Flexible Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics

Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system’s inputs and initial conditions. To investigate whether the bra...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 98; no. 5; pp. 1005 - 1019.e5
Main Authors Remington, Evan D., Narain, Devika, Hosseini, Eghbal A., Jazayeri, Mehrdad
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 06.06.2018
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0896-6273
1097-4199
1097-4199
DOI10.1016/j.neuron.2018.05.020

Cover

Loading…
Abstract Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system’s inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system’s initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations. [Display omitted] •Monkeys performed a timing task demanding flexible cognitive control•The organization of neural trajectories in frontal cortex reflected task demands•Flexible control was best explained in terms of inputs and initial conditions•Recurrent neural network models validated the inferred control principles Remington et al. employ a dynamical systems perspective to understand how the brain flexibly controls timed movements. Results suggest that neurons in the frontal cortex form a recurrent network whose behavior is flexibly controlled by inputs and initial conditions.
AbstractList Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system’s inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over the cortical dynamics by adjusting the system’s initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations. Remington et al. employ a dynamical systems perspective to understand how the brain flexibly controls timed movements. Results suggest that neurons in frontal cortex form a recurrent network whose behavior is flexibly controlled by inputs and initial conditions.
Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system's inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system's initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations.Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system's inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system's initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations.
SummaryNeural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system’s inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system’s initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations.
Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system's inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system's initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations.
Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system’s inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system’s initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations. [Display omitted] •Monkeys performed a timing task demanding flexible cognitive control•The organization of neural trajectories in frontal cortex reflected task demands•Flexible control was best explained in terms of inputs and initial conditions•Recurrent neural network models validated the inferred control principles Remington et al. employ a dynamical systems perspective to understand how the brain flexibly controls timed movements. Results suggest that neurons in the frontal cortex form a recurrent network whose behavior is flexibly controlled by inputs and initial conditions.
Author Narain, Devika
Hosseini, Eghbal A.
Jazayeri, Mehrdad
Remington, Evan D.
AuthorAffiliation 4 Erasmus Medical Center, Rotterdam, the Netherlands
3 Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
1 McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2 Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
AuthorAffiliation_xml – name: 1 McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
– name: 3 Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
– name: 2 Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
– name: 4 Erasmus Medical Center, Rotterdam, the Netherlands
Author_xml – sequence: 1
  givenname: Evan D.
  surname: Remington
  fullname: Remington, Evan D.
  organization: McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 2
  givenname: Devika
  surname: Narain
  fullname: Narain, Devika
  organization: McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 3
  givenname: Eghbal A.
  surname: Hosseini
  fullname: Hosseini, Eghbal A.
  organization: Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 4
  givenname: Mehrdad
  surname: Jazayeri
  fullname: Jazayeri, Mehrdad
  email: mjaz@mit.edu
  organization: McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29879384$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFf4BQJC5cEvwZxxyQ0PIpVUIqcLYcZ7LrVWIvtlPRf4-XXSroAS6ewzzz-p15L9CZDx4QekpwQzBpX-4aD0sMvqGYdA0WDab4AVoRrGTNiVJnaIU71dYtlewcXaS0w5hwocgjdE5VJxXr-Ap9ez_BD9dPUH0Bn0J0c8ghVusw75dssgs-VXkbw7LZVtdm74bqGmzwo9ss8Ve7CmOhY3bWTNXbW29mZ9Nj9HA0U4Inp3pZ_nn3df2xvvr84dP6zVVthZC55mJgIFgnraLWsJFIaRS0Le8NKRaZoET1hlvJ7MhH25WHYDP0LTb9yKRhl-j1UXe_9DMMFnyOZtL7soaJtzoYp__ueLfVm3CjW4xVJ2gReHESiOH7Ainr2SUL02Q8hCVpigXtiBSdKOjze-guLNGX9Q4UVlxI1hbq2Z-O7qz8vngB-BGwMaQUYbxDCNaHYPVOH4PVh2A1FroEW8Ze3Ruz7phP2ctN_xs-nQlKFjcOok7WgbcwuAg26yG4fwv8BDWMw0o
CitedBy_id crossref_primary_10_1038_s42256_020_00229_3
crossref_primary_10_21105_joss_01003
crossref_primary_10_1016_j_cophys_2020_07_015
crossref_primary_10_1038_s41562_023_01804_5
crossref_primary_10_7554_eLife_55872
crossref_primary_10_1016_j_cub_2022_12_044
crossref_primary_10_1073_pnas_1820474116
crossref_primary_10_1016_j_neunet_2023_04_006
crossref_primary_10_1016_j_conb_2022_102630
crossref_primary_10_1541_ieejeiss_142_578
crossref_primary_10_1162_jocn_a_01569
crossref_primary_10_1371_journal_pbio_3000054
crossref_primary_10_1371_journal_pcbi_1007655
crossref_primary_10_7554_eLife_37124
crossref_primary_10_1038_s41583_022_00623_3
crossref_primary_10_1073_pnas_2311420120
crossref_primary_10_1523_ENEURO_0012_22_2022
crossref_primary_10_1016_j_celrep_2023_113234
crossref_primary_10_1371_journal_pcbi_1009271
crossref_primary_10_1523_JNEUROSCI_1652_20_2020
crossref_primary_10_1523_JNEUROSCI_0628_20_2021
crossref_primary_10_3389_frobt_2024_1324404
crossref_primary_10_1126_sciadv_adk7257
crossref_primary_10_7554_eLife_89421_3
crossref_primary_10_1016_j_conb_2018_12_009
crossref_primary_10_1016_j_conb_2021_10_014
crossref_primary_10_1176_appi_ajp_2020_20081151
crossref_primary_10_1073_pnas_2115610119
crossref_primary_10_1038_s41467_024_54688_y
crossref_primary_10_1111_psyp_70020
crossref_primary_10_1016_j_conb_2021_09_008
crossref_primary_10_1016_j_neuron_2020_05_020
crossref_primary_10_1038_s41598_023_47843_w
crossref_primary_10_1146_annurev_neuro_092619_094115
crossref_primary_10_1038_s41593_022_01088_4
crossref_primary_10_1007_s12264_022_00832_x
crossref_primary_10_1073_pnas_2404169121
crossref_primary_10_1016_j_neuroimage_2020_117607
crossref_primary_10_1038_s41586_024_08433_6
crossref_primary_10_1038_s41593_020_0671_1
crossref_primary_10_1063_5_0064771
crossref_primary_10_1016_j_neuron_2018_09_030
crossref_primary_10_1371_journal_pcbi_1010365
crossref_primary_10_7554_eLife_38983
crossref_primary_10_1093_cercor_bhab418
crossref_primary_10_1038_s41467_020_16999_8
crossref_primary_10_1038_s41583_020_00395_8
crossref_primary_10_1016_j_pneurobio_2023_102537
crossref_primary_10_1016_j_conb_2021_10_015
crossref_primary_10_1016_j_neuron_2024_01_002
crossref_primary_10_7554_eLife_71612
crossref_primary_10_1038_s41467_019_12841_y
crossref_primary_10_1016_j_celrep_2023_112136
crossref_primary_10_1038_s41467_020_20371_1
crossref_primary_10_1016_j_semcdb_2021_08_014
crossref_primary_10_2139_ssrn_3967676
crossref_primary_10_7554_eLife_56942
crossref_primary_10_1073_pnas_2409487121
crossref_primary_10_7554_eLife_92620_3
crossref_primary_10_1126_science_abm9922
crossref_primary_10_1016_j_neuron_2018_07_003
crossref_primary_10_1111_ejn_15378
crossref_primary_10_1016_j_conb_2019_07_004
crossref_primary_10_1371_journal_pcbi_1008128
crossref_primary_10_7554_eLife_89421
crossref_primary_10_1016_j_conb_2019_09_011
crossref_primary_10_1038_s41467_024_50203_5
crossref_primary_10_1073_pnas_1921609117
crossref_primary_10_1016_j_neuron_2019_06_012
crossref_primary_10_1038_s41593_019_0500_6
crossref_primary_10_1016_j_tics_2018_07_010
crossref_primary_10_1073_pnas_2309876121
crossref_primary_10_1016_j_cub_2023_07_029
crossref_primary_10_1126_science_aav8911
crossref_primary_10_7554_eLife_58154
crossref_primary_10_1038_s41593_022_01085_7
crossref_primary_10_1073_pnas_2316765121
crossref_primary_10_1038_s41467_023_41752_2
crossref_primary_10_1523_JNEUROSCI_1439_21_2021
crossref_primary_10_7554_eLife_44324
crossref_primary_10_1016_j_conb_2019_09_001
crossref_primary_10_1016_j_neuron_2018_05_029
crossref_primary_10_1016_j_bspc_2023_104917
crossref_primary_10_1038_s41592_022_01675_0
crossref_primary_10_1016_j_neunet_2020_09_008
crossref_primary_10_1016_j_neuron_2019_08_030
crossref_primary_10_7554_eLife_81325
crossref_primary_10_1016_j_neuron_2019_01_044
crossref_primary_10_1126_sciadv_adh8185
crossref_primary_10_1016_j_tics_2023_03_002
crossref_primary_10_1073_pnas_2305853120
crossref_primary_10_1016_j_conb_2020_08_010
crossref_primary_10_1103_PhysRevE_102_052406
crossref_primary_10_1007_s10827_023_00857_9
crossref_primary_10_7554_eLife_67256
crossref_primary_10_7554_eLife_92620
crossref_primary_10_7554_eLife_67490
crossref_primary_10_1080_02643294_2023_2191843
crossref_primary_10_1038_s41583_023_00740_7
crossref_primary_10_7554_eLife_73155
crossref_primary_10_1038_s41551_023_01106_1
crossref_primary_10_3389_fncom_2021_543872
crossref_primary_10_1073_pnas_1915984117
crossref_primary_10_1162_neco_a_01409
crossref_primary_10_1016_j_conb_2021_08_002
crossref_primary_10_1016_j_neuroscience_2021_01_035
crossref_primary_10_7554_eLife_43299
crossref_primary_10_1371_journal_pone_0221000
crossref_primary_10_1016_j_neuron_2022_12_016
crossref_primary_10_1523_JNEUROSCI_1671_18_2018
crossref_primary_10_1016_j_celrep_2024_114412
crossref_primary_10_1038_s41593_023_01556_5
crossref_primary_10_1038_s41598_024_53907_2
crossref_primary_10_1073_pnas_2312831121
crossref_primary_10_1080_13506285_2020_1825141
crossref_primary_10_1523_JNEUROSCI_1669_18_2018
crossref_primary_10_1146_annurev_neuro_092322_100402
crossref_primary_10_1162_neco_a_01631
crossref_primary_10_1016_j_conb_2020_11_003
crossref_primary_10_1152_jn_00467_2018
crossref_primary_10_1016_j_neuron_2019_05_003
crossref_primary_10_1063_5_0152585
crossref_primary_10_3389_fncel_2020_575915
crossref_primary_10_7554_eLife_62583
crossref_primary_10_1016_j_neuron_2021_08_025
crossref_primary_10_1063_5_0233158
crossref_primary_10_1523_JNEUROSCI_1777_23_2024
crossref_primary_10_1016_j_tics_2019_11_005
crossref_primary_10_1016_j_neuron_2021_08_020
crossref_primary_10_1038_s41467_022_35395_y
crossref_primary_10_1016_j_tics_2021_01_008
crossref_primary_10_1162_neco_a_01222
crossref_primary_10_1007_s11571_023_09932_4
crossref_primary_10_1162_netn_a_00219
crossref_primary_10_1007_s11571_023_09956_w
crossref_primary_10_1162_jocn_a_01592
crossref_primary_10_1007_s11571_022_09802_5
crossref_primary_10_1016_j_tics_2022_03_010
crossref_primary_10_1152_jn_00359_2021
crossref_primary_10_1038_s41467_022_33581_6
crossref_primary_10_1073_pnas_2420356122
crossref_primary_10_1371_journal_pcbi_1011555
crossref_primary_10_1038_s41593_024_01668_6
crossref_primary_10_1371_journal_pbio_3002280
crossref_primary_10_7554_eLife_67620
crossref_primary_10_1038_s41593_019_0555_4
crossref_primary_10_1016_j_tins_2020_11_007
crossref_primary_10_1098_rstb_2022_0333
crossref_primary_10_1073_pnas_2214562119
Cites_doi 10.1038/nn.3405
10.1038/nrn3084
10.1037/0097-7403.24.1.15
10.1523/JNEUROSCI.2984-12.2013
10.1038/nature22324
10.1038/nature22073
10.1038/nn1716
10.1038/nrn1427
10.1016/j.neuron.2014.04.045
10.1016/j.neuron.2013.01.039
10.1038/nn.4042
10.1007/BF00250247
10.1038/nn.3826
10.1371/journal.pcbi.1005164
10.1523/JNEUROSCI.5513-12.2013
10.1007/BF00227836
10.1007/s00221-014-4127-2
10.1007/s10339-005-0025-7
10.1523/JNEUROSCI.1714-15.2015
10.1371/journal.pcbi.1002771
10.1038/nature08389
10.1038/s41593-017-0028-6
10.1523/JNEUROSCI.0676-05.2005
10.1016/j.neuron.2010.09.015
10.1016/j.neures.2005.05.005
10.7554/eLife.26084
10.1016/j.neuron.2011.05.047
10.1186/1471-2148-12-222
10.1038/nature12742
10.1146/annurev.neuro.24.1.167
10.1371/journal.pbio.1000167
10.1016/j.neuron.2018.03.037
10.1371/journal.pcbi.1004792
10.1016/j.conb.2014.05.003
10.1016/j.cub.2015.08.038
10.1126/science.7863330
10.1146/annurev-neuro-062111-150509
10.1037/0735-7044.117.4.760
10.1523/JNEUROSCI.3134-07.2007
10.1152/jn.1987.57.1.179
10.1002/cne.902930211
10.1093/brain/116.1.243
10.1038/nn963
10.1073/pnas.93.16.8694
10.1126/science.1091573
10.1038/85191
10.1152/jn.00867.2001
10.1038/nature10436
10.1038/35082081
10.1073/pnas.1112933108
10.1152/jn.1998.80.6.3321
10.3389/fncom.2011.00029
10.1093/cercor/12.9.908
10.3389/fnint.2010.00124
10.1111/j.1460-9568.2012.08242.x
10.1016/j.neuron.2014.01.031
10.3389/neuro.08.038.2009
10.1126/science.1155564
10.1152/jn.01168.2004
10.1016/j.neuron.2006.10.034
10.1152/jn.1992.68.3.653
10.1152/jn.1996.76.4.2327
10.1126/science.1249098
10.1152/jn.00543.2013
10.1038/nn.2272
10.1007/s00221-007-1234-3
10.1038/nn1830
10.1007/BF00247297
10.7554/eLife.10989
10.1038/nn.4268
10.1002/cne.903070405
10.1016/j.neulet.2005.02.067
10.1073/pnas.1321314111
10.1523/JNEUROSCI.3276-09.2010
10.1007/BF00236211
10.1152/jn.1995.74.3.1037
10.1016/j.neuron.2015.04.014
10.1002/cne.903360205
10.1523/JNEUROSCI.22-21-09475.2002
10.1016/j.neuron.2016.02.009
10.1038/nature11129
10.3389/fncom.2010.00024
10.1016/j.neuron.2017.03.002
10.1038/nrn2558
10.1126/science.274.5286.427
10.1371/journal.pcbi.1005175
10.1016/j.neuron.2007.01.006
10.1152/jn.00367.2003
10.1109/5.58337
10.1002/cne.903410308
10.1103/PhysRevLett.97.188104
10.1523/JNEUROSCI.1443-13.2013
10.1523/ENEURO.0085-16.2016
10.1038/nn.2590
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
2018. Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: 2018. Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.neuron.2018.05.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Nursing & Allied Health Premium
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 1019.e5
ExternalDocumentID PMC6009852
29879384
10_1016_j_neuron_2018_05_020
S0896627318304185
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS078127
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
5VS
AAEDT
AAFWJ
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
EFKBS
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c557t-45d3e5387c92ca3f177a9e664ba129835219ba4c73cf4fc8f4f10adb60abf37a3
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Thu Aug 21 18:27:14 EDT 2025
Fri Sep 05 07:01:01 EDT 2025
Fri Jul 25 10:57:49 EDT 2025
Thu Apr 03 07:05:03 EDT 2025
Tue Jul 01 01:16:18 EDT 2025
Thu Apr 24 22:53:29 EDT 2025
Fri Feb 23 02:49:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Dynamical Systems
frontal cortex
electrophysiology
recurrent neural networks
sensorimotor coordination
timing
cognitive flexibility
motor planning
population coding
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-45d3e5387c92ca3f177a9e664ba129835219ba4c73cf4fc8f4f10adb60abf37a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0896627318304185
PMID 29879384
PQID 2050945736
PQPubID 2031076
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6009852
proquest_miscellaneous_2052817585
proquest_journals_2050945736
pubmed_primary_29879384
crossref_primary_10_1016_j_neuron_2018_05_020
crossref_citationtrail_10_1016_j_neuron_2018_05_020
elsevier_sciencedirect_doi_10_1016_j_neuron_2018_05_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-06
PublicationDateYYYYMMDD 2018-06-06
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Miller, Cohen (bib51) 2001; 24
Kunimatsu, Tanaka (bib35) 2012; 36
Pachitariu, Steinmetz, Kadir, Carandini, Harris (bib59) 2016
Isoda, Hikosaka (bib25) 2007; 10
Churchland, Cunningham, Kaufman, Foster, Nuyujukian, Ryu, Shenoy (bib12) 2012; 487
Laje, Buonomano (bib37) 2013; 16
Afshar, Santhanam, Yu, Ryu, Sahani, Shenoy (bib2) 2011; 71
Roitman, Shadlen (bib71) 2002; 22
Romo, Schultz (bib72) 1987; 67
Romo, Schultz (bib73) 1992; 91
Yang, Lai, Cichon, Ma, Li, Gan (bib98) 2014; 344
Kurata, Wise (bib36) 1988; 72
Kleim, Barbay, Nudo (bib33) 1998; 80
Pascual-Leone, Nguyet, Cohen, Brasil-Neto, Cammarota, Hallett (bib60) 1995; 74
Wang, Isoda, Matsuzaka, Shima, Tanji (bib92) 2005; 53
Smith, Horst, Liu, Caetano, Laubach (bib83) 2010; 4
Jazayeri, Shadlen (bib27) 2010; 13
Rao, Mayer, Harrington (bib67) 2001; 4
Todorov, Jordan (bib90) 2002; 5
Matsuzaka, Tanji (bib44) 1996; 76
Dipoppa, Ranson, Krumin, Pachitariu, Carandini, Harris (bib15) 2018; 98
Churchland, Cunningham, Kaufman, Ryu, Shenoy (bib11) 2010; 68
Brass, von Cramon (bib5) 2002; 12
.
Karmarkar, Buonomano (bib29) 2007; 53
Fetz (bib16) 1992
Halsband, Ito, Tanji, Freund (bib20) 1993; 116
Miyazaki, Nozaki, Nakajima (bib53) 2005; 94
Kim, Ghim, Lee, Jung (bib32) 2013; 33
Werbos (bib94) 1990; 78
Huerta, Kaas (bib24) 1990; 293
Matell, Meck, Nicolelis (bib43) 2003; 117
Nadim, Bucher (bib56) 2014; 29
Scott (bib77) 2004; 5
Schlag, Schlag-Rey (bib75) 1987; 57
Schmitt, Wimmer, Nakajima, Happ, Mofakham, Halassa (bib76) 2017; 545
Rajan, Harvey, Tank (bib65) 2016; 90
Wallis, Anderson, Miller (bib91) 2001; 411
Murakami, Vicente, Costa, Mainen (bib54) 2014; 17
Isoda, Tanji (bib26) 2003; 90
Stokes, Kusunoki, Sigala, Nili, Gaffan, Duncan (bib85) 2013; 78
Hanes, Schall (bib21) 1996; 274
Michaels, Dann, Intveld, Scherberger (bib49) 2015; 35
Remington, Jazayeri (bib69) 2017
Chaisangmongkon, Swaminathan, Freedman, Wang (bib9) 2017; 93
Mita, Mushiake, Shima, Matsuzaka, Tanji (bib52) 2009; 12
Guo, Inagaki, Daie, Druckmann, Gerfen, Svoboda (bib19) 2017; 545
Rigotti, Ben Dayan Rubin, Wang, Fusi (bib70) 2010; 4
Pruszynski, Kurtzer, Nashed, Omrani, Brouwer, Scott (bib62) 2011; 478
Seely, Kaufman, Ryu, Shenoy, Cunningham, Churchland (bib78) 2016; 12
Ray, Heinen (bib68) 2015; 233
Buonomano, Maass (bib6) 2009; 10
Song, Yang, Wang (bib84) 2016; 12
Lu, Preston, Strick (bib38) 1994; 341
Michaels, Dann, Scherberger (bib50) 2016; 12
Ohmae, Lu, Takahashi, Uchida, Kitazawa (bib57) 2008; 184
Merchant, Zarco, Pérez, Prado, Bartolo (bib47) 2011; 108
Rossant, Kadir, Goodman, Schulman, Hunter, Saleem, Grosmark, Belluscio, Denfield, Ecker (bib74) 2016; 19
Pfeuty, Ragot, Pouthas (bib61) 2005; 382
Tanaka (bib88) 2005; 25
Maimon, Assad (bib41) 2006; 9
Shima, Mushiake, Saito, Tanji (bib80) 1996; 93
Fujii, Mushiake, Tanji (bib17) 2002; 87
Cui, Stetson, Montague, Eagleman (bib14) 2009; 7
Jazayeri, Shadlen (bib28) 2015; 25
Xu, Yu, Perlik, Tobin, Zweig, Tennant, Jones, Zuo (bib95) 2009; 462
Kobak, Brendel, Constantinidis, Feierstein, Kepecs, Mainen, Qi, Romo, Uchida, Machens (bib34) 2016; 5
Wang, Narain, Hosseini, Jazayeri (bib93) 2018; 21
Buonomano, Merzenich (bib7) 1995; 267
Okano, Tanji (bib58) 1987; 66
Bates, Goldman-Rakic (bib4) 1993; 336
Meister, Hennig, Huk (bib46) 2013; 33
Garcia (bib18) 2012; 12
Sussillo, Churchland, Kaufman, Shenoy (bib86) 2015; 18
Kim, Jung, Byun, Jo, Jung (bib31) 2009; 3
Murray, Escola (bib55) 2017; 6
Akkal, Dum, Strick (bib3) 2007; 27
Matsuzaka, Aizawa, Tanji (bib45) 1992; 68
Rabinovich, Huerta, Laurent (bib63) 2008; 321
Mante, Sussillo, Shenoy, Newsome (bib42) 2013; 503
Hennequin, Vogels, Gerstner (bib23) 2014; 82
Xu, Zhang, Dan, Poo (bib96) 2014; 111
Shinomoto, Omi, Mita, Mushiake, Shima, Matsuzaka, Tanji (bib81) 2011; 5
Rajan, Abbott (bib64) 2006; 97
Macar, Coull, Vidal (bib39) 2006; 7
Harris, Thiele (bib22) 2011; 12
Yang, Heinen (bib97) 2014; 111
Shenoy, Sahani, Churchland (bib79) 2013; 36
Thura, Cisek (bib89) 2014; 81
Churchland, Afshar, Shenoy (bib10) 2006; 52
Carnevale, de Lafuente, Romo, Barak, Parga (bib8) 2015; 86
Coull, Vidal, Nazarian, Macar (bib13) 2004; 303
Machens, Romo, Brody (bib40) 2010; 30
Merchant, Pérez, Zarco, Gámez (bib48) 2013; 33
Sussillo, D., Jozefowicz, R., Abbott, L.F., and Pandarinath, C. (2016). LFADS - Latent Factor Analysis via Dynamical Systems. arXiv, arXiv:1608.06315
Kaufman, Seely, Sussillo, Ryu, Shenoy, Churchland (bib30) 2016; 3
Shook, Schlag-Rey, Schlag (bib82) 1991; 307
Acerbi, Wolpert, Vijayakumar (bib1) 2012; 8
Rakitin, Gibbon, Penney, Malapani, Hinton, Meck (bib66) 1998; 24
Chaisangmongkon (10.1016/j.neuron.2018.05.020_bib9) 2017; 93
Ohmae (10.1016/j.neuron.2018.05.020_bib57) 2008; 184
Smith (10.1016/j.neuron.2018.05.020_bib83) 2010; 4
Kaufman (10.1016/j.neuron.2018.05.020_bib30) 2016; 3
Rajan (10.1016/j.neuron.2018.05.020_bib64) 2006; 97
Matell (10.1016/j.neuron.2018.05.020_bib43) 2003; 117
Remington (10.1016/j.neuron.2018.05.020_bib69) 2017
Buonomano (10.1016/j.neuron.2018.05.020_bib7) 1995; 267
Okano (10.1016/j.neuron.2018.05.020_bib58) 1987; 66
Sussillo (10.1016/j.neuron.2018.05.020_bib86) 2015; 18
Rigotti (10.1016/j.neuron.2018.05.020_bib70) 2010; 4
Fetz (10.1016/j.neuron.2018.05.020_bib16) 1992
Rakitin (10.1016/j.neuron.2018.05.020_bib66) 1998; 24
Xu (10.1016/j.neuron.2018.05.020_bib96) 2014; 111
Rossant (10.1016/j.neuron.2018.05.020_bib74) 2016; 19
Jazayeri (10.1016/j.neuron.2018.05.020_bib27) 2010; 13
Shook (10.1016/j.neuron.2018.05.020_bib82) 1991; 307
Yang (10.1016/j.neuron.2018.05.020_bib97) 2014; 111
Churchland (10.1016/j.neuron.2018.05.020_bib10) 2006; 52
Hennequin (10.1016/j.neuron.2018.05.020_bib23) 2014; 82
Wang (10.1016/j.neuron.2018.05.020_bib92) 2005; 53
Kim (10.1016/j.neuron.2018.05.020_bib31) 2009; 3
Shima (10.1016/j.neuron.2018.05.020_bib80) 1996; 93
Buonomano (10.1016/j.neuron.2018.05.020_bib6) 2009; 10
Kim (10.1016/j.neuron.2018.05.020_bib32) 2013; 33
Mante (10.1016/j.neuron.2018.05.020_bib42) 2013; 503
Dipoppa (10.1016/j.neuron.2018.05.020_bib15) 2018; 98
Karmarkar (10.1016/j.neuron.2018.05.020_bib29) 2007; 53
Rajan (10.1016/j.neuron.2018.05.020_bib65) 2016; 90
Pfeuty (10.1016/j.neuron.2018.05.020_bib61) 2005; 382
Cui (10.1016/j.neuron.2018.05.020_bib14) 2009; 7
Xu (10.1016/j.neuron.2018.05.020_bib95) 2009; 462
Laje (10.1016/j.neuron.2018.05.020_bib37) 2013; 16
Maimon (10.1016/j.neuron.2018.05.020_bib41) 2006; 9
Miyazaki (10.1016/j.neuron.2018.05.020_bib53) 2005; 94
Acerbi (10.1016/j.neuron.2018.05.020_bib1) 2012; 8
Miller (10.1016/j.neuron.2018.05.020_bib51) 2001; 24
Scott (10.1016/j.neuron.2018.05.020_bib77) 2004; 5
Rabinovich (10.1016/j.neuron.2018.05.020_bib63) 2008; 321
Jazayeri (10.1016/j.neuron.2018.05.020_bib28) 2015; 25
Merchant (10.1016/j.neuron.2018.05.020_bib48) 2013; 33
Ray (10.1016/j.neuron.2018.05.020_bib68) 2015; 233
Akkal (10.1016/j.neuron.2018.05.020_bib3) 2007; 27
Rao (10.1016/j.neuron.2018.05.020_bib67) 2001; 4
Machens (10.1016/j.neuron.2018.05.020_bib40) 2010; 30
Stokes (10.1016/j.neuron.2018.05.020_bib85) 2013; 78
Brass (10.1016/j.neuron.2018.05.020_bib5) 2002; 12
Huerta (10.1016/j.neuron.2018.05.020_bib24) 1990; 293
Kleim (10.1016/j.neuron.2018.05.020_bib33) 1998; 80
Romo (10.1016/j.neuron.2018.05.020_bib73) 1992; 91
Seely (10.1016/j.neuron.2018.05.020_bib78) 2016; 12
Fujii (10.1016/j.neuron.2018.05.020_bib17) 2002; 87
Matsuzaka (10.1016/j.neuron.2018.05.020_bib44) 1996; 76
Afshar (10.1016/j.neuron.2018.05.020_bib2) 2011; 71
Pascual-Leone (10.1016/j.neuron.2018.05.020_bib60) 1995; 74
Michaels (10.1016/j.neuron.2018.05.020_bib50) 2016; 12
Mita (10.1016/j.neuron.2018.05.020_bib52) 2009; 12
Romo (10.1016/j.neuron.2018.05.020_bib72) 1987; 67
Schmitt (10.1016/j.neuron.2018.05.020_bib76) 2017; 545
Isoda (10.1016/j.neuron.2018.05.020_bib26) 2003; 90
Wallis (10.1016/j.neuron.2018.05.020_bib91) 2001; 411
Nadim (10.1016/j.neuron.2018.05.020_bib56) 2014; 29
Thura (10.1016/j.neuron.2018.05.020_bib89) 2014; 81
Meister (10.1016/j.neuron.2018.05.020_bib46) 2013; 33
Kurata (10.1016/j.neuron.2018.05.020_bib36) 1988; 72
Shenoy (10.1016/j.neuron.2018.05.020_bib79) 2013; 36
Shinomoto (10.1016/j.neuron.2018.05.020_bib81) 2011; 5
Murray (10.1016/j.neuron.2018.05.020_bib55) 2017; 6
Merchant (10.1016/j.neuron.2018.05.020_bib47) 2011; 108
Halsband (10.1016/j.neuron.2018.05.020_bib20) 1993; 116
Matsuzaka (10.1016/j.neuron.2018.05.020_bib45) 1992; 68
Macar (10.1016/j.neuron.2018.05.020_bib39) 2006; 7
Lu (10.1016/j.neuron.2018.05.020_bib38) 1994; 341
Song (10.1016/j.neuron.2018.05.020_bib84) 2016; 12
Yang (10.1016/j.neuron.2018.05.020_bib98) 2014; 344
Pachitariu (10.1016/j.neuron.2018.05.020_bib59) 2016
Harris (10.1016/j.neuron.2018.05.020_bib22) 2011; 12
Kunimatsu (10.1016/j.neuron.2018.05.020_bib35) 2012; 36
Coull (10.1016/j.neuron.2018.05.020_bib13) 2004; 303
Carnevale (10.1016/j.neuron.2018.05.020_bib8) 2015; 86
Churchland (10.1016/j.neuron.2018.05.020_bib12) 2012; 487
Tanaka (10.1016/j.neuron.2018.05.020_bib88) 2005; 25
Werbos (10.1016/j.neuron.2018.05.020_bib94) 1990; 78
Todorov (10.1016/j.neuron.2018.05.020_bib90) 2002; 5
Pruszynski (10.1016/j.neuron.2018.05.020_bib62) 2011; 478
Michaels (10.1016/j.neuron.2018.05.020_bib49) 2015; 35
Schlag (10.1016/j.neuron.2018.05.020_bib75) 1987; 57
Roitman (10.1016/j.neuron.2018.05.020_bib71) 2002; 22
10.1016/j.neuron.2018.05.020_bib87
Bates (10.1016/j.neuron.2018.05.020_bib4) 1993; 336
Wang (10.1016/j.neuron.2018.05.020_bib93) 2018; 21
Hanes (10.1016/j.neuron.2018.05.020_bib21) 1996; 274
Guo (10.1016/j.neuron.2018.05.020_bib19) 2017; 545
Churchland (10.1016/j.neuron.2018.05.020_bib11) 2010; 68
Garcia (10.1016/j.neuron.2018.05.020_bib18) 2012; 12
Isoda (10.1016/j.neuron.2018.05.020_bib25) 2007; 10
Murakami (10.1016/j.neuron.2018.05.020_bib54) 2014; 17
Kobak (10.1016/j.neuron.2018.05.020_bib34) 2016; 5
29879388 - Neuron. 2018 Jun 6;98(5):873-875
References_xml – volume: 545
  start-page: 219
  year: 2017
  end-page: 223
  ident: bib76
  article-title: Thalamic amplification of cortical connectivity sustains attentional control
  publication-title: Nature
– volume: 382
  start-page: 106
  year: 2005
  end-page: 111
  ident: bib61
  article-title: Relationship between CNV and timing of an upcoming event
  publication-title: Neurosci. Lett.
– year: 2017
  ident: bib69
  article-title: Late Bayesian inference in sensorimotor behavior
  publication-title: bioRxiv
– volume: 116
  start-page: 243
  year: 1993
  end-page: 266
  ident: bib20
  article-title: The role of premotor cortex and the supplementary motor area in the temporal control of movement in man
  publication-title: Brain
– volume: 13
  start-page: 1020
  year: 2010
  end-page: 1026
  ident: bib27
  article-title: Temporal context calibrates interval timing
  publication-title: Nat. Neurosci.
– volume: 80
  start-page: 3321
  year: 1998
  end-page: 3325
  ident: bib33
  article-title: Functional reorganization of the rat motor cortex following motor skill learning
  publication-title: J. Neurophysiol.
– volume: 117
  start-page: 760
  year: 2003
  end-page: 773
  ident: bib43
  article-title: Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons
  publication-title: Behav. Neurosci.
– volume: 4
  start-page: 317
  year: 2001
  end-page: 323
  ident: bib67
  article-title: The evolution of brain activation during temporal processing
  publication-title: Nat. Neurosci.
– reference: Sussillo, D., Jozefowicz, R., Abbott, L.F., and Pandarinath, C. (2016). LFADS - Latent Factor Analysis via Dynamical Systems. arXiv, arXiv:1608.06315,
– volume: 90
  start-page: 128
  year: 2016
  end-page: 142
  ident: bib65
  article-title: Recurrent Network Models of Sequence Generation and Memory
  publication-title: Neuron
– volume: 5
  start-page: 29
  year: 2011
  ident: bib81
  article-title: Deciphering elapsed time and predicting action timing from neuronal population signals
  publication-title: Front. Comput. Neurosci.
– volume: 94
  start-page: 395
  year: 2005
  end-page: 399
  ident: bib53
  article-title: Testing Bayesian models of human coincidence timing
  publication-title: J. Neurophysiol.
– volume: 35
  start-page: 11415
  year: 2015
  end-page: 11432
  ident: bib49
  article-title: Predicting Reaction Time from the Neural State Space of the Premotor and Parietal Grasping Network
  publication-title: J. Neurosci.
– volume: 5
  start-page: e10989
  year: 2016
  ident: bib34
  article-title: Demixed principal component analysis of neural population data
  publication-title: eLife
– volume: 33
  start-page: 9082
  year: 2013
  end-page: 9096
  ident: bib48
  article-title: Interval tuning in the primate medial premotor cortex as a general timing mechanism
  publication-title: J. Neurosci.
– volume: 22
  start-page: 9475
  year: 2002
  end-page: 9489
  ident: bib71
  article-title: Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task
  publication-title: J. Neurosci.
– volume: 503
  start-page: 78
  year: 2013
  end-page: 84
  ident: bib42
  article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex
  publication-title: Nature
– volume: 462
  start-page: 915
  year: 2009
  end-page: 919
  ident: bib95
  article-title: Rapid formation and selective stabilization of synapses for enduring motor memories
  publication-title: Nature
– volume: 98
  start-page: 602
  year: 2018
  end-page: 615.e8
  ident: bib15
  article-title: Vision and Locomotion Shape the Interactions between Neuron Types in Mouse Visual Cortex
  publication-title: Neuron
– volume: 267
  start-page: 1028
  year: 1995
  end-page: 1030
  ident: bib7
  article-title: Temporal information transformed into a spatial code by a neural network with realistic properties
  publication-title: Science
– volume: 233
  start-page: 459
  year: 2015
  end-page: 476
  ident: bib68
  article-title: A mechanism for decision rule discrimination by supplementary eye field neurons
  publication-title: Exp. Brain Res.
– volume: 341
  start-page: 375
  year: 1994
  end-page: 392
  ident: bib38
  article-title: Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe
  publication-title: J. Comp. Neurol.
– volume: 274
  start-page: 427
  year: 1996
  end-page: 430
  ident: bib21
  article-title: Neural control of voluntary movement initiation
  publication-title: Science
– volume: 36
  start-page: 337
  year: 2013
  end-page: 359
  ident: bib79
  article-title: Cortical control of arm movements: a dynamical systems perspective
  publication-title: Annu. Rev. Neurosci.
– volume: 24
  start-page: 15
  year: 1998
  end-page: 33
  ident: bib66
  article-title: Scalar expectancy theory and peak-interval timing in humans
  publication-title: J. Exp. Psychol. Anim. Behav. Process.
– volume: 18
  start-page: 1025
  year: 2015
  end-page: 1033
  ident: bib86
  article-title: A neural network that finds a naturalistic solution for the production of muscle activity
  publication-title: Nat. Neurosci.
– volume: 108
  start-page: 19784
  year: 2011
  end-page: 19789
  ident: bib47
  article-title: Measuring time with different neural chronometers during a synchronization-continuation task
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 71
  start-page: 555
  year: 2011
  end-page: 564
  ident: bib2
  article-title: Single-trial neural correlates of arm movement preparation
  publication-title: Neuron
– volume: 3
  year: 2016
  ident: bib30
  article-title: The Largest Response Component in the Motor Cortex Reflects Movement Timing but Not Movement Type
  publication-title: eNeuro
– volume: 321
  start-page: 48
  year: 2008
  end-page: 50
  ident: bib63
  article-title: Neuroscience. Transient dynamics for neural processing
  publication-title: Science
– volume: 12
  start-page: e1005175
  year: 2016
  ident: bib50
  article-title: Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning
  publication-title: PLoS Comput. Biol.
– volume: 7
  start-page: e1000167
  year: 2009
  ident: bib14
  article-title: Ready...go: Amplitude of the FMRI signal encodes expectation of cue arrival time
  publication-title: PLoS Biol.
– volume: 16
  start-page: 925
  year: 2013
  end-page: 933
  ident: bib37
  article-title: Robust timing and motor patterns by taming chaos in recurrent neural networks
  publication-title: Nat. Neurosci.
– year: 2016
  ident: bib59
  article-title: Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels
  publication-title: bioRxiv
– volume: 33
  start-page: 13834
  year: 2013
  end-page: 13847
  ident: bib32
  article-title: Neural correlates of interval timing in rodent prefrontal cortex
  publication-title: J. Neurosci.
– volume: 30
  start-page: 350
  year: 2010
  end-page: 360
  ident: bib40
  article-title: Functional, but not anatomical, separation of “what” and “when” in prefrontal cortex
  publication-title: J. Neurosci.
– volume: 4
  start-page: 24
  year: 2010
  ident: bib70
  article-title: Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses
  publication-title: Front. Comput. Neurosci.
– volume: 21
  start-page: 102
  year: 2018
  end-page: 110
  ident: bib93
  article-title: Flexible timing by temporal scaling of cortical responses
  publication-title: Nat. Neurosci.
– volume: 29
  start-page: 48
  year: 2014
  end-page: 56
  ident: bib56
  article-title: Neuromodulation of neurons and synapses
  publication-title: Curr. Opin. Neurobiol.
– year: 1992
  ident: bib16
  article-title: Are movement parameters recognizably coded in the activity of single neurons? The Behavioral and brain sciences
– volume: 3
  start-page: 38
  year: 2009
  ident: bib31
  article-title: Inactivation of medial prefrontal cortex impairs time interval discrimination in rats
  publication-title: Front. Behav. Neurosci.
– volume: 19
  start-page: 634
  year: 2016
  end-page: 641
  ident: bib74
  article-title: Spike sorting for large, dense electrode arrays
  publication-title: Nat. Neurosci.
– volume: 52
  start-page: 1085
  year: 2006
  end-page: 1096
  ident: bib10
  article-title: A central source of movement variability
  publication-title: Neuron
– volume: 53
  start-page: 427
  year: 2007
  end-page: 438
  ident: bib29
  article-title: Timing in the absence of clocks: encoding time in neural network states
  publication-title: Neuron
– volume: 90
  start-page: 3054
  year: 2003
  end-page: 3065
  ident: bib26
  article-title: Contrasting neuronal activity in the supplementary and frontal eye fields during temporal organization of multiple saccades
  publication-title: J. Neurophysiol.
– volume: 184
  start-page: 593
  year: 2008
  end-page: 598
  ident: bib57
  article-title: Neuronal activity related to anticipated and elapsed time in macaque supplementary eye field
  publication-title: Exp. Brain Res.
– volume: 25
  start-page: 5866
  year: 2005
  end-page: 5876
  ident: bib88
  article-title: Involvement of the central thalamus in the control of smooth pursuit eye movements
  publication-title: J. Neurosci.
– volume: 25
  start-page: 2599
  year: 2015
  end-page: 2609
  ident: bib28
  article-title: A Neural Mechanism for Sensing and Reproducing a Time Interval
  publication-title: Curr. Biol.
– volume: 303
  start-page: 1506
  year: 2004
  end-page: 1508
  ident: bib13
  article-title: Functional anatomy of the attentional modulation of time estimation
  publication-title: Science
– volume: 74
  start-page: 1037
  year: 1995
  end-page: 1045
  ident: bib60
  article-title: Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills
  publication-title: J. Neurophysiol.
– volume: 478
  start-page: 387
  year: 2011
  end-page: 390
  ident: bib62
  article-title: Primary motor cortex underlies multi-joint integration for fast feedback control
  publication-title: Nature
– volume: 93
  start-page: 8694
  year: 1996
  end-page: 8698
  ident: bib80
  article-title: Role for cells in the presupplementary motor area in updating motor plans
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 293
  start-page: 299
  year: 1990
  end-page: 330
  ident: bib24
  article-title: Supplementary eye field as defined by intracortical microstimulation: connections in macaques
  publication-title: J. Comp. Neurol.
– volume: 545
  start-page: 181
  year: 2017
  end-page: 186
  ident: bib19
  article-title: Maintenance of persistent activity in a frontal thalamocortical loop
  publication-title: Nature
– volume: 36
  start-page: 3258
  year: 2012
  end-page: 3268
  ident: bib35
  article-title: Alteration of the timing of self-initiated but not reactive saccades by electrical stimulation in the supplementary eye field
  publication-title: Eur. J. Neurosci.
– volume: 12
  start-page: e1005164
  year: 2016
  ident: bib78
  article-title: Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1
  publication-title: PLoS Comput. Biol.
– volume: 5
  start-page: 1226
  year: 2002
  end-page: 1235
  ident: bib90
  article-title: Optimal feedback control as a theory of motor coordination
  publication-title: Nat. Neurosci.
– volume: 12
  start-page: 509
  year: 2011
  end-page: 523
  ident: bib22
  article-title: Cortical state and attention
  publication-title: Nat. Rev. Neurosci.
– volume: 66
  start-page: 155
  year: 1987
  end-page: 166
  ident: bib58
  article-title: Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement
  publication-title: Exp. Brain Res.
– volume: 307
  start-page: 562
  year: 1991
  end-page: 583
  ident: bib82
  article-title: Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei
  publication-title: J. Comp. Neurol.
– volume: 411
  start-page: 953
  year: 2001
  end-page: 956
  ident: bib91
  article-title: Single neurons in prefrontal cortex encode abstract rules
  publication-title: Nature
– volume: 12
  start-page: 222
  year: 2012
  ident: bib18
  article-title: A simple procedure for the comparison of covariance matrices
  publication-title: BMC Evol. Biol.
– volume: 8
  start-page: e1002771
  year: 2012
  ident: bib1
  article-title: Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing
  publication-title: PLoS Comput. Biol.
– volume: 12
  start-page: 502
  year: 2009
  end-page: 507
  ident: bib52
  article-title: Interval time coding by neurons in the presupplementary and supplementary motor areas
  publication-title: Nat. Neurosci.
– volume: 93
  start-page: 1504
  year: 2017
  end-page: 1517.e4
  ident: bib9
  article-title: Computing by Robust Transience: How the Fronto-Parietal Network Performs Sequential, Category-Based Decisions
  publication-title: Neuron
– volume: 6
  start-page: e26084
  year: 2017
  ident: bib55
  article-title: Learning multiple variable-speed sequences in striatum via cortical tutoring
  publication-title: eLife
– volume: 336
  start-page: 211
  year: 1993
  end-page: 228
  ident: bib4
  article-title: Prefrontal connections of medial motor areas in the rhesus monkey
  publication-title: J. Comp. Neurol.
– volume: 97
  start-page: 188104
  year: 2006
  ident: bib64
  article-title: Eigenvalue spectra of random matrices for neural networks
  publication-title: Phys. Rev. Lett.
– volume: 76
  start-page: 2327
  year: 1996
  end-page: 2342
  ident: bib44
  article-title: Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex
  publication-title: J. Neurophysiol.
– volume: 91
  start-page: 396
  year: 1992
  end-page: 407
  ident: bib73
  article-title: Role of primate basal ganglia and frontal cortex in the internal generation of movements. III. Neuronal activity in the supplementary motor area
  publication-title: Exp. Brain Res.
– volume: 27
  start-page: 10659
  year: 2007
  end-page: 10673
  ident: bib3
  article-title: Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output
  publication-title: J. Neurosci.
– volume: 12
  start-page: 908
  year: 2002
  end-page: 914
  ident: bib5
  article-title: The role of the frontal cortex in task preparation
  publication-title: Cereb. Cortex
– volume: 87
  start-page: 2158
  year: 2002
  end-page: 2166
  ident: bib17
  article-title: Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and Pre-SMA of monkeys
  publication-title: J. Neurophysiol.
– volume: 78
  start-page: 364
  year: 2013
  end-page: 375
  ident: bib85
  article-title: Dynamic coding for cognitive control in prefrontal cortex
  publication-title: Neuron
– volume: 344
  start-page: 1173
  year: 2014
  end-page: 1178
  ident: bib98
  article-title: Sleep promotes branch-specific formation of dendritic spines after learning
  publication-title: Science
– volume: 7
  start-page: 89
  year: 2006
  end-page: 94
  ident: bib39
  article-title: The supplementary motor area in motor and perceptual time processing: fMRI studies
  publication-title: Cogn. Process.
– volume: 9
  start-page: 948
  year: 2006
  end-page: 955
  ident: bib41
  article-title: A cognitive signal for the proactive timing of action in macaque LIP
  publication-title: Nat. Neurosci.
– volume: 33
  start-page: 2254
  year: 2013
  end-page: 2267
  ident: bib46
  article-title: Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making
  publication-title: J. Neurosci.
– volume: 78
  start-page: 1550
  year: 1990
  end-page: 1560
  ident: bib94
  article-title: Backpropagation through time: what it does and how to do it
  publication-title: Proc. IEEE
– volume: 81
  start-page: 1401
  year: 2014
  end-page: 1416
  ident: bib89
  article-title: Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making
  publication-title: Neuron
– volume: 82
  start-page: 1394
  year: 2014
  end-page: 1406
  ident: bib23
  article-title: Optimal control of transient dynamics in balanced networks supports generation of complex movements
  publication-title: Neuron
– volume: 24
  start-page: 167
  year: 2001
  end-page: 202
  ident: bib51
  article-title: An integrative theory of prefrontal cortex function
  publication-title: Annu. Rev. Neurosci.
– volume: 111
  start-page: 2644
  year: 2014
  end-page: 2655
  ident: bib97
  article-title: Contrasting the roles of the supplementary and frontal eye fields in ocular decision making
  publication-title: J. Neurophysiol.
– volume: 53
  start-page: 1
  year: 2005
  end-page: 7
  ident: bib92
  article-title: Prefrontal cortical cells projecting to the supplementary eye field and presupplementary motor area in the monkey
  publication-title: Neurosci. Res.
– volume: 12
  start-page: e1004792
  year: 2016
  ident: bib84
  article-title: Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework
  publication-title: PLoS Comput. Biol.
– volume: 67
  start-page: 656
  year: 1987
  end-page: 662
  ident: bib72
  article-title: Neuronal activity preceding self-initiated or externally timed arm movements in area 6 of monkey cortex
  publication-title: Exp. Brain Res.
– volume: 68
  start-page: 387
  year: 2010
  end-page: 400
  ident: bib11
  article-title: Cortical preparatory activity: representation of movement or first cog in a dynamical machine?
  publication-title: Neuron
– volume: 4
  start-page: 124
  year: 2010
  ident: bib83
  article-title: Reversible Inactivation of Rat Premotor Cortex Impairs Temporal Preparation, but not Inhibitory Control, During Simple Reaction-Time Performance
  publication-title: Front. Integr. Nuerosci.
– volume: 487
  start-page: 51
  year: 2012
  end-page: 56
  ident: bib12
  article-title: Neural population dynamics during reaching
  publication-title: Nature
– volume: 10
  start-page: 113
  year: 2009
  end-page: 125
  ident: bib6
  article-title: State-dependent computations: spatiotemporal processing in cortical networks
  publication-title: Nat. Rev. Neurosci.
– volume: 86
  start-page: 1067
  year: 2015
  end-page: 1077
  ident: bib8
  article-title: Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal Uncertainty
  publication-title: Neuron
– volume: 17
  start-page: 1574
  year: 2014
  end-page: 1582
  ident: bib54
  article-title: Neural antecedents of self-initiated actions in secondary motor cortex
  publication-title: Nat. Neurosci.
– reference: .
– volume: 68
  start-page: 653
  year: 1992
  end-page: 662
  ident: bib45
  article-title: A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task
  publication-title: J. Neurophysiol.
– volume: 57
  start-page: 179
  year: 1987
  end-page: 200
  ident: bib75
  article-title: Evidence for a supplementary eye field
  publication-title: J. Neurophysiol.
– volume: 111
  start-page: 480
  year: 2014
  end-page: 485
  ident: bib96
  article-title: Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 532
  year: 2004
  end-page: 546
  ident: bib77
  article-title: Optimal feedback control and the neural basis of volitional motor control
  publication-title: Nat. Rev. Neurosci.
– volume: 10
  start-page: 240
  year: 2007
  end-page: 248
  ident: bib25
  article-title: Switching from automatic to controlled action by monkey medial frontal cortex
  publication-title: Nat. Neurosci.
– volume: 72
  start-page: 237
  year: 1988
  end-page: 248
  ident: bib36
  article-title: Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally- and internally-instructed motor tasks
  publication-title: Exp. Brain Res.
– volume: 16
  start-page: 925
  year: 2013
  ident: 10.1016/j.neuron.2018.05.020_bib37
  article-title: Robust timing and motor patterns by taming chaos in recurrent neural networks
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3405
– volume: 12
  start-page: 509
  year: 2011
  ident: 10.1016/j.neuron.2018.05.020_bib22
  article-title: Cortical state and attention
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3084
– volume: 24
  start-page: 15
  year: 1998
  ident: 10.1016/j.neuron.2018.05.020_bib66
  article-title: Scalar expectancy theory and peak-interval timing in humans
  publication-title: J. Exp. Psychol. Anim. Behav. Process.
  doi: 10.1037/0097-7403.24.1.15
– volume: 33
  start-page: 2254
  year: 2013
  ident: 10.1016/j.neuron.2018.05.020_bib46
  article-title: Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2984-12.2013
– volume: 545
  start-page: 181
  year: 2017
  ident: 10.1016/j.neuron.2018.05.020_bib19
  article-title: Maintenance of persistent activity in a frontal thalamocortical loop
  publication-title: Nature
  doi: 10.1038/nature22324
– volume: 545
  start-page: 219
  year: 2017
  ident: 10.1016/j.neuron.2018.05.020_bib76
  article-title: Thalamic amplification of cortical connectivity sustains attentional control
  publication-title: Nature
  doi: 10.1038/nature22073
– volume: 9
  start-page: 948
  year: 2006
  ident: 10.1016/j.neuron.2018.05.020_bib41
  article-title: A cognitive signal for the proactive timing of action in macaque LIP
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1716
– volume: 5
  start-page: 532
  year: 2004
  ident: 10.1016/j.neuron.2018.05.020_bib77
  article-title: Optimal feedback control and the neural basis of volitional motor control
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1427
– volume: 82
  start-page: 1394
  year: 2014
  ident: 10.1016/j.neuron.2018.05.020_bib23
  article-title: Optimal control of transient dynamics in balanced networks supports generation of complex movements
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.04.045
– volume: 78
  start-page: 364
  year: 2013
  ident: 10.1016/j.neuron.2018.05.020_bib85
  article-title: Dynamic coding for cognitive control in prefrontal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.01.039
– volume: 18
  start-page: 1025
  year: 2015
  ident: 10.1016/j.neuron.2018.05.020_bib86
  article-title: A neural network that finds a naturalistic solution for the production of muscle activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4042
– volume: 72
  start-page: 237
  year: 1988
  ident: 10.1016/j.neuron.2018.05.020_bib36
  article-title: Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally- and internally-instructed motor tasks
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00250247
– volume: 17
  start-page: 1574
  year: 2014
  ident: 10.1016/j.neuron.2018.05.020_bib54
  article-title: Neural antecedents of self-initiated actions in secondary motor cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3826
– volume: 12
  start-page: e1005164
  year: 2016
  ident: 10.1016/j.neuron.2018.05.020_bib78
  article-title: Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005164
– volume: 33
  start-page: 9082
  year: 2013
  ident: 10.1016/j.neuron.2018.05.020_bib48
  article-title: Interval tuning in the primate medial premotor cortex as a general timing mechanism
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5513-12.2013
– volume: 91
  start-page: 396
  year: 1992
  ident: 10.1016/j.neuron.2018.05.020_bib73
  article-title: Role of primate basal ganglia and frontal cortex in the internal generation of movements. III. Neuronal activity in the supplementary motor area
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00227836
– volume: 233
  start-page: 459
  year: 2015
  ident: 10.1016/j.neuron.2018.05.020_bib68
  article-title: A mechanism for decision rule discrimination by supplementary eye field neurons
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-014-4127-2
– volume: 7
  start-page: 89
  year: 2006
  ident: 10.1016/j.neuron.2018.05.020_bib39
  article-title: The supplementary motor area in motor and perceptual time processing: fMRI studies
  publication-title: Cogn. Process.
  doi: 10.1007/s10339-005-0025-7
– volume: 35
  start-page: 11415
  year: 2015
  ident: 10.1016/j.neuron.2018.05.020_bib49
  article-title: Predicting Reaction Time from the Neural State Space of the Premotor and Parietal Grasping Network
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1714-15.2015
– volume: 8
  start-page: e1002771
  year: 2012
  ident: 10.1016/j.neuron.2018.05.020_bib1
  article-title: Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002771
– volume: 462
  start-page: 915
  year: 2009
  ident: 10.1016/j.neuron.2018.05.020_bib95
  article-title: Rapid formation and selective stabilization of synapses for enduring motor memories
  publication-title: Nature
  doi: 10.1038/nature08389
– volume: 21
  start-page: 102
  year: 2018
  ident: 10.1016/j.neuron.2018.05.020_bib93
  article-title: Flexible timing by temporal scaling of cortical responses
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-017-0028-6
– volume: 25
  start-page: 5866
  year: 2005
  ident: 10.1016/j.neuron.2018.05.020_bib88
  article-title: Involvement of the central thalamus in the control of smooth pursuit eye movements
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0676-05.2005
– volume: 68
  start-page: 387
  year: 2010
  ident: 10.1016/j.neuron.2018.05.020_bib11
  article-title: Cortical preparatory activity: representation of movement or first cog in a dynamical machine?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.09.015
– volume: 53
  start-page: 1
  year: 2005
  ident: 10.1016/j.neuron.2018.05.020_bib92
  article-title: Prefrontal cortical cells projecting to the supplementary eye field and presupplementary motor area in the monkey
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2005.05.005
– volume: 6
  start-page: e26084
  year: 2017
  ident: 10.1016/j.neuron.2018.05.020_bib55
  article-title: Learning multiple variable-speed sequences in striatum via cortical tutoring
  publication-title: eLife
  doi: 10.7554/eLife.26084
– volume: 71
  start-page: 555
  year: 2011
  ident: 10.1016/j.neuron.2018.05.020_bib2
  article-title: Single-trial neural correlates of arm movement preparation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.05.047
– volume: 12
  start-page: 222
  year: 2012
  ident: 10.1016/j.neuron.2018.05.020_bib18
  article-title: A simple procedure for the comparison of covariance matrices
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-12-222
– volume: 503
  start-page: 78
  year: 2013
  ident: 10.1016/j.neuron.2018.05.020_bib42
  article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex
  publication-title: Nature
  doi: 10.1038/nature12742
– volume: 24
  start-page: 167
  year: 2001
  ident: 10.1016/j.neuron.2018.05.020_bib51
  article-title: An integrative theory of prefrontal cortex function
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.24.1.167
– volume: 7
  start-page: e1000167
  year: 2009
  ident: 10.1016/j.neuron.2018.05.020_bib14
  article-title: Ready...go: Amplitude of the FMRI signal encodes expectation of cue arrival time
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000167
– volume: 98
  start-page: 602
  year: 2018
  ident: 10.1016/j.neuron.2018.05.020_bib15
  article-title: Vision and Locomotion Shape the Interactions between Neuron Types in Mouse Visual Cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.03.037
– volume: 12
  start-page: e1004792
  year: 2016
  ident: 10.1016/j.neuron.2018.05.020_bib84
  article-title: Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004792
– volume: 29
  start-page: 48
  year: 2014
  ident: 10.1016/j.neuron.2018.05.020_bib56
  article-title: Neuromodulation of neurons and synapses
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2014.05.003
– volume: 25
  start-page: 2599
  year: 2015
  ident: 10.1016/j.neuron.2018.05.020_bib28
  article-title: A Neural Mechanism for Sensing and Reproducing a Time Interval
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.08.038
– volume: 267
  start-page: 1028
  year: 1995
  ident: 10.1016/j.neuron.2018.05.020_bib7
  article-title: Temporal information transformed into a spatial code by a neural network with realistic properties
  publication-title: Science
  doi: 10.1126/science.7863330
– year: 2017
  ident: 10.1016/j.neuron.2018.05.020_bib69
  article-title: Late Bayesian inference in sensorimotor behavior
  publication-title: bioRxiv
– volume: 36
  start-page: 337
  year: 2013
  ident: 10.1016/j.neuron.2018.05.020_bib79
  article-title: Cortical control of arm movements: a dynamical systems perspective
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062111-150509
– volume: 117
  start-page: 760
  year: 2003
  ident: 10.1016/j.neuron.2018.05.020_bib43
  article-title: Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons
  publication-title: Behav. Neurosci.
  doi: 10.1037/0735-7044.117.4.760
– volume: 27
  start-page: 10659
  year: 2007
  ident: 10.1016/j.neuron.2018.05.020_bib3
  article-title: Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3134-07.2007
– year: 1992
  ident: 10.1016/j.neuron.2018.05.020_bib16
– volume: 57
  start-page: 179
  year: 1987
  ident: 10.1016/j.neuron.2018.05.020_bib75
  article-title: Evidence for a supplementary eye field
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1987.57.1.179
– volume: 293
  start-page: 299
  year: 1990
  ident: 10.1016/j.neuron.2018.05.020_bib24
  article-title: Supplementary eye field as defined by intracortical microstimulation: connections in macaques
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902930211
– volume: 116
  start-page: 243
  year: 1993
  ident: 10.1016/j.neuron.2018.05.020_bib20
  article-title: The role of premotor cortex and the supplementary motor area in the temporal control of movement in man
  publication-title: Brain
  doi: 10.1093/brain/116.1.243
– volume: 5
  start-page: 1226
  year: 2002
  ident: 10.1016/j.neuron.2018.05.020_bib90
  article-title: Optimal feedback control as a theory of motor coordination
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn963
– volume: 93
  start-page: 8694
  year: 1996
  ident: 10.1016/j.neuron.2018.05.020_bib80
  article-title: Role for cells in the presupplementary motor area in updating motor plans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.16.8694
– volume: 303
  start-page: 1506
  year: 2004
  ident: 10.1016/j.neuron.2018.05.020_bib13
  article-title: Functional anatomy of the attentional modulation of time estimation
  publication-title: Science
  doi: 10.1126/science.1091573
– volume: 4
  start-page: 317
  year: 2001
  ident: 10.1016/j.neuron.2018.05.020_bib67
  article-title: The evolution of brain activation during temporal processing
  publication-title: Nat. Neurosci.
  doi: 10.1038/85191
– volume: 87
  start-page: 2158
  year: 2002
  ident: 10.1016/j.neuron.2018.05.020_bib17
  article-title: Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and Pre-SMA of monkeys
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00867.2001
– volume: 478
  start-page: 387
  year: 2011
  ident: 10.1016/j.neuron.2018.05.020_bib62
  article-title: Primary motor cortex underlies multi-joint integration for fast feedback control
  publication-title: Nature
  doi: 10.1038/nature10436
– volume: 411
  start-page: 953
  year: 2001
  ident: 10.1016/j.neuron.2018.05.020_bib91
  article-title: Single neurons in prefrontal cortex encode abstract rules
  publication-title: Nature
  doi: 10.1038/35082081
– volume: 108
  start-page: 19784
  year: 2011
  ident: 10.1016/j.neuron.2018.05.020_bib47
  article-title: Measuring time with different neural chronometers during a synchronization-continuation task
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1112933108
– volume: 80
  start-page: 3321
  year: 1998
  ident: 10.1016/j.neuron.2018.05.020_bib33
  article-title: Functional reorganization of the rat motor cortex following motor skill learning
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.80.6.3321
– volume: 5
  start-page: 29
  year: 2011
  ident: 10.1016/j.neuron.2018.05.020_bib81
  article-title: Deciphering elapsed time and predicting action timing from neuronal population signals
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2011.00029
– volume: 12
  start-page: 908
  year: 2002
  ident: 10.1016/j.neuron.2018.05.020_bib5
  article-title: The role of the frontal cortex in task preparation
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/12.9.908
– volume: 4
  start-page: 124
  year: 2010
  ident: 10.1016/j.neuron.2018.05.020_bib83
  article-title: Reversible Inactivation of Rat Premotor Cortex Impairs Temporal Preparation, but not Inhibitory Control, During Simple Reaction-Time Performance
  publication-title: Front. Integr. Nuerosci.
  doi: 10.3389/fnint.2010.00124
– volume: 36
  start-page: 3258
  year: 2012
  ident: 10.1016/j.neuron.2018.05.020_bib35
  article-title: Alteration of the timing of self-initiated but not reactive saccades by electrical stimulation in the supplementary eye field
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2012.08242.x
– volume: 81
  start-page: 1401
  year: 2014
  ident: 10.1016/j.neuron.2018.05.020_bib89
  article-title: Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.01.031
– volume: 3
  start-page: 38
  year: 2009
  ident: 10.1016/j.neuron.2018.05.020_bib31
  article-title: Inactivation of medial prefrontal cortex impairs time interval discrimination in rats
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/neuro.08.038.2009
– volume: 321
  start-page: 48
  year: 2008
  ident: 10.1016/j.neuron.2018.05.020_bib63
  article-title: Neuroscience. Transient dynamics for neural processing
  publication-title: Science
  doi: 10.1126/science.1155564
– volume: 94
  start-page: 395
  year: 2005
  ident: 10.1016/j.neuron.2018.05.020_bib53
  article-title: Testing Bayesian models of human coincidence timing
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01168.2004
– volume: 52
  start-page: 1085
  year: 2006
  ident: 10.1016/j.neuron.2018.05.020_bib10
  article-title: A central source of movement variability
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.10.034
– volume: 68
  start-page: 653
  year: 1992
  ident: 10.1016/j.neuron.2018.05.020_bib45
  article-title: A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1992.68.3.653
– volume: 76
  start-page: 2327
  year: 1996
  ident: 10.1016/j.neuron.2018.05.020_bib44
  article-title: Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.76.4.2327
– volume: 344
  start-page: 1173
  year: 2014
  ident: 10.1016/j.neuron.2018.05.020_bib98
  article-title: Sleep promotes branch-specific formation of dendritic spines after learning
  publication-title: Science
  doi: 10.1126/science.1249098
– volume: 111
  start-page: 2644
  year: 2014
  ident: 10.1016/j.neuron.2018.05.020_bib97
  article-title: Contrasting the roles of the supplementary and frontal eye fields in ocular decision making
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00543.2013
– volume: 12
  start-page: 502
  year: 2009
  ident: 10.1016/j.neuron.2018.05.020_bib52
  article-title: Interval time coding by neurons in the presupplementary and supplementary motor areas
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2272
– volume: 184
  start-page: 593
  year: 2008
  ident: 10.1016/j.neuron.2018.05.020_bib57
  article-title: Neuronal activity related to anticipated and elapsed time in macaque supplementary eye field
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-007-1234-3
– volume: 10
  start-page: 240
  year: 2007
  ident: 10.1016/j.neuron.2018.05.020_bib25
  article-title: Switching from automatic to controlled action by monkey medial frontal cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1830
– volume: 67
  start-page: 656
  year: 1987
  ident: 10.1016/j.neuron.2018.05.020_bib72
  article-title: Neuronal activity preceding self-initiated or externally timed arm movements in area 6 of monkey cortex
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00247297
– volume: 5
  start-page: e10989
  year: 2016
  ident: 10.1016/j.neuron.2018.05.020_bib34
  article-title: Demixed principal component analysis of neural population data
  publication-title: eLife
  doi: 10.7554/eLife.10989
– volume: 19
  start-page: 634
  year: 2016
  ident: 10.1016/j.neuron.2018.05.020_bib74
  article-title: Spike sorting for large, dense electrode arrays
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4268
– ident: 10.1016/j.neuron.2018.05.020_bib87
– volume: 307
  start-page: 562
  year: 1991
  ident: 10.1016/j.neuron.2018.05.020_bib82
  article-title: Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.903070405
– volume: 382
  start-page: 106
  year: 2005
  ident: 10.1016/j.neuron.2018.05.020_bib61
  article-title: Relationship between CNV and timing of an upcoming event
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2005.02.067
– volume: 111
  start-page: 480
  year: 2014
  ident: 10.1016/j.neuron.2018.05.020_bib96
  article-title: Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1321314111
– volume: 30
  start-page: 350
  year: 2010
  ident: 10.1016/j.neuron.2018.05.020_bib40
  article-title: Functional, but not anatomical, separation of “what” and “when” in prefrontal cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3276-09.2010
– volume: 66
  start-page: 155
  year: 1987
  ident: 10.1016/j.neuron.2018.05.020_bib58
  article-title: Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00236211
– volume: 74
  start-page: 1037
  year: 1995
  ident: 10.1016/j.neuron.2018.05.020_bib60
  article-title: Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1995.74.3.1037
– volume: 86
  start-page: 1067
  year: 2015
  ident: 10.1016/j.neuron.2018.05.020_bib8
  article-title: Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal Uncertainty
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.04.014
– volume: 336
  start-page: 211
  year: 1993
  ident: 10.1016/j.neuron.2018.05.020_bib4
  article-title: Prefrontal connections of medial motor areas in the rhesus monkey
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.903360205
– volume: 22
  start-page: 9475
  year: 2002
  ident: 10.1016/j.neuron.2018.05.020_bib71
  article-title: Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-21-09475.2002
– volume: 90
  start-page: 128
  year: 2016
  ident: 10.1016/j.neuron.2018.05.020_bib65
  article-title: Recurrent Network Models of Sequence Generation and Memory
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.02.009
– year: 2016
  ident: 10.1016/j.neuron.2018.05.020_bib59
  article-title: Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels
  publication-title: bioRxiv
– volume: 487
  start-page: 51
  year: 2012
  ident: 10.1016/j.neuron.2018.05.020_bib12
  article-title: Neural population dynamics during reaching
  publication-title: Nature
  doi: 10.1038/nature11129
– volume: 4
  start-page: 24
  year: 2010
  ident: 10.1016/j.neuron.2018.05.020_bib70
  article-title: Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2010.00024
– volume: 93
  start-page: 1504
  year: 2017
  ident: 10.1016/j.neuron.2018.05.020_bib9
  article-title: Computing by Robust Transience: How the Fronto-Parietal Network Performs Sequential, Category-Based Decisions
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.03.002
– volume: 10
  start-page: 113
  year: 2009
  ident: 10.1016/j.neuron.2018.05.020_bib6
  article-title: State-dependent computations: spatiotemporal processing in cortical networks
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2558
– volume: 274
  start-page: 427
  year: 1996
  ident: 10.1016/j.neuron.2018.05.020_bib21
  article-title: Neural control of voluntary movement initiation
  publication-title: Science
  doi: 10.1126/science.274.5286.427
– volume: 12
  start-page: e1005175
  year: 2016
  ident: 10.1016/j.neuron.2018.05.020_bib50
  article-title: Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005175
– volume: 53
  start-page: 427
  year: 2007
  ident: 10.1016/j.neuron.2018.05.020_bib29
  article-title: Timing in the absence of clocks: encoding time in neural network states
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.01.006
– volume: 90
  start-page: 3054
  year: 2003
  ident: 10.1016/j.neuron.2018.05.020_bib26
  article-title: Contrasting neuronal activity in the supplementary and frontal eye fields during temporal organization of multiple saccades
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00367.2003
– volume: 78
  start-page: 1550
  year: 1990
  ident: 10.1016/j.neuron.2018.05.020_bib94
  article-title: Backpropagation through time: what it does and how to do it
  publication-title: Proc. IEEE
  doi: 10.1109/5.58337
– volume: 341
  start-page: 375
  year: 1994
  ident: 10.1016/j.neuron.2018.05.020_bib38
  article-title: Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.903410308
– volume: 97
  start-page: 188104
  year: 2006
  ident: 10.1016/j.neuron.2018.05.020_bib64
  article-title: Eigenvalue spectra of random matrices for neural networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.188104
– volume: 33
  start-page: 13834
  year: 2013
  ident: 10.1016/j.neuron.2018.05.020_bib32
  article-title: Neural correlates of interval timing in rodent prefrontal cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1443-13.2013
– volume: 3
  year: 2016
  ident: 10.1016/j.neuron.2018.05.020_bib30
  article-title: The Largest Response Component in the Motor Cortex Reflects Movement Timing but Not Movement Type
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0085-16.2016
– volume: 13
  start-page: 1020
  year: 2010
  ident: 10.1016/j.neuron.2018.05.020_bib27
  article-title: Temporal context calibrates interval timing
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2590
– reference: 29879388 - Neuron. 2018 Jun 6;98(5):873-875
SSID ssj0014591
Score 2.6190119
Snippet Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions...
SummaryNeural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1005
SubjectTerms Animals
Behavior
Cerebral Cortex - physiology
Cognition
cognitive flexibility
Cortex (frontal)
Data smoothing
Dynamical Systems
Electroencephalography
electrophysiology
Female
Flexibility
frontal cortex
Frontal Lobe - physiology
Hypotheses
Macaca mulatta
Male
motor planning
Neural networks
Neural Networks, Computer
Neurons - physiology
Neurosciences
population coding
recurrent neural networks
sensorimotor coordination
Sensorimotor Cortex - physiology
Sensorimotor system
Systems Analysis
Task Performance and Analysis
Time Factors
timing
Title Flexible Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics
URI https://dx.doi.org/10.1016/j.neuron.2018.05.020
https://www.ncbi.nlm.nih.gov/pubmed/29879384
https://www.proquest.com/docview/2050945736
https://www.proquest.com/docview/2052817585
https://pubmed.ncbi.nlm.nih.gov/PMC6009852
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NQ0i8INj4KIzJSIg3q0ljx8ljGUwTEzxsTPTNsl0bgkZSde3D_nvu7CSigDSJl0iJz5HtO5_v7PPvAN7UArmaS8tNLRwXXhW8slZwtbSZyI0P0tEF50-fy7Mr8XEhF3twMtyFobDKXvcnnR61df9l2o_mdNU008usqgm9nIQyIwgW1MOE1EKX-BbvxpMEIVPWPCTmRD1cn4sxXhEzklBQ8yrid1LW738vT3-bn39GUf62LJ0-goe9PcnmqcmPYc-3B3A4b9GX_nnL3rIY4Rm3zg_gfko8eXsIV6eEg2mvPbtEN7ZbE8O6NUspHtIeHusz-LALs2qWjNzUNjTftkliWBeQeh03wtn7lNX-5gn-98OXkzPeJ1jgTkq14UIuC48aT7l65kwRcqVM7ctSWINmANlmeW2NcKpwQQRX4SPPzNKWmbGhUKZ4Cvtt1_rnwIwL1iuPxiZS1d4Z6asKndxZyJzBf02gGMZVux59nJJgXOshzOyHTtzQxA2dSY3cmAAfa60S-sYd9Gpgmd6RIo0LxB01jwYO634W32A5wQtKVZQTeD0W4_yjQxXT-m4baWZVTl7XBJ4lgRibiv1G9VcJbNaOqIwEhO29W9I23yPGd0lAr3L24r879BIe0FuMaiuPYH-z3vpXaD9t7DHcm59ffD0_jhPlF8CeHiU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkQvCFoeWwoYCXGLNtnYcXIshWoLbQ-0lfZm2V4bgkqy2u4e-u-ZsZOIBaRKXHKIx5btGY9n7PE3AO8qjlzNhEl0xW3CncyT0hieyLlJeaadF5YeOJ-dF9Mr_nkmZltw1L-FobDKTvdHnR60dfdn3M3meFHX44u0rAi9nIQyJQiWe3AfrYGC4rpOZh-GqwQuYto8pE6IvH8_F4K8AmgkwaBmZQDwpLTf_96f_rY__wyj_G1fOn4MjzqDkh3GPj-BLdfswt5hg870z1v2noUQz3B2vgsPYubJ2z24OiYgTHPt2AX6se2SONYuWczxEA_xWJfCh33Vi3rOyE9tfP1tHUWGtR6pl-EknH2Mae1vnmK7ny6PpkmXYSGxQshVwsU8d6jypK0mVuc-k1JXrii40WgHkHGWVUZzK3PrubclfrJUz02RauNzqfNnsN20jXsBTFtvnHRobSJV5awWrizRy5341GpsawR5P6_KdvDjlAXjWvVxZj9U5IYibqhUKOTGCJKh1iLCb9xBL3uWqQ0xUrhD3FHzoOew6pbxDZYTvqCQeTGCt0MxLkC6VdGNa9eBZlJm5HaN4HkUiKGrOG7UfyXHbm2IykBA4N6bJU39PYB8F4T0Kib7_z2gN_Bwenl2qk5Pzr-8hB0qCSFuxQFsr5Zr9wqNqZV5HRbLLzN9H6k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Sensorimotor+Computations+through+Rapid+Reconfiguration+of+Cortical+Dynamics&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Remington%2C+Evan+D&rft.au=Narain%2C+Devika&rft.au=Hosseini%2C+Eghbal+A&rft.au=Jazayeri%2C+Mehrdad&rft.date=2018-06-06&rft.pub=Elsevier+Limited&rft.issn=0896-6273&rft.eissn=1097-4199&rft.volume=98&rft.issue=5&rft.spage=1005&rft_id=info:doi/10.1016%2Fj.neuron.2018.05.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon