Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal ant...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 54; no. 7; pp. 1611 - 1621.e5
Main Authors Wang, Ruoke, Zhang, Qi, Ge, Jiwan, Ren, Wenlin, Zhang, Rui, Lan, Jun, Ju, Bin, Su, Bin, Yu, Fengting, Chen, Peng, Liao, Huiyu, Feng, Yingmei, Li, Xuemei, Shi, Xuanling, Zhang, Zheng, Zhang, Fujie, Ding, Qiang, Zhang, Tong, Wang, Xinquan, Zhang, Linqi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.07.2021
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242–244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection. [Display omitted] •SARS-CoV-2 variants of concern are resistant to antibody neutralization•B.1.351 variant is the most resistant, followed by P.1 and B.1.1.7•The resistance hierarchy corresponds to mutations in NTD and RBD•B.1.351 and P.1 acquire the ability to use mouse and mink ACE2 for entry SARS-CoV-2 variants continue to emerge and spread around the world. Wang et al. conduct comprehensive mutational and crystal structure analyses of the variants and show that variants of concern, and the South African variant B.1.351 in particular, are resistant to many monoclonal antibodies and COVID-19 convalescent plasma and acquire the ability to use mouse and mink ACE2 receptors for infection.
AbstractList Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242–244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection. [Display omitted] •SARS-CoV-2 variants of concern are resistant to antibody neutralization•B.1.351 variant is the most resistant, followed by P.1 and B.1.1.7•The resistance hierarchy corresponds to mutations in NTD and RBD•B.1.351 and P.1 acquire the ability to use mouse and mink ACE2 for entry SARS-CoV-2 variants continue to emerge and spread around the world. Wang et al. conduct comprehensive mutational and crystal structure analyses of the variants and show that variants of concern, and the South African variant B.1.351 in particular, are resistant to many monoclonal antibodies and COVID-19 convalescent plasma and acquire the ability to use mouse and mink ACE2 receptors for infection.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242-244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242–244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection. SARS-CoV-2 variants continue to emerge and spread around the world. Wang et al. conduct comprehensive mutational and crystal structure analyses of the variants and show that variants of concern, and the South African variant B.1.351 in particular, are resistant to many monoclonal antibodies and COVID-19 convalescent plasma and acquire the ability to use mouse and mink ACE2 receptors for infection.
SummarySevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242–244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242-244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242-244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection.
Author Shi, Xuanling
Zhang, Qi
Yu, Fengting
Ding, Qiang
Feng, Yingmei
Ju, Bin
Ge, Jiwan
Lan, Jun
Wang, Xinquan
Zhang, Zheng
Ren, Wenlin
Su, Bin
Liao, Huiyu
Zhang, Linqi
Chen, Peng
Zhang, Fujie
Wang, Ruoke
Zhang, Tong
Zhang, Rui
Li, Xuemei
Author_xml – sequence: 1
  givenname: Ruoke
  surname: Wang
  fullname: Wang, Ruoke
  organization: NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
  organization: NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Jiwan
  surname: Ge
  fullname: Ge, Jiwan
  organization: The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Wenlin
  surname: Ren
  fullname: Ren, Wenlin
  organization: Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
– sequence: 5
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
– sequence: 6
  givenname: Jun
  surname: Lan
  fullname: Lan, Jun
  organization: The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 7
  givenname: Bin
  surname: Ju
  fullname: Ju, Bin
  organization: Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China
– sequence: 8
  givenname: Bin
  surname: Su
  fullname: Su, Bin
  organization: Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
– sequence: 9
  givenname: Fengting
  surname: Yu
  fullname: Yu, Fengting
  organization: Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8, Jing Shun Dong Jie, Chaoyang, 100015 District Beijing, China
– sequence: 10
  givenname: Peng
  surname: Chen
  fullname: Chen, Peng
  organization: NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
– sequence: 11
  givenname: Huiyu
  surname: Liao
  fullname: Liao, Huiyu
  organization: Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
– sequence: 12
  givenname: Yingmei
  surname: Feng
  fullname: Feng, Yingmei
  organization: Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
– sequence: 13
  givenname: Xuemei
  surname: Li
  fullname: Li, Xuemei
  organization: Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
– sequence: 14
  givenname: Xuanling
  surname: Shi
  fullname: Shi, Xuanling
  organization: NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
– sequence: 15
  givenname: Zheng
  surname: Zhang
  fullname: Zhang, Zheng
  organization: Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China
– sequence: 16
  givenname: Fujie
  surname: Zhang
  fullname: Zhang, Fujie
  organization: Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8, Jing Shun Dong Jie, Chaoyang, 100015 District Beijing, China
– sequence: 17
  givenname: Qiang
  surname: Ding
  fullname: Ding, Qiang
  organization: Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
– sequence: 18
  givenname: Tong
  surname: Zhang
  fullname: Zhang, Tong
  email: zt_doc@ccmu.edu.cn
  organization: Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
– sequence: 19
  givenname: Xinquan
  surname: Wang
  fullname: Wang, Xinquan
  email: xinquanwang@mail.tsinghua.edu.cn
  organization: The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 20
  givenname: Linqi
  surname: Zhang
  fullname: Zhang, Linqi
  email: zhanglinqi@tsinghua.edu.cn
  organization: NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34166623$$D View this record in MEDLINE/PubMed
BookMark eNqFkl2L1DAUhousuB_6D0QC3njTmo8mbb0QhmH9gAXBVW9D0pw6GdpkTNKB8U_4l02dcdG90KuE5Dlvzsn7XhZnzjsoiqcEVwQT8XJb2Wmana0opqTCosKYPSguCO6asiYtPlv2TV02grDz4jLGLcak5h1-VJyzmgghKLsofqycGg_RRuQHdLv6eFuu_ZeSor0KVrmEpjmpZL2LKMAe1BiRgzkFNdrvv84RxF7tAE3Qb5SzcYpIOYPSBpDSdrTpgJJHcwS0Wl_TLNLDLvkQ0RD8hJQxdlFRI4o76C3Ex8XDIb8CT07rVfH5zfWn9bvy5sPb9-vVTdlz3qSSakJ0RzjX3cCpqZuuNkaIgbaaaUYN4EY3inSaGEUNZ1pQLVjXMMVoy0jNrorXR93drCcwPbhlKLkLdlLhIL2y8u8bZzfyq9_LlrSctDQLvDgJBP9thpjkZGMP46gc-DlKymvOOyEIzujze-jWzyEPvVCckI7jmmXq2Z8d3bXy26sM1EegDz7GAMMdQrBcIiG38hgJuURCYiFzJHLZq3tlvT16muey4_-KT98E2Yu9hSBjdsn1YGy2Mknj7b8FfgISuNYV
CitedBy_id crossref_primary_10_1016_j_ebiom_2021_103643
crossref_primary_10_1016_j_cell_2022_03_038
crossref_primary_10_1007_s12551_023_01153_7
crossref_primary_10_1016_j_xinn_2021_100181
crossref_primary_10_1093_bib_bbab375
crossref_primary_10_1099_jgv_0_001735
crossref_primary_10_3390_covid3090100
crossref_primary_10_1002_jmv_27376
crossref_primary_10_1016_j_drup_2023_100991
crossref_primary_10_3390_v14061332
crossref_primary_10_1002_mco2_90
crossref_primary_10_1016_j_clicom_2025_02_001
crossref_primary_10_1016_j_isci_2021_103393
crossref_primary_10_1016_j_intimp_2021_108424
crossref_primary_10_1111_imr_13431
crossref_primary_10_1016_j_celrep_2022_111335
crossref_primary_10_1016_j_celrep_2023_112421
crossref_primary_10_1186_s12985_022_01827_w
crossref_primary_10_3390_biomedinformatics4010022
crossref_primary_10_1016_j_celrep_2022_110770
crossref_primary_10_16984_saufenbilder_1312911
crossref_primary_10_3390_ijms25105499
crossref_primary_10_1186_s12985_022_01895_y
crossref_primary_10_3390_microorganisms12040720
crossref_primary_10_1016_j_cell_2021_12_002
crossref_primary_10_1128_Spectrum_00965_21
crossref_primary_10_3389_fimmu_2022_836232
crossref_primary_10_1002_advs_202203499
crossref_primary_10_1126_scitranslmed_abm4908
crossref_primary_10_1073_pnas_2122954119
crossref_primary_10_1038_s41576_021_00408_x
crossref_primary_10_3390_jmp3040018
crossref_primary_10_1038_s41467_023_37926_7
crossref_primary_10_1128_jvi_00814_22
crossref_primary_10_3389_fphar_2022_983505
crossref_primary_10_1002_jmv_27667
crossref_primary_10_3390_diagnostics11112092
crossref_primary_10_1038_s41597_024_03997_4
crossref_primary_10_1039_D1CS01170G
crossref_primary_10_3390_vaccines10101699
crossref_primary_10_1016_j_vaccine_2023_08_076
crossref_primary_10_3389_fimmu_2023_1160283
crossref_primary_10_1002_2211_5463_13454
crossref_primary_10_3390_v14050854
crossref_primary_10_3390_math12172738
crossref_primary_10_3390_molecules27061882
crossref_primary_10_1021_acs_jmedchem_2c00117
crossref_primary_10_1002_cbf_3766
crossref_primary_10_1038_s41590_023_01449_6
crossref_primary_10_1002_jmv_27825
crossref_primary_10_3389_fimmu_2024_1374913
crossref_primary_10_1371_journal_ppat_1010161
crossref_primary_10_1038_s41467_022_30617_9
crossref_primary_10_1126_science_abh1139
crossref_primary_10_3389_fimmu_2022_985478
crossref_primary_10_1007_s11684_023_1034_6
crossref_primary_10_1172_JCI152702
crossref_primary_10_25259_AUJMSR_8_2022
crossref_primary_10_3389_fimmu_2021_766821
crossref_primary_10_3390_microorganisms9071389
crossref_primary_10_1002_jmv_29611
crossref_primary_10_1016_j_celrep_2024_114265
crossref_primary_10_1038_s41590_022_01248_5
crossref_primary_10_1186_s13578_022_00794_7
crossref_primary_10_1002_smtd_202200387
crossref_primary_10_1016_j_celrep_2022_110786
crossref_primary_10_1016_j_celrep_2022_110387
crossref_primary_10_1038_s41421_022_00449_4
crossref_primary_10_1007_s00430_022_00729_6
crossref_primary_10_1360_nso_20220005
crossref_primary_10_1038_s41467_022_35642_2
crossref_primary_10_1093_ve_veac064
crossref_primary_10_1016_j_vaccine_2022_01_021
crossref_primary_10_1186_s12967_021_03208_3
crossref_primary_10_1016_j_chom_2022_09_018
crossref_primary_10_62347_NDGV1857
crossref_primary_10_1126_sciimmunol_abo3425
crossref_primary_10_1128_spectrum_03260_22
crossref_primary_10_3389_fddsv_2023_1304129
crossref_primary_10_1038_s41467_023_36761_0
crossref_primary_10_3389_fimmu_2022_854952
crossref_primary_10_1016_j_antiviral_2022_105383
crossref_primary_10_1016_S2666_5247_23_00011_3
crossref_primary_10_1002_jmv_28138
crossref_primary_10_1016_j_celrep_2021_109708
crossref_primary_10_1038_s41467_024_54746_5
crossref_primary_10_3389_fimmu_2021_730766
crossref_primary_10_1111_imr_13084
crossref_primary_10_1038_s41598_022_09845_y
crossref_primary_10_1128_mbio_00171_23
crossref_primary_10_3389_fimmu_2022_869809
crossref_primary_10_1002_rmv_2346
crossref_primary_10_1002_rmv_2347
crossref_primary_10_1038_s42003_022_04193_z
crossref_primary_10_1007_s10930_022_10073_6
crossref_primary_10_5662_wjm_v14_i3_89761
crossref_primary_10_1016_j_bsheal_2021_08_003
crossref_primary_10_1016_j_vaccine_2023_11_037
crossref_primary_10_1126_scitranslmed_abn8543
crossref_primary_10_1038_s41392_024_01917_x
crossref_primary_10_1038_s41598_024_77087_1
crossref_primary_10_1038_s41422_022_00644_8
crossref_primary_10_1080_22221751_2022_2095308
crossref_primary_10_1002_advs_202406980
crossref_primary_10_3103_S0891416823030072
crossref_primary_10_1016_j_apsb_2022_09_011
crossref_primary_10_1080_22221751_2024_2412990
crossref_primary_10_3389_fimmu_2023_1288794
crossref_primary_10_1038_s41591_023_02483_5
crossref_primary_10_1080_21645515_2022_2057161
crossref_primary_10_1136_bmjopen_2021_057281
crossref_primary_10_1016_j_isci_2022_104043
crossref_primary_10_1007_s00894_023_05509_4
crossref_primary_10_1016_j_jcv_2022_105162
crossref_primary_10_1038_s41598_022_05325_5
crossref_primary_10_1111_sji_13345
crossref_primary_10_3389_fimmu_2023_1259386
crossref_primary_10_1186_s12985_022_01771_9
crossref_primary_10_1002_jmv_27735
crossref_primary_10_1039_D3MD00222E
crossref_primary_10_3390_vaccines9091044
crossref_primary_10_3390_vaccines10060919
crossref_primary_10_4081_monaldi_2022_2337
crossref_primary_10_3390_vaccines9101052
crossref_primary_10_1093_nsr_nwab167
crossref_primary_10_1016_j_bbadis_2023_166959
crossref_primary_10_1016_j_csbj_2023_02_019
crossref_primary_10_1016_j_ebiom_2024_105354
crossref_primary_10_1128_spectrum_01659_21
crossref_primary_10_1128_spectrum_02212_21
crossref_primary_10_1111_tbed_14714
crossref_primary_10_1016_j_celrep_2021_110156
crossref_primary_10_1126_scitranslmed_abo3332
crossref_primary_10_1089_regen_2022_0021
crossref_primary_10_1016_j_gendis_2022_11_016
crossref_primary_10_1007_s40259_022_00529_7
crossref_primary_10_1186_s12929_022_00823_0
crossref_primary_10_1016_j_bpc_2024_107253
crossref_primary_10_15212_ZOONOSES_2023_0032
crossref_primary_10_3390_vaccines11040857
crossref_primary_10_1038_s41467_022_30222_w
crossref_primary_10_3390_v14081769
crossref_primary_10_3390_cancers16020298
crossref_primary_10_1038_s41467_023_43447_0
crossref_primary_10_1016_j_str_2022_07_005
crossref_primary_10_1007_s12247_023_09713_w
crossref_primary_10_1038_s41421_021_00347_1
crossref_primary_10_3389_fimmu_2022_1010105
crossref_primary_10_1038_s41467_024_51046_w
crossref_primary_10_1128_spectrum_02366_21
crossref_primary_10_1080_19420862_2022_2031483
crossref_primary_10_1016_j_cell_2022_04_029
crossref_primary_10_3390_ijerph191912136
crossref_primary_10_1038_s41586_022_05053_w
crossref_primary_10_1080_22221751_2023_2245921
crossref_primary_10_3389_fimmu_2022_980435
crossref_primary_10_46810_tdfd_994622
crossref_primary_10_1080_22221751_2022_2125348
crossref_primary_10_1128_mbio_01404_24
crossref_primary_10_1093_bioinformatics_btac370
crossref_primary_10_1007_s13238_022_00915_5
crossref_primary_10_1002_jmv_27643
crossref_primary_10_1016_j_chembiol_2024_03_008
crossref_primary_10_2139_ssrn_4754362
crossref_primary_10_1038_s41392_021_00796_w
crossref_primary_10_18632_aging_204085
crossref_primary_10_1038_s41401_021_00851_w
crossref_primary_10_3390_vaccines11030668
crossref_primary_10_1002_minf_202300055
crossref_primary_10_1002_2211_5463_13477
Cites_doi 10.1016/j.cell.2021.03.028
10.3201/eid2704.210138
10.1038/s41586-021-03275-y
10.1016/j.cell.2020.05.025
10.1038/d41586-021-00121-z
10.1056/NEJMoa2034577
10.1038/s41467-020-17972-1
10.3201/eid2704.210183
10.1016/j.cell.2021.03.036
10.1038/s41586-021-03324-6
10.1038/s41586-020-2012-7
10.1126/science.abd0827
10.1056/NEJMoa2035002
10.1016/j.chom.2020.11.012
10.1107/S0907444910007493
10.1016/j.cell.2020.09.049
10.1016/j.cell.2021.03.029
10.1016/j.cell.2020.09.035
10.1038/s41586-020-2571-7
10.1038/s41591-021-01255-3
10.1038/s41586-020-2852-1
10.1038/s41586-020-2548-6
10.1001/jama.2021.0202
10.1016/S1473-3099(20)30831-8
10.1016/j.chom.2021.03.005
10.1056/NEJMc2102179
10.1093/bioinformatics/btw638
10.1038/s41586-020-2456-9
10.1038/s41586-020-2180-5
10.1107/S0021889807021206
10.1126/science.abd2321
10.1107/S1600576719001183
10.1016/j.cell.2020.09.032
10.1126/science.abb7269
10.1016/j.jmb.2021.167058
10.1056/NEJMoa2035389
10.1126/science.abc6952
10.1002/jcc.20084
10.1016/j.cell.2020.06.008
10.1038/s41467-020-20501-9
10.1038/s41586-020-2349-y
10.1016/S0140-6736(21)00183-5
10.1038/s41586-021-03398-2
10.1016/j.cell.2020.06.043
10.1016/S2666-5247(21)00082-3
10.1126/science.371.6524.9
10.1056/NEJMoa2029849
10.1126/science.abe5901
10.1016/j.cell.2020.11.020
10.1038/s41586-020-2380-z
10.1016/S0140-6736(20)32661-1
10.1038/s41586-020-2381-y
10.1126/science.abe8499
10.1056/NEJMoa2024671
10.1107/S0907444909052925
10.1038/s41586-020-2895-3
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
2021. Elsevier Inc.
2021 Elsevier Inc. 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
– notice: 2021. Elsevier Inc.
– notice: 2021 Elsevier Inc. 2021 Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.immuni.2021.06.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Virology and AIDS Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 1621.e5
ExternalDocumentID PMC8185182
34166623
10_1016_j_immuni_2021_06_003
S1074761321002478
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom--UK
England
GeographicLocations_xml – name: England
– name: United Kingdom--UK
GroupedDBID ---
--K
-DZ
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
7-5
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFRAH
AFTJW
AGGSO
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
N9A
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
WQ6
ZA5
.55
.GJ
29I
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AHHHB
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
RIG
UHS
X7M
Y6R
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c557t-2b11b9155b9f52d4794dd66f28b3b32de07b7a19b1da2d53b62b63973a3283143
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Thu Aug 21 14:08:40 EDT 2025
Mon Jul 21 11:33:53 EDT 2025
Fri Jul 25 11:12:50 EDT 2025
Thu Apr 03 07:06:40 EDT 2025
Thu Apr 24 23:11:01 EDT 2025
Tue Jul 01 01:58:44 EDT 2025
Fri Feb 23 02:40:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords variant of concern
SARS-CoV-2
immune escape
antibody
neutralization
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-2b11b9155b9f52d4794dd66f28b3b32de07b7a19b1da2d53b62b63973a3283143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally
Lead contact
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8185182
PMID 34166623
PQID 2551195043
PQPubID 2031079
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8185182
proquest_miscellaneous_2545596610
proquest_journals_2551195043
pubmed_primary_34166623
crossref_primary_10_1016_j_immuni_2021_06_003
crossref_citationtrail_10_1016_j_immuni_2021_06_003
elsevier_sciencedirect_doi_10_1016_j_immuni_2021_06_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-13
PublicationDateYYYYMMDD 2021-07-13
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Janson, Zhang, Prado, Paiardini (bib23) 2017; 33
(bib14) 2021
Korber, Fischer, Gnanakaran, Yoon, Theiler, Abfalterer, Hengartner, Giorgi, Bhattacharya, Foley (bib26) 2020; 182
Hoffmann, Arora, Groß, Seidel, Hörnich, Hahn, Krüger, Graichen, Hofmann-Winkler, Kempf (bib20) 2021; 184
(bib17) 2021
Diamond, Chen, Xie, Case, Zhang, VanBlargan, Liu, Liu, Errico, Winkler (bib11) 2021
Robbiani, Gaebler, Muecksch, Lorenzi, Wang, Cho, Agudelo, Barnes, Gazumyan, Finkin (bib45) 2020; 584
Tian, Tong, Sun, Shi, Zheng, Wang, Dong, Zheng (bib51) 2021
Fujino, Nomoto, Kutsuna, Ujiie, Suzuki, Sato, Fujimoto, Kuroda, Wakita, Ohmagari (bib15) 2021; 27
Callaway (bib4) 2021; 589
Kupferschmidt (bib28) 2021; 371
Pinto, Park, Beltramello, Walls, Tortorici, Bianchi, Jaconi, Culap, Zatta, De Marco (bib39) 2020; 583
Weinreich, Sivapalasingam, Norton, Ali, Gao, Bhore, Musser, Soo, Rofail, Im (bib58) 2021; 384
Rambaut, Loman, Pybus, Barclay, Barrett, Carabelli, Connor, Peacock, Robertson, Volz (bib43) 2020
Du, Cao, Zhu, Yu, Qi, Wang, Du, Bao, Deng, Zhu (bib12) 2020; 183
Shi, Shan, Duan, Chen, Liu, Song, Song, Bi, Han, Wu (bib47) 2020; 584
Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib69) 2020; 579
Liu, Hu, Wang, Ren, Zhao, Ji, Zhu, Feng, Gong, Ju (bib32) 2021; 118
Voysey, Clemens, Madhi, Weckx, Folegatti, Aley, Angus, Baillie, Barnabas, Bhorat (bib54) 2021; 397
Barnes, Jette, Abernathy, Dam, Esswein, Gristick, Malyutin, Sharaf, Huey-Tubman, Lee (bib3) 2020; 588
Huang, Dai, Wang, Hu, Yang, Tan, Gao (bib22) 2021
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib38) 2004; 25
Wu, Werner, Koch, Choi, Narayanan, Stewart-Jones, Colpitts, Bennett, Boyoglu-Barnum, Shi (bib60) 2021; 384
Yuan, Liu, Wu, Lee, Zhu, Zhao, Huang, Yu, Hua, Tien (bib64) 2020; 369
Liu, Wang, Nair, Yu, Rapp, Wang, Luo, Chan, Sahi, Figueroa (bib31) 2020; 584
Sabino, Buss, Carvalho, Prete, Crispim, Fraiji, Pereira, Parag, da Silva Peixoto, Kraemer (bib46) 2021; 397
Yuan, Huang, Lee, Wu, Jackson, Zhu, Liu, Peng, van Gils, Sanders (bib66) 2021
Yu, Wang, Li, Zhou, Liu, Zhang, Wang, Xu, Xu, Pan, He (bib63) 2019; 52
Kreye, Reincke, Kornau, Sánchez-Sendin, Corman, Liu, Yuan, Wu, Zhu, Lee (bib27) 2020; 183
Chan, Tan, Narayanan, Procko (bib7) 2021
Sun, Gu, Cao, Chen, Yang, Li, Fan, Ye, Deng, Song (bib48) 2020
Johnson & Johnson (bib24) 2021
Cerutti, Guo, Zhou, Gorman, Lee, Rapp, Reddem, Yu, Bahna, Bimela (bib6) 2021; 29
Hou, Chiba, Halfmann, Ehre, Kuroda, Dinnon, Leist, Schäfer, Nakajima, Takahashi (bib21) 2020; 370
Polack, Thomas, Kitchin, Absalon, Gurtman, Lockhart, Perez, Pérez Marc, Moreira, Zerbini (bib41) 2020; 383
Zost, Gilchuk, Case, Binshtein, Chen, Nkolola, Schäfer, Reidy, Trivette, Nargi (bib70) 2020; 584
(bib42) 2020
Chen, Nirula, Heller, Gottlieb, Boscia, Morris, Huhn, Cardona, Mocherla, Stosor (bib8) 2021; 384
Yuan, Wu, Zhu, Lee, So, Lv, Mok, Wilson (bib65) 2020; 368
Tegally, Wilkinson, Lessells, Giandhari, Pillay, Msomi, Mlisana, Bhiman, von Gottberg, Walaza (bib50) 2021; 27
Corbett, Flynn, Foulds, Francica, Boyoglu-Barnum, Werner, Flach, O’Connell, Bock, Minai (bib10) 2020; 383
Ge, Wang, Ju, Zhang, Sun, Chen, Zhang, Tian, Shan, Cheng (bib16) 2021; 12
Laffeber, de Koning, Kanaar, Lebbink (bib73) 2021; 433
Hansen, Baum, Pascal, Russo, Giordano, Wloga, Fulton, Yan, Koon, Patel (bib19) 2020; 369
Volz, Hill, McCrone, Price, Jorgensen, O’Toole, Southgate, Johnson, Jackson, Nascimento (bib53) 2021; 184
Weissman, Alameh, de Silva, Collini, Hornsby, Brown, LaBranche, Edwards, Sutherland, Santra (bib59) 2021; 29
Baden, El Sahly, Essink, Kotloff, Frey, Novak, Diemert, Spector, Rouphael, Creech (bib2) 2021; 384
(bib36) 2021
Emsley, Lohkamp, Scott, Cowtan (bib71) 2010; 66
Ju, Zhang, Ge, Wang, Sun, Ge, Yu, Shan, Zhou, Song (bib25) 2020; 584
Rathnasinghe, Jangra, Cupic, Martínez-Romero, Mulder, Kehrer, Yildiz, Choi, Mena, De Vrieze (bib44) 2021
Wang, Nair, Liu, Iketani, Luo, Guo, Wang, Yu, Zhang, Kwong (bib56) 2021; 593
Cao, Su, Guo, Sun, Deng, Bao, Zhu, Zhang, Zheng, Geng (bib5) 2020; 182
Plante, Liu, Liu, Xia, Johnson, Lokugamage, Zhang, Muruato, Zou, Fontes-Garfias (bib40) 2021; 592
Chi, Yan, Zhang, Zhang, Zhang, Hao, Zhang, Fan, Dong, Yang (bib9) 2020; 369
Maggi, Novazzi, Genoni, Baj, Spezia, Focosi, Zago, Colombo, Cassani, Pasciuta (bib33) 2021; 27
Wang, Zhang, Huang, Deng, Quan, Wang, Xu, Zhao, Li, Zhang (bib55) 2020; 182
Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib72) 2010; 66
Wu, Zhong, Zhang, Shuai, Zhang, Wen, Wang, Zhao, Song, Chen (bib61) 2020; 11
Vogel, Kanevsky, Che, Swanson, Muik, Vormehr, Kranz, Walzer, Hein, Guler (bib52) 2021; 592
Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang, Wang (bib30) 2020; 581
McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (bib35) 2007; 40
Xia, Zhang, Wang, Wang, Yang, Gao, Tan, Wu, Xu, Lou (bib62) 2021; 21
McCallum, De Marco, Lempp, Tortorici, Pinto, Walls, Beltramello, Chen, Liu, Zatta (bib74) 2021; 184
Gottlieb, Nirula, Chen, Boscia, Heller, Morris, Huhn, Cardona, Mocherla, Stosor (bib18) 2021; 325
Wang, Schmidt, Weisblum, Muecksch, Barnes, Finkin, Schaefer-Babajew, Cipolla, Gaebler, Lieberman (bib57) 2021; 592
Suryadevara, Shrihari, Gilchuk, VanBlargan, Binshtein, Zost, Nargi, Sutton, Winkler, Chen (bib49) 2021; 184
Oude Munnink, Sikkema, Nieuwenhuijse, Molenaar, Munger, Molenkamp, van der Spek, Tolsma, Rietveld, Brouwer (bib37) 2021; 371
Yurkovetskiy, Wang, Pascal, Tomkins-Tinch, Nyalile, Wang, Baum, Diehl, Dauphin, Carbone (bib67) 2020; 183
Zost (10.1016/j.immuni.2021.06.003_bib70) 2020; 584
Rambaut (10.1016/j.immuni.2021.06.003_bib43) 2020
Zhou (10.1016/j.immuni.2021.06.003_bib69) 2020; 579
Plante (10.1016/j.immuni.2021.06.003_bib40) 2021; 592
(10.1016/j.immuni.2021.06.003_bib36) 2021
Shi (10.1016/j.immuni.2021.06.003_bib47) 2020; 584
Emsley (10.1016/j.immuni.2021.06.003_bib71) 2010; 66
Diamond (10.1016/j.immuni.2021.06.003_bib11) 2021
Johnson & Johnson (10.1016/j.immuni.2021.06.003_bib24) 2021
McCoy (10.1016/j.immuni.2021.06.003_bib35) 2007; 40
Yurkovetskiy (10.1016/j.immuni.2021.06.003_bib67) 2020; 183
Ju (10.1016/j.immuni.2021.06.003_bib25) 2020; 584
Rathnasinghe (10.1016/j.immuni.2021.06.003_bib44) 2021
Callaway (10.1016/j.immuni.2021.06.003_bib4) 2021; 589
Hou (10.1016/j.immuni.2021.06.003_bib21) 2020; 370
Weissman (10.1016/j.immuni.2021.06.003_bib59) 2021; 29
Vogel (10.1016/j.immuni.2021.06.003_bib52) 2021; 592
Chi (10.1016/j.immuni.2021.06.003_bib9) 2020; 369
Fujino (10.1016/j.immuni.2021.06.003_bib15) 2021; 27
Laffeber (10.1016/j.immuni.2021.06.003_bib73) 2021; 433
Yu (10.1016/j.immuni.2021.06.003_bib63) 2019; 52
Oude Munnink (10.1016/j.immuni.2021.06.003_bib37) 2021; 371
Chan (10.1016/j.immuni.2021.06.003_bib7) 2021
Corbett (10.1016/j.immuni.2021.06.003_bib10) 2020; 383
Korber (10.1016/j.immuni.2021.06.003_bib26) 2020; 182
Pettersen (10.1016/j.immuni.2021.06.003_bib38) 2004; 25
Voysey (10.1016/j.immuni.2021.06.003_bib54) 2021; 397
Pinto (10.1016/j.immuni.2021.06.003_bib39) 2020; 583
Maggi (10.1016/j.immuni.2021.06.003_bib33) 2021; 27
Weinreich (10.1016/j.immuni.2021.06.003_bib58) 2021; 384
Sabino (10.1016/j.immuni.2021.06.003_bib46) 2021; 397
Xia (10.1016/j.immuni.2021.06.003_bib62) 2021; 21
Huang (10.1016/j.immuni.2021.06.003_bib22) 2021
Cerutti (10.1016/j.immuni.2021.06.003_bib6) 2021; 29
Sun (10.1016/j.immuni.2021.06.003_bib48) 2020
Adams (10.1016/j.immuni.2021.06.003_bib72) 2010; 66
Chen (10.1016/j.immuni.2021.06.003_bib8) 2021; 384
Volz (10.1016/j.immuni.2021.06.003_bib53) 2021; 184
Barnes (10.1016/j.immuni.2021.06.003_bib3) 2020; 588
(10.1016/j.immuni.2021.06.003_bib14) 2021
Yuan (10.1016/j.immuni.2021.06.003_bib65) 2020; 368
Lan (10.1016/j.immuni.2021.06.003_bib30) 2020; 581
Ge (10.1016/j.immuni.2021.06.003_bib16) 2021; 12
Cao (10.1016/j.immuni.2021.06.003_bib5) 2020; 182
Du (10.1016/j.immuni.2021.06.003_bib12) 2020; 183
Kreye (10.1016/j.immuni.2021.06.003_bib27) 2020; 183
McCallum (10.1016/j.immuni.2021.06.003_bib74) 2021; 184
Kupferschmidt (10.1016/j.immuni.2021.06.003_bib28) 2021; 371
Polack (10.1016/j.immuni.2021.06.003_bib41) 2020; 383
Liu (10.1016/j.immuni.2021.06.003_bib32) 2021; 118
Robbiani (10.1016/j.immuni.2021.06.003_bib45) 2020; 584
Gottlieb (10.1016/j.immuni.2021.06.003_bib18) 2021; 325
Wu (10.1016/j.immuni.2021.06.003_bib61) 2020; 11
Hansen (10.1016/j.immuni.2021.06.003_bib19) 2020; 369
Yuan (10.1016/j.immuni.2021.06.003_bib64) 2020; 369
Hoffmann (10.1016/j.immuni.2021.06.003_bib20) 2021; 184
(10.1016/j.immuni.2021.06.003_bib17) 2021
Liu (10.1016/j.immuni.2021.06.003_bib31) 2020; 584
Baden (10.1016/j.immuni.2021.06.003_bib2) 2021; 384
Wang (10.1016/j.immuni.2021.06.003_bib57) 2021; 592
Wu (10.1016/j.immuni.2021.06.003_bib60) 2021; 384
Yuan (10.1016/j.immuni.2021.06.003_bib66) 2021
Tian (10.1016/j.immuni.2021.06.003_bib51) 2021
Tegally (10.1016/j.immuni.2021.06.003_bib50) 2021; 27
(10.1016/j.immuni.2021.06.003_bib42) 2020
Wang (10.1016/j.immuni.2021.06.003_bib55) 2020; 182
Suryadevara (10.1016/j.immuni.2021.06.003_bib49) 2021; 184
Janson (10.1016/j.immuni.2021.06.003_bib23) 2017; 33
Wang (10.1016/j.immuni.2021.06.003_bib56) 2021; 593
References_xml – volume: 369
  start-page: 1010
  year: 2020
  end-page: 1014
  ident: bib19
  article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail
  publication-title: Science
– volume: 11
  start-page: 4081
  year: 2020
  ident: bib61
  article-title: A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge
  publication-title: Nat. Commun.
– volume: 433
  start-page: 167058
  year: 2021
  ident: bib73
  article-title: Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants
  publication-title: Journal of molecular biology
– volume: 384
  start-page: 1468
  year: 2021
  end-page: 1470
  ident: bib60
  article-title: Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine
  publication-title: N. Engl. J. Med.
– year: 2021
  ident: bib44
  article-title: The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera
  publication-title: medRxiv
– volume: 397
  start-page: 452
  year: 2021
  end-page: 455
  ident: bib46
  article-title: Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence
  publication-title: Lancet
– volume: 384
  start-page: 238
  year: 2021
  end-page: 251
  ident: bib58
  article-title: REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19
  publication-title: N. Engl. J. Med.
– volume: 27
  start-page: 1249
  year: 2021
  end-page: 1251
  ident: bib33
  article-title: Imported SARS-COV-2 Variant P.1 Detected in Traveler Returning from Brazil to Italy
  publication-title: Emerg. Infect. Dis.
– volume: 584
  start-page: 120
  year: 2020
  end-page: 124
  ident: bib47
  article-title: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2
  publication-title: Nature
– volume: 592
  start-page: 616
  year: 2021
  end-page: 622
  ident: bib57
  article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants
  publication-title: Nature
– year: 2020
  ident: bib42
  article-title: . Investigation of novel SARS-COV-2 variant: Variant of Concern 202012/01: technical briefings
– start-page: eabh1139
  year: 2021
  ident: bib66
  article-title: Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants
  publication-title: Science
– year: 2021
  ident: bib22
  article-title: Serum sample neutralisation of BBIBP-CorV and ZF2001 vaccines to SARS-CoV-2 501Y.V2
  publication-title: Lancet Microbe
– volume: 589
  start-page: 500
  year: 2021
  end-page: 501
  ident: bib4
  article-title: Fast-spreading COVID variant can elude immune responses
  publication-title: Nature
– volume: 21
  start-page: 39
  year: 2021
  end-page: 51
  ident: bib62
  article-title: Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial
  publication-title: Lancet Infect. Dis.
– volume: 118
  year: 2021
  ident: bib32
  article-title: Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2021
  ident: bib24
  article-title: Johnson & Johnson COVID-19 Vaccine Authorized by U.S. FDA For Emergency Use - First Single-Shot Vaccine in Fight Against Global Pandemic
– volume: 27
  start-page: 440
  year: 2021
  end-page: 446
  ident: bib50
  article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa
  publication-title: Nat. Med.
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bib38
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 369
  start-page: 650
  year: 2020
  end-page: 655
  ident: bib9
  article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2
  publication-title: Science
– volume: 584
  start-page: 115
  year: 2020
  end-page: 119
  ident: bib25
  article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection
  publication-title: Nature
– year: 2021
  ident: bib11
  article-title: SARS-CoV-2 variants show resistance to neutralization by many monoclonal and serum-derived polyclonal antibodies
  publication-title: Res. Sq
– volume: 33
  start-page: 444
  year: 2017
  end-page: 446
  ident: bib23
  article-title: PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL
  publication-title: Bioinformatics
– volume: 182
  start-page: 713
  year: 2020
  end-page: 721.e9
  ident: bib55
  article-title: Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2
  publication-title: Cell
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: bib72
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta crystallographica. Section D, Biological crystallography
– volume: 183
  start-page: 1058
  year: 2020
  end-page: 1069.e19
  ident: bib27
  article-title: A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model
  publication-title: Cell
– volume: 384
  start-page: 229
  year: 2021
  end-page: 237
  ident: bib8
  article-title: SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19
  publication-title: N. Engl. J. Med.
– volume: 583
  start-page: 290
  year: 2020
  end-page: 295
  ident: bib39
  article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
  publication-title: Nature
– volume: 593
  start-page: 130
  year: 2021
  end-page: 135
  ident: bib56
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
– volume: 371
  start-page: 172
  year: 2021
  end-page: 177
  ident: bib37
  article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans
  publication-title: Science
– year: 2021
  ident: bib36
  article-title: Novavax COVID-19 Vaccine Demonstrates 89.3% Efficacy in UK Phase 3 Trial
– volume: 27
  start-page: 1243
  year: 2021
  end-page: 1245
  ident: bib15
  article-title: Novel SARS-CoV-2 Variant Identified in Travelers from Brazil to Japan
  publication-title: Emerg. Infect. Dis.
– volume: 588
  start-page: 682
  year: 2020
  end-page: 687
  ident: bib3
  article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies
  publication-title: Nature
– volume: 370
  start-page: 1464
  year: 2020
  end-page: 1468
  ident: bib21
  article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo
  publication-title: Science
– volume: 182
  start-page: 812
  year: 2020
  end-page: 827.e19
  ident: bib26
  article-title: Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus
  publication-title: Cell
– volume: 584
  start-page: 437
  year: 2020
  end-page: 442
  ident: bib45
  article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals
  publication-title: Nature
– volume: 384
  start-page: 403
  year: 2021
  end-page: 416
  ident: bib2
  article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine
  publication-title: N. Engl. J. Med.
– volume: 183
  start-page: 1013
  year: 2020
  end-page: 1023.e13
  ident: bib12
  article-title: Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy
  publication-title: Cell
– volume: 184
  start-page: 64
  year: 2021
  end-page: 75.e11
  ident: bib53
  article-title: Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity
  publication-title: Cell
– volume: 52
  start-page: 472
  year: 2019
  end-page: 477
  ident: bib63
  article-title: Aquarium: an automatic data-processing and experiment information management system for biological macromolecular crystallography beamlines
  publication-title: J. Appl. Cryst.
– volume: 369
  start-page: 1119
  year: 2020
  end-page: 1123
  ident: bib64
  article-title: Structural basis of a shared antibody response to SARS-CoV-2
  publication-title: Science
– volume: 184
  start-page: 2384
  year: 2021
  end-page: 2393.e12
  ident: bib20
  article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies
  publication-title: Cell
– volume: 383
  start-page: 2603
  year: 2020
  end-page: 2615
  ident: bib41
  article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine
  publication-title: N. Engl. J. Med.
– volume: 592
  start-page: 283
  year: 2021
  end-page: 289
  ident: bib52
  article-title: BNT162b vaccines protect rhesus macaques from SARS-CoV-2
  publication-title: Nature
– volume: 184
  start-page: 2332
  year: 2021
  end-page: 2347.e2316
  ident: bib74
  article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2
  publication-title: Cell
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  ident: bib35
  article-title: Phaser crystallographic software
  publication-title: J. Appl. Cryst.
– volume: 371
  start-page: 9
  year: 2021
  end-page: 10
  ident: bib28
  article-title: Fast-spreading U.K. virus variant raises alarms
  publication-title: Science
– volume: 581
  start-page: 215
  year: 2020
  end-page: 220
  ident: bib30
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
– volume: 184
  start-page: 2316
  year: 2021
  end-page: 2331.e15
  ident: bib49
  article-title: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein
  publication-title: Cell
– volume: 368
  start-page: 630
  year: 2020
  end-page: 633
  ident: bib65
  article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV
  publication-title: Science
– volume: 183
  start-page: 739
  year: 2020
  end-page: 751.e8
  ident: bib67
  article-title: Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant
  publication-title: Cell
– volume: 29
  start-page: 23
  year: 2021
  end-page: 31.e4
  ident: bib59
  article-title: D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization
  publication-title: Cell Host Microbe
– year: 2020
  ident: bib48
  article-title: Characterization and structural basis of a lethal mouse-adapted SARS-CoV-2
  publication-title: bioRxiv
– volume: 182
  start-page: 73
  year: 2020
  end-page: 84.e16
  ident: bib5
  article-title: Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells
  publication-title: Cell
– volume: 325
  start-page: 632
  year: 2021
  end-page: 644
  ident: bib18
  article-title: Effect of Bamlanivimab as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19: A Randomized Clinical Trial
  publication-title: JAMA
– year: 2021
  ident: bib51
  article-title: Mutation N501Y in RBD of Spike Protein Strengthens the Interaction between COVID-19 and its Receptor ACE2
  publication-title: bioRxiv
– volume: 383
  start-page: 1544
  year: 2020
  end-page: 1555
  ident: bib10
  article-title: Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates
  publication-title: N. Engl. J. Med.
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  ident: bib71
  article-title: Features and development of Coot
  publication-title: Acta crystallographica. Section D, Biological crystallography
– volume: 397
  start-page: 99
  year: 2021
  end-page: 111
  ident: bib54
  article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK
  publication-title: Lancet
– year: 2020
  ident: bib43
  article-title: Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib69
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 584
  start-page: 443
  year: 2020
  end-page: 449
  ident: bib70
  article-title: Potently neutralizing and protective human antibodies against SARS-CoV-2
  publication-title: Nature
– volume: 592
  start-page: 116
  year: 2021
  end-page: 121
  ident: bib40
  article-title: Spike mutation D614G alters SARS-CoV-2 fitness
  publication-title: Nature
– volume: 584
  start-page: 450
  year: 2020
  end-page: 456
  ident: bib31
  article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike
  publication-title: Nature
– year: 2021
  ident: bib17
  article-title: COVID-19 Viral Genome Analysis Pipeline
– year: 2021
  ident: bib7
  article-title: An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants
  publication-title: Sci. Adv.
– volume: 29
  start-page: 819
  year: 2021
  end-page: 833.e7
  ident: bib6
  article-title: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite
  publication-title: Cell Host Microbe
– volume: 12
  start-page: 250
  year: 2021
  ident: bib16
  article-title: Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry
  publication-title: Nat. Commun.
– year: 2021
  ident: bib14
  article-title: Coronavirus Disease 2019 (COVID-19)
– volume: 184
  start-page: 2332
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib74
  article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.028
– volume: 27
  start-page: 1243
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib15
  article-title: Novel SARS-CoV-2 Variant Identified in Travelers from Brazil to Japan
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2704.210138
– volume: 592
  start-page: 283
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib52
  article-title: BNT162b vaccines protect rhesus macaques from SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-021-03275-y
– year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib17
– volume: 182
  start-page: 73
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib5
  article-title: Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.025
– volume: 589
  start-page: 500
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib4
  article-title: Fast-spreading COVID variant can elude immune responses
  publication-title: Nature
  doi: 10.1038/d41586-021-00121-z
– volume: 383
  start-page: 2603
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib41
  article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2034577
– volume: 11
  start-page: 4081
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib61
  article-title: A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17972-1
– volume: 27
  start-page: 1249
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib33
  article-title: Imported SARS-COV-2 Variant P.1 Detected in Traveler Returning from Brazil to Italy
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2704.210183
– volume: 184
  start-page: 2384
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib20
  article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.036
– volume: 592
  start-page: 616
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib57
  article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants
  publication-title: Nature
  doi: 10.1038/s41586-021-03324-6
– volume: 579
  start-page: 270
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib69
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 369
  start-page: 1010
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib19
  article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail
  publication-title: Science
  doi: 10.1126/science.abd0827
– volume: 384
  start-page: 238
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib58
  article-title: REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2035002
– volume: 29
  start-page: 23
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib59
  article-title: D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.11.012
– volume: 66
  start-page: 486
  year: 2010
  ident: 10.1016/j.immuni.2021.06.003_bib71
  article-title: Features and development of Coot
  publication-title: Acta crystallographica. Section D, Biological crystallography
  doi: 10.1107/S0907444910007493
– volume: 183
  start-page: 1058
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib27
  article-title: A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.049
– year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib24
– volume: 184
  start-page: 2316
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib49
  article-title: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.029
– volume: 183
  start-page: 1013
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib12
  article-title: Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.035
– volume: 118
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib32
  article-title: Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 584
  start-page: 450
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib31
  article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike
  publication-title: Nature
  doi: 10.1038/s41586-020-2571-7
– volume: 27
  start-page: 440
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib50
  article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01255-3
– volume: 588
  start-page: 682
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib3
  article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies
  publication-title: Nature
  doi: 10.1038/s41586-020-2852-1
– volume: 584
  start-page: 443
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib70
  article-title: Potently neutralizing and protective human antibodies against SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-020-2548-6
– year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib43
– volume: 325
  start-page: 632
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib18
  article-title: Effect of Bamlanivimab as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19: A Randomized Clinical Trial
  publication-title: JAMA
  doi: 10.1001/jama.2021.0202
– year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib36
– volume: 21
  start-page: 39
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib62
  article-title: Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30831-8
– volume: 29
  start-page: 819
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib6
  article-title: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.03.005
– volume: 384
  start-page: 1468
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib60
  article-title: Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2102179
– volume: 33
  start-page: 444
  year: 2017
  ident: 10.1016/j.immuni.2021.06.003_bib23
  article-title: PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw638
– volume: 584
  start-page: 437
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib45
  article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals
  publication-title: Nature
  doi: 10.1038/s41586-020-2456-9
– volume: 581
  start-page: 215
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib30
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
  doi: 10.1038/s41586-020-2180-5
– volume: 40
  start-page: 658
  year: 2007
  ident: 10.1016/j.immuni.2021.06.003_bib35
  article-title: Phaser crystallographic software
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889807021206
– year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib51
  article-title: Mutation N501Y in RBD of Spike Protein Strengthens the Interaction between COVID-19 and its Receptor ACE2
  publication-title: bioRxiv
– volume: 369
  start-page: 1119
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib64
  article-title: Structural basis of a shared antibody response to SARS-CoV-2
  publication-title: Science
  doi: 10.1126/science.abd2321
– volume: 52
  start-page: 472
  year: 2019
  ident: 10.1016/j.immuni.2021.06.003_bib63
  article-title: Aquarium: an automatic data-processing and experiment information management system for biological macromolecular crystallography beamlines
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S1600576719001183
– volume: 183
  start-page: 739
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib67
  article-title: Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.032
– volume: 368
  start-page: 630
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib65
  article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV
  publication-title: Science
  doi: 10.1126/science.abb7269
– volume: 433
  start-page: 167058
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib73
  article-title: Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants
  publication-title: Journal of molecular biology
  doi: 10.1016/j.jmb.2021.167058
– volume: 384
  start-page: 403
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib2
  article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2035389
– volume: 369
  start-page: 650
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib9
  article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2
  publication-title: Science
  doi: 10.1126/science.abc6952
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.immuni.2021.06.003_bib38
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 182
  start-page: 713
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib55
  article-title: Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.008
– volume: 12
  start-page: 250
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib16
  article-title: Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20501-9
– year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib44
  article-title: The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera
  publication-title: medRxiv
– year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib42
– year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib48
  article-title: Characterization and structural basis of a lethal mouse-adapted SARS-CoV-2
  publication-title: bioRxiv
– volume: 583
  start-page: 290
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib39
  article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
  publication-title: Nature
  doi: 10.1038/s41586-020-2349-y
– volume: 397
  start-page: 452
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib46
  article-title: Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00183-5
– start-page: eabh1139
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib66
  article-title: Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants
  publication-title: Science
– year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib14
– volume: 593
  start-page: 130
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib56
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
  doi: 10.1038/s41586-021-03398-2
– volume: 182
  start-page: 812
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib26
  article-title: Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.043
– year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib22
  article-title: Serum sample neutralisation of BBIBP-CorV and ZF2001 vaccines to SARS-CoV-2 501Y.V2
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(21)00082-3
– volume: 371
  start-page: 9
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib28
  article-title: Fast-spreading U.K. virus variant raises alarms
  publication-title: Science
  doi: 10.1126/science.371.6524.9
– volume: 384
  start-page: 229
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib8
  article-title: SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2029849
– volume: 371
  start-page: 172
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib37
  article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans
  publication-title: Science
  doi: 10.1126/science.abe5901
– volume: 184
  start-page: 64
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib53
  article-title: Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.020
– year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib11
  article-title: SARS-CoV-2 variants show resistance to neutralization by many monoclonal and serum-derived polyclonal antibodies
  publication-title: Res. Sq
– year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib7
  article-title: An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants
  publication-title: Sci. Adv.
– volume: 584
  start-page: 115
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib25
  article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection
  publication-title: Nature
  doi: 10.1038/s41586-020-2380-z
– volume: 397
  start-page: 99
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib54
  article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)32661-1
– volume: 584
  start-page: 120
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib47
  article-title: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-020-2381-y
– volume: 370
  start-page: 1464
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib21
  article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo
  publication-title: Science
  doi: 10.1126/science.abe8499
– volume: 383
  start-page: 1544
  year: 2020
  ident: 10.1016/j.immuni.2021.06.003_bib10
  article-title: Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2024671
– volume: 66
  start-page: 213
  year: 2010
  ident: 10.1016/j.immuni.2021.06.003_bib72
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta crystallographica. Section D, Biological crystallography
  doi: 10.1107/S0907444909052925
– volume: 592
  start-page: 116
  year: 2021
  ident: 10.1016/j.immuni.2021.06.003_bib40
  article-title: Spike mutation D614G alters SARS-CoV-2 fitness
  publication-title: Nature
  doi: 10.1038/s41586-020-2895-3
SSID ssj0014590
Score 2.6744456
Snippet Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current...
SummarySevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1611
SubjectTerms ACE2
Angiotensin-converting enzyme 2
Angiotensin-Converting Enzyme 2 - metabolism
Animals
Antibodies
Antibodies, Monoclonal - chemistry
Antibodies, Monoclonal - immunology
Antibodies, Neutralizing - chemistry
Antibodies, Neutralizing - immunology
antibody
Antigenic Variation - genetics
Antigens
Coronaviruses
COVID-19
COVID-19 - immunology
COVID-19 - virology
COVID-19 vaccines
Crystal structure
Disease transmission
Domains
Host range
Host Specificity
Humans
immune escape
Immune Evasion - genetics
Immunotherapy
Infections
Mice
Mink
Monoclonal antibodies
Mutation
Neutralization
Pandemics
Protein Binding
Proteins
Receptors
RNA polymerase
SARS-CoV-2
SARS-CoV-2 - genetics
SARS-CoV-2 - immunology
SARS-CoV-2 - physiology
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - immunology
Spike Glycoprotein, Coronavirus - metabolism
Structural analysis
Vaccines
variant of concern
Viral diseases
Virus Internalization
Title Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species
URI https://dx.doi.org/10.1016/j.immuni.2021.06.003
https://www.ncbi.nlm.nih.gov/pubmed/34166623
https://www.proquest.com/docview/2551195043
https://www.proquest.com/docview/2545596610
https://pubmed.ncbi.nlm.nih.gov/PMC8185182
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYQE2gv08bYKGPoJu01am3n52NXgdDQeKAD-mbZjaMF0QSRZhJ_Bf_y7uwkWscD0h5bO5WbO9vf-b77zNhXqUVq4okMjOGG0ow4pdIsDERaJNxmXKfWEWQv4rOr8PsiWmyxWV8LQ7TKbu33a7pbrbtvxt3bHN-X5XhOVEIMwqkIBTeahAp-ZZi6Ir7FtyGTEEbZZOAdYu--fM5xvEpXg4FRouBOxbO_Ouv59vQcfv7LovxrWzp9y950eBKmfsjv2Jat9tiOv2HycY_t_uhy5-_ZU68_AnUB8-nlPJjV14GA3xgt4-uFVeuz8g2QqhN6JVS2decgvlITbENkKVhZKhYum1UDusoBASR4re9HWNfQNhamsxOBP0KEmfqhAapgAeIt-WNHoOJOjM_32dXpyc_ZWdBdxxAsoyhZB8JwbkhO3mRFJHKSps_zOC7Q2NJIkdtJYhLNM8NzLfJImlgYShtKLRHDIC77wLarurIHDGxY8CjFuNwmOsykzIplasSS4JOwuohGTPZWUMtOq5yuzLhTPSntVnnbKbKdctw8OWLB8NS91-p4oX_SG1ht-JzC7eSFJ496f1DdnG8UBmfuUt0Qm78MzThbKQWjK1u31CfEEA4x0WTEPnr3GYaKeAJjSUHD2nCsoQMpgW-2VOUvpwhOqAsDxcP__kOf2Gv6RIfWXB6x7fVDaz8j2lqbY_Zqen55c37sptUfPbUrPg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEZQLgvLoQoFB4hrt2s7zuKxabaHtgW3R3ix746hBbFI1G6T-Cv4yM3YSsfRQievaibwZP77xfPMNY5-kFqmJJzIwhhsKM-KSSrMwEGmRcJtxnVpHkD2P55fhl2W03GGzPheGaJXd3u_3dLdbd7-Mu685vi7L8YKohOiEUxIKHjRJ-oA9RDSQUP2Gk-XnIZQQRtlkIB5i9z5_zpG8SpeEgW6i4E7Gs6-ddfd8uos__6VR_nUuHT9jTztACVM_5udsx1b77JEvMXm7zx6fdcHzF-x3L0ACdQGL6bdFMKu_BwJ-obuM3xfWrQ_LN0CyTjgtobKtuwjxqZpgG2JLwdpStnDZrBvQVQ6IIMGLfd_Cpoa2sTCdHQl8CTFm6psGKIUFiLjk7x2BsjvRQX_JLo-PLmbzoKvHEKyiKNkEwnBuSE_eZEUkctKmz_M4LtDa0kiR20liEs0zw3Mt8kiaWBiKG0otEcQgMHvFdqu6sgcMbFjwKEXH3CY6zKTMilVqxIrwk7C6iEZM9lZQq06snGpm_FQ9K-2H8rZTZDvlyHlyxILhqWsv1nFP_6Q3sNqadArPk3uePOzng-oWfaPQO3NVdUNs_jg043KlGIyubN1SnxB9OARFkxF77afPMFQEFOhMChrW1sQaOpAU-HZLVV45SXCCXegpvvnvP_SB7c0vzk7V6cn517fsCbXQDTaXh2x3c9Padwi9Nua9W1p_ANRdLLo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+SARS-CoV-2+variant+mutations+reveals+neutralization+escape+mechanisms+and+the+ability+to+use+ACE2+receptors+from+additional+species&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Wang%2C+Ruoke&rft.au=Zhang%2C+Qi&rft.au=Ge%2C+Jiwan&rft.au=Ren%2C+Wenlin&rft.date=2021-07-13&rft.pub=Elsevier+Limited&rft.issn=1074-7613&rft.eissn=1097-4180&rft.volume=54&rft.issue=7&rft.spage=1611&rft_id=info:doi/10.1016%2Fj.immuni.2021.06.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon