossref_primary_10_1002_joc_7965 crossref_primary_10_1016_j_jhydrol_2024_131732 crossref_primary_10_1016_j_atmosres_2023_106666 crossref_primary_10_1016_j_scitotenv_2023_167817 crossref_primary_10_1029_2023EF003617 crossref_primary_10_3390_rs15102675 crossref_primary_10_1029_2024JD041603 crossref_primary_10_3389_fgene_2020_00543 crossref_primary_10_5194_hess_29_1103_2025 crossref_primary_10_1088_1748_9326_ac2348 crossref_primary_10_1016_j_scitotenv_2020_144820 crossref_primary_10_1029_2019EF001461 crossref_primary_10_1002_hyp_14503 crossref_primary_10_1016_j_gloplacha_2024_104621 crossref_primary_10_1007_s11430_021_9990_5 crossref_primary_10_1016_j_gloplacha_2024_104624 crossref_primary_10_1088_1748_9326_abe828 crossref_primary_10_1002_hyp_14183 crossref_primary_10_1016_j_jhydrol_2022_127757 crossref_primary_10_1029_2021JD034529 crossref_primary_10_1016_j_catena_2024_108542 crossref_primary_10_1016_j_wace_2023_100592 crossref_primary_10_1175_JHM_D_21_0114_1 crossref_primary_10_1038_s41598_020_68872_9 crossref_primary_10_1016_j_jhydrol_2024_131626 crossref_primary_10_1038_s41467_021_25254_7 crossref_primary_10_1038_s43247_023_00907_1 crossref_primary_10_1126_sciadv_abo1638 crossref_primary_10_1016_j_earscirev_2022_104232 crossref_primary_10_1029_2023EF003740 crossref_primary_10_5194_hess_25_3805_2021 crossref_primary_10_1016_j_wace_2022_100528 crossref_primary_10_1029_2024JG008356 crossref_primary_10_1002_agj2_21254 crossref_primary_10_1016_j_atmosres_2022_106553 crossref_primary_10_3390_w16182677 crossref_primary_10_3390_w15183219 crossref_primary_10_1029_2020GL090238 crossref_primary_10_1038_s43247_023_00922_2 crossref_primary_10_1016_j_scitotenv_2022_156021 crossref_primary_10_1177_00194662231199238 crossref_primary_10_1088_1748_9326_ac2ce8 crossref_primary_10_3390_su16052153 crossref_primary_10_1016_j_rse_2024_114489 crossref_primary_10_1093_nsr_nwad108 crossref_primary_10_1111_gcb_16214 crossref_primary_10_1016_j_scitotenv_2024_170133 crossref_primary_10_1016_j_ejrh_2024_101838 crossref_primary_10_1029_2023GL105453 crossref_primary_10_1038_s41612_025_00913_4 crossref_primary_10_3390_rs16193552 crossref_primary_10_1007_s11430_024_1519_2 crossref_primary_10_1016_j_totert_2023_100079 crossref_primary_10_1111_gcb_15832 crossref_primary_10_3389_feart_2020_00213 crossref_primary_10_1016_j_agrformet_2023_109831 crossref_primary_10_3389_feart_2021_745185 crossref_primary_10_1029_2024MS004308 crossref_primary_10_1029_2024WR038353 crossref_primary_10_1111_pce_14846 crossref_primary_10_1029_2022WR032846 crossref_primary_10_1038_s41612_024_00626_0 crossref_primary_10_1007_s00484_024_02702_9 crossref_primary_10_1029_2020GL091410 crossref_primary_10_1038_s41467_022_28752_4 crossref_primary_10_1126_sciadv_adj4289 crossref_primary_10_3390_su142215223 crossref_primary_10_1038_s41598_020_68472_7 crossref_primary_10_1111_gcb_16365 crossref_primary_10_1029_2022GL097726 crossref_primary_10_1016_j_rse_2020_112233 crossref_primary_10_1038_s41893_022_01024_1 crossref_primary_10_1016_j_ejrh_2024_101846 crossref_primary_10_1038_s43247_024_01555_9 crossref_primary_10_1029_2023GL105324 crossref_primary_10_1038_s41612_024_00614_4 crossref_primary_10_3390_agriculture13020265 crossref_primary_10_5194_cp_19_2511_2023 crossref_primary_10_3390_w12061807 crossref_primary_10_1002_ece3_70139 crossref_primary_10_1016_j_jhydrol_2024_130875 crossref_primary_10_3390_f15122187 crossref_primary_10_1088_1748_9326_ab9967 crossref_primary_10_1016_j_agsy_2024_104056 crossref_primary_10_1029_2020EF001697 crossref_primary_10_1016_j_wace_2024_100666 crossref_primary_10_1007_s00477_024_02675_6 crossref_primary_10_1016_j_fecs_2023_100107 crossref_primary_10_3390_w17050653 crossref_primary_10_1016_j_scitotenv_2024_175708 crossref_primary_10_1029_2021EF002487 crossref_primary_10_1029_2022JD037745 crossref_primary_10_1029_2020GB006758 crossref_primary_10_3390_w13070978 crossref_primary_10_1016_j_scitotenv_2022_158109 crossref_primary_10_3389_fenvs_2022_949564 crossref_primary_10_1016_j_agrformet_2023_109817 crossref_primary_10_1103_PhysRevFluids_8_040501 crossref_primary_10_3390_atmos15020221 crossref_primary_10_1016_j_agrformet_2021_108605 crossref_primary_10_1029_2020JD033587 crossref_primary_10_1029_2024EF005179 crossref_primary_10_1093_treephys_tpad125 crossref_primary_10_1016_j_jhydrol_2023_129292 crossref_primary_10_1029_2023EF003936 crossref_primary_10_1017_eds_2024_7 crossref_primary_10_1088_1748_9326_ad0c87 crossref_primary_10_1016_j_scitotenv_2022_156214 crossref_primary_10_1016_j_ecolind_2024_112814 crossref_primary_10_1111_gcb_16422 crossref_primary_10_1016_j_catena_2025_108740 crossref_primary_10_3390_f15081416 crossref_primary_10_1016_j_jhydrol_2024_132181 crossref_primary_10_1029_2023GL104075 crossref_primary_10_1029_2023EF004117 crossref_primary_10_1029_2023GL106598 crossref_primary_10_1088_1748_9326_ac4291 crossref_primary_10_1038_s43247_024_01934_2 crossref_primary_10_1007_s00382_024_07413_w crossref_primary_10_1007_s40641_024_00198_4 crossref_primary_10_1111_gcb_16657 crossref_primary_10_1016_j_scitotenv_2024_178366 crossref_primary_10_1073_pnas_2220400120 crossref_primary_10_1029_2021WR030838 crossref_primary_10_5194_bg_20_2727_2023 crossref_primary_10_5194_gmd_17_2265_2024 crossref_primary_10_1016_j_atmosres_2021_105998 crossref_primary_10_1016_j_agrformet_2024_110074 crossref_primary_10_1016_j_agrformet_2024_110193 crossref_primary_10_1126_sciadv_adn9389 crossref_primary_10_1038_s41612_023_00491_3 crossref_primary_10_1029_2020GB006613 crossref_primary_10_2166_nh_2023_022 crossref_primary_10_3354_cr01715 crossref_primary_10_1016_j_cosust_2021_04_008 crossref_primary_10_1016_j_rse_2024_114168 crossref_primary_10_1029_2022GL100880 crossref_primary_10_1093_biosci_biad105 crossref_primary_10_1007_s11430_023_1281_y crossref_primary_10_1016_j_jhydrol_2023_130387 crossref_primary_10_1088_1748_9326_ac97ac crossref_primary_10_1093_aob_mcae029 crossref_primary_10_1088_2515_7620_abe8e3 crossref_primary_10_3390_rs14194862 crossref_primary_10_3389_feart_2022_1079131 crossref_primary_10_5194_soil_10_1_2024 crossref_primary_10_1016_j_scitotenv_2023_166507 crossref_primary_10_1038_s41612_024_00571_y crossref_primary_10_1016_j_agrformet_2022_109085 crossref_primary_10_1016_j_ecoinf_2020_101052 crossref_primary_10_1029_2021JG006525 crossref_primary_10_1016_j_jag_2024_104072 crossref_primary_10_1111_gcb_16201 crossref_primary_10_1088_1748_9326_abaf1d crossref_primary_10_1029_2021AV000619 crossref_primary_10_1088_1748_9326_abc8bc crossref_primary_10_1016_j_scitotenv_2024_176826 crossref_primary_10_1016_j_ecolind_2024_112238 crossref_primary_10_1029_2023EF003963 crossref_primary_10_1093_erae_jbad006 crossref_primary_10_5194_hess_28_1873_2024 crossref_primary_10_1109_JSTARS_2024_3362833 crossref_primary_10_1029_2021JD034740 crossref_primary_10_1038_s43247_024_01935_1 crossref_primary_10_1016_j_earscirev_2023_104597 crossref_primary_10_1038_s41612_024_00820_0 crossref_primary_10_1088_1748_9326_ace921 crossref_primary_10_1360_SSTe_2022_0308 crossref_primary_10_1029_2020GL087091 crossref_primary_10_1029_2023EF003604 crossref_primary_10_1002_joc_6626 crossref_primary_10_1002_joc_8809 crossref_primary_10_1029_2024JG008605 crossref_primary_10_3390_w15091675 crossref_primary_10_3390_rs15133410 crossref_primary_10_1007_s10584_023_03481_9 crossref_primary_10_1088_1748_9326_ab7b97 crossref_primary_10_3390_rs16224163 crossref_primary_10_1016_j_geoderma_2022_116270 crossref_primary_10_1016_j_atmosres_2021_105692 crossref_primary_10_1007_s00376_024_3256_1 crossref_primary_10_3389_feart_2022_914437 crossref_primary_10_1016_j_atmosres_2025_107915 crossref_primary_10_3390_atmos15070761 crossref_primary_10_1029_2024EF005256 crossref_primary_10_1016_j_atmosres_2023_106700 crossref_primary_10_1016_j_jhydrol_2022_128680 crossref_primary_10_1016_j_scitotenv_2024_171080 crossref_primary_10_1016_j_jhydrol_2024_131339 crossref_primary_10_1016_j_agrformet_2024_110166 crossref_primary_10_1038_s41612_024_00579_4 crossref_primary_10_5194_hess_26_5955_2022 crossref_primary_10_1007_s10661_022_10853_8 crossref_primary_10_1016_j_isci_2022_105377 crossref_primary_10_3390_rs16183372 crossref_primary_10_5194_gi_12_25_2023 crossref_primary_10_1038_s41612_023_00531_y crossref_primary_10_1016_j_agwat_2025_109378 crossref_primary_10_3390_agriculture14071090 crossref_primary_10_1038_s41612_023_00553_6 crossref_primary_10_1029_2024JD041566 crossref_primary_10_5194_hess_26_3847_2022 crossref_primary_10_1038_s41467_022_28652_7 crossref_primary_10_1016_j_jhydrol_2024_131901 crossref_primary_10_1002_joc_8303 crossref_primary_10_1088_1748_9326_acd2ef crossref_primary_10_1088_1748_9326_ad4975 crossref_primary_10_1016_j_rse_2023_113933 crossref_primary_10_1038_s43017_022_00329_1 crossref_primary_10_3390_agronomy14092173 crossref_primary_10_1038_s43247_025_02145_z crossref_primary_10_1088_1748_9326_ad9293 crossref_primary_10_1002_ecy_4109 crossref_primary_10_1029_2023EF003901 crossref_primary_10_1029_2023GL104539 crossref_primary_10_1016_j_agrformet_2025_110451 crossref_primary_10_1038_s41598_023_48694_1 crossref_primary_10_1029_2019JD031943 crossref_primary_10_1016_j_agrformet_2024_110151 crossref_primary_10_1073_pnas_2108124119 crossref_primary_10_1029_2019GL086933 crossref_primary_10_1038_s41598_022_11293_7 crossref_primary_10_1007_s00382_024_07452_3 crossref_primary_10_1029_2020EF001718 crossref_primary_10_1038_s43017_021_00144_0 crossref_primary_10_1016_j_scib_2023_01_014 crossref_primary_10_1038_s41467_023_41851_0 crossref_primary_10_1061_JHYEFF_HEENG_5872 crossref_primary_10_1038_s41558_020_0709_0 crossref_primary_10_1061__ASCE_HE_1943_5584_0001991 crossref_primary_10_1038_s41612_025_00895_3 crossref_primary_10_5194_gmd_16_3407_2023 crossref_primary_10_5194_esd_12_919_2021 crossref_primary_10_1029_2021JD035004 crossref_primary_10_1016_j_isci_2023_106972 crossref_primary_10_1016_j_agrformet_2022_108980 crossref_primary_10_1016_j_agrformet_2022_109158 crossref_primary_10_1016_j_agrformet_2021_108785 crossref_primary_10_3389_feart_2021_673495 crossref_primary_10_1360_SSTe_2024_0245 crossref_primary_10_1029_2023MS003822 crossref_primary_10_1016_j_scitotenv_2023_167885 crossref_primary_10_1016_j_jhydrol_2023_130062 crossref_primary_10_1007_s11430_022_1117_x crossref_primary_10_1016_j_jhydrol_2023_129517 crossref_primary_10_1029_2022JD038421 crossref_primary_10_1038_s41612_022_00325_8 crossref_primary_10_1016_j_agwat_2025_109294 crossref_primary_10_1360_SSTe_2023_0294 crossref_primary_10_1038_s44304_025_00073_8 crossref_primary_10_2139_ssrn_4048959 crossref_primary_10_1002_hyp_70021 crossref_primary_10_1007_s00382_023_06927_z crossref_primary_10_1016_j_rse_2024_114428 crossref_primary_10_5194_hess_28_5087_2024 crossref_primary_10_1038_s43017_022_00368_8 crossref_primary_10_1016_j_agrformet_2022_109029 crossref_primary_10_1038_s41586_021_03325_5 crossref_primary_10_1016_j_agrformet_2023_109326 crossref_primary_10_1016_j_scitotenv_2020_144669 crossref_primary_10_1016_j_wace_2020_100300 crossref_primary_10_1029_2023GL107909 crossref_primary_10_1038_s41467_024_50690_6 crossref_primary_10_1016_j_scitotenv_2023_167755 crossref_primary_10_1016_j_foreco_2023_120853 crossref_primary_10_3390_f11101103 crossref_primary_10_5194_essd_16_3017_2024 crossref_primary_10_1029_2021EF002642 crossref_primary_10_1007_s00477_024_02826_9 crossref_primary_10_1111_gcb_70102 crossref_primary_10_1080_10256016_2022_2056599 |
Cites_doi | 10.1038/ngeo2141 10.1175/JHM-D-12-0137.1 10.1126/sciadv.aau5740 10.1016/j.agrformet.2017.08.031 10.1111/gcb.13946 10.1073/pnas.1422945112 10.1038/nclimate1832 10.1016/j.earscirev.2010.02.004 10.1002/grl.50956 10.1007/978-0-387-71887-3_9 10.1038/s41558-018-0156-3 10.1038/nclimate3114 10.1175/JCLI-D-16-0758.1 10.1016/j.agrformet.2015.12.065 10.1175/JCLI-D-14-00001.1 10.1002/2014GL062308 10.1038/ngeo1032 10.1038/s41558-018-0138-5 10.1002/2015JD024053 10.1038/nclimate1635 10.1038/nclimate3029 10.5194/gmd-10-1903-2017 10.1017/CBO9781139177245 10.1175/JCLI-D-16-0493.1 10.1002/2016GL068487 10.1890/ES15-00203.1 10.1038/nclimate2470 10.1175/JHM-D-11-0104.1 10.1016/j.jmva.2009.08.002 10.1175/JCLI-D-15-0877.1 10.1175/JAMC-D-14-0053.1 10.1038/nature03972 10.1002/wcc.394 10.1175/JCLI-D-16-0192.1 10.1007/s00382-014-2075-y 10.1111/nph.12321 10.1007/s00382-010-0807-1 10.1126/science.1185188 10.1126/sciadv.1700263 10.1002/grl.50495 10.1175/BAMS-D-17-0149.1 10.1016/j.foreco.2009.09.001 10.1016/j.palwor.2013.02.002 10.1130/G25329A.1 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Sep 17, 2019 2019 |
Copyright_xml | – notice: Copyright National Academy of Sciences Sep 17, 2019 – notice: 2019 |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | CYE CYI AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OIOZB OTOTI 5PM |
DOI | 10.1073/pnas.1904955116 |
DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Environmental Sciences |
EISSN | 1091-6490 |
EndPage | 18853 |
ExternalDocumentID | PMC6754607 1581364 31481606 10_1073_pnas_1904955116 20190030905 26851639 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation | 80NSSC17K0265 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CYE CYI AAYXX CITATION CGR CUY CVF DOOOF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 79B AAPBV ABPTK ADZLD ASUFR DNJUQ DWIUU JSODD OIOZB OTOTI PQEST ZA5 5PM |
ID | FETCH-LOGICAL-c557t-4bb0cbb124006ab3a80bc0561eeaf3f5014b8115ecb216d6a4e3e5abb28a8ffd3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:46:33 EDT 2025 Thu May 18 22:40:02 EDT 2023 Fri Jul 11 03:50:39 EDT 2025 Sat Aug 23 12:56:34 EDT 2025 Wed Feb 19 02:30:57 EST 2025 Tue Jul 01 03:40:08 EDT 2025 Thu Apr 24 23:04:52 EDT 2025 Fri Aug 15 15:19:45 EDT 2025 Thu May 29 14:19:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | Vapor Pressure Deficit Compound Extreme Events Glace-Cmip5 GLACE-CMIP5 soil moisture compound extreme events vapor pressure deficit |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c557t-4bb0cbb124006ab3a80bc0561eeaf3f5014b8115ecb216d6a4e3e5abb28a8ffd3 |
Notes | GSFC GSFC-E-DAA-TN72966 ISSN: 0027-8424 Report Number: GSFC-E-DAA-TN72966 Goddard Space Flight Center E-ISSN: 1091-6490 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC02-05CH11231 National Science Foundation (NSF) Edited by Paul A. Dirmeyer, George Mason University, Fairfax, VA, and accepted by Editorial Board Member Robert E. Dickinson July 30, 2019 (received for review March 22, 2019) Author contributions: S.Z. designed research; S.Z., A.P.W., A.M.B., B.I.C., Y.Z., S.H., R.L., S.I.S., and P.G. performed research; S.Z. and Y.Z. analyzed data; A.P.W., A.M.B., B.I.C., Y.Z., S.H., R.L., S.I.S., and P.G. edited the paper; and S.Z. wrote the paper. |
ORCID | 0000-0002-7580-2521 0000-0001-8176-8166 0000-0002-0845-8345 0000-0002-3986-1268 0000-0001-9528-2917 0000-0001-7161-5959 0000-0002-7468-2409 0000000171615959 0000000239861268 0000000274682409 0000000181768166 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1581364 |
PMID | 31481606 |
PQID | 2294473547 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6754607 osti_scitechconnect_1581364 proquest_miscellaneous_2284565093 proquest_journals_2294473547 pubmed_primary_31481606 crossref_primary_10_1073_pnas_1904955116 crossref_citationtrail_10_1073_pnas_1904955116 nasa_ntrs_20190030905 jstor_primary_26851639 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-17 |
PublicationDateYYYYMMDD | 2019-09-17 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Goddard Space Flight Center |
PublicationPlace_xml | – name: Goddard Space Flight Center – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 Nelsen R. B. (e_1_3_3_29_2) 2007 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_16_2 doi: 10.1038/ngeo2141 – ident: e_1_3_3_31_2 doi: 10.1175/JHM-D-12-0137.1 – ident: e_1_3_3_9_2 doi: 10.1126/sciadv.aau5740 – ident: e_1_3_3_36_2 doi: 10.1016/j.agrformet.2017.08.031 – ident: e_1_3_3_42_2 doi: 10.1111/gcb.13946 – ident: e_1_3_3_2_2 doi: 10.1073/pnas.1422945112 – ident: e_1_3_3_5_2 doi: 10.1038/nclimate1832 – ident: e_1_3_3_21_2 doi: 10.1016/j.earscirev.2010.02.004 – ident: e_1_3_3_27_2 doi: 10.1002/grl.50956 – ident: e_1_3_3_45_2 doi: 10.1007/978-0-387-71887-3_9 – ident: e_1_3_3_1_2 doi: 10.1038/s41558-018-0156-3 – ident: e_1_3_3_3_2 doi: 10.1038/nclimate3114 – ident: e_1_3_3_25_2 doi: 10.1175/JCLI-D-16-0758.1 – ident: e_1_3_3_37_2 doi: 10.1016/j.agrformet.2015.12.065 – ident: e_1_3_3_34_2 doi: 10.1175/JCLI-D-14-00001.1 – ident: e_1_3_3_43_2 doi: 10.1002/2014GL062308 – ident: e_1_3_3_19_2 doi: 10.1038/ngeo1032 – ident: e_1_3_3_23_2 doi: 10.1038/s41558-018-0138-5 – ident: e_1_3_3_28_2 doi: 10.1002/2015JD024053 – ident: e_1_3_3_7_2 doi: 10.1038/nclimate1635 – ident: e_1_3_3_15_2 doi: 10.1038/nclimate3029 – ident: e_1_3_3_26_2 doi: 10.5194/gmd-10-1903-2017 – ident: e_1_3_3_10_2 doi: 10.1017/CBO9781139177245 – ident: e_1_3_3_13_2 doi: 10.1175/JCLI-D-16-0493.1 – ident: e_1_3_3_33_2 doi: 10.1002/2016GL068487 – ident: e_1_3_3_41_2 doi: 10.1890/ES15-00203.1 – ident: e_1_3_3_6_2 doi: 10.1038/nclimate2470 – ident: e_1_3_3_22_2 doi: 10.1175/JHM-D-11-0104.1 – ident: e_1_3_3_30_2 doi: 10.1016/j.jmva.2009.08.002 – ident: e_1_3_3_18_2 doi: 10.1175/JCLI-D-15-0877.1 – ident: e_1_3_3_39_2 doi: 10.1175/JAMC-D-14-0053.1 – ident: e_1_3_3_4_2 doi: 10.1038/nature03972 – volume-title: An Introduction to Copulas year: 2007 ident: e_1_3_3_29_2 – ident: e_1_3_3_38_2 doi: 10.1002/wcc.394 – ident: e_1_3_3_17_2 doi: 10.1175/JCLI-D-16-0192.1 – ident: e_1_3_3_24_2 doi: 10.1007/s00382-014-2075-y – ident: e_1_3_3_40_2 doi: 10.1111/nph.12321 – ident: e_1_3_3_11_2 doi: 10.1007/s00382-010-0807-1 – ident: e_1_3_3_12_2 doi: 10.1126/science.1185188 – ident: e_1_3_3_44_2 doi: 10.1126/sciadv.1700263 – ident: e_1_3_3_20_2 doi: 10.1002/grl.50495 – ident: e_1_3_3_46_2 – ident: e_1_3_3_35_2 doi: 10.1175/BAMS-D-17-0149.1 – ident: e_1_3_3_8_2 doi: 10.1016/j.foreco.2009.09.001 – ident: e_1_3_3_32_2 doi: 10.1016/j.palwor.2013.02.002 – ident: e_1_3_3_14_2 doi: 10.1130/G25329A.1 |
SSID | ssj0009580 |
Score | 2.696365 |
Snippet | Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and... Soil drought and atmospheric aridity can be disastrous for ecosystems and society. This study demonstrates the critical role of land–atmosphere feedbacks in... |
SourceID | pubmedcentral osti proquest pubmed crossref nasa jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18848 |
SubjectTerms | Aridity Atmosphere Atmosphere - chemistry Atmospheric models Climate Change Climate models compound extreme events Coupling Drought Droughts ENVIRONMENTAL SCIENCES Feedback Geographic Mapping Geophysics GLACE-CMIP5 Humidity Models, Theoretical Physical Sciences Precipitation Pressure Soil - chemistry Soil moisture Soils Stress (physiology) Vapor pressure vapor pressure deficit Vapors Weather |
Title | Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity |
URI | https://www.jstor.org/stable/26851639 https://ntrs.nasa.gov/citations/20190030905 https://www.ncbi.nlm.nih.gov/pubmed/31481606 https://www.proquest.com/docview/2294473547 https://www.proquest.com/docview/2284565093 https://www.osti.gov/servlets/purl/1581364 https://pubmed.ncbi.nlm.nih.gov/PMC6754607 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCGGwQNlCQeBiKUvLhfPSxmjZNqJQ-tFLFS2Q7jlq0JWhJJcRfz53tJE0p0uClqhLbsXK_XO4ud78j5IMnfQpA8FweBblLQbBuKgV1BUsKn4oUTAB0FL_M4psl_byKVn1USVWXNHwkfh2sK_kfqcIxkCtWyf6DZLtF4QD8B_nCL0gYfh8k4ykrc5c1d1WN5ADSKeBVxLFo3pE_mYAbBoYk5pULQ8JUV5tbJ1eNeXRieTcXWVvvN_mmGXzlnXdvt7rNJZi1wcNJX4pi9EPtuM581jc2_rautiq4uu5V_050Z-LMB3VCOs1sogg6-xjtJTgBCoOy_M7uNqWJ8po4ha8SsXRZplGtYJm4MdXNQUfywLFWH-viSwM8zf1i1KufppqX8w_FD5oKuxWXrB6BiQNeX9QuM6DYnn3NrpfTaba4Wi0ekycB-BaB0ua7TM2pprAwW2v5oJLw097yA1NGZ7PCix3GgJFzVIGGPuS17Cff7lgzi-fkmXFD7InG1DF5JMsX5LgVpH1h2Mg_viSLPZDZHcjsHmR2DzIbQWYbkNkw194BmW1AdkKW11eLyxvXtOJwRRQlDTzE3BOc-5hxHDMestTjAp1PKVkRFvhxmqfgXEjBAz_OY0ZlKCPGeZCytCjy8BRuTFXK18QeJzJHs8nLC0m9RHBRxLwQRSJhrTSgFhm1dzUThqce26XcZipfIgkzFEPWi8EiF92EH5qi5e9DT5WYunFBDB4HGOkWOUG5ZXClOkP0qhQBL7LIGQoyA3MUOZUFJp-JJvOj1A9j2Op5K9_MqAWYHYwp9vOmiUXed6dBaeOXOFbKaotjUvSkvHFokVcaDt2WQp-ChvRgr8kAKN0AJIQfnik3a0UMD84_jb3kzQOue0ae9g_pOTlq7rfyLZjXDX-nHoffByjRQQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land-atmosphere+feedbacks+exacerbate+concurrent+soil+drought+and+atmospheric+aridity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhou%2C+Sha&rft.au=Williams%2C+A+Park&rft.au=Berg%2C+Alexis+M&rft.au=Cook%2C+Benjamin+I&rft.date=2019-09-17&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=116&rft.issue=38&rft.spage=18848&rft_id=info:doi/10.1073%2Fpnas.1904955116&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |