Inflammasome Activation Triggers Blood Clotting and Host Death through Pyroptosis

Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death driv...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 50; no. 6; pp. 1401 - 1411.e4
Main Authors Wu, Congqing, Lu, Wei, Zhang, Yan, Zhang, Guoying, Shi, Xuyan, Hisada, Yohei, Grover, Steven P., Zhang, Xinyi, Li, Lan, Xiang, Binggang, Shi, Jumei, Li, Xiang-An, Daugherty, Alan, Smyth, Susan S., Kirchhofer, Daniel, Shiroishi, Toshihiko, Shao, Feng, Mackman, Nigel, Wei, Yinan, Li, Zhenyu
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 18.06.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis. [Display omitted] •Canonical or noncanonical inflammasome activation leads to blood clotting•Inflammasome activation induces blood clotting through pyroptosis•Tissue factor released from pyroptotic macrophages drives blood blotting•Interfering tissue factor prevents pyroptosis-induced lethality Overactivation of inflammasome leads to death of the host. Wu and colleagues demonstrate that activation of coagulation is responsible for inflammasome activation-induced death.
AbstractList SummaryInflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.
Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis. [Display omitted] •Canonical or noncanonical inflammasome activation leads to blood clotting•Inflammasome activation induces blood clotting through pyroptosis•Tissue factor released from pyroptotic macrophages drives blood blotting•Interfering tissue factor prevents pyroptosis-induced lethality Overactivation of inflammasome leads to death of the host. Wu and colleagues demonstrate that activation of coagulation is responsible for inflammasome activation-induced death.
Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.
Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. While recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis eventually leading to death of the host is unknown. Here we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolished inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis. Overactivation of inflammasome leads to death of the host. Wu and colleagues demonstrate that activation of coagulation is responsible for inflammasome activation-induced death.
Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.
Author Wu, Congqing
Lu, Wei
Mackman, Nigel
Zhang, Xinyi
Wei, Yinan
Li, Lan
Xiang, Binggang
Hisada, Yohei
Daugherty, Alan
Shi, Jumei
Smyth, Susan S.
Kirchhofer, Daniel
Li, Xiang-An
Li, Zhenyu
Grover, Steven P.
Shao, Feng
Shi, Xuyan
Zhang, Guoying
Zhang, Yan
Shiroishi, Toshihiko
AuthorAffiliation 4 Department of Medicine, Division of Hematology and Oncology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
9 Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
8 Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA
1 Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
3 National Institute of Biological Sciences, Beijing, China
7 Veterans Affairs Medical Center, Lexington, KY, USA
2 Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
5 Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
6 Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
AuthorAffiliation_xml – name: 4 Department of Medicine, Division of Hematology and Oncology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– name: 6 Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
– name: 5 Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
– name: 3 National Institute of Biological Sciences, Beijing, China
– name: 7 Veterans Affairs Medical Center, Lexington, KY, USA
– name: 8 Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA
– name: 9 Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
– name: 2 Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
– name: 1 Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
Author_xml – sequence: 1
  givenname: Congqing
  surname: Wu
  fullname: Wu, Congqing
  organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
– sequence: 2
  givenname: Wei
  surname: Lu
  fullname: Lu, Wei
  organization: Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
– sequence: 3
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
– sequence: 4
  givenname: Guoying
  surname: Zhang
  fullname: Zhang, Guoying
  organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
– sequence: 5
  givenname: Xuyan
  surname: Shi
  fullname: Shi, Xuyan
  organization: National Institute of Biological Sciences, Beijing, China
– sequence: 6
  givenname: Yohei
  surname: Hisada
  fullname: Hisada, Yohei
  organization: Division of Hematology and Oncology, Department of Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 7
  givenname: Steven P.
  surname: Grover
  fullname: Grover, Steven P.
  organization: Division of Hematology and Oncology, Department of Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 8
  givenname: Xinyi
  surname: Zhang
  fullname: Zhang, Xinyi
  organization: Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
– sequence: 9
  givenname: Lan
  surname: Li
  fullname: Li, Lan
  organization: Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
– sequence: 10
  givenname: Binggang
  surname: Xiang
  fullname: Xiang, Binggang
  organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
– sequence: 11
  givenname: Jumei
  surname: Shi
  fullname: Shi, Jumei
  organization: Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
– sequence: 12
  givenname: Xiang-An
  surname: Li
  fullname: Li, Xiang-An
  organization: Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
– sequence: 13
  givenname: Alan
  surname: Daugherty
  fullname: Daugherty, Alan
  organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
– sequence: 14
  givenname: Susan S.
  surname: Smyth
  fullname: Smyth, Susan S.
  organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
– sequence: 15
  givenname: Daniel
  surname: Kirchhofer
  fullname: Kirchhofer, Daniel
  organization: Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA
– sequence: 16
  givenname: Toshihiko
  surname: Shiroishi
  fullname: Shiroishi, Toshihiko
  organization: Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
– sequence: 17
  givenname: Feng
  surname: Shao
  fullname: Shao, Feng
  organization: National Institute of Biological Sciences, Beijing, China
– sequence: 18
  givenname: Nigel
  surname: Mackman
  fullname: Mackman, Nigel
  organization: Division of Hematology and Oncology, Department of Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 19
  givenname: Yinan
  surname: Wei
  fullname: Wei, Yinan
  email: yinan.wei@uky.edu
  organization: Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
– sequence: 20
  givenname: Zhenyu
  surname: Li
  fullname: Li, Zhenyu
  email: zhenyuli08@uky.edu
  organization: Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31076358$$D View this record in MEDLINE/PubMed
BookMark eNqFkVtr3DAQhUVJaC7tPyhF0Je-2NXVtvpQSLaXBAJtIX0WWkn2arGlrSQv5N9X292GJA_p0xyYbw4zc87AkQ_eAvAGoxoj3HxY126aZu9qgrCoEasRoi_AKUairRju0NFOt6xqG0xPwFlKa4Qw4wK9BCe0dBrKu1Pw89r3o5omlcJk4YXObquyCx7eRjcMNiZ4OYZg4GIMOTs_QOUNvAopw89W5RXMqxjmYQV_3MWwySG59Aoc92pM9vWhnoNfX7_cLq6qm-_frhcXN5XmvM0VFbzpeC86ssSNUYQrXaRa0obTJWe6aKQaQamwptdldU00MR3RouVcWUPPwae972ZeTtZo63NUo9xEN6l4J4Ny8nHHu5UcwlY2rcCc4mLw_mAQw-_Zpiwnl7QdR-VtmJMkhGKBeEvbgr57gq7DHH05r1CMtKzhjBTq7cON7lf59-0CsD2gY0gp2v4ewUjuQpVruQ9V7kKViMkSahn7-GRMu_w3pXKXG_83fHiTLVlsnY0yaWe9tsZFq7M0wT1v8AedccCZ
CitedBy_id crossref_primary_10_2491_jjsth_33_520
crossref_primary_10_1016_j_jare_2023_08_008
crossref_primary_10_1016_j_pharmthera_2021_108053
crossref_primary_10_1038_s41392_021_00816_9
crossref_primary_10_1038_s42003_023_05354_4
crossref_primary_10_1016_j_smim_2023_101803
crossref_primary_10_1186_s13046_021_02065_8
crossref_primary_10_1016_j_smim_2023_101809
crossref_primary_10_12677_md_2025_151015
crossref_primary_10_1111_bph_15670
crossref_primary_10_1016_j_immuni_2019_05_020
crossref_primary_10_1126_sciadv_adi9284
crossref_primary_10_1038_s41392_024_01801_8
crossref_primary_10_1128_iai_00476_23
crossref_primary_10_1007_s11033_023_09132_7
crossref_primary_10_1016_S0049_3848_20_30406_0
crossref_primary_10_1182_bloodadvances_2020003041
crossref_primary_10_1097_MBC_0000000000001299
crossref_primary_10_1146_annurev_immunol_073119_095439
crossref_primary_10_1007_s11739_024_03712_6
crossref_primary_10_1016_j_intimp_2024_112633
crossref_primary_10_3389_fimmu_2021_661162
crossref_primary_10_3390_pathogens10050565
crossref_primary_10_1016_j_ebiom_2022_103937
crossref_primary_10_1016_j_vas_2025_100437
crossref_primary_10_1016_j_immuni_2019_05_015
crossref_primary_10_1055_s_0044_1782660
crossref_primary_10_1055_s_0044_1787554
crossref_primary_10_1007_s10753_022_01709_x
crossref_primary_10_1002_bmc_5822
crossref_primary_10_7554_eLife_91329
crossref_primary_10_3389_fcell_2021_643996
crossref_primary_10_7554_eLife_91329_3
crossref_primary_10_1016_j_actbio_2022_01_001
crossref_primary_10_1016_j_jmb_2021_167245
crossref_primary_10_1128_spectrum_01717_22
crossref_primary_10_1016_j_thromres_2022_04_001
crossref_primary_10_1002_adma_202304903
crossref_primary_10_1002_rth2_12363
crossref_primary_10_1186_s13017_024_00571_6
crossref_primary_10_3389_fimmu_2024_1477160
crossref_primary_10_1111_acer_14936
crossref_primary_10_1126_science_abg5251
crossref_primary_10_1016_j_celrep_2020_107615
crossref_primary_10_1055_a_1967_2274
crossref_primary_10_3390_microorganisms10081624
crossref_primary_10_1016_j_isci_2021_103256
crossref_primary_10_3390_biomedicines10030525
crossref_primary_10_1111_cmi_13251
crossref_primary_10_1177_10760296221104801
crossref_primary_10_3724_zdxbyxb_2023_0091
crossref_primary_10_1111_nyas_14979
crossref_primary_10_3390_cells12050778
crossref_primary_10_1016_j_brainresbull_2020_10_009
crossref_primary_10_1016_j_apsb_2021_02_006
crossref_primary_10_1016_j_ejphar_2022_175468
crossref_primary_10_3390_ijms22041506
crossref_primary_10_1016_j_nbd_2023_106370
crossref_primary_10_1038_s41467_022_32325_w
crossref_primary_10_1016_j_bcp_2021_114791
crossref_primary_10_1016_j_smim_2023_101844
crossref_primary_10_1186_s12964_023_01458_w
crossref_primary_10_3390_cells12172120
crossref_primary_10_1016_j_thromres_2022_09_025
crossref_primary_10_1016_j_pharmthera_2020_107476
crossref_primary_10_1053_j_seminhematol_2021_10_006
crossref_primary_10_1126_sciadv_add3231
crossref_primary_10_1016_j_bcp_2020_114316
crossref_primary_10_3389_fimmu_2022_893912
crossref_primary_10_1186_s12964_020_00603_z
crossref_primary_10_1002_jcp_30102
crossref_primary_10_1038_s41423_024_01217_y
crossref_primary_10_1038_s41419_024_06731_5
crossref_primary_10_3389_fimmu_2020_583373
crossref_primary_10_1016_j_ebiom_2022_103843
crossref_primary_10_1042_CS20220208
crossref_primary_10_3389_fimmu_2023_1114917
crossref_primary_10_1016_j_intimp_2024_112321
crossref_primary_10_3390_ijms22168882
crossref_primary_10_1186_s12890_023_02361_3
crossref_primary_10_1152_ajplung_00422_2019
crossref_primary_10_1016_j_carbpol_2020_116750
crossref_primary_10_1016_j_bbrc_2020_09_082
crossref_primary_10_1016_j_jep_2022_115701
crossref_primary_10_1038_s41418_020_0524_1
crossref_primary_10_3389_fcvm_2022_864735
crossref_primary_10_3389_fphar_2022_842313
crossref_primary_10_1136_bmjpo_2023_002329
crossref_primary_10_1016_j_biopha_2024_116894
crossref_primary_10_1002_eji_202249879
crossref_primary_10_1182_blood_2023021166
crossref_primary_10_1155_2021_2796700
crossref_primary_10_1016_j_eng_2023_11_016
crossref_primary_10_1016_j_imbio_2024_152832
crossref_primary_10_1016_j_ymthe_2023_12_008
crossref_primary_10_1016_j_trsl_2020_04_005
crossref_primary_10_1038_s41420_023_01369_2
crossref_primary_10_1016_j_lfs_2021_119814
crossref_primary_10_3389_fendo_2021_626842
crossref_primary_10_1016_j_crphar_2021_100048
crossref_primary_10_3390_metabo12100912
crossref_primary_10_1016_j_scitotenv_2025_179028
crossref_primary_10_5551_jat_RV22033
crossref_primary_10_1038_s41575_023_00743_w
crossref_primary_10_1016_j_jtha_2023_09_028
crossref_primary_10_1002_1873_3468_13696
crossref_primary_10_1172_jci_insight_140971
crossref_primary_10_1182_bloodadvances_2020003377
crossref_primary_10_1007_s00011_022_01624_9
crossref_primary_10_3389_fcvm_2021_785738
crossref_primary_10_1016_j_biopha_2023_115493
crossref_primary_10_1161_ATVBAHA_120_315437
crossref_primary_10_3389_fimmu_2020_01518
crossref_primary_10_1007_s12975_022_01064_x
crossref_primary_10_1186_s12917_022_03326_0
crossref_primary_10_1007_s12265_022_10342_w
crossref_primary_10_1016_j_molimm_2024_02_004
crossref_primary_10_3389_fimmu_2022_998470
crossref_primary_10_3389_fcvm_2021_724942
crossref_primary_10_1016_j_ecoenv_2022_114359
crossref_primary_10_3390_ijms23126800
crossref_primary_10_1016_j_biomaterials_2021_120845
crossref_primary_10_1016_j_jacbts_2023_03_017
crossref_primary_10_1016_j_cej_2025_161011
crossref_primary_10_3389_fimmu_2022_841732
crossref_primary_10_1016_j_cell_2024_11_018
crossref_primary_10_1016_j_immuni_2021_01_007
crossref_primary_10_1016_j_bbadis_2025_167700
crossref_primary_10_1016_j_cbi_2024_111262
crossref_primary_10_1016_j_immuni_2024_02_011
crossref_primary_10_1038_s41573_021_00154_z
crossref_primary_10_1002_smll_202200306
crossref_primary_10_1016_j_immuni_2021_12_002
crossref_primary_10_1016_j_yjmcc_2022_07_005
crossref_primary_10_1182_blood_2020007208
crossref_primary_10_3389_fimmu_2024_1378506
crossref_primary_10_1111_imcb_12419
crossref_primary_10_1016_j_chom_2020_02_004
crossref_primary_10_1186_s13054_025_05278_x
crossref_primary_10_3389_fimmu_2020_613170
crossref_primary_10_1164_rccm_202106_1445OC
crossref_primary_10_1016_j_ajt_2024_11_025
crossref_primary_10_1016_j_ebiom_2022_104363
crossref_primary_10_1016_j_intimp_2021_108178
crossref_primary_10_1016_j_jmb_2021_167183
crossref_primary_10_3390_biomedicines10092196
crossref_primary_10_1016_j_celrep_2021_109012
crossref_primary_10_1042_BCJ20210522
crossref_primary_10_1097_SHK_0000000000002460
crossref_primary_10_1080_22221751_2020_1785336
crossref_primary_10_1002_mco2_70058
crossref_primary_10_1002_eji_202149410
crossref_primary_10_1182_blood_2020004988
crossref_primary_10_1007_s13337_021_00705_3
crossref_primary_10_1016_j_cca_2019_11_035
crossref_primary_10_1016_j_freeradbiomed_2024_02_026
crossref_primary_10_3389_fimmu_2023_1185233
crossref_primary_10_3389_fimmu_2022_847894
crossref_primary_10_1016_j_bbi_2020_10_015
crossref_primary_10_2169_naika_110_2355
crossref_primary_10_1371_journal_pone_0277492
crossref_primary_10_1016_j_cjtee_2021_07_009
crossref_primary_10_1038_s41591_020_01202_8
crossref_primary_10_1038_s44321_024_00093_3
crossref_primary_10_4103_hm_HM_D_24_00076
crossref_primary_10_1186_s13054_024_05221_6
crossref_primary_10_1016_j_jep_2025_119563
crossref_primary_10_1007_s10495_024_01979_w
crossref_primary_10_1093_ofid_ofad148
crossref_primary_10_3390_ijms232416115
crossref_primary_10_1016_j_mam_2020_100863
crossref_primary_10_1186_s12929_024_01043_4
crossref_primary_10_3390_v13071346
crossref_primary_10_1007_s10620_022_07666_7
crossref_primary_10_1111_xen_70007
crossref_primary_10_1111_cmi_13184
crossref_primary_10_1093_discim_kyac005
crossref_primary_10_1016_j_smim_2023_101781
crossref_primary_10_3389_fimmu_2022_1093985
crossref_primary_10_15275_rusomj_2024_0201
crossref_primary_10_3390_cells10040916
crossref_primary_10_1161_CIRCRESAHA_121_318225
crossref_primary_10_1055_a_2250_3166
crossref_primary_10_3389_fphar_2020_570867
crossref_primary_10_1016_j_jtha_2022_12_002
crossref_primary_10_3390_clinpract14030088
crossref_primary_10_1007_s11239_024_03028_4
crossref_primary_10_3389_fimmu_2022_888661
crossref_primary_10_3390_jcm12020601
crossref_primary_10_3390_biomedicines9101342
crossref_primary_10_4049_jimmunol_2000513
crossref_primary_10_1080_03630269_2020_1869565
crossref_primary_10_1080_19490976_2021_1946369
crossref_primary_10_3389_fimmu_2024_1381778
crossref_primary_10_3389_fimmu_2023_1203687
crossref_primary_10_1016_j_mam_2020_100890
crossref_primary_10_1038_s41577_021_00588_x
crossref_primary_10_1016_j_it_2021_04_001
crossref_primary_10_1182_blood_2023021583
crossref_primary_10_3389_fcvm_2020_629933
crossref_primary_10_1097_RLU_0000000000004803
crossref_primary_10_1016_j_micres_2023_127460
crossref_primary_10_17116_Cardiobulletin20231803123
crossref_primary_10_1080_08923973_2023_2215405
crossref_primary_10_1146_annurev_micro_032521_024017
crossref_primary_10_3389_fimmu_2023_1296687
crossref_primary_10_1007_s10753_020_01274_1
crossref_primary_10_3390_cells11081307
crossref_primary_10_1093_jleuko_qiae107
crossref_primary_10_3389_fimmu_2021_651545
crossref_primary_10_1213_ANE_0000000000006888
crossref_primary_10_3390_molecules27010274
crossref_primary_10_1016_j_bcp_2023_115806
crossref_primary_10_1016_j_intimp_2024_111993
crossref_primary_10_1002_ctm2_1539
crossref_primary_10_1016_j_clnu_2024_04_020
crossref_primary_10_1101_cshperspect_a036392
crossref_primary_10_1182_blood_2023022522
crossref_primary_10_1016_j_jddst_2024_106131
crossref_primary_10_1128_iai_00614_21
crossref_primary_10_1007_s12035_023_03228_8
crossref_primary_10_1016_j_jointm_2022_01_001
crossref_primary_10_5694_mja2_52456
crossref_primary_10_1002_cti2_1452
crossref_primary_10_1080_10408363_2022_2102578
crossref_primary_10_3390_ijms22084170
crossref_primary_10_1038_s41580_025_00837_0
crossref_primary_10_3390_jcm12041399
crossref_primary_10_1002_mco2_785
crossref_primary_10_3892_etm_2021_10825
crossref_primary_10_3389_fimmu_2023_1150564
crossref_primary_10_3389_fcell_2021_638710
crossref_primary_10_19163_1994_9480_2022_19_1_142_146
crossref_primary_10_3389_fcell_2023_1218807
crossref_primary_10_3389_fimmu_2024_1429523
crossref_primary_10_1016_j_heliyon_2023_e23599
crossref_primary_10_1038_s41467_023_39174_1
crossref_primary_10_1097_SHK_0000000000001565
crossref_primary_10_1111_imr_13106
crossref_primary_10_1002_mco2_418
crossref_primary_10_1158_2326_6066_CIR_20_0431
crossref_primary_10_1016_j_celrep_2022_111941
crossref_primary_10_1016_j_isci_2024_109763
crossref_primary_10_1093_cvr_cvad084
crossref_primary_10_1088_1758_5090_ada737
crossref_primary_10_3389_fimmu_2021_649122
crossref_primary_10_1155_2021_4504363
crossref_primary_10_1016_j_immuni_2021_10_007
crossref_primary_10_1111_1348_0421_12771
crossref_primary_10_3389_fimmu_2021_751533
crossref_primary_10_1016_j_omtn_2022_05_033
crossref_primary_10_3390_ijms22010426
crossref_primary_10_15690_vramn2124
crossref_primary_10_3389_fmolb_2022_972087
crossref_primary_10_1038_s12276_024_01162_w
crossref_primary_10_1080_07853890_2024_2401112
crossref_primary_10_3389_fimmu_2023_1093985
crossref_primary_10_1016_j_jep_2024_119248
crossref_primary_10_3389_fimmu_2021_641750
crossref_primary_10_3390_biology11020159
crossref_primary_10_3390_diagnostics13223477
crossref_primary_10_3389_fcvm_2022_897815
crossref_primary_10_3390_biom13111664
crossref_primary_10_1089_jir_2022_0061
crossref_primary_10_4142_jvs_22185
crossref_primary_10_3389_fimmu_2023_1144229
crossref_primary_10_1038_s41577_021_00618_8
crossref_primary_10_1016_j_addr_2021_113848
crossref_primary_10_1038_s41598_022_08619_w
crossref_primary_10_1016_j_fsi_2024_110002
crossref_primary_10_1016_j_jconrel_2023_10_032
crossref_primary_10_1155_2023_9721375
crossref_primary_10_1038_s41569_021_00552_1
crossref_primary_10_1186_s13567_024_01407_6
crossref_primary_10_1016_j_celrep_2022_110755
crossref_primary_10_1177_24705470221076390
crossref_primary_10_1016_j_immuni_2021_10_012
crossref_primary_10_14336_AD_2024_1688
Cites_doi 10.1182/blood.V96.2.554.014k17_554_559
10.1126/science.6648524
10.1073/pnas.1211521110
10.1038/nature10510
10.1038/cr.2015.139
10.1038/nature13683
10.1126/science.1240248
10.1111/j.1462-5822.2006.00751.x
10.1189/jlb.0912437
10.1002/dvg.20412
10.1126/science.aaf3036
10.1172/JCI2006
10.1038/s41586-018-0058-6
10.1172/JCI79329
10.1016/j.celrep.2018.07.027
10.1172/JCI94495
10.1016/j.cell.2014.04.007
10.1038/nature18629
10.1016/j.cell.2016.04.015
10.1186/2052-0492-2-15
10.1038/nri3452
10.1016/S0021-9258(19)68847-2
10.1016/0092-8674(87)90669-6
10.1111/imr.12287
10.1182/blood-2016-09-741298
10.1038/nrdp.2016.37
10.1182/blood-2008-04-152959
10.1056/NEJMra1208623
10.1038/nbt.1995
10.1111/j.1538-7836.2005.01253.x
10.1073/pnas.1005743107
10.1038/ncomms3657
10.1016/j.blre.2015.12.004
10.1084/jem.20160006
10.1083/jcb.201203170
10.1038/nature15514
10.1038/nature11351
10.1056/NEJM199908193410807
10.1160/TH04-05-0309
10.4103/0019-5049.144666
10.15252/embj.201694696
10.1073/pnas.1607769113
10.1016/j.cell.2010.01.040
10.1038/nature10558
10.1182/blood-2009-12-259267
10.1001/jama.1995.03520260039030
10.1016/j.immuni.2017.11.013
10.1084/jem.20172222
10.1126/science.1240988
10.1038/nature15541
10.1126/science.aaf2154
10.1161/ATVBAHA.117.309846
10.1111/j.1365-2958.1995.tb02375.x
10.1016/j.cell.2012.07.007
10.1172/JCI116934
10.1038/nature11419
10.1016/j.jiac.2013.09.003
10.1073/pnas.0913087107
10.1038/nature18590
10.1186/cc12783
10.1007/s10753-018-0810-y
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
2019. Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
– notice: 2019. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.immuni.2019.04.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 1411.e4
ExternalDocumentID PMC6791531
31076358
10_1016_j_immuni_2019_04_003
S1074761319301839
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R21 AI103717
– fundername: NIGMS NIH HHS
  grantid: R01 GM132443
– fundername: NIGMS NIH HHS
  grantid: P20 GM103527
– fundername: NHLBI NIH HHS
  grantid: R01 HL123927
– fundername: NHLBI NIH HHS
  grantid: R01 HL142640
– fundername: NHLBI NIH HHS
  grantid: K99 HL145117
– fundername: NIAID NIH HHS
  grantid: R21 AI142063
– fundername: NCI NIH HHS
  grantid: P30 CA016086
– fundername: NIGMS NIH HHS
  grantid: R01 GM085231
– fundername: NIGMS NIH HHS
  grantid: R01 GM121796
GroupedDBID ---
--K
-DZ
0R~
0SF
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAVLU
AAXUO
ABMAC
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEXQZ
AFKRA
AFRAH
AFTJW
AGGSO
AGKMS
AHMBA
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HCIFZ
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
.55
.GJ
29I
5VS
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AHHHB
AIGII
AKBMS
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
UHS
X7M
Y6R
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c557t-395685f982b16da25ac82bab3653b54c2ba0a69339edfc001c2c2d82c9755aed3
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Thu Aug 21 18:28:14 EDT 2025
Mon Jul 21 10:48:41 EDT 2025
Fri Jul 25 11:14:01 EDT 2025
Thu Apr 03 06:59:38 EDT 2025
Tue Jul 01 01:58:41 EDT 2025
Thu Apr 24 23:12:50 EDT 2025
Tue Jul 16 04:30:57 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords GSDMD
pyroptosis
tissue factor
inflammasome
macrophage
coagulation
LPS
sepsis
caspase
DIC
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-395685f982b16da25ac82bab3653b54c2ba0a69339edfc001c2c2d82c9755aed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AUTHOR CONTRIBUTIONS
Lead contact: zhenyuli08@uky.edu (Z.L.)
C.W., Y.W. and Z.L. designed and performed the experiments and wrote the manuscript, assisted by W.L., Y.Z., G.Z., X.S., Y.H., S.P.G., X.Z., L.L., B.X., and J.S. X.L., A.D., S.S.S., N.M. and F.S. contributed to manuscript preparation. D.K., T.S., and N.M. provided mice and/or reagents and discussed experiments. All authors discussed the results and commented on the manuscript.
OpenAccessLink http://www.cell.com/article/S1074761319301839/pdf
PMID 31076358
PQID 2242746542
PQPubID 2031079
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6791531
proquest_miscellaneous_2231905737
proquest_journals_2242746542
pubmed_primary_31076358
crossref_primary_10_1016_j_immuni_2019_04_003
crossref_citationtrail_10_1016_j_immuni_2019_04_003
elsevier_sciencedirect_doi_10_1016_j_immuni_2019_04_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-18
PublicationDateYYYYMMDD 2019-06-18
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Wada, Matsumoto, Yamashita (bib57) 2014; 2
Gando, Levi, Toh (bib18) 2016; 2
Morrissey, Fakhrai, Edgington (bib40) 1987; 50
Sborgi, Rühl, Mulvihill, Pipercevic, Heilig, Stahlberg, Farady, Müller, Broz, Hiller (bib49) 2016; 35
Ruan, Xia, Liu, Lieberman, Wu (bib48) 2018; 557
Effenberger-Neidnicht, Hartmann (bib11) 2018; 41
Hagar, Powell, Aachoui, Ernst, Miao (bib21) 2013; 341
Kayagaki, Wong, Stowe, Ramani, Gonzalez, Akashi-Takamura, Miyake, Zhang, Lee, Muszyński (bib28) 2013; 341
Shi, Zhao, Wang, Shi, Wang, Huang, Zhuang, Cai, Wang, Shao (bib51) 2015; 526
Lamkanfi, Dixit (bib30) 2014; 157
Grover, Mackman (bib20) 2018; 38
McDonald, Davis, Kim, Tse, Esmon, Kolaczkowska, Jenne (bib36) 2017; 129
Franco, de Jonge, Dekkers, Timmerman, Spek, van Deventer, van Deursen, van Kerkhoff, van Gemen, ten Cate (bib14) 2000; 96
Fujishima, Gando, Saitoh, Mayumi, Kushimoto, Shiraishi, Ogura, Takuma, Kotani, Ikeda (bib17) 2014; 20
Xiang, Zhang, Guo, Li, Morris, Daugherty, Whiteheart, Smyth, Li (bib60) 2013; 4
Weiler-Guettler, Christie, Beeler, Healy, Hancock, Rayburn, Edelberg, Rosenberg (bib59) 1998; 101
Schroder, Tschopp (bib50) 2010; 140
Aziz, Jacob, Yang, Matsuda, Wang (bib3) 2013; 93
Ivanciu, Toso, Margaritis, Pavani, Kim, Schlachterman, Liu, Clerin, Pittman, Rose-Miranda (bib24) 2011; 29
Kayagaki, Warming, Lamkanfi, Vande Walle, Louie, Dong, Newton, Qu, Liu, Heldens (bib27) 2011; 479
Monteleone, Stanley, Chen, Brown, Bezbradica, von Pein, Holley, Boucher, Shakespear, Kapetanovic (bib39) 2018; 24
Neyman, Gewirtz, Poncz (bib41) 2008; 112
Aglietti, Estevez, Gupta, Ramirez, Liu, Kayagaki, Ciferri, Dixit, Dueber (bib1) 2016; 113
Cheng, Xiong, Ye, Hong, Di, Tsang, Gao, An, Mittal, Vogel (bib9) 2017; 127
Fuchs, Brill, Duerschmied, Schatzberg, Monestier, Myers, Wrobleski, Wakefield, Hartwig, Wagner (bib15) 2010; 107
Rangel-Frausto, Pittet, Costigan, Hwang, Davis, Wenzel (bib45) 1995; 273
Rothmeier, Marchese, Petrich, Furlan-Freguia, Ginsberg, Ruggeri, Ruf (bib47) 2015; 125
Brinkmann, Zychlinsky (bib6) 2012; 198
Vanaja, Russo, Behl, Banerjee, Yankova, Deshmukh, Rathinam (bib54) 2016; 165
Rathinam, Vanaja, Waggoner, Sokolovska, Becker, Stuart, Leong, Fitzgerald (bib46) 2012; 150
Taylor, Chang, Ruf, Morrissey, Hinshaw, Catlett, Blick, Edgington (bib53) 1991; 33
Jorgensen, Miao (bib25) 2015; 265
Case, Kohler, Lima, Strowig, de Zoete, Flavell, Zamboni, Roy (bib8) 2013; 110
Kirchhofer, Moran, Bullens, Peale, Bunting (bib29) 2005; 3
Fink, Cookson (bib13) 2006; 8
Latz, Xiao, Stutz (bib31) 2013; 13
Zhao, Yang, Shi, Gong, Lu, Xu, Liu, Shao (bib63) 2011; 477
Evavold, Ruan, Tan, Xia, Wu, Kagan (bib12) 2018; 48
Miao, Mao, Yudkovsky, Bonneau, Lorang, Warren, Leaf, Aderem (bib37) 2010; 107
Angus, van der Poll (bib2) 2013; 369
Pawlinski, Wang, Owens, Williams, Antoniak, Tencati, Luther, Rowley, Low, Weyrich, Mackman (bib44) 2010; 116
Milne, Blanke, Hanna, Collier (bib38) 1995; 15
Boucher, Monteleone, Coll, Chen, Ross, Teo, Gomez, Holley, Bierschenk, Stacey (bib5) 2018; 215
Liu, Zhang, Ruan, Pan, Magupalli, Wu, Lieberman (bib35) 2016; 535
von Moltke, Trinidad, Moayeri, Kintzer, Wang, van Rooijen, Brown, Krantz, Leppla, Gronert, Vance (bib56) 2012; 490
Zhao, Shi, Shi, Wang, Wang, Shao (bib62) 2016; 213
Hui, Haber, Matsueda (bib23) 1983; 222
Ding, Wang, Liu, She, Sun, Shi, Sun, Wang, Shao (bib10) 2016; 535
Wallach, Kang, Dillon, Green (bib58) 2016; 352
He, Wan, Hu, Chen, Wang, Huang, Yang, Zhong, Han (bib22) 2015; 25
Levi, ten Cate, Bauer, van der Poll, Edgington, Büller, van Deventer, Hack, ten Cate, Rosenberg (bib33) 1994; 93
Liaw, Ito, Iba, Thachil, Zeerleder (bib34) 2016; 30
Broz, Ruby, Belhocine, Bouley, Kayagaki, Dixit, Monack (bib7) 2012; 490
Pawlinski, Pedersen, Erlich, Mackman (bib43) 2004; 92
Levi, Ten Cate (bib32) 1999; 341
Gando, Saitoh, Ogura, Fujishima, Mayumi, Araki, Ikeda, Kotani, Kushimoto, Miki (bib19) 2013; 17
Bach, Nemerson, Konigsberg (bib4) 1981; 256
Parise, Venton, Le Breton (bib42) 1984; 228
Venugopal (bib55) 2014; 58
Zanoni, Tan, Di Gioia, Broggi, Ruan, Shi, Donado, Shao, Wu, Springstead, Kagan (bib61) 2016; 352
Fujii, Tamura, Tanaka, Kato, Yamamoto, Mizushina, Shiroishi (bib16) 2008; 46
Shi, Zhao, Wang, Gao, Ding, Li, Hu, Shao (bib52) 2014; 514
Kayagaki, Stowe, Lee, O’Rourke, Anderson, Warming, Cuellar, Haley, Roose-Girma, Phung (bib26) 2015; 526
Monteleone (10.1016/j.immuni.2019.04.003_bib39) 2018; 24
Cheng (10.1016/j.immuni.2019.04.003_bib9) 2017; 127
Jorgensen (10.1016/j.immuni.2019.04.003_bib25) 2015; 265
Rangel-Frausto (10.1016/j.immuni.2019.04.003_bib45) 1995; 273
Kayagaki (10.1016/j.immuni.2019.04.003_bib27) 2011; 479
Hui (10.1016/j.immuni.2019.04.003_bib23) 1983; 222
Levi (10.1016/j.immuni.2019.04.003_bib33) 1994; 93
Kayagaki (10.1016/j.immuni.2019.04.003_bib28) 2013; 341
Shi (10.1016/j.immuni.2019.04.003_bib52) 2014; 514
Wada (10.1016/j.immuni.2019.04.003_bib57) 2014; 2
Ivanciu (10.1016/j.immuni.2019.04.003_bib24) 2011; 29
von Moltke (10.1016/j.immuni.2019.04.003_bib56) 2012; 490
Aglietti (10.1016/j.immuni.2019.04.003_bib1) 2016; 113
Schroder (10.1016/j.immuni.2019.04.003_bib50) 2010; 140
Fujii (10.1016/j.immuni.2019.04.003_bib16) 2008; 46
Ding (10.1016/j.immuni.2019.04.003_bib10) 2016; 535
Zanoni (10.1016/j.immuni.2019.04.003_bib61) 2016; 352
Neyman (10.1016/j.immuni.2019.04.003_bib41) 2008; 112
Franco (10.1016/j.immuni.2019.04.003_bib14) 2000; 96
Gando (10.1016/j.immuni.2019.04.003_bib19) 2013; 17
Bach (10.1016/j.immuni.2019.04.003_bib4) 1981; 256
Liu (10.1016/j.immuni.2019.04.003_bib35) 2016; 535
Pawlinski (10.1016/j.immuni.2019.04.003_bib44) 2010; 116
Latz (10.1016/j.immuni.2019.04.003_bib31) 2013; 13
Parise (10.1016/j.immuni.2019.04.003_bib42) 1984; 228
Fujishima (10.1016/j.immuni.2019.04.003_bib17) 2014; 20
Kayagaki (10.1016/j.immuni.2019.04.003_bib26) 2015; 526
Morrissey (10.1016/j.immuni.2019.04.003_bib40) 1987; 50
Angus (10.1016/j.immuni.2019.04.003_bib2) 2013; 369
Aziz (10.1016/j.immuni.2019.04.003_bib3) 2013; 93
Grover (10.1016/j.immuni.2019.04.003_bib20) 2018; 38
Weiler-Guettler (10.1016/j.immuni.2019.04.003_bib59) 1998; 101
Vanaja (10.1016/j.immuni.2019.04.003_bib54) 2016; 165
Effenberger-Neidnicht (10.1016/j.immuni.2019.04.003_bib11) 2018; 41
Miao (10.1016/j.immuni.2019.04.003_bib37) 2010; 107
Wallach (10.1016/j.immuni.2019.04.003_bib58) 2016; 352
Sborgi (10.1016/j.immuni.2019.04.003_bib49) 2016; 35
Taylor (10.1016/j.immuni.2019.04.003_bib53) 1991; 33
Venugopal (10.1016/j.immuni.2019.04.003_bib55) 2014; 58
Zhao (10.1016/j.immuni.2019.04.003_bib63) 2011; 477
Kirchhofer (10.1016/j.immuni.2019.04.003_bib29) 2005; 3
Hagar (10.1016/j.immuni.2019.04.003_bib21) 2013; 341
Ruan (10.1016/j.immuni.2019.04.003_bib48) 2018; 557
Boucher (10.1016/j.immuni.2019.04.003_bib5) 2018; 215
Milne (10.1016/j.immuni.2019.04.003_bib38) 1995; 15
Xiang (10.1016/j.immuni.2019.04.003_bib60) 2013; 4
Gando (10.1016/j.immuni.2019.04.003_bib18) 2016; 2
Fuchs (10.1016/j.immuni.2019.04.003_bib15) 2010; 107
Liaw (10.1016/j.immuni.2019.04.003_bib34) 2016; 30
Evavold (10.1016/j.immuni.2019.04.003_bib12) 2018; 48
He (10.1016/j.immuni.2019.04.003_bib22) 2015; 25
Fink (10.1016/j.immuni.2019.04.003_bib13) 2006; 8
Levi (10.1016/j.immuni.2019.04.003_bib32) 1999; 341
Zhao (10.1016/j.immuni.2019.04.003_bib62) 2016; 213
Case (10.1016/j.immuni.2019.04.003_bib8) 2013; 110
Rathinam (10.1016/j.immuni.2019.04.003_bib46) 2012; 150
Brinkmann (10.1016/j.immuni.2019.04.003_bib6) 2012; 198
Lamkanfi (10.1016/j.immuni.2019.04.003_bib30) 2014; 157
Pawlinski (10.1016/j.immuni.2019.04.003_bib43) 2004; 92
Broz (10.1016/j.immuni.2019.04.003_bib7) 2012; 490
Shi (10.1016/j.immuni.2019.04.003_bib51) 2015; 526
McDonald (10.1016/j.immuni.2019.04.003_bib36) 2017; 129
Rothmeier (10.1016/j.immuni.2019.04.003_bib47) 2015; 125
31216455 - Immunity. 2019 Jun 18;50(6):1339-1341
References_xml – volume: 13
  start-page: 397
  year: 2013
  end-page: 411
  ident: bib31
  article-title: Activation and regulation of the inflammasomes
  publication-title: Nat. Rev. Immunol.
– volume: 514
  start-page: 187
  year: 2014
  end-page: 192
  ident: bib52
  article-title: Inflammatory caspases are innate immune receptors for intracellular LPS
  publication-title: Nature
– volume: 29
  start-page: 1028
  year: 2011
  end-page: 1033
  ident: bib24
  article-title: A zymogen-like factor Xa variant corrects the coagulation defect in hemophilia
  publication-title: Nat. Biotechnol.
– volume: 341
  start-page: 586
  year: 1999
  end-page: 592
  ident: bib32
  article-title: Disseminated intravascular coagulation
  publication-title: N. Engl. J. Med.
– volume: 48
  start-page: 35
  year: 2018
  end-page: 44.e6
  ident: bib12
  article-title: The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages
  publication-title: Immunity
– volume: 113
  start-page: 7858
  year: 2016
  end-page: 7863
  ident: bib1
  article-title: GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 526
  start-page: 666
  year: 2015
  end-page: 671
  ident: bib26
  article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling
  publication-title: Nature
– volume: 479
  start-page: 117
  year: 2011
  end-page: 121
  ident: bib27
  article-title: Non-canonical inflammasome activation targets caspase-11
  publication-title: Nature
– volume: 4
  start-page: 2657
  year: 2013
  ident: bib60
  article-title: Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway
  publication-title: Nat. Commun.
– volume: 58
  start-page: 603
  year: 2014
  end-page: 608
  ident: bib55
  article-title: Disseminated intravascular coagulation
  publication-title: Indian J. Anaesth.
– volume: 165
  start-page: 1106
  year: 2016
  end-page: 1119
  ident: bib54
  article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation
  publication-title: Cell
– volume: 24
  start-page: 1425
  year: 2018
  end-page: 1433
  ident: bib39
  article-title: Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-gependent and -independent secretion
  publication-title: Cell Rep.
– volume: 352
  start-page: aaf2154
  year: 2016
  ident: bib58
  article-title: Programmed necrosis in inflammation: toward identification of the effector molecules
  publication-title: Science
– volume: 273
  start-page: 117
  year: 1995
  end-page: 123
  ident: bib45
  article-title: The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study
  publication-title: JAMA
– volume: 2
  start-page: 15
  year: 2014
  ident: bib57
  article-title: Diagnosis and treatment of disseminated intravascular coagulation (DIC) according to four DIC guidelines
  publication-title: J. Intensive Care
– volume: 127
  start-page: 4124
  year: 2017
  end-page: 4135
  ident: bib9
  article-title: Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury
  publication-title: J. Clin. Invest.
– volume: 477
  start-page: 596
  year: 2011
  end-page: 600
  ident: bib63
  article-title: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus
  publication-title: Nature
– volume: 490
  start-page: 288
  year: 2012
  end-page: 291
  ident: bib7
  article-title: Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1
  publication-title: Nature
– volume: 150
  start-page: 606
  year: 2012
  end-page: 619
  ident: bib46
  article-title: TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria
  publication-title: Cell
– volume: 125
  start-page: 1471
  year: 2015
  end-page: 1484
  ident: bib47
  article-title: Caspase-1-mediated pathway promotes generation of thromboinflammatory microparticles
  publication-title: J. Clin. Invest.
– volume: 535
  start-page: 153
  year: 2016
  end-page: 158
  ident: bib35
  article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
– volume: 17
  start-page: R111
  year: 2013
  ident: bib19
  article-title: A multicenter, prospective validation study of the Japanese Association for Acute Medicine disseminated intravascular coagulation scoring system in patients with severe sepsis
  publication-title: Crit. Care
– volume: 213
  start-page: 647
  year: 2016
  end-page: 656
  ident: bib62
  article-title: Genetic functions of the NAIP family of inflammasome receptors for bacterial ligands in mice
  publication-title: J. Exp. Med.
– volume: 3
  start-page: 1098
  year: 2005
  end-page: 1099
  ident: bib29
  article-title: A monoclonal antibody that inhibits mouse tissue factor function
  publication-title: J. Thromb. Haemost.
– volume: 25
  start-page: 1285
  year: 2015
  end-page: 1298
  ident: bib22
  article-title: Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion
  publication-title: Cell Res.
– volume: 38
  start-page: 709
  year: 2018
  end-page: 725
  ident: bib20
  article-title: Tissue factor: an essential mediator of hemostasis and trigger of thrombosis
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 15
  start-page: 661
  year: 1995
  end-page: 666
  ident: bib38
  article-title: Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-terminus
  publication-title: Mol. Microbiol.
– volume: 341
  start-page: 1250
  year: 2013
  end-page: 1253
  ident: bib21
  article-title: Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock
  publication-title: Science
– volume: 222
  start-page: 1129
  year: 1983
  end-page: 1132
  ident: bib23
  article-title: Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen
  publication-title: Science
– volume: 526
  start-page: 660
  year: 2015
  end-page: 665
  ident: bib51
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
– volume: 93
  start-page: 329
  year: 2013
  end-page: 342
  ident: bib3
  article-title: Current trends in inflammatory and immunomodulatory mediators in sepsis
  publication-title: J. Leukoc. Biol.
– volume: 228
  start-page: 240
  year: 1984
  end-page: 244
  ident: bib42
  article-title: Arachidonic acid-induced platelet aggregation is mediated by a thromboxane A2/prostaglandin H2 receptor interaction
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 215
  start-page: 827
  year: 2018
  end-page: 840
  ident: bib5
  article-title: Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity
  publication-title: J. Exp. Med.
– volume: 116
  start-page: 806
  year: 2010
  end-page: 814
  ident: bib44
  article-title: Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice
  publication-title: Blood
– volume: 92
  start-page: 444
  year: 2004
  end-page: 450
  ident: bib43
  article-title: Role of tissue factor in haemostasis, thrombosis, angiogenesis and inflammation: lessons from low tissue factor mice
  publication-title: Thromb. Haemost.
– volume: 30
  start-page: 257
  year: 2016
  end-page: 261
  ident: bib34
  article-title: DAMP and DIC: the role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC
  publication-title: Blood Rev.
– volume: 2
  start-page: 16037
  year: 2016
  ident: bib18
  article-title: Disseminated intravascular coagulation
  publication-title: Nat. Rev. Dis. Primers
– volume: 140
  start-page: 821
  year: 2010
  end-page: 832
  ident: bib50
  article-title: The inflammasomes
  publication-title: Cell
– volume: 20
  start-page: 115
  year: 2014
  end-page: 120
  ident: bib17
  article-title: A multicenter, prospective evaluation of quality of care and mortality in Japan based on the Surviving Sepsis Campaign guidelines
  publication-title: J. Infect. Chemother.
– volume: 129
  start-page: 1357
  year: 2017
  end-page: 1367
  ident: bib36
  article-title: Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice
  publication-title: Blood
– volume: 93
  start-page: 114
  year: 1994
  end-page: 120
  ident: bib33
  article-title: Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees
  publication-title: J. Clin. Invest.
– volume: 107
  start-page: 3076
  year: 2010
  end-page: 3080
  ident: bib37
  article-title: Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 96
  start-page: 554
  year: 2000
  end-page: 559
  ident: bib14
  article-title: The in vivo kinetics of tissue factor messenger RNA expression during human endotoxemia: relationship with activation of coagulation
  publication-title: Blood
– volume: 256
  start-page: 8324
  year: 1981
  end-page: 8331
  ident: bib4
  article-title: Purification and characterization of bovine tissue factor
  publication-title: J. Biol. Chem.
– volume: 33
  start-page: 127
  year: 1991
  end-page: 134
  ident: bib53
  article-title: Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody
  publication-title: Circ. Shock
– volume: 265
  start-page: 130
  year: 2015
  end-page: 142
  ident: bib25
  article-title: Pyroptotic cell death defends against intracellular pathogens
  publication-title: Immunol. Rev.
– volume: 352
  start-page: 1232
  year: 2016
  end-page: 1236
  ident: bib61
  article-title: An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells
  publication-title: Science
– volume: 535
  start-page: 111
  year: 2016
  end-page: 116
  ident: bib10
  article-title: Pore-forming activity and structural autoinhibition of the gasdermin family
  publication-title: Nature
– volume: 557
  start-page: 62
  year: 2018
  end-page: 67
  ident: bib48
  article-title: Cryo-EM structure of the gasdermin A3 membrane pore
  publication-title: Nature
– volume: 110
  start-page: 1851
  year: 2013
  end-page: 1856
  ident: bib8
  article-title: Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 369
  start-page: 840
  year: 2013
  end-page: 851
  ident: bib2
  article-title: Severe sepsis and septic shock
  publication-title: N. Engl. J. Med.
– volume: 112
  start-page: 1101
  year: 2008
  end-page: 1108
  ident: bib41
  article-title: Analysis of the spatial and temporal characteristics of platelet-delivered factor VIII-based clots
  publication-title: Blood
– volume: 157
  start-page: 1013
  year: 2014
  end-page: 1022
  ident: bib30
  article-title: Mechanisms and functions of inflammasomes
  publication-title: Cell
– volume: 46
  start-page: 418
  year: 2008
  end-page: 423
  ident: bib16
  article-title: Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development
  publication-title: Genesis
– volume: 35
  start-page: 1766
  year: 2016
  end-page: 1778
  ident: bib49
  article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
  publication-title: EMBO J.
– volume: 8
  start-page: 1812
  year: 2006
  end-page: 1825
  ident: bib13
  article-title: Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages
  publication-title: Cell. Microbiol.
– volume: 107
  start-page: 15880
  year: 2010
  end-page: 15885
  ident: bib15
  article-title: Extracellular DNA traps promote thrombosis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 41
  start-page: 1569
  year: 2018
  end-page: 1581
  ident: bib11
  article-title: Mechanisms of hemolysis during sepsis
  publication-title: Inflammation
– volume: 50
  start-page: 129
  year: 1987
  end-page: 135
  ident: bib40
  article-title: Molecular cloning of the cDNA for tissue factor, the cellular receptor for the initiation of the coagulation protease cascade
  publication-title: Cell
– volume: 101
  start-page: 1983
  year: 1998
  end-page: 1991
  ident: bib59
  article-title: A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state
  publication-title: J. Clin. Invest.
– volume: 341
  start-page: 1246
  year: 2013
  end-page: 1249
  ident: bib28
  article-title: Noncanonical inflammasome activation by intracellular LPS independent of TLR4
  publication-title: Science
– volume: 490
  start-page: 107
  year: 2012
  end-page: 111
  ident: bib56
  article-title: Rapid induction of inflammatory lipid mediators by the inflammasome in vivo
  publication-title: Nature
– volume: 198
  start-page: 773
  year: 2012
  end-page: 783
  ident: bib6
  article-title: Neutrophil extracellular traps: is immunity the second function of chromatin?
  publication-title: J. Cell Biol.
– volume: 96
  start-page: 554
  year: 2000
  ident: 10.1016/j.immuni.2019.04.003_bib14
  article-title: The in vivo kinetics of tissue factor messenger RNA expression during human endotoxemia: relationship with activation of coagulation
  publication-title: Blood
  doi: 10.1182/blood.V96.2.554.014k17_554_559
– volume: 222
  start-page: 1129
  year: 1983
  ident: 10.1016/j.immuni.2019.04.003_bib23
  article-title: Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen
  publication-title: Science
  doi: 10.1126/science.6648524
– volume: 110
  start-page: 1851
  year: 2013
  ident: 10.1016/j.immuni.2019.04.003_bib8
  article-title: Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1211521110
– volume: 477
  start-page: 596
  year: 2011
  ident: 10.1016/j.immuni.2019.04.003_bib63
  article-title: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus
  publication-title: Nature
  doi: 10.1038/nature10510
– volume: 25
  start-page: 1285
  year: 2015
  ident: 10.1016/j.immuni.2019.04.003_bib22
  article-title: Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.139
– volume: 514
  start-page: 187
  year: 2014
  ident: 10.1016/j.immuni.2019.04.003_bib52
  article-title: Inflammatory caspases are innate immune receptors for intracellular LPS
  publication-title: Nature
  doi: 10.1038/nature13683
– volume: 341
  start-page: 1246
  year: 2013
  ident: 10.1016/j.immuni.2019.04.003_bib28
  article-title: Noncanonical inflammasome activation by intracellular LPS independent of TLR4
  publication-title: Science
  doi: 10.1126/science.1240248
– volume: 8
  start-page: 1812
  year: 2006
  ident: 10.1016/j.immuni.2019.04.003_bib13
  article-title: Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2006.00751.x
– volume: 93
  start-page: 329
  year: 2013
  ident: 10.1016/j.immuni.2019.04.003_bib3
  article-title: Current trends in inflammatory and immunomodulatory mediators in sepsis
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0912437
– volume: 46
  start-page: 418
  year: 2008
  ident: 10.1016/j.immuni.2019.04.003_bib16
  article-title: Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development
  publication-title: Genesis
  doi: 10.1002/dvg.20412
– volume: 352
  start-page: 1232
  year: 2016
  ident: 10.1016/j.immuni.2019.04.003_bib61
  article-title: An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells
  publication-title: Science
  doi: 10.1126/science.aaf3036
– volume: 101
  start-page: 1983
  year: 1998
  ident: 10.1016/j.immuni.2019.04.003_bib59
  article-title: A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI2006
– volume: 557
  start-page: 62
  year: 2018
  ident: 10.1016/j.immuni.2019.04.003_bib48
  article-title: Cryo-EM structure of the gasdermin A3 membrane pore
  publication-title: Nature
  doi: 10.1038/s41586-018-0058-6
– volume: 125
  start-page: 1471
  year: 2015
  ident: 10.1016/j.immuni.2019.04.003_bib47
  article-title: Caspase-1-mediated pathway promotes generation of thromboinflammatory microparticles
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI79329
– volume: 24
  start-page: 1425
  year: 2018
  ident: 10.1016/j.immuni.2019.04.003_bib39
  article-title: Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-gependent and -independent secretion
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.07.027
– volume: 127
  start-page: 4124
  year: 2017
  ident: 10.1016/j.immuni.2019.04.003_bib9
  article-title: Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI94495
– volume: 157
  start-page: 1013
  year: 2014
  ident: 10.1016/j.immuni.2019.04.003_bib30
  article-title: Mechanisms and functions of inflammasomes
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.007
– volume: 535
  start-page: 153
  year: 2016
  ident: 10.1016/j.immuni.2019.04.003_bib35
  article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
  doi: 10.1038/nature18629
– volume: 165
  start-page: 1106
  year: 2016
  ident: 10.1016/j.immuni.2019.04.003_bib54
  article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.015
– volume: 2
  start-page: 15
  year: 2014
  ident: 10.1016/j.immuni.2019.04.003_bib57
  article-title: Diagnosis and treatment of disseminated intravascular coagulation (DIC) according to four DIC guidelines
  publication-title: J. Intensive Care
  doi: 10.1186/2052-0492-2-15
– volume: 13
  start-page: 397
  year: 2013
  ident: 10.1016/j.immuni.2019.04.003_bib31
  article-title: Activation and regulation of the inflammasomes
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3452
– volume: 256
  start-page: 8324
  year: 1981
  ident: 10.1016/j.immuni.2019.04.003_bib4
  article-title: Purification and characterization of bovine tissue factor
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)68847-2
– volume: 50
  start-page: 129
  year: 1987
  ident: 10.1016/j.immuni.2019.04.003_bib40
  article-title: Molecular cloning of the cDNA for tissue factor, the cellular receptor for the initiation of the coagulation protease cascade
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90669-6
– volume: 265
  start-page: 130
  year: 2015
  ident: 10.1016/j.immuni.2019.04.003_bib25
  article-title: Pyroptotic cell death defends against intracellular pathogens
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12287
– volume: 129
  start-page: 1357
  year: 2017
  ident: 10.1016/j.immuni.2019.04.003_bib36
  article-title: Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice
  publication-title: Blood
  doi: 10.1182/blood-2016-09-741298
– volume: 2
  start-page: 16037
  year: 2016
  ident: 10.1016/j.immuni.2019.04.003_bib18
  article-title: Disseminated intravascular coagulation
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/nrdp.2016.37
– volume: 112
  start-page: 1101
  year: 2008
  ident: 10.1016/j.immuni.2019.04.003_bib41
  article-title: Analysis of the spatial and temporal characteristics of platelet-delivered factor VIII-based clots
  publication-title: Blood
  doi: 10.1182/blood-2008-04-152959
– volume: 369
  start-page: 840
  year: 2013
  ident: 10.1016/j.immuni.2019.04.003_bib2
  article-title: Severe sepsis and septic shock
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1208623
– volume: 29
  start-page: 1028
  year: 2011
  ident: 10.1016/j.immuni.2019.04.003_bib24
  article-title: A zymogen-like factor Xa variant corrects the coagulation defect in hemophilia
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1995
– volume: 3
  start-page: 1098
  year: 2005
  ident: 10.1016/j.immuni.2019.04.003_bib29
  article-title: A monoclonal antibody that inhibits mouse tissue factor function
  publication-title: J. Thromb. Haemost.
  doi: 10.1111/j.1538-7836.2005.01253.x
– volume: 107
  start-page: 15880
  year: 2010
  ident: 10.1016/j.immuni.2019.04.003_bib15
  article-title: Extracellular DNA traps promote thrombosis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1005743107
– volume: 4
  start-page: 2657
  year: 2013
  ident: 10.1016/j.immuni.2019.04.003_bib60
  article-title: Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3657
– volume: 30
  start-page: 257
  year: 2016
  ident: 10.1016/j.immuni.2019.04.003_bib34
  article-title: DAMP and DIC: the role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC
  publication-title: Blood Rev.
  doi: 10.1016/j.blre.2015.12.004
– volume: 213
  start-page: 647
  year: 2016
  ident: 10.1016/j.immuni.2019.04.003_bib62
  article-title: Genetic functions of the NAIP family of inflammasome receptors for bacterial ligands in mice
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20160006
– volume: 198
  start-page: 773
  year: 2012
  ident: 10.1016/j.immuni.2019.04.003_bib6
  article-title: Neutrophil extracellular traps: is immunity the second function of chromatin?
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201203170
– volume: 526
  start-page: 660
  year: 2015
  ident: 10.1016/j.immuni.2019.04.003_bib51
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
  doi: 10.1038/nature15514
– volume: 490
  start-page: 107
  year: 2012
  ident: 10.1016/j.immuni.2019.04.003_bib56
  article-title: Rapid induction of inflammatory lipid mediators by the inflammasome in vivo
  publication-title: Nature
  doi: 10.1038/nature11351
– volume: 341
  start-page: 586
  year: 1999
  ident: 10.1016/j.immuni.2019.04.003_bib32
  article-title: Disseminated intravascular coagulation
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199908193410807
– volume: 92
  start-page: 444
  year: 2004
  ident: 10.1016/j.immuni.2019.04.003_bib43
  article-title: Role of tissue factor in haemostasis, thrombosis, angiogenesis and inflammation: lessons from low tissue factor mice
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH04-05-0309
– volume: 58
  start-page: 603
  year: 2014
  ident: 10.1016/j.immuni.2019.04.003_bib55
  article-title: Disseminated intravascular coagulation
  publication-title: Indian J. Anaesth.
  doi: 10.4103/0019-5049.144666
– volume: 35
  start-page: 1766
  year: 2016
  ident: 10.1016/j.immuni.2019.04.003_bib49
  article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
  publication-title: EMBO J.
  doi: 10.15252/embj.201694696
– volume: 113
  start-page: 7858
  year: 2016
  ident: 10.1016/j.immuni.2019.04.003_bib1
  article-title: GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1607769113
– volume: 140
  start-page: 821
  year: 2010
  ident: 10.1016/j.immuni.2019.04.003_bib50
  article-title: The inflammasomes
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.040
– volume: 479
  start-page: 117
  year: 2011
  ident: 10.1016/j.immuni.2019.04.003_bib27
  article-title: Non-canonical inflammasome activation targets caspase-11
  publication-title: Nature
  doi: 10.1038/nature10558
– volume: 116
  start-page: 806
  year: 2010
  ident: 10.1016/j.immuni.2019.04.003_bib44
  article-title: Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice
  publication-title: Blood
  doi: 10.1182/blood-2009-12-259267
– volume: 273
  start-page: 117
  year: 1995
  ident: 10.1016/j.immuni.2019.04.003_bib45
  article-title: The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study
  publication-title: JAMA
  doi: 10.1001/jama.1995.03520260039030
– volume: 48
  start-page: 35
  year: 2018
  ident: 10.1016/j.immuni.2019.04.003_bib12
  article-title: The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.11.013
– volume: 215
  start-page: 827
  year: 2018
  ident: 10.1016/j.immuni.2019.04.003_bib5
  article-title: Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20172222
– volume: 341
  start-page: 1250
  year: 2013
  ident: 10.1016/j.immuni.2019.04.003_bib21
  article-title: Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock
  publication-title: Science
  doi: 10.1126/science.1240988
– volume: 526
  start-page: 666
  year: 2015
  ident: 10.1016/j.immuni.2019.04.003_bib26
  article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling
  publication-title: Nature
  doi: 10.1038/nature15541
– volume: 352
  start-page: aaf2154
  year: 2016
  ident: 10.1016/j.immuni.2019.04.003_bib58
  article-title: Programmed necrosis in inflammation: toward identification of the effector molecules
  publication-title: Science
  doi: 10.1126/science.aaf2154
– volume: 38
  start-page: 709
  year: 2018
  ident: 10.1016/j.immuni.2019.04.003_bib20
  article-title: Tissue factor: an essential mediator of hemostasis and trigger of thrombosis
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.117.309846
– volume: 15
  start-page: 661
  year: 1995
  ident: 10.1016/j.immuni.2019.04.003_bib38
  article-title: Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-terminus
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1995.tb02375.x
– volume: 150
  start-page: 606
  year: 2012
  ident: 10.1016/j.immuni.2019.04.003_bib46
  article-title: TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.007
– volume: 93
  start-page: 114
  year: 1994
  ident: 10.1016/j.immuni.2019.04.003_bib33
  article-title: Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI116934
– volume: 33
  start-page: 127
  year: 1991
  ident: 10.1016/j.immuni.2019.04.003_bib53
  article-title: Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody
  publication-title: Circ. Shock
– volume: 490
  start-page: 288
  year: 2012
  ident: 10.1016/j.immuni.2019.04.003_bib7
  article-title: Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1
  publication-title: Nature
  doi: 10.1038/nature11419
– volume: 228
  start-page: 240
  year: 1984
  ident: 10.1016/j.immuni.2019.04.003_bib42
  article-title: Arachidonic acid-induced platelet aggregation is mediated by a thromboxane A2/prostaglandin H2 receptor interaction
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 20
  start-page: 115
  year: 2014
  ident: 10.1016/j.immuni.2019.04.003_bib17
  article-title: A multicenter, prospective evaluation of quality of care and mortality in Japan based on the Surviving Sepsis Campaign guidelines
  publication-title: J. Infect. Chemother.
  doi: 10.1016/j.jiac.2013.09.003
– volume: 107
  start-page: 3076
  year: 2010
  ident: 10.1016/j.immuni.2019.04.003_bib37
  article-title: Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0913087107
– volume: 535
  start-page: 111
  year: 2016
  ident: 10.1016/j.immuni.2019.04.003_bib10
  article-title: Pore-forming activity and structural autoinhibition of the gasdermin family
  publication-title: Nature
  doi: 10.1038/nature18590
– volume: 17
  start-page: R111
  year: 2013
  ident: 10.1016/j.immuni.2019.04.003_bib19
  article-title: A multicenter, prospective validation study of the Japanese Association for Acute Medicine disseminated intravascular coagulation scoring system in patients with severe sepsis
  publication-title: Crit. Care
  doi: 10.1186/cc12783
– volume: 41
  start-page: 1569
  year: 2018
  ident: 10.1016/j.immuni.2019.04.003_bib11
  article-title: Mechanisms of hemolysis during sepsis
  publication-title: Inflammation
  doi: 10.1007/s10753-018-0810-y
– reference: 31216455 - Immunity. 2019 Jun 18;50(6):1339-1341
SSID ssj0014590
Score 2.6707659
Snippet Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of...
SummaryInflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1401
SubjectTerms Animals
Apoptosis
Bacterial infections
Bacterial Infections - complications
Bacterial Infections - microbiology
Biomarkers
Blood
Blood Coagulation
Cascades
caspase
Caspases - metabolism
Cell activation
Cell culture
Cell death
Cell-Derived Microparticles - immunology
Cell-Derived Microparticles - metabolism
Cloning
Clotting
Coagulation
Cytotoxicity
DIC
Disease Models, Animal
E coli
Gram-negative bacteria
GSDMD
Humans
inflammasome
Inflammasomes
Inflammasomes - metabolism
Lipopolysaccharides
Lipopolysaccharides - immunology
LPS
macrophage
Macrophages
Macrophages - immunology
Macrophages - metabolism
Mice
Microscopy
Monocytes - immunology
Monocytes - metabolism
Mortality
Pathogenesis
Pharmacology
Proteins
Pyroptosis
Secretion
Sepsis
Signal Transduction
Thromboembolism
Thromboplastin - metabolism
Thrombosis
Thrombosis - blood
Thrombosis - etiology
Thrombosis - metabolism
Thrombosis - mortality
Time series
Tissue factor
Title Inflammasome Activation Triggers Blood Clotting and Host Death through Pyroptosis
URI https://dx.doi.org/10.1016/j.immuni.2019.04.003
https://www.ncbi.nlm.nih.gov/pubmed/31076358
https://www.proquest.com/docview/2242746542
https://www.proquest.com/docview/2231905737
https://pubmed.ncbi.nlm.nih.gov/PMC6791531
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAuCMproVRG4hptXnbi43bbaqEq4tGKvVmOY0NQm6ya9NB_z0ziRCw9VOLm3TiSMx57PsvffAPwwXAXCaddoK0ugtRlElsczzyicI70yZKIspHPPovVRfppzdc7sBxzYYhW6ff-YU_vd2v_z9xbc76pqvl3ohLiIRx9CJ0U4zzuw0ma90l868PpJiHlMpx4h9h7TJ_rOV5Vn4NBBC_ZC56OpbPuhqe78PNfFuVfYenkKTzxeJIthiE_gx1b78HDocLk7R48OvN358_h68fa4fRf6ba5smxhxrpm7BwP6D8RBbJDIrGz5WXTc6GZrku2atqOHRFMZL6iD_tye91suqat2hdwcXJ8vlwFvqBCYDjPuiCh3EDuZB4XkSh1zLXBpi4SwZOCpwbboRYySaQtnUHjmdjEZR4bmXGubZm8hN26qe1rYKHILWIZJ0ktxkmhrUMsE1O1mBDnWswgGe2ojFcbp6IXl2qklf1Wg_UVWV-FKamUziCY3toMahv39M_GKVJbXqMwINzz5v44o8qv2lYhnMFDOpXwmsH76TGuN7pE0bVtbqgPOhypSGYzeDU4wDRUhMqk75fjsLZcY-pAWt7bT-rqV6_pLTKJsSd6898f9BYe0y9isUX5Pux21zf2HeKlrjiAB4vTbz9OD_qF8QeK0hZd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKEdALgkLpQgEjwTHaxImd5MChH1S7tFuB2Ep7M45jl6A2WW22Qvu7-IPMJE7E0kMlpN6s2Imc8XhmLL95Q8h7zW0grLKeMirzIhun0OJw5hGZtchPFgaYjTw5E6Pz6POMzzbI7y4XBmGVzva3Nr2x1u7J0ElzOC-K4TeEEsIhHHQIlBT8vENWnpjVLzi31R_HR7DIHxg7_jQ9HHmutICnOY-XXohZctymCcsCkSvGlYamykLBw4xHGtq-EnDYT01uNZhyzTTLE6bTmHNl8hC-e4_ch-gjRmswnh30VxcRT_0e6AjT6_L1GlBZ0SR9IKIsbRhWu1pdN_3hzXj3X9jmX37w-Al57AJYut_K6CnZMOU2edCWtFxtk4cTd1n_jHwdlxb07UrV1ZWh-7orpEani-LiAsJOeoCoeXp4WTXga6rKnI6qekmPMC6lroQQ_bJaVPNlVRf1c3J-J2LeIZtlVZpdQn2RGAiebIr0NDYVylgInhiWp_FBucSAhJ0cpXb05lhl41J2OLafspW-ROlLP0Ja1AHx-rfmLb3HLePjbonkmppK8EC3vLnXrah0ZqKWED-xGBnt2IC867thg-OtjSpNdY1jQMORtjIekBetAvRThdgcCQUTmNaaavQDkDx8vacsfjQk4iJOwdkFL__7h96SR6Pp5FSejs9OXpEt7EEIXZDskc3l4tq8hmBtmb1pNgcl3-96N_4Bt55SBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inflammasome+Activation+Triggers+Blood+Clotting+and+Host+Death+through+Pyroptosis&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Wu%2C+Congqing&rft.au=Lu%2C+Wei&rft.au=Zhang%2C+Yan&rft.au=Zhang%2C+Guoying&rft.date=2019-06-18&rft.eissn=1097-4180&rft.volume=50&rft.issue=6&rft.spage=1401&rft_id=info:doi/10.1016%2Fj.immuni.2019.04.003&rft_id=info%3Apmid%2F31076358&rft.externalDocID=31076358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon