Inflammasome Activation Triggers Blood Clotting and Host Death through Pyroptosis
Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death driv...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 50; no. 6; pp. 1401 - 1411.e4 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
18.06.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.
[Display omitted]
•Canonical or noncanonical inflammasome activation leads to blood clotting•Inflammasome activation induces blood clotting through pyroptosis•Tissue factor released from pyroptotic macrophages drives blood blotting•Interfering tissue factor prevents pyroptosis-induced lethality
Overactivation of inflammasome leads to death of the host. Wu and colleagues demonstrate that activation of coagulation is responsible for inflammasome activation-induced death. |
---|---|
AbstractList | SummaryInflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis. Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis. [Display omitted] •Canonical or noncanonical inflammasome activation leads to blood clotting•Inflammasome activation induces blood clotting through pyroptosis•Tissue factor released from pyroptotic macrophages drives blood blotting•Interfering tissue factor prevents pyroptosis-induced lethality Overactivation of inflammasome leads to death of the host. Wu and colleagues demonstrate that activation of coagulation is responsible for inflammasome activation-induced death. Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis. Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. While recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis eventually leading to death of the host is unknown. Here we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolished inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis. Overactivation of inflammasome leads to death of the host. Wu and colleagues demonstrate that activation of coagulation is responsible for inflammasome activation-induced death. Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis. |
Author | Wu, Congqing Lu, Wei Mackman, Nigel Zhang, Xinyi Wei, Yinan Li, Lan Xiang, Binggang Hisada, Yohei Daugherty, Alan Shi, Jumei Smyth, Susan S. Kirchhofer, Daniel Li, Xiang-An Li, Zhenyu Grover, Steven P. Shao, Feng Shi, Xuyan Zhang, Guoying Zhang, Yan Shiroishi, Toshihiko |
AuthorAffiliation | 4 Department of Medicine, Division of Hematology and Oncology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 9 Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan 8 Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA 1 Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA 3 National Institute of Biological Sciences, Beijing, China 7 Veterans Affairs Medical Center, Lexington, KY, USA 2 Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA 5 Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China 6 Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA |
AuthorAffiliation_xml | – name: 4 Department of Medicine, Division of Hematology and Oncology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – name: 6 Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA – name: 5 Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China – name: 3 National Institute of Biological Sciences, Beijing, China – name: 7 Veterans Affairs Medical Center, Lexington, KY, USA – name: 8 Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA – name: 9 Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan – name: 2 Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA – name: 1 Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA |
Author_xml | – sequence: 1 givenname: Congqing surname: Wu fullname: Wu, Congqing organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA – sequence: 2 givenname: Wei surname: Lu fullname: Lu, Wei organization: Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA – sequence: 3 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA – sequence: 4 givenname: Guoying surname: Zhang fullname: Zhang, Guoying organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA – sequence: 5 givenname: Xuyan surname: Shi fullname: Shi, Xuyan organization: National Institute of Biological Sciences, Beijing, China – sequence: 6 givenname: Yohei surname: Hisada fullname: Hisada, Yohei organization: Division of Hematology and Oncology, Department of Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 7 givenname: Steven P. surname: Grover fullname: Grover, Steven P. organization: Division of Hematology and Oncology, Department of Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 8 givenname: Xinyi surname: Zhang fullname: Zhang, Xinyi organization: Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA – sequence: 9 givenname: Lan surname: Li fullname: Li, Lan organization: Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA – sequence: 10 givenname: Binggang surname: Xiang fullname: Xiang, Binggang organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA – sequence: 11 givenname: Jumei surname: Shi fullname: Shi, Jumei organization: Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China – sequence: 12 givenname: Xiang-An surname: Li fullname: Li, Xiang-An organization: Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA – sequence: 13 givenname: Alan surname: Daugherty fullname: Daugherty, Alan organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA – sequence: 14 givenname: Susan S. surname: Smyth fullname: Smyth, Susan S. organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA – sequence: 15 givenname: Daniel surname: Kirchhofer fullname: Kirchhofer, Daniel organization: Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA – sequence: 16 givenname: Toshihiko surname: Shiroishi fullname: Shiroishi, Toshihiko organization: Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan – sequence: 17 givenname: Feng surname: Shao fullname: Shao, Feng organization: National Institute of Biological Sciences, Beijing, China – sequence: 18 givenname: Nigel surname: Mackman fullname: Mackman, Nigel organization: Division of Hematology and Oncology, Department of Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 19 givenname: Yinan surname: Wei fullname: Wei, Yinan email: yinan.wei@uky.edu organization: Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA – sequence: 20 givenname: Zhenyu surname: Li fullname: Li, Zhenyu email: zhenyuli08@uky.edu organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31076358$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVtr3DAQhUVJaC7tPyhF0Je-2NXVtvpQSLaXBAJtIX0WWkn2arGlrSQv5N9X292GJA_p0xyYbw4zc87AkQ_eAvAGoxoj3HxY126aZu9qgrCoEasRoi_AKUairRju0NFOt6xqG0xPwFlKa4Qw4wK9BCe0dBrKu1Pw89r3o5omlcJk4YXObquyCx7eRjcMNiZ4OYZg4GIMOTs_QOUNvAopw89W5RXMqxjmYQV_3MWwySG59Aoc92pM9vWhnoNfX7_cLq6qm-_frhcXN5XmvM0VFbzpeC86ssSNUYQrXaRa0obTJWe6aKQaQamwptdldU00MR3RouVcWUPPwae972ZeTtZo63NUo9xEN6l4J4Ny8nHHu5UcwlY2rcCc4mLw_mAQw-_Zpiwnl7QdR-VtmJMkhGKBeEvbgr57gq7DHH05r1CMtKzhjBTq7cON7lf59-0CsD2gY0gp2v4ewUjuQpVruQ9V7kKViMkSahn7-GRMu_w3pXKXG_83fHiTLVlsnY0yaWe9tsZFq7M0wT1v8AedccCZ |
CitedBy_id | crossref_primary_10_2491_jjsth_33_520 crossref_primary_10_1016_j_jare_2023_08_008 crossref_primary_10_1016_j_pharmthera_2021_108053 crossref_primary_10_1038_s41392_021_00816_9 crossref_primary_10_1038_s42003_023_05354_4 crossref_primary_10_1016_j_smim_2023_101803 crossref_primary_10_1186_s13046_021_02065_8 crossref_primary_10_1016_j_smim_2023_101809 crossref_primary_10_12677_md_2025_151015 crossref_primary_10_1111_bph_15670 crossref_primary_10_1016_j_immuni_2019_05_020 crossref_primary_10_1126_sciadv_adi9284 crossref_primary_10_1038_s41392_024_01801_8 crossref_primary_10_1128_iai_00476_23 crossref_primary_10_1007_s11033_023_09132_7 crossref_primary_10_1016_S0049_3848_20_30406_0 crossref_primary_10_1182_bloodadvances_2020003041 crossref_primary_10_1097_MBC_0000000000001299 crossref_primary_10_1146_annurev_immunol_073119_095439 crossref_primary_10_1007_s11739_024_03712_6 crossref_primary_10_1016_j_intimp_2024_112633 crossref_primary_10_3389_fimmu_2021_661162 crossref_primary_10_3390_pathogens10050565 crossref_primary_10_1016_j_ebiom_2022_103937 crossref_primary_10_1016_j_vas_2025_100437 crossref_primary_10_1016_j_immuni_2019_05_015 crossref_primary_10_1055_s_0044_1782660 crossref_primary_10_1055_s_0044_1787554 crossref_primary_10_1007_s10753_022_01709_x crossref_primary_10_1002_bmc_5822 crossref_primary_10_7554_eLife_91329 crossref_primary_10_3389_fcell_2021_643996 crossref_primary_10_7554_eLife_91329_3 crossref_primary_10_1016_j_actbio_2022_01_001 crossref_primary_10_1016_j_jmb_2021_167245 crossref_primary_10_1128_spectrum_01717_22 crossref_primary_10_1016_j_thromres_2022_04_001 crossref_primary_10_1002_adma_202304903 crossref_primary_10_1002_rth2_12363 crossref_primary_10_1186_s13017_024_00571_6 crossref_primary_10_3389_fimmu_2024_1477160 crossref_primary_10_1111_acer_14936 crossref_primary_10_1126_science_abg5251 crossref_primary_10_1016_j_celrep_2020_107615 crossref_primary_10_1055_a_1967_2274 crossref_primary_10_3390_microorganisms10081624 crossref_primary_10_1016_j_isci_2021_103256 crossref_primary_10_3390_biomedicines10030525 crossref_primary_10_1111_cmi_13251 crossref_primary_10_1177_10760296221104801 crossref_primary_10_3724_zdxbyxb_2023_0091 crossref_primary_10_1111_nyas_14979 crossref_primary_10_3390_cells12050778 crossref_primary_10_1016_j_brainresbull_2020_10_009 crossref_primary_10_1016_j_apsb_2021_02_006 crossref_primary_10_1016_j_ejphar_2022_175468 crossref_primary_10_3390_ijms22041506 crossref_primary_10_1016_j_nbd_2023_106370 crossref_primary_10_1038_s41467_022_32325_w crossref_primary_10_1016_j_bcp_2021_114791 crossref_primary_10_1016_j_smim_2023_101844 crossref_primary_10_1186_s12964_023_01458_w crossref_primary_10_3390_cells12172120 crossref_primary_10_1016_j_thromres_2022_09_025 crossref_primary_10_1016_j_pharmthera_2020_107476 crossref_primary_10_1053_j_seminhematol_2021_10_006 crossref_primary_10_1126_sciadv_add3231 crossref_primary_10_1016_j_bcp_2020_114316 crossref_primary_10_3389_fimmu_2022_893912 crossref_primary_10_1186_s12964_020_00603_z crossref_primary_10_1002_jcp_30102 crossref_primary_10_1038_s41423_024_01217_y crossref_primary_10_1038_s41419_024_06731_5 crossref_primary_10_3389_fimmu_2020_583373 crossref_primary_10_1016_j_ebiom_2022_103843 crossref_primary_10_1042_CS20220208 crossref_primary_10_3389_fimmu_2023_1114917 crossref_primary_10_1016_j_intimp_2024_112321 crossref_primary_10_3390_ijms22168882 crossref_primary_10_1186_s12890_023_02361_3 crossref_primary_10_1152_ajplung_00422_2019 crossref_primary_10_1016_j_carbpol_2020_116750 crossref_primary_10_1016_j_bbrc_2020_09_082 crossref_primary_10_1016_j_jep_2022_115701 crossref_primary_10_1038_s41418_020_0524_1 crossref_primary_10_3389_fcvm_2022_864735 crossref_primary_10_3389_fphar_2022_842313 crossref_primary_10_1136_bmjpo_2023_002329 crossref_primary_10_1016_j_biopha_2024_116894 crossref_primary_10_1002_eji_202249879 crossref_primary_10_1182_blood_2023021166 crossref_primary_10_1155_2021_2796700 crossref_primary_10_1016_j_eng_2023_11_016 crossref_primary_10_1016_j_imbio_2024_152832 crossref_primary_10_1016_j_ymthe_2023_12_008 crossref_primary_10_1016_j_trsl_2020_04_005 crossref_primary_10_1038_s41420_023_01369_2 crossref_primary_10_1016_j_lfs_2021_119814 crossref_primary_10_3389_fendo_2021_626842 crossref_primary_10_1016_j_crphar_2021_100048 crossref_primary_10_3390_metabo12100912 crossref_primary_10_1016_j_scitotenv_2025_179028 crossref_primary_10_5551_jat_RV22033 crossref_primary_10_1038_s41575_023_00743_w crossref_primary_10_1016_j_jtha_2023_09_028 crossref_primary_10_1002_1873_3468_13696 crossref_primary_10_1172_jci_insight_140971 crossref_primary_10_1182_bloodadvances_2020003377 crossref_primary_10_1007_s00011_022_01624_9 crossref_primary_10_3389_fcvm_2021_785738 crossref_primary_10_1016_j_biopha_2023_115493 crossref_primary_10_1161_ATVBAHA_120_315437 crossref_primary_10_3389_fimmu_2020_01518 crossref_primary_10_1007_s12975_022_01064_x crossref_primary_10_1186_s12917_022_03326_0 crossref_primary_10_1007_s12265_022_10342_w crossref_primary_10_1016_j_molimm_2024_02_004 crossref_primary_10_3389_fimmu_2022_998470 crossref_primary_10_3389_fcvm_2021_724942 crossref_primary_10_1016_j_ecoenv_2022_114359 crossref_primary_10_3390_ijms23126800 crossref_primary_10_1016_j_biomaterials_2021_120845 crossref_primary_10_1016_j_jacbts_2023_03_017 crossref_primary_10_1016_j_cej_2025_161011 crossref_primary_10_3389_fimmu_2022_841732 crossref_primary_10_1016_j_cell_2024_11_018 crossref_primary_10_1016_j_immuni_2021_01_007 crossref_primary_10_1016_j_bbadis_2025_167700 crossref_primary_10_1016_j_cbi_2024_111262 crossref_primary_10_1016_j_immuni_2024_02_011 crossref_primary_10_1038_s41573_021_00154_z crossref_primary_10_1002_smll_202200306 crossref_primary_10_1016_j_immuni_2021_12_002 crossref_primary_10_1016_j_yjmcc_2022_07_005 crossref_primary_10_1182_blood_2020007208 crossref_primary_10_3389_fimmu_2024_1378506 crossref_primary_10_1111_imcb_12419 crossref_primary_10_1016_j_chom_2020_02_004 crossref_primary_10_1186_s13054_025_05278_x crossref_primary_10_3389_fimmu_2020_613170 crossref_primary_10_1164_rccm_202106_1445OC crossref_primary_10_1016_j_ajt_2024_11_025 crossref_primary_10_1016_j_ebiom_2022_104363 crossref_primary_10_1016_j_intimp_2021_108178 crossref_primary_10_1016_j_jmb_2021_167183 crossref_primary_10_3390_biomedicines10092196 crossref_primary_10_1016_j_celrep_2021_109012 crossref_primary_10_1042_BCJ20210522 crossref_primary_10_1097_SHK_0000000000002460 crossref_primary_10_1080_22221751_2020_1785336 crossref_primary_10_1002_mco2_70058 crossref_primary_10_1002_eji_202149410 crossref_primary_10_1182_blood_2020004988 crossref_primary_10_1007_s13337_021_00705_3 crossref_primary_10_1016_j_cca_2019_11_035 crossref_primary_10_1016_j_freeradbiomed_2024_02_026 crossref_primary_10_3389_fimmu_2023_1185233 crossref_primary_10_3389_fimmu_2022_847894 crossref_primary_10_1016_j_bbi_2020_10_015 crossref_primary_10_2169_naika_110_2355 crossref_primary_10_1371_journal_pone_0277492 crossref_primary_10_1016_j_cjtee_2021_07_009 crossref_primary_10_1038_s41591_020_01202_8 crossref_primary_10_1038_s44321_024_00093_3 crossref_primary_10_4103_hm_HM_D_24_00076 crossref_primary_10_1186_s13054_024_05221_6 crossref_primary_10_1016_j_jep_2025_119563 crossref_primary_10_1007_s10495_024_01979_w crossref_primary_10_1093_ofid_ofad148 crossref_primary_10_3390_ijms232416115 crossref_primary_10_1016_j_mam_2020_100863 crossref_primary_10_1186_s12929_024_01043_4 crossref_primary_10_3390_v13071346 crossref_primary_10_1007_s10620_022_07666_7 crossref_primary_10_1111_xen_70007 crossref_primary_10_1111_cmi_13184 crossref_primary_10_1093_discim_kyac005 crossref_primary_10_1016_j_smim_2023_101781 crossref_primary_10_3389_fimmu_2022_1093985 crossref_primary_10_15275_rusomj_2024_0201 crossref_primary_10_3390_cells10040916 crossref_primary_10_1161_CIRCRESAHA_121_318225 crossref_primary_10_1055_a_2250_3166 crossref_primary_10_3389_fphar_2020_570867 crossref_primary_10_1016_j_jtha_2022_12_002 crossref_primary_10_3390_clinpract14030088 crossref_primary_10_1007_s11239_024_03028_4 crossref_primary_10_3389_fimmu_2022_888661 crossref_primary_10_3390_jcm12020601 crossref_primary_10_3390_biomedicines9101342 crossref_primary_10_4049_jimmunol_2000513 crossref_primary_10_1080_03630269_2020_1869565 crossref_primary_10_1080_19490976_2021_1946369 crossref_primary_10_3389_fimmu_2024_1381778 crossref_primary_10_3389_fimmu_2023_1203687 crossref_primary_10_1016_j_mam_2020_100890 crossref_primary_10_1038_s41577_021_00588_x crossref_primary_10_1016_j_it_2021_04_001 crossref_primary_10_1182_blood_2023021583 crossref_primary_10_3389_fcvm_2020_629933 crossref_primary_10_1097_RLU_0000000000004803 crossref_primary_10_1016_j_micres_2023_127460 crossref_primary_10_17116_Cardiobulletin20231803123 crossref_primary_10_1080_08923973_2023_2215405 crossref_primary_10_1146_annurev_micro_032521_024017 crossref_primary_10_3389_fimmu_2023_1296687 crossref_primary_10_1007_s10753_020_01274_1 crossref_primary_10_3390_cells11081307 crossref_primary_10_1093_jleuko_qiae107 crossref_primary_10_3389_fimmu_2021_651545 crossref_primary_10_1213_ANE_0000000000006888 crossref_primary_10_3390_molecules27010274 crossref_primary_10_1016_j_bcp_2023_115806 crossref_primary_10_1016_j_intimp_2024_111993 crossref_primary_10_1002_ctm2_1539 crossref_primary_10_1016_j_clnu_2024_04_020 crossref_primary_10_1101_cshperspect_a036392 crossref_primary_10_1182_blood_2023022522 crossref_primary_10_1016_j_jddst_2024_106131 crossref_primary_10_1128_iai_00614_21 crossref_primary_10_1007_s12035_023_03228_8 crossref_primary_10_1016_j_jointm_2022_01_001 crossref_primary_10_5694_mja2_52456 crossref_primary_10_1002_cti2_1452 crossref_primary_10_1080_10408363_2022_2102578 crossref_primary_10_3390_ijms22084170 crossref_primary_10_1038_s41580_025_00837_0 crossref_primary_10_3390_jcm12041399 crossref_primary_10_1002_mco2_785 crossref_primary_10_3892_etm_2021_10825 crossref_primary_10_3389_fimmu_2023_1150564 crossref_primary_10_3389_fcell_2021_638710 crossref_primary_10_19163_1994_9480_2022_19_1_142_146 crossref_primary_10_3389_fcell_2023_1218807 crossref_primary_10_3389_fimmu_2024_1429523 crossref_primary_10_1016_j_heliyon_2023_e23599 crossref_primary_10_1038_s41467_023_39174_1 crossref_primary_10_1097_SHK_0000000000001565 crossref_primary_10_1111_imr_13106 crossref_primary_10_1002_mco2_418 crossref_primary_10_1158_2326_6066_CIR_20_0431 crossref_primary_10_1016_j_celrep_2022_111941 crossref_primary_10_1016_j_isci_2024_109763 crossref_primary_10_1093_cvr_cvad084 crossref_primary_10_1088_1758_5090_ada737 crossref_primary_10_3389_fimmu_2021_649122 crossref_primary_10_1155_2021_4504363 crossref_primary_10_1016_j_immuni_2021_10_007 crossref_primary_10_1111_1348_0421_12771 crossref_primary_10_3389_fimmu_2021_751533 crossref_primary_10_1016_j_omtn_2022_05_033 crossref_primary_10_3390_ijms22010426 crossref_primary_10_15690_vramn2124 crossref_primary_10_3389_fmolb_2022_972087 crossref_primary_10_1038_s12276_024_01162_w crossref_primary_10_1080_07853890_2024_2401112 crossref_primary_10_3389_fimmu_2023_1093985 crossref_primary_10_1016_j_jep_2024_119248 crossref_primary_10_3389_fimmu_2021_641750 crossref_primary_10_3390_biology11020159 crossref_primary_10_3390_diagnostics13223477 crossref_primary_10_3389_fcvm_2022_897815 crossref_primary_10_3390_biom13111664 crossref_primary_10_1089_jir_2022_0061 crossref_primary_10_4142_jvs_22185 crossref_primary_10_3389_fimmu_2023_1144229 crossref_primary_10_1038_s41577_021_00618_8 crossref_primary_10_1016_j_addr_2021_113848 crossref_primary_10_1038_s41598_022_08619_w crossref_primary_10_1016_j_fsi_2024_110002 crossref_primary_10_1016_j_jconrel_2023_10_032 crossref_primary_10_1155_2023_9721375 crossref_primary_10_1038_s41569_021_00552_1 crossref_primary_10_1186_s13567_024_01407_6 crossref_primary_10_1016_j_celrep_2022_110755 crossref_primary_10_1177_24705470221076390 crossref_primary_10_1016_j_immuni_2021_10_012 crossref_primary_10_14336_AD_2024_1688 |
Cites_doi | 10.1182/blood.V96.2.554.014k17_554_559 10.1126/science.6648524 10.1073/pnas.1211521110 10.1038/nature10510 10.1038/cr.2015.139 10.1038/nature13683 10.1126/science.1240248 10.1111/j.1462-5822.2006.00751.x 10.1189/jlb.0912437 10.1002/dvg.20412 10.1126/science.aaf3036 10.1172/JCI2006 10.1038/s41586-018-0058-6 10.1172/JCI79329 10.1016/j.celrep.2018.07.027 10.1172/JCI94495 10.1016/j.cell.2014.04.007 10.1038/nature18629 10.1016/j.cell.2016.04.015 10.1186/2052-0492-2-15 10.1038/nri3452 10.1016/S0021-9258(19)68847-2 10.1016/0092-8674(87)90669-6 10.1111/imr.12287 10.1182/blood-2016-09-741298 10.1038/nrdp.2016.37 10.1182/blood-2008-04-152959 10.1056/NEJMra1208623 10.1038/nbt.1995 10.1111/j.1538-7836.2005.01253.x 10.1073/pnas.1005743107 10.1038/ncomms3657 10.1016/j.blre.2015.12.004 10.1084/jem.20160006 10.1083/jcb.201203170 10.1038/nature15514 10.1038/nature11351 10.1056/NEJM199908193410807 10.1160/TH04-05-0309 10.4103/0019-5049.144666 10.15252/embj.201694696 10.1073/pnas.1607769113 10.1016/j.cell.2010.01.040 10.1038/nature10558 10.1182/blood-2009-12-259267 10.1001/jama.1995.03520260039030 10.1016/j.immuni.2017.11.013 10.1084/jem.20172222 10.1126/science.1240988 10.1038/nature15541 10.1126/science.aaf2154 10.1161/ATVBAHA.117.309846 10.1111/j.1365-2958.1995.tb02375.x 10.1016/j.cell.2012.07.007 10.1172/JCI116934 10.1038/nature11419 10.1016/j.jiac.2013.09.003 10.1073/pnas.0913087107 10.1038/nature18590 10.1186/cc12783 10.1007/s10753-018-0810-y |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.immuni.2019.04.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 1411.e4 |
ExternalDocumentID | PMC6791531 31076358 10_1016_j_immuni_2019_04_003 S1074761319301839 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R21 AI103717 – fundername: NIGMS NIH HHS grantid: R01 GM132443 – fundername: NIGMS NIH HHS grantid: P20 GM103527 – fundername: NHLBI NIH HHS grantid: R01 HL123927 – fundername: NHLBI NIH HHS grantid: R01 HL142640 – fundername: NHLBI NIH HHS grantid: K99 HL145117 – fundername: NIAID NIH HHS grantid: R21 AI142063 – fundername: NCI NIH HHS grantid: P30 CA016086 – fundername: NIGMS NIH HHS grantid: R01 GM085231 – fundername: NIGMS NIH HHS grantid: R01 GM121796 |
GroupedDBID | --- --K -DZ 0R~ 0SF 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAVLU AAXUO ABMAC ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADVLN AEFWE AENEX AEXQZ AFKRA AFRAH AFTJW AGGSO AGKMS AHMBA AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A O-L O9- OK1 OVD P2P PQQKQ PROAC RCE RIG ROL RPZ SCP SES SSZ TEORI TR2 .55 .GJ 29I 5VS AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGCQF AGHFR AGQPQ AHHHB AIGII AKBMS AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- UHS X7M Y6R ZGI CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K EFKBS FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c557t-395685f982b16da25ac82bab3653b54c2ba0a69339edfc001c2c2d82c9755aed3 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Thu Aug 21 18:28:14 EDT 2025 Mon Jul 21 10:48:41 EDT 2025 Fri Jul 25 11:14:01 EDT 2025 Thu Apr 03 06:59:38 EDT 2025 Tue Jul 01 01:58:41 EDT 2025 Thu Apr 24 23:12:50 EDT 2025 Tue Jul 16 04:30:57 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | GSDMD pyroptosis tissue factor inflammasome macrophage coagulation LPS sepsis caspase DIC |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-395685f982b16da25ac82bab3653b54c2ba0a69339edfc001c2c2d82c9755aed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AUTHOR CONTRIBUTIONS Lead contact: zhenyuli08@uky.edu (Z.L.) C.W., Y.W. and Z.L. designed and performed the experiments and wrote the manuscript, assisted by W.L., Y.Z., G.Z., X.S., Y.H., S.P.G., X.Z., L.L., B.X., and J.S. X.L., A.D., S.S.S., N.M. and F.S. contributed to manuscript preparation. D.K., T.S., and N.M. provided mice and/or reagents and discussed experiments. All authors discussed the results and commented on the manuscript. |
OpenAccessLink | http://www.cell.com/article/S1074761319301839/pdf |
PMID | 31076358 |
PQID | 2242746542 |
PQPubID | 2031079 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6791531 proquest_miscellaneous_2231905737 proquest_journals_2242746542 pubmed_primary_31076358 crossref_primary_10_1016_j_immuni_2019_04_003 crossref_citationtrail_10_1016_j_immuni_2019_04_003 elsevier_sciencedirect_doi_10_1016_j_immuni_2019_04_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-18 |
PublicationDateYYYYMMDD | 2019-06-18 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Wada, Matsumoto, Yamashita (bib57) 2014; 2 Gando, Levi, Toh (bib18) 2016; 2 Morrissey, Fakhrai, Edgington (bib40) 1987; 50 Sborgi, Rühl, Mulvihill, Pipercevic, Heilig, Stahlberg, Farady, Müller, Broz, Hiller (bib49) 2016; 35 Ruan, Xia, Liu, Lieberman, Wu (bib48) 2018; 557 Effenberger-Neidnicht, Hartmann (bib11) 2018; 41 Hagar, Powell, Aachoui, Ernst, Miao (bib21) 2013; 341 Kayagaki, Wong, Stowe, Ramani, Gonzalez, Akashi-Takamura, Miyake, Zhang, Lee, Muszyński (bib28) 2013; 341 Shi, Zhao, Wang, Shi, Wang, Huang, Zhuang, Cai, Wang, Shao (bib51) 2015; 526 Lamkanfi, Dixit (bib30) 2014; 157 Grover, Mackman (bib20) 2018; 38 McDonald, Davis, Kim, Tse, Esmon, Kolaczkowska, Jenne (bib36) 2017; 129 Franco, de Jonge, Dekkers, Timmerman, Spek, van Deventer, van Deursen, van Kerkhoff, van Gemen, ten Cate (bib14) 2000; 96 Fujishima, Gando, Saitoh, Mayumi, Kushimoto, Shiraishi, Ogura, Takuma, Kotani, Ikeda (bib17) 2014; 20 Xiang, Zhang, Guo, Li, Morris, Daugherty, Whiteheart, Smyth, Li (bib60) 2013; 4 Weiler-Guettler, Christie, Beeler, Healy, Hancock, Rayburn, Edelberg, Rosenberg (bib59) 1998; 101 Schroder, Tschopp (bib50) 2010; 140 Aziz, Jacob, Yang, Matsuda, Wang (bib3) 2013; 93 Ivanciu, Toso, Margaritis, Pavani, Kim, Schlachterman, Liu, Clerin, Pittman, Rose-Miranda (bib24) 2011; 29 Kayagaki, Warming, Lamkanfi, Vande Walle, Louie, Dong, Newton, Qu, Liu, Heldens (bib27) 2011; 479 Monteleone, Stanley, Chen, Brown, Bezbradica, von Pein, Holley, Boucher, Shakespear, Kapetanovic (bib39) 2018; 24 Neyman, Gewirtz, Poncz (bib41) 2008; 112 Aglietti, Estevez, Gupta, Ramirez, Liu, Kayagaki, Ciferri, Dixit, Dueber (bib1) 2016; 113 Cheng, Xiong, Ye, Hong, Di, Tsang, Gao, An, Mittal, Vogel (bib9) 2017; 127 Fuchs, Brill, Duerschmied, Schatzberg, Monestier, Myers, Wrobleski, Wakefield, Hartwig, Wagner (bib15) 2010; 107 Rangel-Frausto, Pittet, Costigan, Hwang, Davis, Wenzel (bib45) 1995; 273 Rothmeier, Marchese, Petrich, Furlan-Freguia, Ginsberg, Ruggeri, Ruf (bib47) 2015; 125 Brinkmann, Zychlinsky (bib6) 2012; 198 Vanaja, Russo, Behl, Banerjee, Yankova, Deshmukh, Rathinam (bib54) 2016; 165 Rathinam, Vanaja, Waggoner, Sokolovska, Becker, Stuart, Leong, Fitzgerald (bib46) 2012; 150 Taylor, Chang, Ruf, Morrissey, Hinshaw, Catlett, Blick, Edgington (bib53) 1991; 33 Jorgensen, Miao (bib25) 2015; 265 Case, Kohler, Lima, Strowig, de Zoete, Flavell, Zamboni, Roy (bib8) 2013; 110 Kirchhofer, Moran, Bullens, Peale, Bunting (bib29) 2005; 3 Fink, Cookson (bib13) 2006; 8 Latz, Xiao, Stutz (bib31) 2013; 13 Zhao, Yang, Shi, Gong, Lu, Xu, Liu, Shao (bib63) 2011; 477 Evavold, Ruan, Tan, Xia, Wu, Kagan (bib12) 2018; 48 Miao, Mao, Yudkovsky, Bonneau, Lorang, Warren, Leaf, Aderem (bib37) 2010; 107 Angus, van der Poll (bib2) 2013; 369 Pawlinski, Wang, Owens, Williams, Antoniak, Tencati, Luther, Rowley, Low, Weyrich, Mackman (bib44) 2010; 116 Milne, Blanke, Hanna, Collier (bib38) 1995; 15 Boucher, Monteleone, Coll, Chen, Ross, Teo, Gomez, Holley, Bierschenk, Stacey (bib5) 2018; 215 Liu, Zhang, Ruan, Pan, Magupalli, Wu, Lieberman (bib35) 2016; 535 von Moltke, Trinidad, Moayeri, Kintzer, Wang, van Rooijen, Brown, Krantz, Leppla, Gronert, Vance (bib56) 2012; 490 Zhao, Shi, Shi, Wang, Wang, Shao (bib62) 2016; 213 Hui, Haber, Matsueda (bib23) 1983; 222 Ding, Wang, Liu, She, Sun, Shi, Sun, Wang, Shao (bib10) 2016; 535 Wallach, Kang, Dillon, Green (bib58) 2016; 352 He, Wan, Hu, Chen, Wang, Huang, Yang, Zhong, Han (bib22) 2015; 25 Levi, ten Cate, Bauer, van der Poll, Edgington, Büller, van Deventer, Hack, ten Cate, Rosenberg (bib33) 1994; 93 Liaw, Ito, Iba, Thachil, Zeerleder (bib34) 2016; 30 Broz, Ruby, Belhocine, Bouley, Kayagaki, Dixit, Monack (bib7) 2012; 490 Pawlinski, Pedersen, Erlich, Mackman (bib43) 2004; 92 Levi, Ten Cate (bib32) 1999; 341 Gando, Saitoh, Ogura, Fujishima, Mayumi, Araki, Ikeda, Kotani, Kushimoto, Miki (bib19) 2013; 17 Bach, Nemerson, Konigsberg (bib4) 1981; 256 Parise, Venton, Le Breton (bib42) 1984; 228 Venugopal (bib55) 2014; 58 Zanoni, Tan, Di Gioia, Broggi, Ruan, Shi, Donado, Shao, Wu, Springstead, Kagan (bib61) 2016; 352 Fujii, Tamura, Tanaka, Kato, Yamamoto, Mizushina, Shiroishi (bib16) 2008; 46 Shi, Zhao, Wang, Gao, Ding, Li, Hu, Shao (bib52) 2014; 514 Kayagaki, Stowe, Lee, O’Rourke, Anderson, Warming, Cuellar, Haley, Roose-Girma, Phung (bib26) 2015; 526 Monteleone (10.1016/j.immuni.2019.04.003_bib39) 2018; 24 Cheng (10.1016/j.immuni.2019.04.003_bib9) 2017; 127 Jorgensen (10.1016/j.immuni.2019.04.003_bib25) 2015; 265 Rangel-Frausto (10.1016/j.immuni.2019.04.003_bib45) 1995; 273 Kayagaki (10.1016/j.immuni.2019.04.003_bib27) 2011; 479 Hui (10.1016/j.immuni.2019.04.003_bib23) 1983; 222 Levi (10.1016/j.immuni.2019.04.003_bib33) 1994; 93 Kayagaki (10.1016/j.immuni.2019.04.003_bib28) 2013; 341 Shi (10.1016/j.immuni.2019.04.003_bib52) 2014; 514 Wada (10.1016/j.immuni.2019.04.003_bib57) 2014; 2 Ivanciu (10.1016/j.immuni.2019.04.003_bib24) 2011; 29 von Moltke (10.1016/j.immuni.2019.04.003_bib56) 2012; 490 Aglietti (10.1016/j.immuni.2019.04.003_bib1) 2016; 113 Schroder (10.1016/j.immuni.2019.04.003_bib50) 2010; 140 Fujii (10.1016/j.immuni.2019.04.003_bib16) 2008; 46 Ding (10.1016/j.immuni.2019.04.003_bib10) 2016; 535 Zanoni (10.1016/j.immuni.2019.04.003_bib61) 2016; 352 Neyman (10.1016/j.immuni.2019.04.003_bib41) 2008; 112 Franco (10.1016/j.immuni.2019.04.003_bib14) 2000; 96 Gando (10.1016/j.immuni.2019.04.003_bib19) 2013; 17 Bach (10.1016/j.immuni.2019.04.003_bib4) 1981; 256 Liu (10.1016/j.immuni.2019.04.003_bib35) 2016; 535 Pawlinski (10.1016/j.immuni.2019.04.003_bib44) 2010; 116 Latz (10.1016/j.immuni.2019.04.003_bib31) 2013; 13 Parise (10.1016/j.immuni.2019.04.003_bib42) 1984; 228 Fujishima (10.1016/j.immuni.2019.04.003_bib17) 2014; 20 Kayagaki (10.1016/j.immuni.2019.04.003_bib26) 2015; 526 Morrissey (10.1016/j.immuni.2019.04.003_bib40) 1987; 50 Angus (10.1016/j.immuni.2019.04.003_bib2) 2013; 369 Aziz (10.1016/j.immuni.2019.04.003_bib3) 2013; 93 Grover (10.1016/j.immuni.2019.04.003_bib20) 2018; 38 Weiler-Guettler (10.1016/j.immuni.2019.04.003_bib59) 1998; 101 Vanaja (10.1016/j.immuni.2019.04.003_bib54) 2016; 165 Effenberger-Neidnicht (10.1016/j.immuni.2019.04.003_bib11) 2018; 41 Miao (10.1016/j.immuni.2019.04.003_bib37) 2010; 107 Wallach (10.1016/j.immuni.2019.04.003_bib58) 2016; 352 Sborgi (10.1016/j.immuni.2019.04.003_bib49) 2016; 35 Taylor (10.1016/j.immuni.2019.04.003_bib53) 1991; 33 Venugopal (10.1016/j.immuni.2019.04.003_bib55) 2014; 58 Zhao (10.1016/j.immuni.2019.04.003_bib63) 2011; 477 Kirchhofer (10.1016/j.immuni.2019.04.003_bib29) 2005; 3 Hagar (10.1016/j.immuni.2019.04.003_bib21) 2013; 341 Ruan (10.1016/j.immuni.2019.04.003_bib48) 2018; 557 Boucher (10.1016/j.immuni.2019.04.003_bib5) 2018; 215 Milne (10.1016/j.immuni.2019.04.003_bib38) 1995; 15 Xiang (10.1016/j.immuni.2019.04.003_bib60) 2013; 4 Gando (10.1016/j.immuni.2019.04.003_bib18) 2016; 2 Fuchs (10.1016/j.immuni.2019.04.003_bib15) 2010; 107 Liaw (10.1016/j.immuni.2019.04.003_bib34) 2016; 30 Evavold (10.1016/j.immuni.2019.04.003_bib12) 2018; 48 He (10.1016/j.immuni.2019.04.003_bib22) 2015; 25 Fink (10.1016/j.immuni.2019.04.003_bib13) 2006; 8 Levi (10.1016/j.immuni.2019.04.003_bib32) 1999; 341 Zhao (10.1016/j.immuni.2019.04.003_bib62) 2016; 213 Case (10.1016/j.immuni.2019.04.003_bib8) 2013; 110 Rathinam (10.1016/j.immuni.2019.04.003_bib46) 2012; 150 Brinkmann (10.1016/j.immuni.2019.04.003_bib6) 2012; 198 Lamkanfi (10.1016/j.immuni.2019.04.003_bib30) 2014; 157 Pawlinski (10.1016/j.immuni.2019.04.003_bib43) 2004; 92 Broz (10.1016/j.immuni.2019.04.003_bib7) 2012; 490 Shi (10.1016/j.immuni.2019.04.003_bib51) 2015; 526 McDonald (10.1016/j.immuni.2019.04.003_bib36) 2017; 129 Rothmeier (10.1016/j.immuni.2019.04.003_bib47) 2015; 125 31216455 - Immunity. 2019 Jun 18;50(6):1339-1341 |
References_xml | – volume: 13 start-page: 397 year: 2013 end-page: 411 ident: bib31 article-title: Activation and regulation of the inflammasomes publication-title: Nat. Rev. Immunol. – volume: 514 start-page: 187 year: 2014 end-page: 192 ident: bib52 article-title: Inflammatory caspases are innate immune receptors for intracellular LPS publication-title: Nature – volume: 29 start-page: 1028 year: 2011 end-page: 1033 ident: bib24 article-title: A zymogen-like factor Xa variant corrects the coagulation defect in hemophilia publication-title: Nat. Biotechnol. – volume: 341 start-page: 586 year: 1999 end-page: 592 ident: bib32 article-title: Disseminated intravascular coagulation publication-title: N. Engl. J. Med. – volume: 48 start-page: 35 year: 2018 end-page: 44.e6 ident: bib12 article-title: The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages publication-title: Immunity – volume: 113 start-page: 7858 year: 2016 end-page: 7863 ident: bib1 article-title: GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes publication-title: Proc. Natl. Acad. Sci. USA – volume: 526 start-page: 666 year: 2015 end-page: 671 ident: bib26 article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling publication-title: Nature – volume: 479 start-page: 117 year: 2011 end-page: 121 ident: bib27 article-title: Non-canonical inflammasome activation targets caspase-11 publication-title: Nature – volume: 4 start-page: 2657 year: 2013 ident: bib60 article-title: Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway publication-title: Nat. Commun. – volume: 58 start-page: 603 year: 2014 end-page: 608 ident: bib55 article-title: Disseminated intravascular coagulation publication-title: Indian J. Anaesth. – volume: 165 start-page: 1106 year: 2016 end-page: 1119 ident: bib54 article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation publication-title: Cell – volume: 24 start-page: 1425 year: 2018 end-page: 1433 ident: bib39 article-title: Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-gependent and -independent secretion publication-title: Cell Rep. – volume: 352 start-page: aaf2154 year: 2016 ident: bib58 article-title: Programmed necrosis in inflammation: toward identification of the effector molecules publication-title: Science – volume: 273 start-page: 117 year: 1995 end-page: 123 ident: bib45 article-title: The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study publication-title: JAMA – volume: 2 start-page: 15 year: 2014 ident: bib57 article-title: Diagnosis and treatment of disseminated intravascular coagulation (DIC) according to four DIC guidelines publication-title: J. Intensive Care – volume: 127 start-page: 4124 year: 2017 end-page: 4135 ident: bib9 article-title: Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury publication-title: J. Clin. Invest. – volume: 477 start-page: 596 year: 2011 end-page: 600 ident: bib63 article-title: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus publication-title: Nature – volume: 490 start-page: 288 year: 2012 end-page: 291 ident: bib7 article-title: Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1 publication-title: Nature – volume: 150 start-page: 606 year: 2012 end-page: 619 ident: bib46 article-title: TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria publication-title: Cell – volume: 125 start-page: 1471 year: 2015 end-page: 1484 ident: bib47 article-title: Caspase-1-mediated pathway promotes generation of thromboinflammatory microparticles publication-title: J. Clin. Invest. – volume: 535 start-page: 153 year: 2016 end-page: 158 ident: bib35 article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores publication-title: Nature – volume: 17 start-page: R111 year: 2013 ident: bib19 article-title: A multicenter, prospective validation study of the Japanese Association for Acute Medicine disseminated intravascular coagulation scoring system in patients with severe sepsis publication-title: Crit. Care – volume: 213 start-page: 647 year: 2016 end-page: 656 ident: bib62 article-title: Genetic functions of the NAIP family of inflammasome receptors for bacterial ligands in mice publication-title: J. Exp. Med. – volume: 3 start-page: 1098 year: 2005 end-page: 1099 ident: bib29 article-title: A monoclonal antibody that inhibits mouse tissue factor function publication-title: J. Thromb. Haemost. – volume: 25 start-page: 1285 year: 2015 end-page: 1298 ident: bib22 article-title: Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion publication-title: Cell Res. – volume: 38 start-page: 709 year: 2018 end-page: 725 ident: bib20 article-title: Tissue factor: an essential mediator of hemostasis and trigger of thrombosis publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 15 start-page: 661 year: 1995 end-page: 666 ident: bib38 article-title: Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-terminus publication-title: Mol. Microbiol. – volume: 341 start-page: 1250 year: 2013 end-page: 1253 ident: bib21 article-title: Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock publication-title: Science – volume: 222 start-page: 1129 year: 1983 end-page: 1132 ident: bib23 article-title: Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen publication-title: Science – volume: 526 start-page: 660 year: 2015 end-page: 665 ident: bib51 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature – volume: 93 start-page: 329 year: 2013 end-page: 342 ident: bib3 article-title: Current trends in inflammatory and immunomodulatory mediators in sepsis publication-title: J. Leukoc. Biol. – volume: 228 start-page: 240 year: 1984 end-page: 244 ident: bib42 article-title: Arachidonic acid-induced platelet aggregation is mediated by a thromboxane A2/prostaglandin H2 receptor interaction publication-title: J. Pharmacol. Exp. Ther. – volume: 215 start-page: 827 year: 2018 end-page: 840 ident: bib5 article-title: Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity publication-title: J. Exp. Med. – volume: 116 start-page: 806 year: 2010 end-page: 814 ident: bib44 article-title: Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice publication-title: Blood – volume: 92 start-page: 444 year: 2004 end-page: 450 ident: bib43 article-title: Role of tissue factor in haemostasis, thrombosis, angiogenesis and inflammation: lessons from low tissue factor mice publication-title: Thromb. Haemost. – volume: 30 start-page: 257 year: 2016 end-page: 261 ident: bib34 article-title: DAMP and DIC: the role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC publication-title: Blood Rev. – volume: 2 start-page: 16037 year: 2016 ident: bib18 article-title: Disseminated intravascular coagulation publication-title: Nat. Rev. Dis. Primers – volume: 140 start-page: 821 year: 2010 end-page: 832 ident: bib50 article-title: The inflammasomes publication-title: Cell – volume: 20 start-page: 115 year: 2014 end-page: 120 ident: bib17 article-title: A multicenter, prospective evaluation of quality of care and mortality in Japan based on the Surviving Sepsis Campaign guidelines publication-title: J. Infect. Chemother. – volume: 129 start-page: 1357 year: 2017 end-page: 1367 ident: bib36 article-title: Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice publication-title: Blood – volume: 93 start-page: 114 year: 1994 end-page: 120 ident: bib33 article-title: Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees publication-title: J. Clin. Invest. – volume: 107 start-page: 3076 year: 2010 end-page: 3080 ident: bib37 article-title: Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome publication-title: Proc. Natl. Acad. Sci. USA – volume: 96 start-page: 554 year: 2000 end-page: 559 ident: bib14 article-title: The in vivo kinetics of tissue factor messenger RNA expression during human endotoxemia: relationship with activation of coagulation publication-title: Blood – volume: 256 start-page: 8324 year: 1981 end-page: 8331 ident: bib4 article-title: Purification and characterization of bovine tissue factor publication-title: J. Biol. Chem. – volume: 33 start-page: 127 year: 1991 end-page: 134 ident: bib53 article-title: Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody publication-title: Circ. Shock – volume: 265 start-page: 130 year: 2015 end-page: 142 ident: bib25 article-title: Pyroptotic cell death defends against intracellular pathogens publication-title: Immunol. Rev. – volume: 352 start-page: 1232 year: 2016 end-page: 1236 ident: bib61 article-title: An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells publication-title: Science – volume: 535 start-page: 111 year: 2016 end-page: 116 ident: bib10 article-title: Pore-forming activity and structural autoinhibition of the gasdermin family publication-title: Nature – volume: 557 start-page: 62 year: 2018 end-page: 67 ident: bib48 article-title: Cryo-EM structure of the gasdermin A3 membrane pore publication-title: Nature – volume: 110 start-page: 1851 year: 2013 end-page: 1856 ident: bib8 article-title: Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila publication-title: Proc. Natl. Acad. Sci. USA – volume: 369 start-page: 840 year: 2013 end-page: 851 ident: bib2 article-title: Severe sepsis and septic shock publication-title: N. Engl. J. Med. – volume: 112 start-page: 1101 year: 2008 end-page: 1108 ident: bib41 article-title: Analysis of the spatial and temporal characteristics of platelet-delivered factor VIII-based clots publication-title: Blood – volume: 157 start-page: 1013 year: 2014 end-page: 1022 ident: bib30 article-title: Mechanisms and functions of inflammasomes publication-title: Cell – volume: 46 start-page: 418 year: 2008 end-page: 423 ident: bib16 article-title: Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development publication-title: Genesis – volume: 35 start-page: 1766 year: 2016 end-page: 1778 ident: bib49 article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death publication-title: EMBO J. – volume: 8 start-page: 1812 year: 2006 end-page: 1825 ident: bib13 article-title: Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages publication-title: Cell. Microbiol. – volume: 107 start-page: 15880 year: 2010 end-page: 15885 ident: bib15 article-title: Extracellular DNA traps promote thrombosis publication-title: Proc. Natl. Acad. Sci. USA – volume: 41 start-page: 1569 year: 2018 end-page: 1581 ident: bib11 article-title: Mechanisms of hemolysis during sepsis publication-title: Inflammation – volume: 50 start-page: 129 year: 1987 end-page: 135 ident: bib40 article-title: Molecular cloning of the cDNA for tissue factor, the cellular receptor for the initiation of the coagulation protease cascade publication-title: Cell – volume: 101 start-page: 1983 year: 1998 end-page: 1991 ident: bib59 article-title: A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state publication-title: J. Clin. Invest. – volume: 341 start-page: 1246 year: 2013 end-page: 1249 ident: bib28 article-title: Noncanonical inflammasome activation by intracellular LPS independent of TLR4 publication-title: Science – volume: 490 start-page: 107 year: 2012 end-page: 111 ident: bib56 article-title: Rapid induction of inflammatory lipid mediators by the inflammasome in vivo publication-title: Nature – volume: 198 start-page: 773 year: 2012 end-page: 783 ident: bib6 article-title: Neutrophil extracellular traps: is immunity the second function of chromatin? publication-title: J. Cell Biol. – volume: 96 start-page: 554 year: 2000 ident: 10.1016/j.immuni.2019.04.003_bib14 article-title: The in vivo kinetics of tissue factor messenger RNA expression during human endotoxemia: relationship with activation of coagulation publication-title: Blood doi: 10.1182/blood.V96.2.554.014k17_554_559 – volume: 222 start-page: 1129 year: 1983 ident: 10.1016/j.immuni.2019.04.003_bib23 article-title: Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen publication-title: Science doi: 10.1126/science.6648524 – volume: 110 start-page: 1851 year: 2013 ident: 10.1016/j.immuni.2019.04.003_bib8 article-title: Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1211521110 – volume: 477 start-page: 596 year: 2011 ident: 10.1016/j.immuni.2019.04.003_bib63 article-title: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus publication-title: Nature doi: 10.1038/nature10510 – volume: 25 start-page: 1285 year: 2015 ident: 10.1016/j.immuni.2019.04.003_bib22 article-title: Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion publication-title: Cell Res. doi: 10.1038/cr.2015.139 – volume: 514 start-page: 187 year: 2014 ident: 10.1016/j.immuni.2019.04.003_bib52 article-title: Inflammatory caspases are innate immune receptors for intracellular LPS publication-title: Nature doi: 10.1038/nature13683 – volume: 341 start-page: 1246 year: 2013 ident: 10.1016/j.immuni.2019.04.003_bib28 article-title: Noncanonical inflammasome activation by intracellular LPS independent of TLR4 publication-title: Science doi: 10.1126/science.1240248 – volume: 8 start-page: 1812 year: 2006 ident: 10.1016/j.immuni.2019.04.003_bib13 article-title: Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2006.00751.x – volume: 93 start-page: 329 year: 2013 ident: 10.1016/j.immuni.2019.04.003_bib3 article-title: Current trends in inflammatory and immunomodulatory mediators in sepsis publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0912437 – volume: 46 start-page: 418 year: 2008 ident: 10.1016/j.immuni.2019.04.003_bib16 article-title: Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development publication-title: Genesis doi: 10.1002/dvg.20412 – volume: 352 start-page: 1232 year: 2016 ident: 10.1016/j.immuni.2019.04.003_bib61 article-title: An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells publication-title: Science doi: 10.1126/science.aaf3036 – volume: 101 start-page: 1983 year: 1998 ident: 10.1016/j.immuni.2019.04.003_bib59 article-title: A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state publication-title: J. Clin. Invest. doi: 10.1172/JCI2006 – volume: 557 start-page: 62 year: 2018 ident: 10.1016/j.immuni.2019.04.003_bib48 article-title: Cryo-EM structure of the gasdermin A3 membrane pore publication-title: Nature doi: 10.1038/s41586-018-0058-6 – volume: 125 start-page: 1471 year: 2015 ident: 10.1016/j.immuni.2019.04.003_bib47 article-title: Caspase-1-mediated pathway promotes generation of thromboinflammatory microparticles publication-title: J. Clin. Invest. doi: 10.1172/JCI79329 – volume: 24 start-page: 1425 year: 2018 ident: 10.1016/j.immuni.2019.04.003_bib39 article-title: Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-gependent and -independent secretion publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.07.027 – volume: 127 start-page: 4124 year: 2017 ident: 10.1016/j.immuni.2019.04.003_bib9 article-title: Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury publication-title: J. Clin. Invest. doi: 10.1172/JCI94495 – volume: 157 start-page: 1013 year: 2014 ident: 10.1016/j.immuni.2019.04.003_bib30 article-title: Mechanisms and functions of inflammasomes publication-title: Cell doi: 10.1016/j.cell.2014.04.007 – volume: 535 start-page: 153 year: 2016 ident: 10.1016/j.immuni.2019.04.003_bib35 article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores publication-title: Nature doi: 10.1038/nature18629 – volume: 165 start-page: 1106 year: 2016 ident: 10.1016/j.immuni.2019.04.003_bib54 article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation publication-title: Cell doi: 10.1016/j.cell.2016.04.015 – volume: 2 start-page: 15 year: 2014 ident: 10.1016/j.immuni.2019.04.003_bib57 article-title: Diagnosis and treatment of disseminated intravascular coagulation (DIC) according to four DIC guidelines publication-title: J. Intensive Care doi: 10.1186/2052-0492-2-15 – volume: 13 start-page: 397 year: 2013 ident: 10.1016/j.immuni.2019.04.003_bib31 article-title: Activation and regulation of the inflammasomes publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3452 – volume: 256 start-page: 8324 year: 1981 ident: 10.1016/j.immuni.2019.04.003_bib4 article-title: Purification and characterization of bovine tissue factor publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)68847-2 – volume: 50 start-page: 129 year: 1987 ident: 10.1016/j.immuni.2019.04.003_bib40 article-title: Molecular cloning of the cDNA for tissue factor, the cellular receptor for the initiation of the coagulation protease cascade publication-title: Cell doi: 10.1016/0092-8674(87)90669-6 – volume: 265 start-page: 130 year: 2015 ident: 10.1016/j.immuni.2019.04.003_bib25 article-title: Pyroptotic cell death defends against intracellular pathogens publication-title: Immunol. Rev. doi: 10.1111/imr.12287 – volume: 129 start-page: 1357 year: 2017 ident: 10.1016/j.immuni.2019.04.003_bib36 article-title: Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice publication-title: Blood doi: 10.1182/blood-2016-09-741298 – volume: 2 start-page: 16037 year: 2016 ident: 10.1016/j.immuni.2019.04.003_bib18 article-title: Disseminated intravascular coagulation publication-title: Nat. Rev. Dis. Primers doi: 10.1038/nrdp.2016.37 – volume: 112 start-page: 1101 year: 2008 ident: 10.1016/j.immuni.2019.04.003_bib41 article-title: Analysis of the spatial and temporal characteristics of platelet-delivered factor VIII-based clots publication-title: Blood doi: 10.1182/blood-2008-04-152959 – volume: 369 start-page: 840 year: 2013 ident: 10.1016/j.immuni.2019.04.003_bib2 article-title: Severe sepsis and septic shock publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1208623 – volume: 29 start-page: 1028 year: 2011 ident: 10.1016/j.immuni.2019.04.003_bib24 article-title: A zymogen-like factor Xa variant corrects the coagulation defect in hemophilia publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1995 – volume: 3 start-page: 1098 year: 2005 ident: 10.1016/j.immuni.2019.04.003_bib29 article-title: A monoclonal antibody that inhibits mouse tissue factor function publication-title: J. Thromb. Haemost. doi: 10.1111/j.1538-7836.2005.01253.x – volume: 107 start-page: 15880 year: 2010 ident: 10.1016/j.immuni.2019.04.003_bib15 article-title: Extracellular DNA traps promote thrombosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1005743107 – volume: 4 start-page: 2657 year: 2013 ident: 10.1016/j.immuni.2019.04.003_bib60 article-title: Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway publication-title: Nat. Commun. doi: 10.1038/ncomms3657 – volume: 30 start-page: 257 year: 2016 ident: 10.1016/j.immuni.2019.04.003_bib34 article-title: DAMP and DIC: the role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC publication-title: Blood Rev. doi: 10.1016/j.blre.2015.12.004 – volume: 213 start-page: 647 year: 2016 ident: 10.1016/j.immuni.2019.04.003_bib62 article-title: Genetic functions of the NAIP family of inflammasome receptors for bacterial ligands in mice publication-title: J. Exp. Med. doi: 10.1084/jem.20160006 – volume: 198 start-page: 773 year: 2012 ident: 10.1016/j.immuni.2019.04.003_bib6 article-title: Neutrophil extracellular traps: is immunity the second function of chromatin? publication-title: J. Cell Biol. doi: 10.1083/jcb.201203170 – volume: 526 start-page: 660 year: 2015 ident: 10.1016/j.immuni.2019.04.003_bib51 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature doi: 10.1038/nature15514 – volume: 490 start-page: 107 year: 2012 ident: 10.1016/j.immuni.2019.04.003_bib56 article-title: Rapid induction of inflammatory lipid mediators by the inflammasome in vivo publication-title: Nature doi: 10.1038/nature11351 – volume: 341 start-page: 586 year: 1999 ident: 10.1016/j.immuni.2019.04.003_bib32 article-title: Disseminated intravascular coagulation publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199908193410807 – volume: 92 start-page: 444 year: 2004 ident: 10.1016/j.immuni.2019.04.003_bib43 article-title: Role of tissue factor in haemostasis, thrombosis, angiogenesis and inflammation: lessons from low tissue factor mice publication-title: Thromb. Haemost. doi: 10.1160/TH04-05-0309 – volume: 58 start-page: 603 year: 2014 ident: 10.1016/j.immuni.2019.04.003_bib55 article-title: Disseminated intravascular coagulation publication-title: Indian J. Anaesth. doi: 10.4103/0019-5049.144666 – volume: 35 start-page: 1766 year: 2016 ident: 10.1016/j.immuni.2019.04.003_bib49 article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death publication-title: EMBO J. doi: 10.15252/embj.201694696 – volume: 113 start-page: 7858 year: 2016 ident: 10.1016/j.immuni.2019.04.003_bib1 article-title: GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1607769113 – volume: 140 start-page: 821 year: 2010 ident: 10.1016/j.immuni.2019.04.003_bib50 article-title: The inflammasomes publication-title: Cell doi: 10.1016/j.cell.2010.01.040 – volume: 479 start-page: 117 year: 2011 ident: 10.1016/j.immuni.2019.04.003_bib27 article-title: Non-canonical inflammasome activation targets caspase-11 publication-title: Nature doi: 10.1038/nature10558 – volume: 116 start-page: 806 year: 2010 ident: 10.1016/j.immuni.2019.04.003_bib44 article-title: Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice publication-title: Blood doi: 10.1182/blood-2009-12-259267 – volume: 273 start-page: 117 year: 1995 ident: 10.1016/j.immuni.2019.04.003_bib45 article-title: The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study publication-title: JAMA doi: 10.1001/jama.1995.03520260039030 – volume: 48 start-page: 35 year: 2018 ident: 10.1016/j.immuni.2019.04.003_bib12 article-title: The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages publication-title: Immunity doi: 10.1016/j.immuni.2017.11.013 – volume: 215 start-page: 827 year: 2018 ident: 10.1016/j.immuni.2019.04.003_bib5 article-title: Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity publication-title: J. Exp. Med. doi: 10.1084/jem.20172222 – volume: 341 start-page: 1250 year: 2013 ident: 10.1016/j.immuni.2019.04.003_bib21 article-title: Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock publication-title: Science doi: 10.1126/science.1240988 – volume: 526 start-page: 666 year: 2015 ident: 10.1016/j.immuni.2019.04.003_bib26 article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling publication-title: Nature doi: 10.1038/nature15541 – volume: 352 start-page: aaf2154 year: 2016 ident: 10.1016/j.immuni.2019.04.003_bib58 article-title: Programmed necrosis in inflammation: toward identification of the effector molecules publication-title: Science doi: 10.1126/science.aaf2154 – volume: 38 start-page: 709 year: 2018 ident: 10.1016/j.immuni.2019.04.003_bib20 article-title: Tissue factor: an essential mediator of hemostasis and trigger of thrombosis publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.117.309846 – volume: 15 start-page: 661 year: 1995 ident: 10.1016/j.immuni.2019.04.003_bib38 article-title: Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-terminus publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1995.tb02375.x – volume: 150 start-page: 606 year: 2012 ident: 10.1016/j.immuni.2019.04.003_bib46 article-title: TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria publication-title: Cell doi: 10.1016/j.cell.2012.07.007 – volume: 93 start-page: 114 year: 1994 ident: 10.1016/j.immuni.2019.04.003_bib33 article-title: Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees publication-title: J. Clin. Invest. doi: 10.1172/JCI116934 – volume: 33 start-page: 127 year: 1991 ident: 10.1016/j.immuni.2019.04.003_bib53 article-title: Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody publication-title: Circ. Shock – volume: 490 start-page: 288 year: 2012 ident: 10.1016/j.immuni.2019.04.003_bib7 article-title: Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1 publication-title: Nature doi: 10.1038/nature11419 – volume: 228 start-page: 240 year: 1984 ident: 10.1016/j.immuni.2019.04.003_bib42 article-title: Arachidonic acid-induced platelet aggregation is mediated by a thromboxane A2/prostaglandin H2 receptor interaction publication-title: J. Pharmacol. Exp. Ther. – volume: 20 start-page: 115 year: 2014 ident: 10.1016/j.immuni.2019.04.003_bib17 article-title: A multicenter, prospective evaluation of quality of care and mortality in Japan based on the Surviving Sepsis Campaign guidelines publication-title: J. Infect. Chemother. doi: 10.1016/j.jiac.2013.09.003 – volume: 107 start-page: 3076 year: 2010 ident: 10.1016/j.immuni.2019.04.003_bib37 article-title: Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0913087107 – volume: 535 start-page: 111 year: 2016 ident: 10.1016/j.immuni.2019.04.003_bib10 article-title: Pore-forming activity and structural autoinhibition of the gasdermin family publication-title: Nature doi: 10.1038/nature18590 – volume: 17 start-page: R111 year: 2013 ident: 10.1016/j.immuni.2019.04.003_bib19 article-title: A multicenter, prospective validation study of the Japanese Association for Acute Medicine disseminated intravascular coagulation scoring system in patients with severe sepsis publication-title: Crit. Care doi: 10.1186/cc12783 – volume: 41 start-page: 1569 year: 2018 ident: 10.1016/j.immuni.2019.04.003_bib11 article-title: Mechanisms of hemolysis during sepsis publication-title: Inflammation doi: 10.1007/s10753-018-0810-y – reference: 31216455 - Immunity. 2019 Jun 18;50(6):1339-1341 |
SSID | ssj0014590 |
Score | 2.6707659 |
Snippet | Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of... SummaryInflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1401 |
SubjectTerms | Animals Apoptosis Bacterial infections Bacterial Infections - complications Bacterial Infections - microbiology Biomarkers Blood Blood Coagulation Cascades caspase Caspases - metabolism Cell activation Cell culture Cell death Cell-Derived Microparticles - immunology Cell-Derived Microparticles - metabolism Cloning Clotting Coagulation Cytotoxicity DIC Disease Models, Animal E coli Gram-negative bacteria GSDMD Humans inflammasome Inflammasomes Inflammasomes - metabolism Lipopolysaccharides Lipopolysaccharides - immunology LPS macrophage Macrophages Macrophages - immunology Macrophages - metabolism Mice Microscopy Monocytes - immunology Monocytes - metabolism Mortality Pathogenesis Pharmacology Proteins Pyroptosis Secretion Sepsis Signal Transduction Thromboembolism Thromboplastin - metabolism Thrombosis Thrombosis - blood Thrombosis - etiology Thrombosis - metabolism Thrombosis - mortality Time series Tissue factor |
Title | Inflammasome Activation Triggers Blood Clotting and Host Death through Pyroptosis |
URI | https://dx.doi.org/10.1016/j.immuni.2019.04.003 https://www.ncbi.nlm.nih.gov/pubmed/31076358 https://www.proquest.com/docview/2242746542 https://www.proquest.com/docview/2231905737 https://pubmed.ncbi.nlm.nih.gov/PMC6791531 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAuCMproVRG4hptXnbi43bbaqEq4tGKvVmOY0NQm6ya9NB_z0ziRCw9VOLm3TiSMx57PsvffAPwwXAXCaddoK0ugtRlElsczzyicI70yZKIspHPPovVRfppzdc7sBxzYYhW6ff-YU_vd2v_z9xbc76pqvl3ohLiIRx9CJ0U4zzuw0ma90l868PpJiHlMpx4h9h7TJ_rOV5Vn4NBBC_ZC56OpbPuhqe78PNfFuVfYenkKTzxeJIthiE_gx1b78HDocLk7R48OvN358_h68fa4fRf6ba5smxhxrpm7BwP6D8RBbJDIrGz5WXTc6GZrku2atqOHRFMZL6iD_tye91suqat2hdwcXJ8vlwFvqBCYDjPuiCh3EDuZB4XkSh1zLXBpi4SwZOCpwbboRYySaQtnUHjmdjEZR4bmXGubZm8hN26qe1rYKHILWIZJ0ktxkmhrUMsE1O1mBDnWswgGe2ojFcbp6IXl2qklf1Wg_UVWV-FKamUziCY3toMahv39M_GKVJbXqMwINzz5v44o8qv2lYhnMFDOpXwmsH76TGuN7pE0bVtbqgPOhypSGYzeDU4wDRUhMqk75fjsLZcY-pAWt7bT-rqV6_pLTKJsSd6898f9BYe0y9isUX5Pux21zf2HeKlrjiAB4vTbz9OD_qF8QeK0hZd |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKEdALgkLpQgEjwTHaxImd5MChH1S7tFuB2Ep7M45jl6A2WW22Qvu7-IPMJE7E0kMlpN6s2Imc8XhmLL95Q8h7zW0grLKeMirzIhun0OJw5hGZtchPFgaYjTw5E6Pz6POMzzbI7y4XBmGVzva3Nr2x1u7J0ElzOC-K4TeEEsIhHHQIlBT8vENWnpjVLzi31R_HR7DIHxg7_jQ9HHmutICnOY-XXohZctymCcsCkSvGlYamykLBw4xHGtq-EnDYT01uNZhyzTTLE6bTmHNl8hC-e4_ch-gjRmswnh30VxcRT_0e6AjT6_L1GlBZ0SR9IKIsbRhWu1pdN_3hzXj3X9jmX37w-Al57AJYut_K6CnZMOU2edCWtFxtk4cTd1n_jHwdlxb07UrV1ZWh-7orpEani-LiAsJOeoCoeXp4WTXga6rKnI6qekmPMC6lroQQ_bJaVPNlVRf1c3J-J2LeIZtlVZpdQn2RGAiebIr0NDYVylgInhiWp_FBucSAhJ0cpXb05lhl41J2OLafspW-ROlLP0Ja1AHx-rfmLb3HLePjbonkmppK8EC3vLnXrah0ZqKWED-xGBnt2IC867thg-OtjSpNdY1jQMORtjIekBetAvRThdgcCQUTmNaaavQDkDx8vacsfjQk4iJOwdkFL__7h96SR6Pp5FSejs9OXpEt7EEIXZDskc3l4tq8hmBtmb1pNgcl3-96N_4Bt55SBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inflammasome+Activation+Triggers+Blood+Clotting+and+Host+Death+through+Pyroptosis&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Wu%2C+Congqing&rft.au=Lu%2C+Wei&rft.au=Zhang%2C+Yan&rft.au=Zhang%2C+Guoying&rft.date=2019-06-18&rft.eissn=1097-4180&rft.volume=50&rft.issue=6&rft.spage=1401&rft_id=info:doi/10.1016%2Fj.immuni.2019.04.003&rft_id=info%3Apmid%2F31076358&rft.externalDocID=31076358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |