Flexible Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics
Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system’s inputs and initial conditions. To investigate whether the bra...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 98; no. 5; pp. 1005 - 1019.e5 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
06.06.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0896-6273 1097-4199 1097-4199 |
DOI | 10.1016/j.neuron.2018.05.020 |
Cover
Loading…
Abstract | Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system’s inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system’s initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations.
[Display omitted]
•Monkeys performed a timing task demanding flexible cognitive control•The organization of neural trajectories in frontal cortex reflected task demands•Flexible control was best explained in terms of inputs and initial conditions•Recurrent neural network models validated the inferred control principles
Remington et al. employ a dynamical systems perspective to understand how the brain flexibly controls timed movements. Results suggest that neurons in the frontal cortex form a recurrent network whose behavior is flexibly controlled by inputs and initial conditions. |
---|---|
AbstractList | Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system’s inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over the cortical dynamics by adjusting the system’s initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations.
Remington et al. employ a dynamical systems perspective to understand how the brain flexibly controls timed movements. Results suggest that neurons in frontal cortex form a recurrent network whose behavior is flexibly controlled by inputs and initial conditions. Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system's inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system's initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations.Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system's inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system's initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations. SummaryNeural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system’s inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system’s initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations. Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system's inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system's initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations. Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system’s inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system’s initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations. [Display omitted] •Monkeys performed a timing task demanding flexible cognitive control•The organization of neural trajectories in frontal cortex reflected task demands•Flexible control was best explained in terms of inputs and initial conditions•Recurrent neural network models validated the inferred control principles Remington et al. employ a dynamical systems perspective to understand how the brain flexibly controls timed movements. Results suggest that neurons in the frontal cortex form a recurrent network whose behavior is flexibly controlled by inputs and initial conditions. |
Author | Narain, Devika Hosseini, Eghbal A. Jazayeri, Mehrdad Remington, Evan D. |
AuthorAffiliation | 4 Erasmus Medical Center, Rotterdam, the Netherlands 3 Netherlands Institute for Neuroscience, Amsterdam, the Netherlands 1 McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 2 Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA |
AuthorAffiliation_xml | – name: 1 McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA – name: 3 Netherlands Institute for Neuroscience, Amsterdam, the Netherlands – name: 2 Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA – name: 4 Erasmus Medical Center, Rotterdam, the Netherlands |
Author_xml | – sequence: 1 givenname: Evan D. surname: Remington fullname: Remington, Evan D. organization: McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 2 givenname: Devika surname: Narain fullname: Narain, Devika organization: McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 3 givenname: Eghbal A. surname: Hosseini fullname: Hosseini, Eghbal A. organization: Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 4 givenname: Mehrdad surname: Jazayeri fullname: Jazayeri, Mehrdad email: mjaz@mit.edu organization: McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29879384$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFf4BQJC5cEvwZxxyQ0PIpVUIqcLYcZ7LrVWIvtlPRf4-XXSroAS6ewzzz-p15L9CZDx4QekpwQzBpX-4aD0sMvqGYdA0WDab4AVoRrGTNiVJnaIU71dYtlewcXaS0w5hwocgjdE5VJxXr-Ap9ez_BD9dPUH0Bn0J0c8ghVusw75dssgs-VXkbw7LZVtdm74bqGmzwo9ss8Ve7CmOhY3bWTNXbW29mZ9Nj9HA0U4Inp3pZ_nn3df2xvvr84dP6zVVthZC55mJgIFgnraLWsJFIaRS0Le8NKRaZoET1hlvJ7MhH25WHYDP0LTb9yKRhl-j1UXe_9DMMFnyOZtL7soaJtzoYp__ueLfVm3CjW4xVJ2gReHESiOH7Ainr2SUL02Q8hCVpigXtiBSdKOjze-guLNGX9Q4UVlxI1hbq2Z-O7qz8vngB-BGwMaQUYbxDCNaHYPVOH4PVh2A1FroEW8Ze3Ruz7phP2ctN_xs-nQlKFjcOok7WgbcwuAg26yG4fwv8BDWMw0o |
CitedBy_id | crossref_primary_10_1038_s42256_020_00229_3 crossref_primary_10_21105_joss_01003 crossref_primary_10_1016_j_cophys_2020_07_015 crossref_primary_10_1038_s41562_023_01804_5 crossref_primary_10_7554_eLife_55872 crossref_primary_10_1016_j_cub_2022_12_044 crossref_primary_10_1073_pnas_1820474116 crossref_primary_10_1016_j_neunet_2023_04_006 crossref_primary_10_1016_j_conb_2022_102630 crossref_primary_10_1541_ieejeiss_142_578 crossref_primary_10_1162_jocn_a_01569 crossref_primary_10_1371_journal_pbio_3000054 crossref_primary_10_1371_journal_pcbi_1007655 crossref_primary_10_7554_eLife_37124 crossref_primary_10_1038_s41583_022_00623_3 crossref_primary_10_1073_pnas_2311420120 crossref_primary_10_1523_ENEURO_0012_22_2022 crossref_primary_10_1016_j_celrep_2023_113234 crossref_primary_10_1371_journal_pcbi_1009271 crossref_primary_10_1523_JNEUROSCI_1652_20_2020 crossref_primary_10_1523_JNEUROSCI_0628_20_2021 crossref_primary_10_3389_frobt_2024_1324404 crossref_primary_10_1126_sciadv_adk7257 crossref_primary_10_7554_eLife_89421_3 crossref_primary_10_1016_j_conb_2018_12_009 crossref_primary_10_1016_j_conb_2021_10_014 crossref_primary_10_1176_appi_ajp_2020_20081151 crossref_primary_10_1073_pnas_2115610119 crossref_primary_10_1038_s41467_024_54688_y crossref_primary_10_1111_psyp_70020 crossref_primary_10_1016_j_conb_2021_09_008 crossref_primary_10_1016_j_neuron_2020_05_020 crossref_primary_10_1038_s41598_023_47843_w crossref_primary_10_1146_annurev_neuro_092619_094115 crossref_primary_10_1038_s41593_022_01088_4 crossref_primary_10_1007_s12264_022_00832_x crossref_primary_10_1073_pnas_2404169121 crossref_primary_10_1016_j_neuroimage_2020_117607 crossref_primary_10_1038_s41586_024_08433_6 crossref_primary_10_1038_s41593_020_0671_1 crossref_primary_10_1063_5_0064771 crossref_primary_10_1016_j_neuron_2018_09_030 crossref_primary_10_1371_journal_pcbi_1010365 crossref_primary_10_7554_eLife_38983 crossref_primary_10_1093_cercor_bhab418 crossref_primary_10_1038_s41467_020_16999_8 crossref_primary_10_1038_s41583_020_00395_8 crossref_primary_10_1016_j_pneurobio_2023_102537 crossref_primary_10_1016_j_conb_2021_10_015 crossref_primary_10_1016_j_neuron_2024_01_002 crossref_primary_10_7554_eLife_71612 crossref_primary_10_1038_s41467_019_12841_y crossref_primary_10_1016_j_celrep_2023_112136 crossref_primary_10_1038_s41467_020_20371_1 crossref_primary_10_1016_j_semcdb_2021_08_014 crossref_primary_10_2139_ssrn_3967676 crossref_primary_10_7554_eLife_56942 crossref_primary_10_1073_pnas_2409487121 crossref_primary_10_7554_eLife_92620_3 crossref_primary_10_1126_science_abm9922 crossref_primary_10_1016_j_neuron_2018_07_003 crossref_primary_10_1111_ejn_15378 crossref_primary_10_1016_j_conb_2019_07_004 crossref_primary_10_1371_journal_pcbi_1008128 crossref_primary_10_7554_eLife_89421 crossref_primary_10_1016_j_conb_2019_09_011 crossref_primary_10_1038_s41467_024_50203_5 crossref_primary_10_1073_pnas_1921609117 crossref_primary_10_1016_j_neuron_2019_06_012 crossref_primary_10_1038_s41593_019_0500_6 crossref_primary_10_1016_j_tics_2018_07_010 crossref_primary_10_1073_pnas_2309876121 crossref_primary_10_1016_j_cub_2023_07_029 crossref_primary_10_1126_science_aav8911 crossref_primary_10_7554_eLife_58154 crossref_primary_10_1038_s41593_022_01085_7 crossref_primary_10_1073_pnas_2316765121 crossref_primary_10_1038_s41467_023_41752_2 crossref_primary_10_1523_JNEUROSCI_1439_21_2021 crossref_primary_10_7554_eLife_44324 crossref_primary_10_1016_j_conb_2019_09_001 crossref_primary_10_1016_j_neuron_2018_05_029 crossref_primary_10_1016_j_bspc_2023_104917 crossref_primary_10_1038_s41592_022_01675_0 crossref_primary_10_1016_j_neunet_2020_09_008 crossref_primary_10_1016_j_neuron_2019_08_030 crossref_primary_10_7554_eLife_81325 crossref_primary_10_1016_j_neuron_2019_01_044 crossref_primary_10_1126_sciadv_adh8185 crossref_primary_10_1016_j_tics_2023_03_002 crossref_primary_10_1073_pnas_2305853120 crossref_primary_10_1016_j_conb_2020_08_010 crossref_primary_10_1103_PhysRevE_102_052406 crossref_primary_10_1007_s10827_023_00857_9 crossref_primary_10_7554_eLife_67256 crossref_primary_10_7554_eLife_92620 crossref_primary_10_7554_eLife_67490 crossref_primary_10_1080_02643294_2023_2191843 crossref_primary_10_1038_s41583_023_00740_7 crossref_primary_10_7554_eLife_73155 crossref_primary_10_1038_s41551_023_01106_1 crossref_primary_10_3389_fncom_2021_543872 crossref_primary_10_1073_pnas_1915984117 crossref_primary_10_1162_neco_a_01409 crossref_primary_10_1016_j_conb_2021_08_002 crossref_primary_10_1016_j_neuroscience_2021_01_035 crossref_primary_10_7554_eLife_43299 crossref_primary_10_1371_journal_pone_0221000 crossref_primary_10_1016_j_neuron_2022_12_016 crossref_primary_10_1523_JNEUROSCI_1671_18_2018 crossref_primary_10_1016_j_celrep_2024_114412 crossref_primary_10_1038_s41593_023_01556_5 crossref_primary_10_1038_s41598_024_53907_2 crossref_primary_10_1073_pnas_2312831121 crossref_primary_10_1080_13506285_2020_1825141 crossref_primary_10_1523_JNEUROSCI_1669_18_2018 crossref_primary_10_1146_annurev_neuro_092322_100402 crossref_primary_10_1162_neco_a_01631 crossref_primary_10_1016_j_conb_2020_11_003 crossref_primary_10_1152_jn_00467_2018 crossref_primary_10_1016_j_neuron_2019_05_003 crossref_primary_10_1063_5_0152585 crossref_primary_10_3389_fncel_2020_575915 crossref_primary_10_7554_eLife_62583 crossref_primary_10_1016_j_neuron_2021_08_025 crossref_primary_10_1063_5_0233158 crossref_primary_10_1523_JNEUROSCI_1777_23_2024 crossref_primary_10_1016_j_tics_2019_11_005 crossref_primary_10_1016_j_neuron_2021_08_020 crossref_primary_10_1038_s41467_022_35395_y crossref_primary_10_1016_j_tics_2021_01_008 crossref_primary_10_1162_neco_a_01222 crossref_primary_10_1007_s11571_023_09932_4 crossref_primary_10_1162_netn_a_00219 crossref_primary_10_1007_s11571_023_09956_w crossref_primary_10_1162_jocn_a_01592 crossref_primary_10_1007_s11571_022_09802_5 crossref_primary_10_1016_j_tics_2022_03_010 crossref_primary_10_1152_jn_00359_2021 crossref_primary_10_1038_s41467_022_33581_6 crossref_primary_10_1073_pnas_2420356122 crossref_primary_10_1371_journal_pcbi_1011555 crossref_primary_10_1038_s41593_024_01668_6 crossref_primary_10_1371_journal_pbio_3002280 crossref_primary_10_7554_eLife_67620 crossref_primary_10_1038_s41593_019_0555_4 crossref_primary_10_1016_j_tins_2020_11_007 crossref_primary_10_1098_rstb_2022_0333 crossref_primary_10_1073_pnas_2214562119 |
Cites_doi | 10.1038/nn.3405 10.1038/nrn3084 10.1037/0097-7403.24.1.15 10.1523/JNEUROSCI.2984-12.2013 10.1038/nature22324 10.1038/nature22073 10.1038/nn1716 10.1038/nrn1427 10.1016/j.neuron.2014.04.045 10.1016/j.neuron.2013.01.039 10.1038/nn.4042 10.1007/BF00250247 10.1038/nn.3826 10.1371/journal.pcbi.1005164 10.1523/JNEUROSCI.5513-12.2013 10.1007/BF00227836 10.1007/s00221-014-4127-2 10.1007/s10339-005-0025-7 10.1523/JNEUROSCI.1714-15.2015 10.1371/journal.pcbi.1002771 10.1038/nature08389 10.1038/s41593-017-0028-6 10.1523/JNEUROSCI.0676-05.2005 10.1016/j.neuron.2010.09.015 10.1016/j.neures.2005.05.005 10.7554/eLife.26084 10.1016/j.neuron.2011.05.047 10.1186/1471-2148-12-222 10.1038/nature12742 10.1146/annurev.neuro.24.1.167 10.1371/journal.pbio.1000167 10.1016/j.neuron.2018.03.037 10.1371/journal.pcbi.1004792 10.1016/j.conb.2014.05.003 10.1016/j.cub.2015.08.038 10.1126/science.7863330 10.1146/annurev-neuro-062111-150509 10.1037/0735-7044.117.4.760 10.1523/JNEUROSCI.3134-07.2007 10.1152/jn.1987.57.1.179 10.1002/cne.902930211 10.1093/brain/116.1.243 10.1038/nn963 10.1073/pnas.93.16.8694 10.1126/science.1091573 10.1038/85191 10.1152/jn.00867.2001 10.1038/nature10436 10.1038/35082081 10.1073/pnas.1112933108 10.1152/jn.1998.80.6.3321 10.3389/fncom.2011.00029 10.1093/cercor/12.9.908 10.3389/fnint.2010.00124 10.1111/j.1460-9568.2012.08242.x 10.1016/j.neuron.2014.01.031 10.3389/neuro.08.038.2009 10.1126/science.1155564 10.1152/jn.01168.2004 10.1016/j.neuron.2006.10.034 10.1152/jn.1992.68.3.653 10.1152/jn.1996.76.4.2327 10.1126/science.1249098 10.1152/jn.00543.2013 10.1038/nn.2272 10.1007/s00221-007-1234-3 10.1038/nn1830 10.1007/BF00247297 10.7554/eLife.10989 10.1038/nn.4268 10.1002/cne.903070405 10.1016/j.neulet.2005.02.067 10.1073/pnas.1321314111 10.1523/JNEUROSCI.3276-09.2010 10.1007/BF00236211 10.1152/jn.1995.74.3.1037 10.1016/j.neuron.2015.04.014 10.1002/cne.903360205 10.1523/JNEUROSCI.22-21-09475.2002 10.1016/j.neuron.2016.02.009 10.1038/nature11129 10.3389/fncom.2010.00024 10.1016/j.neuron.2017.03.002 10.1038/nrn2558 10.1126/science.274.5286.427 10.1371/journal.pcbi.1005175 10.1016/j.neuron.2007.01.006 10.1152/jn.00367.2003 10.1109/5.58337 10.1002/cne.903410308 10.1103/PhysRevLett.97.188104 10.1523/JNEUROSCI.1443-13.2013 10.1523/ENEURO.0085-16.2016 10.1038/nn.2590 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. 2018. Elsevier Inc. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: 2018. Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.neuron.2018.05.020 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Nursing & Allied Health Premium MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 1019.e5 |
ExternalDocumentID | PMC6009852 29879384 10_1016_j_neuron_2018_05_020 S0896627318304185 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS078127 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- 5VS AAEDT AAFWJ AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB G-2 HZ~ ITC MVM OZT R2- X7M ZGI ZKB CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD EFKBS FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c557t-45d3e5387c92ca3f177a9e664ba129835219ba4c73cf4fc8f4f10adb60abf37a3 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Thu Aug 21 18:27:14 EDT 2025 Fri Sep 05 07:01:01 EDT 2025 Fri Jul 25 10:57:49 EDT 2025 Thu Apr 03 07:05:03 EDT 2025 Tue Jul 01 01:16:18 EDT 2025 Thu Apr 24 22:53:29 EDT 2025 Fri Feb 23 02:49:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Dynamical Systems frontal cortex electrophysiology recurrent neural networks sensorimotor coordination timing cognitive flexibility motor planning population coding |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-45d3e5387c92ca3f177a9e664ba129835219ba4c73cf4fc8f4f10adb60abf37a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0896627318304185 |
PMID | 29879384 |
PQID | 2050945736 |
PQPubID | 2031076 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6009852 proquest_miscellaneous_2052817585 proquest_journals_2050945736 pubmed_primary_29879384 crossref_primary_10_1016_j_neuron_2018_05_020 crossref_citationtrail_10_1016_j_neuron_2018_05_020 elsevier_sciencedirect_doi_10_1016_j_neuron_2018_05_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-06 |
PublicationDateYYYYMMDD | 2018-06-06 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Miller, Cohen (bib51) 2001; 24 Kunimatsu, Tanaka (bib35) 2012; 36 Pachitariu, Steinmetz, Kadir, Carandini, Harris (bib59) 2016 Isoda, Hikosaka (bib25) 2007; 10 Churchland, Cunningham, Kaufman, Foster, Nuyujukian, Ryu, Shenoy (bib12) 2012; 487 Laje, Buonomano (bib37) 2013; 16 Afshar, Santhanam, Yu, Ryu, Sahani, Shenoy (bib2) 2011; 71 Roitman, Shadlen (bib71) 2002; 22 Romo, Schultz (bib72) 1987; 67 Romo, Schultz (bib73) 1992; 91 Yang, Lai, Cichon, Ma, Li, Gan (bib98) 2014; 344 Kurata, Wise (bib36) 1988; 72 Kleim, Barbay, Nudo (bib33) 1998; 80 Pascual-Leone, Nguyet, Cohen, Brasil-Neto, Cammarota, Hallett (bib60) 1995; 74 Wang, Isoda, Matsuzaka, Shima, Tanji (bib92) 2005; 53 Smith, Horst, Liu, Caetano, Laubach (bib83) 2010; 4 Jazayeri, Shadlen (bib27) 2010; 13 Rao, Mayer, Harrington (bib67) 2001; 4 Todorov, Jordan (bib90) 2002; 5 Matsuzaka, Tanji (bib44) 1996; 76 Dipoppa, Ranson, Krumin, Pachitariu, Carandini, Harris (bib15) 2018; 98 Churchland, Cunningham, Kaufman, Ryu, Shenoy (bib11) 2010; 68 Brass, von Cramon (bib5) 2002; 12 . Karmarkar, Buonomano (bib29) 2007; 53 Fetz (bib16) 1992 Halsband, Ito, Tanji, Freund (bib20) 1993; 116 Miyazaki, Nozaki, Nakajima (bib53) 2005; 94 Kim, Ghim, Lee, Jung (bib32) 2013; 33 Werbos (bib94) 1990; 78 Huerta, Kaas (bib24) 1990; 293 Matell, Meck, Nicolelis (bib43) 2003; 117 Nadim, Bucher (bib56) 2014; 29 Scott (bib77) 2004; 5 Schlag, Schlag-Rey (bib75) 1987; 57 Schmitt, Wimmer, Nakajima, Happ, Mofakham, Halassa (bib76) 2017; 545 Rajan, Harvey, Tank (bib65) 2016; 90 Wallis, Anderson, Miller (bib91) 2001; 411 Murakami, Vicente, Costa, Mainen (bib54) 2014; 17 Isoda, Tanji (bib26) 2003; 90 Stokes, Kusunoki, Sigala, Nili, Gaffan, Duncan (bib85) 2013; 78 Hanes, Schall (bib21) 1996; 274 Michaels, Dann, Intveld, Scherberger (bib49) 2015; 35 Remington, Jazayeri (bib69) 2017 Chaisangmongkon, Swaminathan, Freedman, Wang (bib9) 2017; 93 Mita, Mushiake, Shima, Matsuzaka, Tanji (bib52) 2009; 12 Guo, Inagaki, Daie, Druckmann, Gerfen, Svoboda (bib19) 2017; 545 Rigotti, Ben Dayan Rubin, Wang, Fusi (bib70) 2010; 4 Pruszynski, Kurtzer, Nashed, Omrani, Brouwer, Scott (bib62) 2011; 478 Seely, Kaufman, Ryu, Shenoy, Cunningham, Churchland (bib78) 2016; 12 Ray, Heinen (bib68) 2015; 233 Buonomano, Maass (bib6) 2009; 10 Song, Yang, Wang (bib84) 2016; 12 Lu, Preston, Strick (bib38) 1994; 341 Michaels, Dann, Scherberger (bib50) 2016; 12 Ohmae, Lu, Takahashi, Uchida, Kitazawa (bib57) 2008; 184 Merchant, Zarco, Pérez, Prado, Bartolo (bib47) 2011; 108 Rossant, Kadir, Goodman, Schulman, Hunter, Saleem, Grosmark, Belluscio, Denfield, Ecker (bib74) 2016; 19 Pfeuty, Ragot, Pouthas (bib61) 2005; 382 Tanaka (bib88) 2005; 25 Maimon, Assad (bib41) 2006; 9 Shima, Mushiake, Saito, Tanji (bib80) 1996; 93 Fujii, Mushiake, Tanji (bib17) 2002; 87 Cui, Stetson, Montague, Eagleman (bib14) 2009; 7 Jazayeri, Shadlen (bib28) 2015; 25 Xu, Yu, Perlik, Tobin, Zweig, Tennant, Jones, Zuo (bib95) 2009; 462 Kobak, Brendel, Constantinidis, Feierstein, Kepecs, Mainen, Qi, Romo, Uchida, Machens (bib34) 2016; 5 Wang, Narain, Hosseini, Jazayeri (bib93) 2018; 21 Buonomano, Merzenich (bib7) 1995; 267 Okano, Tanji (bib58) 1987; 66 Bates, Goldman-Rakic (bib4) 1993; 336 Meister, Hennig, Huk (bib46) 2013; 33 Garcia (bib18) 2012; 12 Sussillo, Churchland, Kaufman, Shenoy (bib86) 2015; 18 Kim, Jung, Byun, Jo, Jung (bib31) 2009; 3 Murray, Escola (bib55) 2017; 6 Akkal, Dum, Strick (bib3) 2007; 27 Matsuzaka, Aizawa, Tanji (bib45) 1992; 68 Rabinovich, Huerta, Laurent (bib63) 2008; 321 Mante, Sussillo, Shenoy, Newsome (bib42) 2013; 503 Hennequin, Vogels, Gerstner (bib23) 2014; 82 Xu, Zhang, Dan, Poo (bib96) 2014; 111 Shinomoto, Omi, Mita, Mushiake, Shima, Matsuzaka, Tanji (bib81) 2011; 5 Rajan, Abbott (bib64) 2006; 97 Macar, Coull, Vidal (bib39) 2006; 7 Harris, Thiele (bib22) 2011; 12 Yang, Heinen (bib97) 2014; 111 Shenoy, Sahani, Churchland (bib79) 2013; 36 Thura, Cisek (bib89) 2014; 81 Churchland, Afshar, Shenoy (bib10) 2006; 52 Carnevale, de Lafuente, Romo, Barak, Parga (bib8) 2015; 86 Coull, Vidal, Nazarian, Macar (bib13) 2004; 303 Machens, Romo, Brody (bib40) 2010; 30 Merchant, Pérez, Zarco, Gámez (bib48) 2013; 33 Sussillo, D., Jozefowicz, R., Abbott, L.F., and Pandarinath, C. (2016). LFADS - Latent Factor Analysis via Dynamical Systems. arXiv, arXiv:1608.06315 Kaufman, Seely, Sussillo, Ryu, Shenoy, Churchland (bib30) 2016; 3 Shook, Schlag-Rey, Schlag (bib82) 1991; 307 Acerbi, Wolpert, Vijayakumar (bib1) 2012; 8 Rakitin, Gibbon, Penney, Malapani, Hinton, Meck (bib66) 1998; 24 Chaisangmongkon (10.1016/j.neuron.2018.05.020_bib9) 2017; 93 Ohmae (10.1016/j.neuron.2018.05.020_bib57) 2008; 184 Smith (10.1016/j.neuron.2018.05.020_bib83) 2010; 4 Kaufman (10.1016/j.neuron.2018.05.020_bib30) 2016; 3 Rajan (10.1016/j.neuron.2018.05.020_bib64) 2006; 97 Matell (10.1016/j.neuron.2018.05.020_bib43) 2003; 117 Remington (10.1016/j.neuron.2018.05.020_bib69) 2017 Buonomano (10.1016/j.neuron.2018.05.020_bib7) 1995; 267 Okano (10.1016/j.neuron.2018.05.020_bib58) 1987; 66 Sussillo (10.1016/j.neuron.2018.05.020_bib86) 2015; 18 Rigotti (10.1016/j.neuron.2018.05.020_bib70) 2010; 4 Fetz (10.1016/j.neuron.2018.05.020_bib16) 1992 Rakitin (10.1016/j.neuron.2018.05.020_bib66) 1998; 24 Xu (10.1016/j.neuron.2018.05.020_bib96) 2014; 111 Rossant (10.1016/j.neuron.2018.05.020_bib74) 2016; 19 Jazayeri (10.1016/j.neuron.2018.05.020_bib27) 2010; 13 Shook (10.1016/j.neuron.2018.05.020_bib82) 1991; 307 Yang (10.1016/j.neuron.2018.05.020_bib97) 2014; 111 Churchland (10.1016/j.neuron.2018.05.020_bib10) 2006; 52 Hennequin (10.1016/j.neuron.2018.05.020_bib23) 2014; 82 Wang (10.1016/j.neuron.2018.05.020_bib92) 2005; 53 Kim (10.1016/j.neuron.2018.05.020_bib31) 2009; 3 Shima (10.1016/j.neuron.2018.05.020_bib80) 1996; 93 Buonomano (10.1016/j.neuron.2018.05.020_bib6) 2009; 10 Kim (10.1016/j.neuron.2018.05.020_bib32) 2013; 33 Mante (10.1016/j.neuron.2018.05.020_bib42) 2013; 503 Dipoppa (10.1016/j.neuron.2018.05.020_bib15) 2018; 98 Karmarkar (10.1016/j.neuron.2018.05.020_bib29) 2007; 53 Rajan (10.1016/j.neuron.2018.05.020_bib65) 2016; 90 Pfeuty (10.1016/j.neuron.2018.05.020_bib61) 2005; 382 Cui (10.1016/j.neuron.2018.05.020_bib14) 2009; 7 Xu (10.1016/j.neuron.2018.05.020_bib95) 2009; 462 Laje (10.1016/j.neuron.2018.05.020_bib37) 2013; 16 Maimon (10.1016/j.neuron.2018.05.020_bib41) 2006; 9 Miyazaki (10.1016/j.neuron.2018.05.020_bib53) 2005; 94 Acerbi (10.1016/j.neuron.2018.05.020_bib1) 2012; 8 Miller (10.1016/j.neuron.2018.05.020_bib51) 2001; 24 Scott (10.1016/j.neuron.2018.05.020_bib77) 2004; 5 Rabinovich (10.1016/j.neuron.2018.05.020_bib63) 2008; 321 Jazayeri (10.1016/j.neuron.2018.05.020_bib28) 2015; 25 Merchant (10.1016/j.neuron.2018.05.020_bib48) 2013; 33 Ray (10.1016/j.neuron.2018.05.020_bib68) 2015; 233 Akkal (10.1016/j.neuron.2018.05.020_bib3) 2007; 27 Rao (10.1016/j.neuron.2018.05.020_bib67) 2001; 4 Machens (10.1016/j.neuron.2018.05.020_bib40) 2010; 30 Stokes (10.1016/j.neuron.2018.05.020_bib85) 2013; 78 Brass (10.1016/j.neuron.2018.05.020_bib5) 2002; 12 Huerta (10.1016/j.neuron.2018.05.020_bib24) 1990; 293 Kleim (10.1016/j.neuron.2018.05.020_bib33) 1998; 80 Romo (10.1016/j.neuron.2018.05.020_bib73) 1992; 91 Seely (10.1016/j.neuron.2018.05.020_bib78) 2016; 12 Fujii (10.1016/j.neuron.2018.05.020_bib17) 2002; 87 Matsuzaka (10.1016/j.neuron.2018.05.020_bib44) 1996; 76 Afshar (10.1016/j.neuron.2018.05.020_bib2) 2011; 71 Pascual-Leone (10.1016/j.neuron.2018.05.020_bib60) 1995; 74 Michaels (10.1016/j.neuron.2018.05.020_bib50) 2016; 12 Mita (10.1016/j.neuron.2018.05.020_bib52) 2009; 12 Romo (10.1016/j.neuron.2018.05.020_bib72) 1987; 67 Schmitt (10.1016/j.neuron.2018.05.020_bib76) 2017; 545 Isoda (10.1016/j.neuron.2018.05.020_bib26) 2003; 90 Wallis (10.1016/j.neuron.2018.05.020_bib91) 2001; 411 Nadim (10.1016/j.neuron.2018.05.020_bib56) 2014; 29 Thura (10.1016/j.neuron.2018.05.020_bib89) 2014; 81 Meister (10.1016/j.neuron.2018.05.020_bib46) 2013; 33 Kurata (10.1016/j.neuron.2018.05.020_bib36) 1988; 72 Shenoy (10.1016/j.neuron.2018.05.020_bib79) 2013; 36 Shinomoto (10.1016/j.neuron.2018.05.020_bib81) 2011; 5 Murray (10.1016/j.neuron.2018.05.020_bib55) 2017; 6 Merchant (10.1016/j.neuron.2018.05.020_bib47) 2011; 108 Halsband (10.1016/j.neuron.2018.05.020_bib20) 1993; 116 Matsuzaka (10.1016/j.neuron.2018.05.020_bib45) 1992; 68 Macar (10.1016/j.neuron.2018.05.020_bib39) 2006; 7 Lu (10.1016/j.neuron.2018.05.020_bib38) 1994; 341 Song (10.1016/j.neuron.2018.05.020_bib84) 2016; 12 Yang (10.1016/j.neuron.2018.05.020_bib98) 2014; 344 Pachitariu (10.1016/j.neuron.2018.05.020_bib59) 2016 Harris (10.1016/j.neuron.2018.05.020_bib22) 2011; 12 Kunimatsu (10.1016/j.neuron.2018.05.020_bib35) 2012; 36 Coull (10.1016/j.neuron.2018.05.020_bib13) 2004; 303 Carnevale (10.1016/j.neuron.2018.05.020_bib8) 2015; 86 Churchland (10.1016/j.neuron.2018.05.020_bib12) 2012; 487 Tanaka (10.1016/j.neuron.2018.05.020_bib88) 2005; 25 Werbos (10.1016/j.neuron.2018.05.020_bib94) 1990; 78 Todorov (10.1016/j.neuron.2018.05.020_bib90) 2002; 5 Pruszynski (10.1016/j.neuron.2018.05.020_bib62) 2011; 478 Michaels (10.1016/j.neuron.2018.05.020_bib49) 2015; 35 Schlag (10.1016/j.neuron.2018.05.020_bib75) 1987; 57 Roitman (10.1016/j.neuron.2018.05.020_bib71) 2002; 22 10.1016/j.neuron.2018.05.020_bib87 Bates (10.1016/j.neuron.2018.05.020_bib4) 1993; 336 Wang (10.1016/j.neuron.2018.05.020_bib93) 2018; 21 Hanes (10.1016/j.neuron.2018.05.020_bib21) 1996; 274 Guo (10.1016/j.neuron.2018.05.020_bib19) 2017; 545 Churchland (10.1016/j.neuron.2018.05.020_bib11) 2010; 68 Garcia (10.1016/j.neuron.2018.05.020_bib18) 2012; 12 Isoda (10.1016/j.neuron.2018.05.020_bib25) 2007; 10 Murakami (10.1016/j.neuron.2018.05.020_bib54) 2014; 17 Kobak (10.1016/j.neuron.2018.05.020_bib34) 2016; 5 29879388 - Neuron. 2018 Jun 6;98(5):873-875 |
References_xml | – volume: 545 start-page: 219 year: 2017 end-page: 223 ident: bib76 article-title: Thalamic amplification of cortical connectivity sustains attentional control publication-title: Nature – volume: 382 start-page: 106 year: 2005 end-page: 111 ident: bib61 article-title: Relationship between CNV and timing of an upcoming event publication-title: Neurosci. Lett. – year: 2017 ident: bib69 article-title: Late Bayesian inference in sensorimotor behavior publication-title: bioRxiv – volume: 116 start-page: 243 year: 1993 end-page: 266 ident: bib20 article-title: The role of premotor cortex and the supplementary motor area in the temporal control of movement in man publication-title: Brain – volume: 13 start-page: 1020 year: 2010 end-page: 1026 ident: bib27 article-title: Temporal context calibrates interval timing publication-title: Nat. Neurosci. – volume: 80 start-page: 3321 year: 1998 end-page: 3325 ident: bib33 article-title: Functional reorganization of the rat motor cortex following motor skill learning publication-title: J. Neurophysiol. – volume: 117 start-page: 760 year: 2003 end-page: 773 ident: bib43 article-title: Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons publication-title: Behav. Neurosci. – volume: 4 start-page: 317 year: 2001 end-page: 323 ident: bib67 article-title: The evolution of brain activation during temporal processing publication-title: Nat. Neurosci. – reference: Sussillo, D., Jozefowicz, R., Abbott, L.F., and Pandarinath, C. (2016). LFADS - Latent Factor Analysis via Dynamical Systems. arXiv, arXiv:1608.06315, – volume: 90 start-page: 128 year: 2016 end-page: 142 ident: bib65 article-title: Recurrent Network Models of Sequence Generation and Memory publication-title: Neuron – volume: 5 start-page: 29 year: 2011 ident: bib81 article-title: Deciphering elapsed time and predicting action timing from neuronal population signals publication-title: Front. Comput. Neurosci. – volume: 94 start-page: 395 year: 2005 end-page: 399 ident: bib53 article-title: Testing Bayesian models of human coincidence timing publication-title: J. Neurophysiol. – volume: 35 start-page: 11415 year: 2015 end-page: 11432 ident: bib49 article-title: Predicting Reaction Time from the Neural State Space of the Premotor and Parietal Grasping Network publication-title: J. Neurosci. – volume: 5 start-page: e10989 year: 2016 ident: bib34 article-title: Demixed principal component analysis of neural population data publication-title: eLife – volume: 33 start-page: 9082 year: 2013 end-page: 9096 ident: bib48 article-title: Interval tuning in the primate medial premotor cortex as a general timing mechanism publication-title: J. Neurosci. – volume: 22 start-page: 9475 year: 2002 end-page: 9489 ident: bib71 article-title: Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task publication-title: J. Neurosci. – volume: 503 start-page: 78 year: 2013 end-page: 84 ident: bib42 article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex publication-title: Nature – volume: 462 start-page: 915 year: 2009 end-page: 919 ident: bib95 article-title: Rapid formation and selective stabilization of synapses for enduring motor memories publication-title: Nature – volume: 98 start-page: 602 year: 2018 end-page: 615.e8 ident: bib15 article-title: Vision and Locomotion Shape the Interactions between Neuron Types in Mouse Visual Cortex publication-title: Neuron – volume: 267 start-page: 1028 year: 1995 end-page: 1030 ident: bib7 article-title: Temporal information transformed into a spatial code by a neural network with realistic properties publication-title: Science – volume: 233 start-page: 459 year: 2015 end-page: 476 ident: bib68 article-title: A mechanism for decision rule discrimination by supplementary eye field neurons publication-title: Exp. Brain Res. – volume: 341 start-page: 375 year: 1994 end-page: 392 ident: bib38 article-title: Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe publication-title: J. Comp. Neurol. – volume: 274 start-page: 427 year: 1996 end-page: 430 ident: bib21 article-title: Neural control of voluntary movement initiation publication-title: Science – volume: 36 start-page: 337 year: 2013 end-page: 359 ident: bib79 article-title: Cortical control of arm movements: a dynamical systems perspective publication-title: Annu. Rev. Neurosci. – volume: 24 start-page: 15 year: 1998 end-page: 33 ident: bib66 article-title: Scalar expectancy theory and peak-interval timing in humans publication-title: J. Exp. Psychol. Anim. Behav. Process. – volume: 18 start-page: 1025 year: 2015 end-page: 1033 ident: bib86 article-title: A neural network that finds a naturalistic solution for the production of muscle activity publication-title: Nat. Neurosci. – volume: 108 start-page: 19784 year: 2011 end-page: 19789 ident: bib47 article-title: Measuring time with different neural chronometers during a synchronization-continuation task publication-title: Proc. Natl. Acad. Sci. USA – volume: 71 start-page: 555 year: 2011 end-page: 564 ident: bib2 article-title: Single-trial neural correlates of arm movement preparation publication-title: Neuron – volume: 3 year: 2016 ident: bib30 article-title: The Largest Response Component in the Motor Cortex Reflects Movement Timing but Not Movement Type publication-title: eNeuro – volume: 321 start-page: 48 year: 2008 end-page: 50 ident: bib63 article-title: Neuroscience. Transient dynamics for neural processing publication-title: Science – volume: 12 start-page: e1005175 year: 2016 ident: bib50 article-title: Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning publication-title: PLoS Comput. Biol. – volume: 7 start-page: e1000167 year: 2009 ident: bib14 article-title: Ready...go: Amplitude of the FMRI signal encodes expectation of cue arrival time publication-title: PLoS Biol. – volume: 16 start-page: 925 year: 2013 end-page: 933 ident: bib37 article-title: Robust timing and motor patterns by taming chaos in recurrent neural networks publication-title: Nat. Neurosci. – year: 2016 ident: bib59 article-title: Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels publication-title: bioRxiv – volume: 33 start-page: 13834 year: 2013 end-page: 13847 ident: bib32 article-title: Neural correlates of interval timing in rodent prefrontal cortex publication-title: J. Neurosci. – volume: 30 start-page: 350 year: 2010 end-page: 360 ident: bib40 article-title: Functional, but not anatomical, separation of “what” and “when” in prefrontal cortex publication-title: J. Neurosci. – volume: 4 start-page: 24 year: 2010 ident: bib70 article-title: Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses publication-title: Front. Comput. Neurosci. – volume: 21 start-page: 102 year: 2018 end-page: 110 ident: bib93 article-title: Flexible timing by temporal scaling of cortical responses publication-title: Nat. Neurosci. – volume: 29 start-page: 48 year: 2014 end-page: 56 ident: bib56 article-title: Neuromodulation of neurons and synapses publication-title: Curr. Opin. Neurobiol. – year: 1992 ident: bib16 article-title: Are movement parameters recognizably coded in the activity of single neurons? The Behavioral and brain sciences – volume: 3 start-page: 38 year: 2009 ident: bib31 article-title: Inactivation of medial prefrontal cortex impairs time interval discrimination in rats publication-title: Front. Behav. Neurosci. – volume: 19 start-page: 634 year: 2016 end-page: 641 ident: bib74 article-title: Spike sorting for large, dense electrode arrays publication-title: Nat. Neurosci. – volume: 52 start-page: 1085 year: 2006 end-page: 1096 ident: bib10 article-title: A central source of movement variability publication-title: Neuron – volume: 53 start-page: 427 year: 2007 end-page: 438 ident: bib29 article-title: Timing in the absence of clocks: encoding time in neural network states publication-title: Neuron – volume: 90 start-page: 3054 year: 2003 end-page: 3065 ident: bib26 article-title: Contrasting neuronal activity in the supplementary and frontal eye fields during temporal organization of multiple saccades publication-title: J. Neurophysiol. – volume: 184 start-page: 593 year: 2008 end-page: 598 ident: bib57 article-title: Neuronal activity related to anticipated and elapsed time in macaque supplementary eye field publication-title: Exp. Brain Res. – volume: 25 start-page: 5866 year: 2005 end-page: 5876 ident: bib88 article-title: Involvement of the central thalamus in the control of smooth pursuit eye movements publication-title: J. Neurosci. – volume: 25 start-page: 2599 year: 2015 end-page: 2609 ident: bib28 article-title: A Neural Mechanism for Sensing and Reproducing a Time Interval publication-title: Curr. Biol. – volume: 303 start-page: 1506 year: 2004 end-page: 1508 ident: bib13 article-title: Functional anatomy of the attentional modulation of time estimation publication-title: Science – volume: 74 start-page: 1037 year: 1995 end-page: 1045 ident: bib60 article-title: Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills publication-title: J. Neurophysiol. – volume: 478 start-page: 387 year: 2011 end-page: 390 ident: bib62 article-title: Primary motor cortex underlies multi-joint integration for fast feedback control publication-title: Nature – volume: 93 start-page: 8694 year: 1996 end-page: 8698 ident: bib80 article-title: Role for cells in the presupplementary motor area in updating motor plans publication-title: Proc. Natl. Acad. Sci. USA – volume: 293 start-page: 299 year: 1990 end-page: 330 ident: bib24 article-title: Supplementary eye field as defined by intracortical microstimulation: connections in macaques publication-title: J. Comp. Neurol. – volume: 545 start-page: 181 year: 2017 end-page: 186 ident: bib19 article-title: Maintenance of persistent activity in a frontal thalamocortical loop publication-title: Nature – volume: 36 start-page: 3258 year: 2012 end-page: 3268 ident: bib35 article-title: Alteration of the timing of self-initiated but not reactive saccades by electrical stimulation in the supplementary eye field publication-title: Eur. J. Neurosci. – volume: 12 start-page: e1005164 year: 2016 ident: bib78 article-title: Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1 publication-title: PLoS Comput. Biol. – volume: 5 start-page: 1226 year: 2002 end-page: 1235 ident: bib90 article-title: Optimal feedback control as a theory of motor coordination publication-title: Nat. Neurosci. – volume: 12 start-page: 509 year: 2011 end-page: 523 ident: bib22 article-title: Cortical state and attention publication-title: Nat. Rev. Neurosci. – volume: 66 start-page: 155 year: 1987 end-page: 166 ident: bib58 article-title: Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement publication-title: Exp. Brain Res. – volume: 307 start-page: 562 year: 1991 end-page: 583 ident: bib82 article-title: Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei publication-title: J. Comp. Neurol. – volume: 411 start-page: 953 year: 2001 end-page: 956 ident: bib91 article-title: Single neurons in prefrontal cortex encode abstract rules publication-title: Nature – volume: 12 start-page: 222 year: 2012 ident: bib18 article-title: A simple procedure for the comparison of covariance matrices publication-title: BMC Evol. Biol. – volume: 8 start-page: e1002771 year: 2012 ident: bib1 article-title: Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing publication-title: PLoS Comput. Biol. – volume: 12 start-page: 502 year: 2009 end-page: 507 ident: bib52 article-title: Interval time coding by neurons in the presupplementary and supplementary motor areas publication-title: Nat. Neurosci. – volume: 93 start-page: 1504 year: 2017 end-page: 1517.e4 ident: bib9 article-title: Computing by Robust Transience: How the Fronto-Parietal Network Performs Sequential, Category-Based Decisions publication-title: Neuron – volume: 6 start-page: e26084 year: 2017 ident: bib55 article-title: Learning multiple variable-speed sequences in striatum via cortical tutoring publication-title: eLife – volume: 336 start-page: 211 year: 1993 end-page: 228 ident: bib4 article-title: Prefrontal connections of medial motor areas in the rhesus monkey publication-title: J. Comp. Neurol. – volume: 97 start-page: 188104 year: 2006 ident: bib64 article-title: Eigenvalue spectra of random matrices for neural networks publication-title: Phys. Rev. Lett. – volume: 76 start-page: 2327 year: 1996 end-page: 2342 ident: bib44 article-title: Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex publication-title: J. Neurophysiol. – volume: 91 start-page: 396 year: 1992 end-page: 407 ident: bib73 article-title: Role of primate basal ganglia and frontal cortex in the internal generation of movements. III. Neuronal activity in the supplementary motor area publication-title: Exp. Brain Res. – volume: 27 start-page: 10659 year: 2007 end-page: 10673 ident: bib3 article-title: Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output publication-title: J. Neurosci. – volume: 12 start-page: 908 year: 2002 end-page: 914 ident: bib5 article-title: The role of the frontal cortex in task preparation publication-title: Cereb. Cortex – volume: 87 start-page: 2158 year: 2002 end-page: 2166 ident: bib17 article-title: Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and Pre-SMA of monkeys publication-title: J. Neurophysiol. – volume: 78 start-page: 364 year: 2013 end-page: 375 ident: bib85 article-title: Dynamic coding for cognitive control in prefrontal cortex publication-title: Neuron – volume: 344 start-page: 1173 year: 2014 end-page: 1178 ident: bib98 article-title: Sleep promotes branch-specific formation of dendritic spines after learning publication-title: Science – volume: 7 start-page: 89 year: 2006 end-page: 94 ident: bib39 article-title: The supplementary motor area in motor and perceptual time processing: fMRI studies publication-title: Cogn. Process. – volume: 9 start-page: 948 year: 2006 end-page: 955 ident: bib41 article-title: A cognitive signal for the proactive timing of action in macaque LIP publication-title: Nat. Neurosci. – volume: 33 start-page: 2254 year: 2013 end-page: 2267 ident: bib46 article-title: Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making publication-title: J. Neurosci. – volume: 78 start-page: 1550 year: 1990 end-page: 1560 ident: bib94 article-title: Backpropagation through time: what it does and how to do it publication-title: Proc. IEEE – volume: 81 start-page: 1401 year: 2014 end-page: 1416 ident: bib89 article-title: Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making publication-title: Neuron – volume: 82 start-page: 1394 year: 2014 end-page: 1406 ident: bib23 article-title: Optimal control of transient dynamics in balanced networks supports generation of complex movements publication-title: Neuron – volume: 24 start-page: 167 year: 2001 end-page: 202 ident: bib51 article-title: An integrative theory of prefrontal cortex function publication-title: Annu. Rev. Neurosci. – volume: 111 start-page: 2644 year: 2014 end-page: 2655 ident: bib97 article-title: Contrasting the roles of the supplementary and frontal eye fields in ocular decision making publication-title: J. Neurophysiol. – volume: 53 start-page: 1 year: 2005 end-page: 7 ident: bib92 article-title: Prefrontal cortical cells projecting to the supplementary eye field and presupplementary motor area in the monkey publication-title: Neurosci. Res. – volume: 12 start-page: e1004792 year: 2016 ident: bib84 article-title: Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework publication-title: PLoS Comput. Biol. – volume: 67 start-page: 656 year: 1987 end-page: 662 ident: bib72 article-title: Neuronal activity preceding self-initiated or externally timed arm movements in area 6 of monkey cortex publication-title: Exp. Brain Res. – volume: 68 start-page: 387 year: 2010 end-page: 400 ident: bib11 article-title: Cortical preparatory activity: representation of movement or first cog in a dynamical machine? publication-title: Neuron – volume: 4 start-page: 124 year: 2010 ident: bib83 article-title: Reversible Inactivation of Rat Premotor Cortex Impairs Temporal Preparation, but not Inhibitory Control, During Simple Reaction-Time Performance publication-title: Front. Integr. Nuerosci. – volume: 487 start-page: 51 year: 2012 end-page: 56 ident: bib12 article-title: Neural population dynamics during reaching publication-title: Nature – volume: 10 start-page: 113 year: 2009 end-page: 125 ident: bib6 article-title: State-dependent computations: spatiotemporal processing in cortical networks publication-title: Nat. Rev. Neurosci. – volume: 86 start-page: 1067 year: 2015 end-page: 1077 ident: bib8 article-title: Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal Uncertainty publication-title: Neuron – volume: 17 start-page: 1574 year: 2014 end-page: 1582 ident: bib54 article-title: Neural antecedents of self-initiated actions in secondary motor cortex publication-title: Nat. Neurosci. – reference: . – volume: 68 start-page: 653 year: 1992 end-page: 662 ident: bib45 article-title: A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task publication-title: J. Neurophysiol. – volume: 57 start-page: 179 year: 1987 end-page: 200 ident: bib75 article-title: Evidence for a supplementary eye field publication-title: J. Neurophysiol. – volume: 111 start-page: 480 year: 2014 end-page: 485 ident: bib96 article-title: Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 532 year: 2004 end-page: 546 ident: bib77 article-title: Optimal feedback control and the neural basis of volitional motor control publication-title: Nat. Rev. Neurosci. – volume: 10 start-page: 240 year: 2007 end-page: 248 ident: bib25 article-title: Switching from automatic to controlled action by monkey medial frontal cortex publication-title: Nat. Neurosci. – volume: 72 start-page: 237 year: 1988 end-page: 248 ident: bib36 article-title: Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally- and internally-instructed motor tasks publication-title: Exp. Brain Res. – volume: 16 start-page: 925 year: 2013 ident: 10.1016/j.neuron.2018.05.020_bib37 article-title: Robust timing and motor patterns by taming chaos in recurrent neural networks publication-title: Nat. Neurosci. doi: 10.1038/nn.3405 – volume: 12 start-page: 509 year: 2011 ident: 10.1016/j.neuron.2018.05.020_bib22 article-title: Cortical state and attention publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3084 – volume: 24 start-page: 15 year: 1998 ident: 10.1016/j.neuron.2018.05.020_bib66 article-title: Scalar expectancy theory and peak-interval timing in humans publication-title: J. Exp. Psychol. Anim. Behav. Process. doi: 10.1037/0097-7403.24.1.15 – volume: 33 start-page: 2254 year: 2013 ident: 10.1016/j.neuron.2018.05.020_bib46 article-title: Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2984-12.2013 – volume: 545 start-page: 181 year: 2017 ident: 10.1016/j.neuron.2018.05.020_bib19 article-title: Maintenance of persistent activity in a frontal thalamocortical loop publication-title: Nature doi: 10.1038/nature22324 – volume: 545 start-page: 219 year: 2017 ident: 10.1016/j.neuron.2018.05.020_bib76 article-title: Thalamic amplification of cortical connectivity sustains attentional control publication-title: Nature doi: 10.1038/nature22073 – volume: 9 start-page: 948 year: 2006 ident: 10.1016/j.neuron.2018.05.020_bib41 article-title: A cognitive signal for the proactive timing of action in macaque LIP publication-title: Nat. Neurosci. doi: 10.1038/nn1716 – volume: 5 start-page: 532 year: 2004 ident: 10.1016/j.neuron.2018.05.020_bib77 article-title: Optimal feedback control and the neural basis of volitional motor control publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1427 – volume: 82 start-page: 1394 year: 2014 ident: 10.1016/j.neuron.2018.05.020_bib23 article-title: Optimal control of transient dynamics in balanced networks supports generation of complex movements publication-title: Neuron doi: 10.1016/j.neuron.2014.04.045 – volume: 78 start-page: 364 year: 2013 ident: 10.1016/j.neuron.2018.05.020_bib85 article-title: Dynamic coding for cognitive control in prefrontal cortex publication-title: Neuron doi: 10.1016/j.neuron.2013.01.039 – volume: 18 start-page: 1025 year: 2015 ident: 10.1016/j.neuron.2018.05.020_bib86 article-title: A neural network that finds a naturalistic solution for the production of muscle activity publication-title: Nat. Neurosci. doi: 10.1038/nn.4042 – volume: 72 start-page: 237 year: 1988 ident: 10.1016/j.neuron.2018.05.020_bib36 article-title: Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally- and internally-instructed motor tasks publication-title: Exp. Brain Res. doi: 10.1007/BF00250247 – volume: 17 start-page: 1574 year: 2014 ident: 10.1016/j.neuron.2018.05.020_bib54 article-title: Neural antecedents of self-initiated actions in secondary motor cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.3826 – volume: 12 start-page: e1005164 year: 2016 ident: 10.1016/j.neuron.2018.05.020_bib78 article-title: Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005164 – volume: 33 start-page: 9082 year: 2013 ident: 10.1016/j.neuron.2018.05.020_bib48 article-title: Interval tuning in the primate medial premotor cortex as a general timing mechanism publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5513-12.2013 – volume: 91 start-page: 396 year: 1992 ident: 10.1016/j.neuron.2018.05.020_bib73 article-title: Role of primate basal ganglia and frontal cortex in the internal generation of movements. III. Neuronal activity in the supplementary motor area publication-title: Exp. Brain Res. doi: 10.1007/BF00227836 – volume: 233 start-page: 459 year: 2015 ident: 10.1016/j.neuron.2018.05.020_bib68 article-title: A mechanism for decision rule discrimination by supplementary eye field neurons publication-title: Exp. Brain Res. doi: 10.1007/s00221-014-4127-2 – volume: 7 start-page: 89 year: 2006 ident: 10.1016/j.neuron.2018.05.020_bib39 article-title: The supplementary motor area in motor and perceptual time processing: fMRI studies publication-title: Cogn. Process. doi: 10.1007/s10339-005-0025-7 – volume: 35 start-page: 11415 year: 2015 ident: 10.1016/j.neuron.2018.05.020_bib49 article-title: Predicting Reaction Time from the Neural State Space of the Premotor and Parietal Grasping Network publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1714-15.2015 – volume: 8 start-page: e1002771 year: 2012 ident: 10.1016/j.neuron.2018.05.020_bib1 article-title: Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002771 – volume: 462 start-page: 915 year: 2009 ident: 10.1016/j.neuron.2018.05.020_bib95 article-title: Rapid formation and selective stabilization of synapses for enduring motor memories publication-title: Nature doi: 10.1038/nature08389 – volume: 21 start-page: 102 year: 2018 ident: 10.1016/j.neuron.2018.05.020_bib93 article-title: Flexible timing by temporal scaling of cortical responses publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0028-6 – volume: 25 start-page: 5866 year: 2005 ident: 10.1016/j.neuron.2018.05.020_bib88 article-title: Involvement of the central thalamus in the control of smooth pursuit eye movements publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0676-05.2005 – volume: 68 start-page: 387 year: 2010 ident: 10.1016/j.neuron.2018.05.020_bib11 article-title: Cortical preparatory activity: representation of movement or first cog in a dynamical machine? publication-title: Neuron doi: 10.1016/j.neuron.2010.09.015 – volume: 53 start-page: 1 year: 2005 ident: 10.1016/j.neuron.2018.05.020_bib92 article-title: Prefrontal cortical cells projecting to the supplementary eye field and presupplementary motor area in the monkey publication-title: Neurosci. Res. doi: 10.1016/j.neures.2005.05.005 – volume: 6 start-page: e26084 year: 2017 ident: 10.1016/j.neuron.2018.05.020_bib55 article-title: Learning multiple variable-speed sequences in striatum via cortical tutoring publication-title: eLife doi: 10.7554/eLife.26084 – volume: 71 start-page: 555 year: 2011 ident: 10.1016/j.neuron.2018.05.020_bib2 article-title: Single-trial neural correlates of arm movement preparation publication-title: Neuron doi: 10.1016/j.neuron.2011.05.047 – volume: 12 start-page: 222 year: 2012 ident: 10.1016/j.neuron.2018.05.020_bib18 article-title: A simple procedure for the comparison of covariance matrices publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-12-222 – volume: 503 start-page: 78 year: 2013 ident: 10.1016/j.neuron.2018.05.020_bib42 article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex publication-title: Nature doi: 10.1038/nature12742 – volume: 24 start-page: 167 year: 2001 ident: 10.1016/j.neuron.2018.05.020_bib51 article-title: An integrative theory of prefrontal cortex function publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.24.1.167 – volume: 7 start-page: e1000167 year: 2009 ident: 10.1016/j.neuron.2018.05.020_bib14 article-title: Ready...go: Amplitude of the FMRI signal encodes expectation of cue arrival time publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000167 – volume: 98 start-page: 602 year: 2018 ident: 10.1016/j.neuron.2018.05.020_bib15 article-title: Vision and Locomotion Shape the Interactions between Neuron Types in Mouse Visual Cortex publication-title: Neuron doi: 10.1016/j.neuron.2018.03.037 – volume: 12 start-page: e1004792 year: 2016 ident: 10.1016/j.neuron.2018.05.020_bib84 article-title: Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004792 – volume: 29 start-page: 48 year: 2014 ident: 10.1016/j.neuron.2018.05.020_bib56 article-title: Neuromodulation of neurons and synapses publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.05.003 – volume: 25 start-page: 2599 year: 2015 ident: 10.1016/j.neuron.2018.05.020_bib28 article-title: A Neural Mechanism for Sensing and Reproducing a Time Interval publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.08.038 – volume: 267 start-page: 1028 year: 1995 ident: 10.1016/j.neuron.2018.05.020_bib7 article-title: Temporal information transformed into a spatial code by a neural network with realistic properties publication-title: Science doi: 10.1126/science.7863330 – year: 2017 ident: 10.1016/j.neuron.2018.05.020_bib69 article-title: Late Bayesian inference in sensorimotor behavior publication-title: bioRxiv – volume: 36 start-page: 337 year: 2013 ident: 10.1016/j.neuron.2018.05.020_bib79 article-title: Cortical control of arm movements: a dynamical systems perspective publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062111-150509 – volume: 117 start-page: 760 year: 2003 ident: 10.1016/j.neuron.2018.05.020_bib43 article-title: Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons publication-title: Behav. Neurosci. doi: 10.1037/0735-7044.117.4.760 – volume: 27 start-page: 10659 year: 2007 ident: 10.1016/j.neuron.2018.05.020_bib3 article-title: Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3134-07.2007 – year: 1992 ident: 10.1016/j.neuron.2018.05.020_bib16 – volume: 57 start-page: 179 year: 1987 ident: 10.1016/j.neuron.2018.05.020_bib75 article-title: Evidence for a supplementary eye field publication-title: J. Neurophysiol. doi: 10.1152/jn.1987.57.1.179 – volume: 293 start-page: 299 year: 1990 ident: 10.1016/j.neuron.2018.05.020_bib24 article-title: Supplementary eye field as defined by intracortical microstimulation: connections in macaques publication-title: J. Comp. Neurol. doi: 10.1002/cne.902930211 – volume: 116 start-page: 243 year: 1993 ident: 10.1016/j.neuron.2018.05.020_bib20 article-title: The role of premotor cortex and the supplementary motor area in the temporal control of movement in man publication-title: Brain doi: 10.1093/brain/116.1.243 – volume: 5 start-page: 1226 year: 2002 ident: 10.1016/j.neuron.2018.05.020_bib90 article-title: Optimal feedback control as a theory of motor coordination publication-title: Nat. Neurosci. doi: 10.1038/nn963 – volume: 93 start-page: 8694 year: 1996 ident: 10.1016/j.neuron.2018.05.020_bib80 article-title: Role for cells in the presupplementary motor area in updating motor plans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.16.8694 – volume: 303 start-page: 1506 year: 2004 ident: 10.1016/j.neuron.2018.05.020_bib13 article-title: Functional anatomy of the attentional modulation of time estimation publication-title: Science doi: 10.1126/science.1091573 – volume: 4 start-page: 317 year: 2001 ident: 10.1016/j.neuron.2018.05.020_bib67 article-title: The evolution of brain activation during temporal processing publication-title: Nat. Neurosci. doi: 10.1038/85191 – volume: 87 start-page: 2158 year: 2002 ident: 10.1016/j.neuron.2018.05.020_bib17 article-title: Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and Pre-SMA of monkeys publication-title: J. Neurophysiol. doi: 10.1152/jn.00867.2001 – volume: 478 start-page: 387 year: 2011 ident: 10.1016/j.neuron.2018.05.020_bib62 article-title: Primary motor cortex underlies multi-joint integration for fast feedback control publication-title: Nature doi: 10.1038/nature10436 – volume: 411 start-page: 953 year: 2001 ident: 10.1016/j.neuron.2018.05.020_bib91 article-title: Single neurons in prefrontal cortex encode abstract rules publication-title: Nature doi: 10.1038/35082081 – volume: 108 start-page: 19784 year: 2011 ident: 10.1016/j.neuron.2018.05.020_bib47 article-title: Measuring time with different neural chronometers during a synchronization-continuation task publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1112933108 – volume: 80 start-page: 3321 year: 1998 ident: 10.1016/j.neuron.2018.05.020_bib33 article-title: Functional reorganization of the rat motor cortex following motor skill learning publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.80.6.3321 – volume: 5 start-page: 29 year: 2011 ident: 10.1016/j.neuron.2018.05.020_bib81 article-title: Deciphering elapsed time and predicting action timing from neuronal population signals publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2011.00029 – volume: 12 start-page: 908 year: 2002 ident: 10.1016/j.neuron.2018.05.020_bib5 article-title: The role of the frontal cortex in task preparation publication-title: Cereb. Cortex doi: 10.1093/cercor/12.9.908 – volume: 4 start-page: 124 year: 2010 ident: 10.1016/j.neuron.2018.05.020_bib83 article-title: Reversible Inactivation of Rat Premotor Cortex Impairs Temporal Preparation, but not Inhibitory Control, During Simple Reaction-Time Performance publication-title: Front. Integr. Nuerosci. doi: 10.3389/fnint.2010.00124 – volume: 36 start-page: 3258 year: 2012 ident: 10.1016/j.neuron.2018.05.020_bib35 article-title: Alteration of the timing of self-initiated but not reactive saccades by electrical stimulation in the supplementary eye field publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2012.08242.x – volume: 81 start-page: 1401 year: 2014 ident: 10.1016/j.neuron.2018.05.020_bib89 article-title: Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making publication-title: Neuron doi: 10.1016/j.neuron.2014.01.031 – volume: 3 start-page: 38 year: 2009 ident: 10.1016/j.neuron.2018.05.020_bib31 article-title: Inactivation of medial prefrontal cortex impairs time interval discrimination in rats publication-title: Front. Behav. Neurosci. doi: 10.3389/neuro.08.038.2009 – volume: 321 start-page: 48 year: 2008 ident: 10.1016/j.neuron.2018.05.020_bib63 article-title: Neuroscience. Transient dynamics for neural processing publication-title: Science doi: 10.1126/science.1155564 – volume: 94 start-page: 395 year: 2005 ident: 10.1016/j.neuron.2018.05.020_bib53 article-title: Testing Bayesian models of human coincidence timing publication-title: J. Neurophysiol. doi: 10.1152/jn.01168.2004 – volume: 52 start-page: 1085 year: 2006 ident: 10.1016/j.neuron.2018.05.020_bib10 article-title: A central source of movement variability publication-title: Neuron doi: 10.1016/j.neuron.2006.10.034 – volume: 68 start-page: 653 year: 1992 ident: 10.1016/j.neuron.2018.05.020_bib45 article-title: A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task publication-title: J. Neurophysiol. doi: 10.1152/jn.1992.68.3.653 – volume: 76 start-page: 2327 year: 1996 ident: 10.1016/j.neuron.2018.05.020_bib44 article-title: Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.1996.76.4.2327 – volume: 344 start-page: 1173 year: 2014 ident: 10.1016/j.neuron.2018.05.020_bib98 article-title: Sleep promotes branch-specific formation of dendritic spines after learning publication-title: Science doi: 10.1126/science.1249098 – volume: 111 start-page: 2644 year: 2014 ident: 10.1016/j.neuron.2018.05.020_bib97 article-title: Contrasting the roles of the supplementary and frontal eye fields in ocular decision making publication-title: J. Neurophysiol. doi: 10.1152/jn.00543.2013 – volume: 12 start-page: 502 year: 2009 ident: 10.1016/j.neuron.2018.05.020_bib52 article-title: Interval time coding by neurons in the presupplementary and supplementary motor areas publication-title: Nat. Neurosci. doi: 10.1038/nn.2272 – volume: 184 start-page: 593 year: 2008 ident: 10.1016/j.neuron.2018.05.020_bib57 article-title: Neuronal activity related to anticipated and elapsed time in macaque supplementary eye field publication-title: Exp. Brain Res. doi: 10.1007/s00221-007-1234-3 – volume: 10 start-page: 240 year: 2007 ident: 10.1016/j.neuron.2018.05.020_bib25 article-title: Switching from automatic to controlled action by monkey medial frontal cortex publication-title: Nat. Neurosci. doi: 10.1038/nn1830 – volume: 67 start-page: 656 year: 1987 ident: 10.1016/j.neuron.2018.05.020_bib72 article-title: Neuronal activity preceding self-initiated or externally timed arm movements in area 6 of monkey cortex publication-title: Exp. Brain Res. doi: 10.1007/BF00247297 – volume: 5 start-page: e10989 year: 2016 ident: 10.1016/j.neuron.2018.05.020_bib34 article-title: Demixed principal component analysis of neural population data publication-title: eLife doi: 10.7554/eLife.10989 – volume: 19 start-page: 634 year: 2016 ident: 10.1016/j.neuron.2018.05.020_bib74 article-title: Spike sorting for large, dense electrode arrays publication-title: Nat. Neurosci. doi: 10.1038/nn.4268 – ident: 10.1016/j.neuron.2018.05.020_bib87 – volume: 307 start-page: 562 year: 1991 ident: 10.1016/j.neuron.2018.05.020_bib82 article-title: Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei publication-title: J. Comp. Neurol. doi: 10.1002/cne.903070405 – volume: 382 start-page: 106 year: 2005 ident: 10.1016/j.neuron.2018.05.020_bib61 article-title: Relationship between CNV and timing of an upcoming event publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2005.02.067 – volume: 111 start-page: 480 year: 2014 ident: 10.1016/j.neuron.2018.05.020_bib96 article-title: Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1321314111 – volume: 30 start-page: 350 year: 2010 ident: 10.1016/j.neuron.2018.05.020_bib40 article-title: Functional, but not anatomical, separation of “what” and “when” in prefrontal cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3276-09.2010 – volume: 66 start-page: 155 year: 1987 ident: 10.1016/j.neuron.2018.05.020_bib58 article-title: Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement publication-title: Exp. Brain Res. doi: 10.1007/BF00236211 – volume: 74 start-page: 1037 year: 1995 ident: 10.1016/j.neuron.2018.05.020_bib60 article-title: Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills publication-title: J. Neurophysiol. doi: 10.1152/jn.1995.74.3.1037 – volume: 86 start-page: 1067 year: 2015 ident: 10.1016/j.neuron.2018.05.020_bib8 article-title: Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal Uncertainty publication-title: Neuron doi: 10.1016/j.neuron.2015.04.014 – volume: 336 start-page: 211 year: 1993 ident: 10.1016/j.neuron.2018.05.020_bib4 article-title: Prefrontal connections of medial motor areas in the rhesus monkey publication-title: J. Comp. Neurol. doi: 10.1002/cne.903360205 – volume: 22 start-page: 9475 year: 2002 ident: 10.1016/j.neuron.2018.05.020_bib71 article-title: Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-21-09475.2002 – volume: 90 start-page: 128 year: 2016 ident: 10.1016/j.neuron.2018.05.020_bib65 article-title: Recurrent Network Models of Sequence Generation and Memory publication-title: Neuron doi: 10.1016/j.neuron.2016.02.009 – year: 2016 ident: 10.1016/j.neuron.2018.05.020_bib59 article-title: Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels publication-title: bioRxiv – volume: 487 start-page: 51 year: 2012 ident: 10.1016/j.neuron.2018.05.020_bib12 article-title: Neural population dynamics during reaching publication-title: Nature doi: 10.1038/nature11129 – volume: 4 start-page: 24 year: 2010 ident: 10.1016/j.neuron.2018.05.020_bib70 article-title: Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2010.00024 – volume: 93 start-page: 1504 year: 2017 ident: 10.1016/j.neuron.2018.05.020_bib9 article-title: Computing by Robust Transience: How the Fronto-Parietal Network Performs Sequential, Category-Based Decisions publication-title: Neuron doi: 10.1016/j.neuron.2017.03.002 – volume: 10 start-page: 113 year: 2009 ident: 10.1016/j.neuron.2018.05.020_bib6 article-title: State-dependent computations: spatiotemporal processing in cortical networks publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2558 – volume: 274 start-page: 427 year: 1996 ident: 10.1016/j.neuron.2018.05.020_bib21 article-title: Neural control of voluntary movement initiation publication-title: Science doi: 10.1126/science.274.5286.427 – volume: 12 start-page: e1005175 year: 2016 ident: 10.1016/j.neuron.2018.05.020_bib50 article-title: Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005175 – volume: 53 start-page: 427 year: 2007 ident: 10.1016/j.neuron.2018.05.020_bib29 article-title: Timing in the absence of clocks: encoding time in neural network states publication-title: Neuron doi: 10.1016/j.neuron.2007.01.006 – volume: 90 start-page: 3054 year: 2003 ident: 10.1016/j.neuron.2018.05.020_bib26 article-title: Contrasting neuronal activity in the supplementary and frontal eye fields during temporal organization of multiple saccades publication-title: J. Neurophysiol. doi: 10.1152/jn.00367.2003 – volume: 78 start-page: 1550 year: 1990 ident: 10.1016/j.neuron.2018.05.020_bib94 article-title: Backpropagation through time: what it does and how to do it publication-title: Proc. IEEE doi: 10.1109/5.58337 – volume: 341 start-page: 375 year: 1994 ident: 10.1016/j.neuron.2018.05.020_bib38 article-title: Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe publication-title: J. Comp. Neurol. doi: 10.1002/cne.903410308 – volume: 97 start-page: 188104 year: 2006 ident: 10.1016/j.neuron.2018.05.020_bib64 article-title: Eigenvalue spectra of random matrices for neural networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.188104 – volume: 33 start-page: 13834 year: 2013 ident: 10.1016/j.neuron.2018.05.020_bib32 article-title: Neural correlates of interval timing in rodent prefrontal cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1443-13.2013 – volume: 3 year: 2016 ident: 10.1016/j.neuron.2018.05.020_bib30 article-title: The Largest Response Component in the Motor Cortex Reflects Movement Timing but Not Movement Type publication-title: eNeuro doi: 10.1523/ENEURO.0085-16.2016 – volume: 13 start-page: 1020 year: 2010 ident: 10.1016/j.neuron.2018.05.020_bib27 article-title: Temporal context calibrates interval timing publication-title: Nat. Neurosci. doi: 10.1038/nn.2590 – reference: 29879388 - Neuron. 2018 Jun 6;98(5):873-875 |
SSID | ssj0014591 |
Score | 2.6190119 |
Snippet | Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions... SummaryNeural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1005 |
SubjectTerms | Animals Behavior Cerebral Cortex - physiology Cognition cognitive flexibility Cortex (frontal) Data smoothing Dynamical Systems Electroencephalography electrophysiology Female Flexibility frontal cortex Frontal Lobe - physiology Hypotheses Macaca mulatta Male motor planning Neural networks Neural Networks, Computer Neurons - physiology Neurosciences population coding recurrent neural networks sensorimotor coordination Sensorimotor Cortex - physiology Sensorimotor system Systems Analysis Task Performance and Analysis Time Factors timing |
Title | Flexible Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics |
URI | https://dx.doi.org/10.1016/j.neuron.2018.05.020 https://www.ncbi.nlm.nih.gov/pubmed/29879384 https://www.proquest.com/docview/2050945736 https://www.proquest.com/docview/2052817585 https://pubmed.ncbi.nlm.nih.gov/PMC6009852 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NQ0i8INj4KIzJSIg3q0ljx8ljGUwTEzxsTPTNsl0bgkZSde3D_nvu7CSigDSJl0iJz5HtO5_v7PPvAN7UArmaS8tNLRwXXhW8slZwtbSZyI0P0tEF50-fy7Mr8XEhF3twMtyFobDKXvcnnR61df9l2o_mdNU008usqgm9nIQyIwgW1MOE1EKX-BbvxpMEIVPWPCTmRD1cn4sxXhEzklBQ8yrid1LW738vT3-bn39GUf62LJ0-goe9PcnmqcmPYc-3B3A4b9GX_nnL3rIY4Rm3zg_gfko8eXsIV6eEg2mvPbtEN7ZbE8O6NUspHtIeHusz-LALs2qWjNzUNjTftkliWBeQeh03wtn7lNX-5gn-98OXkzPeJ1jgTkq14UIuC48aT7l65kwRcqVM7ctSWINmANlmeW2NcKpwQQRX4SPPzNKWmbGhUKZ4Cvtt1_rnwIwL1iuPxiZS1d4Z6asKndxZyJzBf02gGMZVux59nJJgXOshzOyHTtzQxA2dSY3cmAAfa60S-sYd9Gpgmd6RIo0LxB01jwYO634W32A5wQtKVZQTeD0W4_yjQxXT-m4baWZVTl7XBJ4lgRibiv1G9VcJbNaOqIwEhO29W9I23yPGd0lAr3L24r879BIe0FuMaiuPYH-z3vpXaD9t7DHcm59ffD0_jhPlF8CeHiU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkQvCFoeWwoYCXGLNtnYcXIshWoLbQ-0lfZm2V4bgkqy2u4e-u-ZsZOIBaRKXHKIx5btGY9n7PE3AO8qjlzNhEl0xW3CncyT0hieyLlJeaadF5YeOJ-dF9Mr_nkmZltw1L-FobDKTvdHnR60dfdn3M3meFHX44u0rAi9nIQyJQiWe3AfrYGC4rpOZh-GqwQuYto8pE6IvH8_F4K8AmgkwaBmZQDwpLTf_96f_rY__wyj_G1fOn4MjzqDkh3GPj-BLdfswt5hg870z1v2noUQz3B2vgsPYubJ2z24OiYgTHPt2AX6se2SONYuWczxEA_xWJfCh33Vi3rOyE9tfP1tHUWGtR6pl-EknH2Mae1vnmK7ny6PpkmXYSGxQshVwsU8d6jypK0mVuc-k1JXrii40WgHkHGWVUZzK3PrubclfrJUz02RauNzqfNnsN20jXsBTFtvnHRobSJV5awWrizRy5341GpsawR5P6_KdvDjlAXjWvVxZj9U5IYibqhUKOTGCJKh1iLCb9xBL3uWqQ0xUrhD3FHzoOew6pbxDZYTvqCQeTGCt0MxLkC6VdGNa9eBZlJm5HaN4HkUiKGrOG7UfyXHbm2IykBA4N6bJU39PYB8F4T0Kib7_z2gN_Bwenl2qk5Pzr-8hB0qCSFuxQFsr5Zr9wqNqZV5HRbLLzN9H6k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Sensorimotor+Computations+through+Rapid+Reconfiguration+of+Cortical+Dynamics&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Remington%2C+Evan+D&rft.au=Narain%2C+Devika&rft.au=Hosseini%2C+Eghbal+A&rft.au=Jazayeri%2C+Mehrdad&rft.date=2018-06-06&rft.pub=Elsevier+Limited&rft.issn=0896-6273&rft.eissn=1097-4199&rft.volume=98&rft.issue=5&rft.spage=1005&rft_id=info:doi/10.1016%2Fj.neuron.2018.05.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |