Continuous Online Sequence Learning with an Unsupervised Neural Network Model

The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning...

Full description

Saved in:
Bibliographic Details
Published inNeural computation Vol. 28; no. 11; pp. 2474 - 2504
Main Authors Cui, Yuwei, Ahmad, Subutai, Hawkins, Jeff
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.11.2016
MIT Press Journals, The
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variable order temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods—autoregressive integrated moving average; feedforward neural networks—time delay neural network and online sequential extreme learning machine; and recurrent neural networks—long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.
AbstractList The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variable order temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods-autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.
The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variable order temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence.
The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variable order temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods—autoregressive integrated moving average; feedforward neural networks—time delay neural network and online sequential extreme learning machine; and recurrent neural networks—long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.
Abstract The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variable order temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods—autoregressive integrated moving average; feedforward neural networks—time delay neural network and online sequential extreme learning machine; and recurrent neural networks—long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.
Author Ahmad, Subutai
Cui, Yuwei
Hawkins, Jeff
Author_xml – sequence: 1
  givenname: Yuwei
  surname: Cui
  fullname: Cui, Yuwei
  email: ycui@numenta.com
  organization: Numenta, Inc. Redwood City, CA 94063, U.S.A. ycui@numenta.com
– sequence: 2
  givenname: Subutai
  surname: Ahmad
  fullname: Ahmad, Subutai
  email: sahmad@numenta.com
  organization: Numenta, Inc. Redwood City, CA 94063, U.S.A. sahmad@numenta.com
– sequence: 3
  givenname: Jeff
  surname: Hawkins
  fullname: Hawkins, Jeff
  email: jhawkins@numenta.com
  organization: Numenta, Inc. Redwood City, CA 94063, U.S.A. jhawkins@numenta.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27626963$$D View this record in MEDLINE/PubMed
BookMark eNqNkT1vFDEQhi0URC6BjhqtREPBwvjbLqNT-JAuuQIi0Vl73llw2LMPezcR_HpMEkKEUqQaafTomXn1HpC9mCIS8pzCG0oVe3t6vFy7zgEYyx-RBZUcWmPMlz2yqCvbaqX0Pjko5RwAFAX5hOwzrZiyii_IyTLFKcQ5zaVZxzFEbD7hjxmjx2aFXY4hfm0uw_St6WJzFsu8w3wRCvbNKc65G-uYLlP-3pykHsen5PHQjQWf3cxDcvbu-PPyQ7tav_-4PFq1Xko9taynQvRysEorLwRAz3XvO8DeS8GF2PgBtNx46Y2XXDC0QlkqhcANSCsGfkheXXt3OdVny-S2oXgcxy5iTeKoUUJyo4A_AJVWU00NfQgK2nBOTUVf_oeepznHmrlSXEuu-JXw9TXlcyol4-B2OWy7_NNRcH_Kc3fLq_iLG-m82WJ_C_9t69-D23D34P2uo3vQiD5dMBModTWFBe0YMOZAOuDuV9hdAbeO3zUStno
CODEN NEUCEB
CitedBy_id crossref_primary_10_1038_s41467_021_22559_5
crossref_primary_10_1088_1748_3190_aae1c2
crossref_primary_10_1016_j_neucom_2020_04_077
crossref_primary_10_3389_fnins_2021_650430
crossref_primary_10_3390_ma12132122
crossref_primary_10_1109_ACCESS_2021_3077004
crossref_primary_10_1109_TCYB_2019_2935066
crossref_primary_10_1017_S0263574720000521
crossref_primary_10_3390_a13070165
crossref_primary_10_56583_br_2191
crossref_primary_10_1002_stc_2404
crossref_primary_10_1145_3447777
crossref_primary_10_1093_comjnl_bxae004
crossref_primary_10_1016_j_future_2018_05_014
crossref_primary_10_1016_j_jocs_2022_101693
crossref_primary_10_1038_s42256_022_00452_0
crossref_primary_10_1080_0952813X_2021_1964614
crossref_primary_10_3390_electronics10141630
crossref_primary_10_1016_j_neunet_2023_09_005
crossref_primary_10_3390_electronics12153229
crossref_primary_10_5406_19398298_135_4_14
crossref_primary_10_1109_ACCESS_2020_3030031
crossref_primary_10_1016_j_eswa_2020_113668
crossref_primary_10_1016_j_neuroscience_2022_03_008
crossref_primary_10_1051_epjconf_202024507061
crossref_primary_10_32604_cmc_2022_019847
crossref_primary_10_1371_journal_pone_0217966
crossref_primary_10_1162_neco_a_00988
crossref_primary_10_1016_j_conb_2019_07_006
crossref_primary_10_1109_OJITS_2023_3347484
crossref_primary_10_1080_23746149_2021_1894234
crossref_primary_10_2299_jsp_27_69
crossref_primary_10_46300_9106_2020_14_110
crossref_primary_10_1016_j_neucom_2019_01_055
crossref_primary_10_1155_2022_3119284
crossref_primary_10_1016_j_patrec_2019_09_022
crossref_primary_10_1016_j_sigpro_2023_109090
crossref_primary_10_20965_jaciii_2021_p0450
crossref_primary_10_1016_j_asoc_2018_03_013
crossref_primary_10_1109_TNNLS_2022_3213688
crossref_primary_10_1016_j_mlwa_2023_100470
crossref_primary_10_1016_j_eswa_2020_113836
crossref_primary_10_1186_s40708_022_00156_6
crossref_primary_10_3390_s20164579
crossref_primary_10_1155_2021_6691010
crossref_primary_10_1155_2022_6072316
crossref_primary_10_1007_s42452_021_04715_0
crossref_primary_10_1007_s42979_024_02647_1
crossref_primary_10_1109_ACCESS_2018_2799210
crossref_primary_10_1049_iet_cps_2017_0053
crossref_primary_10_1016_j_future_2023_09_028
crossref_primary_10_1109_TNNLS_2019_2927106
crossref_primary_10_32604_cmes_2021_015673
crossref_primary_10_1109_ACCESS_2020_3001296
crossref_primary_10_2139_ssrn_3306245
crossref_primary_10_1109_ACCESS_2019_2942937
crossref_primary_10_1109_JIOT_2019_2958185
crossref_primary_10_1007_s10845_020_01583_0
crossref_primary_10_1016_j_aci_2018_09_002
crossref_primary_10_1007_s12652_018_1058_y
crossref_primary_10_1063_5_0084468
crossref_primary_10_1007_s12559_024_10265_5
crossref_primary_10_3103_S0146411623080114
crossref_primary_10_3389_frobt_2016_00081
crossref_primary_10_1016_j_neunet_2021_07_021
crossref_primary_10_1155_2021_5585238
crossref_primary_10_3390_s24041143
crossref_primary_10_3389_fncir_2020_00012
crossref_primary_10_3390_ma12060875
crossref_primary_10_2139_ssrn_3306250
crossref_primary_10_1093_bioinformatics_btz967
crossref_primary_10_1016_j_jpdc_2019_08_009
crossref_primary_10_1088_2634_4386_acca45
crossref_primary_10_1109_TNNLS_2019_2921143
crossref_primary_10_1109_TDSC_2020_3037054
crossref_primary_10_3389_fncom_2017_00111
crossref_primary_10_1098_rstb_2019_0304
crossref_primary_10_1109_TC_2020_3000183
crossref_primary_10_3233_HIS_230013
crossref_primary_10_1007_s10694_020_01055_0
crossref_primary_10_1007_s42979_022_01066_4
crossref_primary_10_1016_j_cub_2020_10_059
crossref_primary_10_1016_j_neucom_2017_04_070
crossref_primary_10_1016_j_neunet_2023_07_040
crossref_primary_10_1109_TSMC_2022_3150398
crossref_primary_10_1109_TCAD_2017_2748024
crossref_primary_10_1155_2022_3973665
crossref_primary_10_1109_TSMC_2017_2757029
crossref_primary_10_3390_jmse12040574
crossref_primary_10_7554_eLife_38471
crossref_primary_10_1371_journal_pcbi_1010233
crossref_primary_10_1016_j_neucom_2018_09_098
crossref_primary_10_1016_j_cogsys_2020_04_003
crossref_primary_10_1109_TETCI_2018_2838124
crossref_primary_10_3390_biomimetics9030175
crossref_primary_10_1016_j_cose_2019_101599
crossref_primary_10_1109_TSMC_2020_3035612
crossref_primary_10_3389_fncom_2018_00050
crossref_primary_10_1016_j_cogr_2021_10_001
crossref_primary_10_1007_s11063_024_11546_8
crossref_primary_10_1016_j_neubiorev_2023_105402
Cites_doi 10.1038/380526a0
10.1109/29.21701
10.1038/nature12600
10.1162/neco.1990.2.4.490
10.1109/MASSP.1986.1165342
10.1371/journal.pbio.1000260
10.1002/jnr.22444
10.1016/S0896-6273(02)00903-0
10.1146/annurev.neuro.27.070203.144247
10.1093/cercor/10.12.1155
10.1038/nn.3036
10.1007/978-3-642-81708-3
10.1016/j.neucom.2005.12.126
10.1145/347090.347107
10.1007/s13042-011-0019-y
10.1109/TITS.2013.2262376
10.1016/S1364-6613(98)01202-9
10.3389/frobt.2016.00081
10.1523/JNEUROSCI.4098-12.2013
10.1016/S0925-2312(01)00700-7
10.1162/neco.2009.11-08-901
10.1016/j.eswa.2012.01.039
10.1016/j.tins.2007.02.005
10.1093/acprof:oso/9780199641178.001.0001
10.1162/neco.1989.1.2.270
10.1109/TNN.2006.880583
10.1016/j.neucom.2014.05.068
10.1023/A:1007469218079
10.1109/NANO.2011.6144380
10.1038/nn1253
10.1126/science.1091277
10.1162/0899766053723096
10.1038/nrn2286
10.1038/35009043
10.1007/978-3-642-76153-9_28
10.1038/nature14539
10.1007/978-1-4419-8020-5
10.1109/ICMLA.2015.141
10.1093/brain/awf110
10.1145/1083784.1083789
10.1201/EBK1439826119
10.18637/jss.v027.i03
10.1007/978-3-642-02565-5_4
10.1016/j.conb.2004.07.007
10.1016/j.neunet.2014.09.003
10.1146/annurev-neuro-062111-150343
10.1093/brain/120.4.701
10.1162/neco.1997.9.8.1735
10.1016/j.asoc.2010.07.003
10.1038/nn.3683
10.1109/ICASSP.2014.6854560
10.3389/fncir.2016.00023
10.1002/0470846674.ch16
10.1016/j.ijforecast.2011.04.001
10.1371/journal.pcbi.1003143
10.1007/3-540-70659-3_2
10.1007/978-3-642-24797-2
ContentType Journal Article
Copyright Copyright MIT Press Journals Nov 2016
Copyright_xml – notice: Copyright MIT Press Journals Nov 2016
DBID NPM
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7QO
FR3
P64
7X8
DOI 10.1162/NECO_a_00893
DatabaseName PubMed
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
MEDLINE - Academic

Engineering Research Database
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1530-888X
EndPage 2504
ExternalDocumentID 4244114531
10_1162_NECO_a_00893
27626963
neco_a_00893.pdf
Genre Journal Article
Feature
GroupedDBID -
0R
123
4.4
4S
6IK
AAJGR
AAPBV
ABDBF
ABFLS
ABIVO
ABPTK
ADIYS
AEILP
AENEX
AFHIN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CS3
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EJD
EMB
EMK
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HZ
I-F
IPLJI
JAVBF
MCG
MKJ
O9-
OCL
P2P
PK0
PQEST
PQQKQ
RMI
SV3
TUS
WH7
X
---
-~X
.4S
.DC
0R~
36B
41~
53G
AALMD
AAYOK
ABDNZ
ABEFU
ABJNI
ACGFO
ACYGS
AEGXH
AIAGR
COF
EMOBN
HVGLF
HZ~
H~9
MINIK
NPM
WG8
XJE
ZWS
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7QO
FR3
P64
7X8
ID FETCH-LOGICAL-c557t-2d144d5f9676c4400d37dca0edc54344bcf075bc5c8c5342e94691544eb0594f3
ISSN 0899-7667
IngestDate Fri Oct 25 04:21:02 EDT 2024
Fri Oct 25 04:00:25 EDT 2024
Fri Oct 25 22:53:37 EDT 2024
Thu Oct 10 17:14:31 EDT 2024
Thu Sep 12 16:27:12 EDT 2024
Sat Sep 28 08:37:17 EDT 2024
Wed May 04 12:10:52 EDT 2022
Thu May 05 15:20:17 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c557t-2d144d5f9676c4400d37dca0edc54344bcf075bc5c8c5342e94691544eb0594f3
Notes November, 2016
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00893
PMID 27626963
PQID 1837536381
PQPubID 37252
PageCount 31
ParticipantIDs mit_journals_necov28i11_318907_2022_05_03_zip_neco_a_00893
proquest_journals_1837536381
proquest_miscellaneous_1864538603
proquest_miscellaneous_1859717181
mit_journals_10_1162_NECO_a_00893
proquest_miscellaneous_1850783318
crossref_primary_10_1162_NECO_a_00893
pubmed_primary_27626963
PublicationCentury 2000
PublicationDate 2016-11-01
2016-Nov
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: United States
– name: Cambridge
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2016
Publisher MIT Press
MIT Press Journals, The
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
References 2022050215131500500_R11
2022050215131500500_R55
2022050215131500500_R10
2022050215131500500_R54
2022050215131500500_R13
2022050215131500500_R57
2022050215131500500_R12
2022050215131500500_R56
2022050215131500500_R15
2022050215131500500_R59
2022050215131500500_R14
2022050215131500500_R58
2022050215131500500_R17
2022050215131500500_R16
2022050215131500500_R51
2022050215131500500_R50
2022050215131500500_R53
2022050215131500500_R52
2022050215131500500_R19
2022050215131500500_R18
2022050215131500500_R22
2022050215131500500_R66
2022050215131500500_R21
2022050215131500500_R65
2022050215131500500_R24
2022050215131500500_R68
2022050215131500500_R23
2022050215131500500_R67
2022050215131500500_R26
2022050215131500500_R25
2022050215131500500_R69
2022050215131500500_R28
2022050215131500500_R27
2022050215131500500_R60
2022050215131500500_R62
2022050215131500500_R61
2022050215131500500_R20
2022050215131500500_R64
2022050215131500500_R63
2022050215131500500_R8
2022050215131500500_R7
2022050215131500500_R29
2022050215131500500_R6
2022050215131500500_R5
2022050215131500500_R4
2022050215131500500_R3
2022050215131500500_R2
2022050215131500500_R1
2022050215131500500_R33
2022050215131500500_R32
2022050215131500500_R35
2022050215131500500_R34
2022050215131500500_R37
2022050215131500500_R36
2022050215131500500_R39
2022050215131500500_R38
2022050215131500500_R71
2022050215131500500_R70
2022050215131500500_R73
2022050215131500500_R72
2022050215131500500_R31
2022050215131500500_R30
2022050215131500500_R74
2022050215131500500_R44
2022050215131500500_R43
2022050215131500500_R46
2022050215131500500_R45
2022050215131500500_R48
2022050215131500500_R47
2022050215131500500_R9
2022050215131500500_R49
2022050215131500500_R40
2022050215131500500_R42
2022050215131500500_R41
References_xml – ident: 2022050215131500500_R57
  doi: 10.1038/380526a0
– ident: 2022050215131500500_R69
  doi: 10.1109/29.21701
– ident: 2022050215131500500_R16
– ident: 2022050215131500500_R64
  doi: 10.1038/nature12600
– ident: 2022050215131500500_R71
  doi: 10.1162/neco.1990.2.4.490
– ident: 2022050215131500500_R55
  doi: 10.1109/MASSP.1986.1165342
– ident: 2022050215131500500_R50
  doi: 10.1371/journal.pbio.1000260
– ident: 2022050215131500500_R3
  doi: 10.1002/jnr.22444
– ident: 2022050215131500500_R35
– ident: 2022050215131500500_R74
  doi: 10.1016/S0896-6273(02)00903-0
– ident: 2022050215131500500_R44
  doi: 10.1146/annurev.neuro.27.070203.144247
– ident: 2022050215131500500_R54
– ident: 2022050215131500500_R8
  doi: 10.1093/cercor/10.12.1155
– ident: 2022050215131500500_R25
– ident: 2022050215131500500_R21
– ident: 2022050215131500500_R73
  doi: 10.1038/nn.3036
– ident: 2022050215131500500_R1
  doi: 10.1007/978-3-642-81708-3
– ident: 2022050215131500500_R29
  doi: 10.1016/j.neucom.2005.12.126
– ident: 2022050215131500500_R13
  doi: 10.1145/347090.347107
– ident: 2022050215131500500_R28
  doi: 10.1007/s13042-011-0019-y
– ident: 2022050215131500500_R48
  doi: 10.1109/TITS.2013.2262376
– ident: 2022050215131500500_R46
– ident: 2022050215131500500_R10
  doi: 10.1016/S1364-6613(98)01202-9
– ident: 2022050215131500500_R47
  doi: 10.3389/frobt.2016.00081
– ident: 2022050215131500500_R6
  doi: 10.1523/JNEUROSCI.4098-12.2013
– ident: 2022050215131500500_R32
  doi: 10.1016/S0925-2312(01)00700-7
– ident: 2022050215131500500_R53
  doi: 10.1162/neco.2009.11-08-901
– ident: 2022050215131500500_R4
  doi: 10.1016/j.eswa.2012.01.039
– ident: 2022050215131500500_R43
  doi: 10.1016/j.tins.2007.02.005
– ident: 2022050215131500500_R14
  doi: 10.1093/acprof:oso/9780199641178.001.0001
– ident: 2022050215131500500_R72
  doi: 10.1162/neco.1989.1.2.270
– ident: 2022050215131500500_R39
  doi: 10.1109/TNN.2006.880583
– ident: 2022050215131500500_R70
  doi: 10.1016/j.neucom.2014.05.068
– ident: 2022050215131500500_R15
  doi: 10.1023/A:1007469218079
– ident: 2022050215131500500_R68
  doi: 10.1109/NANO.2011.6144380
– ident: 2022050215131500500_R26
– ident: 2022050215131500500_R52
  doi: 10.1038/nn1253
– ident: 2022050215131500500_R2
– ident: 2022050215131500500_R34
  doi: 10.1126/science.1091277
– ident: 2022050215131500500_R67
  doi: 10.1162/0899766053723096
– ident: 2022050215131500500_R65
  doi: 10.1038/nrn2286
– ident: 2022050215131500500_R63
  doi: 10.1038/35009043
– ident: 2022050215131500500_R66
– ident: 2022050215131500500_R7
  doi: 10.1007/978-3-642-76153-9_28
– ident: 2022050215131500500_R37
  doi: 10.1038/nature14539
– ident: 2022050215131500500_R58
  doi: 10.1007/978-1-4419-8020-5
– ident: 2022050215131500500_R36
  doi: 10.1109/ICMLA.2015.141
– ident: 2022050215131500500_R9
  doi: 10.1093/brain/awf110
– ident: 2022050215131500500_R33
– ident: 2022050215131500500_R17
  doi: 10.1145/1083784.1083789
– ident: 2022050215131500500_R18
  doi: 10.1201/EBK1439826119
– ident: 2022050215131500500_R31
  doi: 10.18637/jss.v027.i03
– ident: 2022050215131500500_R23
– ident: 2022050215131500500_R60
  doi: 10.1007/978-3-642-02565-5_4
– ident: 2022050215131500500_R51
  doi: 10.1016/j.conb.2004.07.007
– ident: 2022050215131500500_R40
– ident: 2022050215131500500_R5
– ident: 2022050215131500500_R61
  doi: 10.1016/j.neunet.2014.09.003
– ident: 2022050215131500500_R42
  doi: 10.1146/annurev-neuro-062111-150343
– ident: 2022050215131500500_R49
  doi: 10.1093/brain/120.4.701
– ident: 2022050215131500500_R27
  doi: 10.1162/neco.1997.9.8.1735
– ident: 2022050215131500500_R41
  doi: 10.1016/j.asoc.2010.07.003
– ident: 2022050215131500500_R19
  doi: 10.1038/nn.3683
– ident: 2022050215131500500_R38
  doi: 10.1109/ICASSP.2014.6854560
– ident: 2022050215131500500_R30
– ident: 2022050215131500500_R22
  doi: 10.3389/fncir.2016.00023
– ident: 2022050215131500500_R56
  doi: 10.1002/0470846674.ch16
– ident: 2022050215131500500_R59
– ident: 2022050215131500500_R11
  doi: 10.1016/j.ijforecast.2011.04.001
– ident: 2022050215131500500_R62
– ident: 2022050215131500500_R24
– ident: 2022050215131500500_R45
  doi: 10.1371/journal.pcbi.1003143
– ident: 2022050215131500500_R12
  doi: 10.1007/3-540-70659-3_2
– ident: 2022050215131500500_R20
  doi: 10.1007/978-3-642-24797-2
SSID ssj0006105
Score 2.6135876
Snippet The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of...
The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of...
Abstract The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known...
SourceID proquest
crossref
pubmed
mit
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2474
SubjectTerms Algorithms
Distance learning
Handles
Learning
Letters
Mathematical models
Memory
Neural networks
Neurons
Online instruction
Recognition
Statistical methods
Survival
Title Continuous Online Sequence Learning with an Unsupervised Neural Network Model
URI https://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00893
https://www.ncbi.nlm.nih.gov/pubmed/27626963
https://www.proquest.com/docview/1837536381
https://search.proquest.com/docview/1850783318
https://search.proquest.com/docview/1859717181
https://search.proquest.com/docview/1864538603
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sIL98tgICPBY0bqJE7C21ZaDbR1L61UnqzEcUYEyyraMGm_ns9xnLqCTcBLVMVu7Ph8-XJOfC6EvNVCZSxnHtRl3wuDvPSSUEWeTLOSlUlYxJn-Dnk65cfz8PMiWgwGpeO11KzzA3n9x7iS_5EqzkGuOkr2HyTbXxQn8BvyxRESxvGvZKxTS1V1o71YTcpQPPrGM9rmTT23wWtQLlfNUhPDCiqmTskB2UyND3hbEO27q6Z27bIt-bC1Vz9q2u3_L82VqnqwfL0wQAELoXu1YbWrb93nbL2P7H5gGPIu0q53Mvo0M-4gdoO8c19SLlOlqRdzU1fjQFkm9T2Y1wuXalniQmroEmdoivX8zuhcZ4idjkdnIhNQWEw9xe3E2dMzMZmfnIjZeDHbbm1f1DqWD2ZfpMPtdxkICUy4e3j08WjSv7N55-xqb8SGSHD23h16S3m5c1Gtb7ZLWv1k9oDc61aNHhqUPCQDVT8i923RDtpx-GNyugENNaChFjTUgoZq0NCspi5oqAEF7UBDW9A8IfPJeDY69rqaGp6MonjtsQIWdBGVKY-5DEHgRRAXMvNVIXWQcZjLEkpkLiOZyCgImUpDnuqMTSrXmX3K4CnZqS9r9ZxQP1OwdTlYIMM10yhjahgXrMyDwi_LLN0j7-xiiaVJnSJak5Mz4S7qHnmDlRTdc7W6oc-HrT61kpc_WVLBesVLKfVjwaCMCj8SfiCuq2XbYfPnfSskZ5Qk0LOHworx-2Zwq94wy2oFKaBPpHe5McKtfdJ4CA3v1utwoA9kiKk8MyDpV4RBG-EgzBe3T_Ilubt5NvfJzvpHo15BHV7nrzss_wLaDrPZ
link.rule.ids 315,783,787,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Online+Sequence+Learning+with+an+Unsupervised+Neural+Network+Model&rft.jtitle=Neural+computation&rft.au=Cui%2C+Yuwei&rft.au=Ahmad%2C+Subutai&rft.au=Hawkins%2C+Jeff&rft.date=2016-11-01&rft.pub=MIT+Press+Journals%2C+The&rft.issn=0899-7667&rft.eissn=1530-888X&rft.volume=28&rft.issue=11&rft.spage=2474&rft_id=info:doi/10.1162%2FNECO_a_00893&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4244114531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon