Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal ant...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 54; no. 7; pp. 1611 - 1621.e5 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
13.07.2021
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242–244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection.
[Display omitted]
•SARS-CoV-2 variants of concern are resistant to antibody neutralization•B.1.351 variant is the most resistant, followed by P.1 and B.1.1.7•The resistance hierarchy corresponds to mutations in NTD and RBD•B.1.351 and P.1 acquire the ability to use mouse and mink ACE2 for entry
SARS-CoV-2 variants continue to emerge and spread around the world. Wang et al. conduct comprehensive mutational and crystal structure analyses of the variants and show that variants of concern, and the South African variant B.1.351 in particular, are resistant to many monoclonal antibodies and COVID-19 convalescent plasma and acquire the ability to use mouse and mink ACE2 receptors for infection. |
---|---|
AbstractList | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242–244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection.
[Display omitted]
•SARS-CoV-2 variants of concern are resistant to antibody neutralization•B.1.351 variant is the most resistant, followed by P.1 and B.1.1.7•The resistance hierarchy corresponds to mutations in NTD and RBD•B.1.351 and P.1 acquire the ability to use mouse and mink ACE2 for entry
SARS-CoV-2 variants continue to emerge and spread around the world. Wang et al. conduct comprehensive mutational and crystal structure analyses of the variants and show that variants of concern, and the South African variant B.1.351 in particular, are resistant to many monoclonal antibodies and COVID-19 convalescent plasma and acquire the ability to use mouse and mink ACE2 receptors for infection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242-244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242–244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection. SARS-CoV-2 variants continue to emerge and spread around the world. Wang et al. conduct comprehensive mutational and crystal structure analyses of the variants and show that variants of concern, and the South African variant B.1.351 in particular, are resistant to many monoclonal antibodies and COVID-19 convalescent plasma and acquire the ability to use mouse and mink ACE2 receptors for infection. SummarySevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242–244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242-244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242-244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection. |
Author | Shi, Xuanling Zhang, Qi Yu, Fengting Ding, Qiang Feng, Yingmei Ju, Bin Ge, Jiwan Lan, Jun Wang, Xinquan Zhang, Zheng Ren, Wenlin Su, Bin Liao, Huiyu Zhang, Linqi Chen, Peng Zhang, Fujie Wang, Ruoke Zhang, Tong Zhang, Rui Li, Xuemei |
Author_xml | – sequence: 1 givenname: Ruoke surname: Wang fullname: Wang, Ruoke organization: NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Qi surname: Zhang fullname: Zhang, Qi organization: NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Jiwan surname: Ge fullname: Ge, Jiwan organization: The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Wenlin surname: Ren fullname: Ren, Wenlin organization: Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China – sequence: 6 givenname: Jun surname: Lan fullname: Lan, Jun organization: The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 7 givenname: Bin surname: Ju fullname: Ju, Bin organization: Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China – sequence: 8 givenname: Bin surname: Su fullname: Su, Bin organization: Beijing Youan Hospital, Capital Medical University, Beijing 100069, China – sequence: 9 givenname: Fengting surname: Yu fullname: Yu, Fengting organization: Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8, Jing Shun Dong Jie, Chaoyang, 100015 District Beijing, China – sequence: 10 givenname: Peng surname: Chen fullname: Chen, Peng organization: NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China – sequence: 11 givenname: Huiyu surname: Liao fullname: Liao, Huiyu organization: Beijing Youan Hospital, Capital Medical University, Beijing 100069, China – sequence: 12 givenname: Yingmei surname: Feng fullname: Feng, Yingmei organization: Beijing Youan Hospital, Capital Medical University, Beijing 100069, China – sequence: 13 givenname: Xuemei surname: Li fullname: Li, Xuemei organization: Beijing Youan Hospital, Capital Medical University, Beijing 100069, China – sequence: 14 givenname: Xuanling surname: Shi fullname: Shi, Xuanling organization: NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China – sequence: 15 givenname: Zheng surname: Zhang fullname: Zhang, Zheng organization: Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China – sequence: 16 givenname: Fujie surname: Zhang fullname: Zhang, Fujie organization: Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8, Jing Shun Dong Jie, Chaoyang, 100015 District Beijing, China – sequence: 17 givenname: Qiang surname: Ding fullname: Ding, Qiang organization: Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China – sequence: 18 givenname: Tong surname: Zhang fullname: Zhang, Tong email: zt_doc@ccmu.edu.cn organization: Beijing Youan Hospital, Capital Medical University, Beijing 100069, China – sequence: 19 givenname: Xinquan surname: Wang fullname: Wang, Xinquan email: xinquanwang@mail.tsinghua.edu.cn organization: The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 20 givenname: Linqi surname: Zhang fullname: Zhang, Linqi email: zhanglinqi@tsinghua.edu.cn organization: NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34166623$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl2L1DAUhousuB_6D0QC3njTmo8mbb0QhmH9gAXBVW9D0pw6GdpkTNKB8U_4l02dcdG90KuE5Dlvzsn7XhZnzjsoiqcEVwQT8XJb2Wmana0opqTCosKYPSguCO6asiYtPlv2TV02grDz4jLGLcak5h1-VJyzmgghKLsofqycGg_RRuQHdLv6eFuu_ZeSor0KVrmEpjmpZL2LKMAe1BiRgzkFNdrvv84RxF7tAE3Qb5SzcYpIOYPSBpDSdrTpgJJHcwS0Wl_TLNLDLvkQ0RD8hJQxdlFRI4o76C3Ex8XDIb8CT07rVfH5zfWn9bvy5sPb9-vVTdlz3qSSakJ0RzjX3cCpqZuuNkaIgbaaaUYN4EY3inSaGEUNZ1pQLVjXMMVoy0jNrorXR93drCcwPbhlKLkLdlLhIL2y8u8bZzfyq9_LlrSctDQLvDgJBP9thpjkZGMP46gc-DlKymvOOyEIzujze-jWzyEPvVCckI7jmmXq2Z8d3bXy26sM1EegDz7GAMMdQrBcIiG38hgJuURCYiFzJHLZq3tlvT16muey4_-KT98E2Yu9hSBjdsn1YGy2Mknj7b8FfgISuNYV |
CitedBy_id | crossref_primary_10_1016_j_ebiom_2021_103643 crossref_primary_10_1016_j_cell_2022_03_038 crossref_primary_10_1007_s12551_023_01153_7 crossref_primary_10_1016_j_xinn_2021_100181 crossref_primary_10_1093_bib_bbab375 crossref_primary_10_1099_jgv_0_001735 crossref_primary_10_3390_covid3090100 crossref_primary_10_1002_jmv_27376 crossref_primary_10_1016_j_drup_2023_100991 crossref_primary_10_3390_v14061332 crossref_primary_10_1002_mco2_90 crossref_primary_10_1016_j_clicom_2025_02_001 crossref_primary_10_1016_j_isci_2021_103393 crossref_primary_10_1016_j_intimp_2021_108424 crossref_primary_10_1111_imr_13431 crossref_primary_10_1016_j_celrep_2022_111335 crossref_primary_10_1016_j_celrep_2023_112421 crossref_primary_10_1186_s12985_022_01827_w crossref_primary_10_3390_biomedinformatics4010022 crossref_primary_10_1016_j_celrep_2022_110770 crossref_primary_10_16984_saufenbilder_1312911 crossref_primary_10_3390_ijms25105499 crossref_primary_10_1186_s12985_022_01895_y crossref_primary_10_3390_microorganisms12040720 crossref_primary_10_1016_j_cell_2021_12_002 crossref_primary_10_1128_Spectrum_00965_21 crossref_primary_10_3389_fimmu_2022_836232 crossref_primary_10_1002_advs_202203499 crossref_primary_10_1126_scitranslmed_abm4908 crossref_primary_10_1073_pnas_2122954119 crossref_primary_10_1038_s41576_021_00408_x crossref_primary_10_3390_jmp3040018 crossref_primary_10_1038_s41467_023_37926_7 crossref_primary_10_1128_jvi_00814_22 crossref_primary_10_3389_fphar_2022_983505 crossref_primary_10_1002_jmv_27667 crossref_primary_10_3390_diagnostics11112092 crossref_primary_10_1038_s41597_024_03997_4 crossref_primary_10_1039_D1CS01170G crossref_primary_10_3390_vaccines10101699 crossref_primary_10_1016_j_vaccine_2023_08_076 crossref_primary_10_3389_fimmu_2023_1160283 crossref_primary_10_1002_2211_5463_13454 crossref_primary_10_3390_v14050854 crossref_primary_10_3390_math12172738 crossref_primary_10_3390_molecules27061882 crossref_primary_10_1021_acs_jmedchem_2c00117 crossref_primary_10_1002_cbf_3766 crossref_primary_10_1038_s41590_023_01449_6 crossref_primary_10_1002_jmv_27825 crossref_primary_10_3389_fimmu_2024_1374913 crossref_primary_10_1371_journal_ppat_1010161 crossref_primary_10_1038_s41467_022_30617_9 crossref_primary_10_1126_science_abh1139 crossref_primary_10_3389_fimmu_2022_985478 crossref_primary_10_1007_s11684_023_1034_6 crossref_primary_10_1172_JCI152702 crossref_primary_10_25259_AUJMSR_8_2022 crossref_primary_10_3389_fimmu_2021_766821 crossref_primary_10_3390_microorganisms9071389 crossref_primary_10_1002_jmv_29611 crossref_primary_10_1016_j_celrep_2024_114265 crossref_primary_10_1038_s41590_022_01248_5 crossref_primary_10_1186_s13578_022_00794_7 crossref_primary_10_1002_smtd_202200387 crossref_primary_10_1016_j_celrep_2022_110786 crossref_primary_10_1016_j_celrep_2022_110387 crossref_primary_10_1038_s41421_022_00449_4 crossref_primary_10_1007_s00430_022_00729_6 crossref_primary_10_1360_nso_20220005 crossref_primary_10_1038_s41467_022_35642_2 crossref_primary_10_1093_ve_veac064 crossref_primary_10_1016_j_vaccine_2022_01_021 crossref_primary_10_1186_s12967_021_03208_3 crossref_primary_10_1016_j_chom_2022_09_018 crossref_primary_10_62347_NDGV1857 crossref_primary_10_1126_sciimmunol_abo3425 crossref_primary_10_1128_spectrum_03260_22 crossref_primary_10_3389_fddsv_2023_1304129 crossref_primary_10_1038_s41467_023_36761_0 crossref_primary_10_3389_fimmu_2022_854952 crossref_primary_10_1016_j_antiviral_2022_105383 crossref_primary_10_1016_S2666_5247_23_00011_3 crossref_primary_10_1002_jmv_28138 crossref_primary_10_1016_j_celrep_2021_109708 crossref_primary_10_1038_s41467_024_54746_5 crossref_primary_10_3389_fimmu_2021_730766 crossref_primary_10_1111_imr_13084 crossref_primary_10_1038_s41598_022_09845_y crossref_primary_10_1128_mbio_00171_23 crossref_primary_10_3389_fimmu_2022_869809 crossref_primary_10_1002_rmv_2346 crossref_primary_10_1002_rmv_2347 crossref_primary_10_1038_s42003_022_04193_z crossref_primary_10_1007_s10930_022_10073_6 crossref_primary_10_5662_wjm_v14_i3_89761 crossref_primary_10_1016_j_bsheal_2021_08_003 crossref_primary_10_1016_j_vaccine_2023_11_037 crossref_primary_10_1126_scitranslmed_abn8543 crossref_primary_10_1038_s41392_024_01917_x crossref_primary_10_1038_s41598_024_77087_1 crossref_primary_10_1038_s41422_022_00644_8 crossref_primary_10_1080_22221751_2022_2095308 crossref_primary_10_1002_advs_202406980 crossref_primary_10_3103_S0891416823030072 crossref_primary_10_1016_j_apsb_2022_09_011 crossref_primary_10_1080_22221751_2024_2412990 crossref_primary_10_3389_fimmu_2023_1288794 crossref_primary_10_1038_s41591_023_02483_5 crossref_primary_10_1080_21645515_2022_2057161 crossref_primary_10_1136_bmjopen_2021_057281 crossref_primary_10_1016_j_isci_2022_104043 crossref_primary_10_1007_s00894_023_05509_4 crossref_primary_10_1016_j_jcv_2022_105162 crossref_primary_10_1038_s41598_022_05325_5 crossref_primary_10_1111_sji_13345 crossref_primary_10_3389_fimmu_2023_1259386 crossref_primary_10_1186_s12985_022_01771_9 crossref_primary_10_1002_jmv_27735 crossref_primary_10_1039_D3MD00222E crossref_primary_10_3390_vaccines9091044 crossref_primary_10_3390_vaccines10060919 crossref_primary_10_4081_monaldi_2022_2337 crossref_primary_10_3390_vaccines9101052 crossref_primary_10_1093_nsr_nwab167 crossref_primary_10_1016_j_bbadis_2023_166959 crossref_primary_10_1016_j_csbj_2023_02_019 crossref_primary_10_1016_j_ebiom_2024_105354 crossref_primary_10_1128_spectrum_01659_21 crossref_primary_10_1128_spectrum_02212_21 crossref_primary_10_1111_tbed_14714 crossref_primary_10_1016_j_celrep_2021_110156 crossref_primary_10_1126_scitranslmed_abo3332 crossref_primary_10_1089_regen_2022_0021 crossref_primary_10_1016_j_gendis_2022_11_016 crossref_primary_10_1007_s40259_022_00529_7 crossref_primary_10_1186_s12929_022_00823_0 crossref_primary_10_1016_j_bpc_2024_107253 crossref_primary_10_15212_ZOONOSES_2023_0032 crossref_primary_10_3390_vaccines11040857 crossref_primary_10_1038_s41467_022_30222_w crossref_primary_10_3390_v14081769 crossref_primary_10_3390_cancers16020298 crossref_primary_10_1038_s41467_023_43447_0 crossref_primary_10_1016_j_str_2022_07_005 crossref_primary_10_1007_s12247_023_09713_w crossref_primary_10_1038_s41421_021_00347_1 crossref_primary_10_3389_fimmu_2022_1010105 crossref_primary_10_1038_s41467_024_51046_w crossref_primary_10_1128_spectrum_02366_21 crossref_primary_10_1080_19420862_2022_2031483 crossref_primary_10_1016_j_cell_2022_04_029 crossref_primary_10_3390_ijerph191912136 crossref_primary_10_1038_s41586_022_05053_w crossref_primary_10_1080_22221751_2023_2245921 crossref_primary_10_3389_fimmu_2022_980435 crossref_primary_10_46810_tdfd_994622 crossref_primary_10_1080_22221751_2022_2125348 crossref_primary_10_1128_mbio_01404_24 crossref_primary_10_1093_bioinformatics_btac370 crossref_primary_10_1007_s13238_022_00915_5 crossref_primary_10_1002_jmv_27643 crossref_primary_10_1016_j_chembiol_2024_03_008 crossref_primary_10_2139_ssrn_4754362 crossref_primary_10_1038_s41392_021_00796_w crossref_primary_10_18632_aging_204085 crossref_primary_10_1038_s41401_021_00851_w crossref_primary_10_3390_vaccines11030668 crossref_primary_10_1002_minf_202300055 crossref_primary_10_1002_2211_5463_13477 |
Cites_doi | 10.1016/j.cell.2021.03.028 10.3201/eid2704.210138 10.1038/s41586-021-03275-y 10.1016/j.cell.2020.05.025 10.1038/d41586-021-00121-z 10.1056/NEJMoa2034577 10.1038/s41467-020-17972-1 10.3201/eid2704.210183 10.1016/j.cell.2021.03.036 10.1038/s41586-021-03324-6 10.1038/s41586-020-2012-7 10.1126/science.abd0827 10.1056/NEJMoa2035002 10.1016/j.chom.2020.11.012 10.1107/S0907444910007493 10.1016/j.cell.2020.09.049 10.1016/j.cell.2021.03.029 10.1016/j.cell.2020.09.035 10.1038/s41586-020-2571-7 10.1038/s41591-021-01255-3 10.1038/s41586-020-2852-1 10.1038/s41586-020-2548-6 10.1001/jama.2021.0202 10.1016/S1473-3099(20)30831-8 10.1016/j.chom.2021.03.005 10.1056/NEJMc2102179 10.1093/bioinformatics/btw638 10.1038/s41586-020-2456-9 10.1038/s41586-020-2180-5 10.1107/S0021889807021206 10.1126/science.abd2321 10.1107/S1600576719001183 10.1016/j.cell.2020.09.032 10.1126/science.abb7269 10.1016/j.jmb.2021.167058 10.1056/NEJMoa2035389 10.1126/science.abc6952 10.1002/jcc.20084 10.1016/j.cell.2020.06.008 10.1038/s41467-020-20501-9 10.1038/s41586-020-2349-y 10.1016/S0140-6736(21)00183-5 10.1038/s41586-021-03398-2 10.1016/j.cell.2020.06.043 10.1016/S2666-5247(21)00082-3 10.1126/science.371.6524.9 10.1056/NEJMoa2029849 10.1126/science.abe5901 10.1016/j.cell.2020.11.020 10.1038/s41586-020-2380-z 10.1016/S0140-6736(20)32661-1 10.1038/s41586-020-2381-y 10.1126/science.abe8499 10.1056/NEJMoa2024671 10.1107/S0907444909052925 10.1038/s41586-020-2895-3 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. 2021. Elsevier Inc. 2021 Elsevier Inc. 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. – notice: 2021. Elsevier Inc. – notice: 2021 Elsevier Inc. 2021 Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.immuni.2021.06.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 1621.e5 |
ExternalDocumentID | PMC8185182 34166623 10_1016_j_immuni_2021_06_003 S1074761321002478 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom--UK England |
GeographicLocations_xml | – name: England – name: United Kingdom--UK |
GroupedDBID | --- --K -DZ 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 7-5 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFRAH AFTJW AGGSO AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 N9A O-L O9- OK1 OVD P2P PQQKQ PROAC RCE ROL RPZ SCP SES SSZ TEORI TR2 WQ6 ZA5 .55 .GJ 29I 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AHHHB AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- RIG UHS X7M Y6R ZGI CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K EFKBS FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c557t-2b11b9155b9f52d4794dd66f28b3b32de07b7a19b1da2d53b62b63973a3283143 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Thu Aug 21 14:08:40 EDT 2025 Mon Jul 21 11:33:53 EDT 2025 Fri Jul 25 11:12:50 EDT 2025 Thu Apr 03 07:06:40 EDT 2025 Thu Apr 24 23:11:01 EDT 2025 Tue Jul 01 01:58:44 EDT 2025 Fri Feb 23 02:40:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | variant of concern SARS-CoV-2 immune escape antibody neutralization |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-2b11b9155b9f52d4794dd66f28b3b32de07b7a19b1da2d53b62b63973a3283143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally Lead contact |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8185182 |
PMID | 34166623 |
PQID | 2551195043 |
PQPubID | 2031079 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8185182 proquest_miscellaneous_2545596610 proquest_journals_2551195043 pubmed_primary_34166623 crossref_primary_10_1016_j_immuni_2021_06_003 crossref_citationtrail_10_1016_j_immuni_2021_06_003 elsevier_sciencedirect_doi_10_1016_j_immuni_2021_06_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-13 |
PublicationDateYYYYMMDD | 2021-07-13 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Janson, Zhang, Prado, Paiardini (bib23) 2017; 33 (bib14) 2021 Korber, Fischer, Gnanakaran, Yoon, Theiler, Abfalterer, Hengartner, Giorgi, Bhattacharya, Foley (bib26) 2020; 182 Hoffmann, Arora, Groß, Seidel, Hörnich, Hahn, Krüger, Graichen, Hofmann-Winkler, Kempf (bib20) 2021; 184 (bib17) 2021 Diamond, Chen, Xie, Case, Zhang, VanBlargan, Liu, Liu, Errico, Winkler (bib11) 2021 Robbiani, Gaebler, Muecksch, Lorenzi, Wang, Cho, Agudelo, Barnes, Gazumyan, Finkin (bib45) 2020; 584 Tian, Tong, Sun, Shi, Zheng, Wang, Dong, Zheng (bib51) 2021 Fujino, Nomoto, Kutsuna, Ujiie, Suzuki, Sato, Fujimoto, Kuroda, Wakita, Ohmagari (bib15) 2021; 27 Callaway (bib4) 2021; 589 Kupferschmidt (bib28) 2021; 371 Pinto, Park, Beltramello, Walls, Tortorici, Bianchi, Jaconi, Culap, Zatta, De Marco (bib39) 2020; 583 Weinreich, Sivapalasingam, Norton, Ali, Gao, Bhore, Musser, Soo, Rofail, Im (bib58) 2021; 384 Rambaut, Loman, Pybus, Barclay, Barrett, Carabelli, Connor, Peacock, Robertson, Volz (bib43) 2020 Du, Cao, Zhu, Yu, Qi, Wang, Du, Bao, Deng, Zhu (bib12) 2020; 183 Shi, Shan, Duan, Chen, Liu, Song, Song, Bi, Han, Wu (bib47) 2020; 584 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib69) 2020; 579 Liu, Hu, Wang, Ren, Zhao, Ji, Zhu, Feng, Gong, Ju (bib32) 2021; 118 Voysey, Clemens, Madhi, Weckx, Folegatti, Aley, Angus, Baillie, Barnabas, Bhorat (bib54) 2021; 397 Barnes, Jette, Abernathy, Dam, Esswein, Gristick, Malyutin, Sharaf, Huey-Tubman, Lee (bib3) 2020; 588 Huang, Dai, Wang, Hu, Yang, Tan, Gao (bib22) 2021 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib38) 2004; 25 Wu, Werner, Koch, Choi, Narayanan, Stewart-Jones, Colpitts, Bennett, Boyoglu-Barnum, Shi (bib60) 2021; 384 Yuan, Liu, Wu, Lee, Zhu, Zhao, Huang, Yu, Hua, Tien (bib64) 2020; 369 Liu, Wang, Nair, Yu, Rapp, Wang, Luo, Chan, Sahi, Figueroa (bib31) 2020; 584 Sabino, Buss, Carvalho, Prete, Crispim, Fraiji, Pereira, Parag, da Silva Peixoto, Kraemer (bib46) 2021; 397 Yuan, Huang, Lee, Wu, Jackson, Zhu, Liu, Peng, van Gils, Sanders (bib66) 2021 Yu, Wang, Li, Zhou, Liu, Zhang, Wang, Xu, Xu, Pan, He (bib63) 2019; 52 Kreye, Reincke, Kornau, Sánchez-Sendin, Corman, Liu, Yuan, Wu, Zhu, Lee (bib27) 2020; 183 Chan, Tan, Narayanan, Procko (bib7) 2021 Sun, Gu, Cao, Chen, Yang, Li, Fan, Ye, Deng, Song (bib48) 2020 Johnson & Johnson (bib24) 2021 Cerutti, Guo, Zhou, Gorman, Lee, Rapp, Reddem, Yu, Bahna, Bimela (bib6) 2021; 29 Hou, Chiba, Halfmann, Ehre, Kuroda, Dinnon, Leist, Schäfer, Nakajima, Takahashi (bib21) 2020; 370 Polack, Thomas, Kitchin, Absalon, Gurtman, Lockhart, Perez, Pérez Marc, Moreira, Zerbini (bib41) 2020; 383 Zost, Gilchuk, Case, Binshtein, Chen, Nkolola, Schäfer, Reidy, Trivette, Nargi (bib70) 2020; 584 (bib42) 2020 Chen, Nirula, Heller, Gottlieb, Boscia, Morris, Huhn, Cardona, Mocherla, Stosor (bib8) 2021; 384 Yuan, Wu, Zhu, Lee, So, Lv, Mok, Wilson (bib65) 2020; 368 Tegally, Wilkinson, Lessells, Giandhari, Pillay, Msomi, Mlisana, Bhiman, von Gottberg, Walaza (bib50) 2021; 27 Corbett, Flynn, Foulds, Francica, Boyoglu-Barnum, Werner, Flach, O’Connell, Bock, Minai (bib10) 2020; 383 Ge, Wang, Ju, Zhang, Sun, Chen, Zhang, Tian, Shan, Cheng (bib16) 2021; 12 Laffeber, de Koning, Kanaar, Lebbink (bib73) 2021; 433 Hansen, Baum, Pascal, Russo, Giordano, Wloga, Fulton, Yan, Koon, Patel (bib19) 2020; 369 Volz, Hill, McCrone, Price, Jorgensen, O’Toole, Southgate, Johnson, Jackson, Nascimento (bib53) 2021; 184 Weissman, Alameh, de Silva, Collini, Hornsby, Brown, LaBranche, Edwards, Sutherland, Santra (bib59) 2021; 29 Baden, El Sahly, Essink, Kotloff, Frey, Novak, Diemert, Spector, Rouphael, Creech (bib2) 2021; 384 (bib36) 2021 Emsley, Lohkamp, Scott, Cowtan (bib71) 2010; 66 Ju, Zhang, Ge, Wang, Sun, Ge, Yu, Shan, Zhou, Song (bib25) 2020; 584 Rathnasinghe, Jangra, Cupic, Martínez-Romero, Mulder, Kehrer, Yildiz, Choi, Mena, De Vrieze (bib44) 2021 Wang, Nair, Liu, Iketani, Luo, Guo, Wang, Yu, Zhang, Kwong (bib56) 2021; 593 Cao, Su, Guo, Sun, Deng, Bao, Zhu, Zhang, Zheng, Geng (bib5) 2020; 182 Plante, Liu, Liu, Xia, Johnson, Lokugamage, Zhang, Muruato, Zou, Fontes-Garfias (bib40) 2021; 592 Chi, Yan, Zhang, Zhang, Zhang, Hao, Zhang, Fan, Dong, Yang (bib9) 2020; 369 Maggi, Novazzi, Genoni, Baj, Spezia, Focosi, Zago, Colombo, Cassani, Pasciuta (bib33) 2021; 27 Wang, Zhang, Huang, Deng, Quan, Wang, Xu, Zhao, Li, Zhang (bib55) 2020; 182 Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib72) 2010; 66 Wu, Zhong, Zhang, Shuai, Zhang, Wen, Wang, Zhao, Song, Chen (bib61) 2020; 11 Vogel, Kanevsky, Che, Swanson, Muik, Vormehr, Kranz, Walzer, Hein, Guler (bib52) 2021; 592 Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang, Wang (bib30) 2020; 581 McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (bib35) 2007; 40 Xia, Zhang, Wang, Wang, Yang, Gao, Tan, Wu, Xu, Lou (bib62) 2021; 21 McCallum, De Marco, Lempp, Tortorici, Pinto, Walls, Beltramello, Chen, Liu, Zatta (bib74) 2021; 184 Gottlieb, Nirula, Chen, Boscia, Heller, Morris, Huhn, Cardona, Mocherla, Stosor (bib18) 2021; 325 Wang, Schmidt, Weisblum, Muecksch, Barnes, Finkin, Schaefer-Babajew, Cipolla, Gaebler, Lieberman (bib57) 2021; 592 Suryadevara, Shrihari, Gilchuk, VanBlargan, Binshtein, Zost, Nargi, Sutton, Winkler, Chen (bib49) 2021; 184 Oude Munnink, Sikkema, Nieuwenhuijse, Molenaar, Munger, Molenkamp, van der Spek, Tolsma, Rietveld, Brouwer (bib37) 2021; 371 Yurkovetskiy, Wang, Pascal, Tomkins-Tinch, Nyalile, Wang, Baum, Diehl, Dauphin, Carbone (bib67) 2020; 183 Zost (10.1016/j.immuni.2021.06.003_bib70) 2020; 584 Rambaut (10.1016/j.immuni.2021.06.003_bib43) 2020 Zhou (10.1016/j.immuni.2021.06.003_bib69) 2020; 579 Plante (10.1016/j.immuni.2021.06.003_bib40) 2021; 592 (10.1016/j.immuni.2021.06.003_bib36) 2021 Shi (10.1016/j.immuni.2021.06.003_bib47) 2020; 584 Emsley (10.1016/j.immuni.2021.06.003_bib71) 2010; 66 Diamond (10.1016/j.immuni.2021.06.003_bib11) 2021 Johnson & Johnson (10.1016/j.immuni.2021.06.003_bib24) 2021 McCoy (10.1016/j.immuni.2021.06.003_bib35) 2007; 40 Yurkovetskiy (10.1016/j.immuni.2021.06.003_bib67) 2020; 183 Ju (10.1016/j.immuni.2021.06.003_bib25) 2020; 584 Rathnasinghe (10.1016/j.immuni.2021.06.003_bib44) 2021 Callaway (10.1016/j.immuni.2021.06.003_bib4) 2021; 589 Hou (10.1016/j.immuni.2021.06.003_bib21) 2020; 370 Weissman (10.1016/j.immuni.2021.06.003_bib59) 2021; 29 Vogel (10.1016/j.immuni.2021.06.003_bib52) 2021; 592 Chi (10.1016/j.immuni.2021.06.003_bib9) 2020; 369 Fujino (10.1016/j.immuni.2021.06.003_bib15) 2021; 27 Laffeber (10.1016/j.immuni.2021.06.003_bib73) 2021; 433 Yu (10.1016/j.immuni.2021.06.003_bib63) 2019; 52 Oude Munnink (10.1016/j.immuni.2021.06.003_bib37) 2021; 371 Chan (10.1016/j.immuni.2021.06.003_bib7) 2021 Corbett (10.1016/j.immuni.2021.06.003_bib10) 2020; 383 Korber (10.1016/j.immuni.2021.06.003_bib26) 2020; 182 Pettersen (10.1016/j.immuni.2021.06.003_bib38) 2004; 25 Voysey (10.1016/j.immuni.2021.06.003_bib54) 2021; 397 Pinto (10.1016/j.immuni.2021.06.003_bib39) 2020; 583 Maggi (10.1016/j.immuni.2021.06.003_bib33) 2021; 27 Weinreich (10.1016/j.immuni.2021.06.003_bib58) 2021; 384 Sabino (10.1016/j.immuni.2021.06.003_bib46) 2021; 397 Xia (10.1016/j.immuni.2021.06.003_bib62) 2021; 21 Huang (10.1016/j.immuni.2021.06.003_bib22) 2021 Cerutti (10.1016/j.immuni.2021.06.003_bib6) 2021; 29 Sun (10.1016/j.immuni.2021.06.003_bib48) 2020 Adams (10.1016/j.immuni.2021.06.003_bib72) 2010; 66 Chen (10.1016/j.immuni.2021.06.003_bib8) 2021; 384 Volz (10.1016/j.immuni.2021.06.003_bib53) 2021; 184 Barnes (10.1016/j.immuni.2021.06.003_bib3) 2020; 588 (10.1016/j.immuni.2021.06.003_bib14) 2021 Yuan (10.1016/j.immuni.2021.06.003_bib65) 2020; 368 Lan (10.1016/j.immuni.2021.06.003_bib30) 2020; 581 Ge (10.1016/j.immuni.2021.06.003_bib16) 2021; 12 Cao (10.1016/j.immuni.2021.06.003_bib5) 2020; 182 Du (10.1016/j.immuni.2021.06.003_bib12) 2020; 183 Kreye (10.1016/j.immuni.2021.06.003_bib27) 2020; 183 McCallum (10.1016/j.immuni.2021.06.003_bib74) 2021; 184 Kupferschmidt (10.1016/j.immuni.2021.06.003_bib28) 2021; 371 Polack (10.1016/j.immuni.2021.06.003_bib41) 2020; 383 Liu (10.1016/j.immuni.2021.06.003_bib32) 2021; 118 Robbiani (10.1016/j.immuni.2021.06.003_bib45) 2020; 584 Gottlieb (10.1016/j.immuni.2021.06.003_bib18) 2021; 325 Wu (10.1016/j.immuni.2021.06.003_bib61) 2020; 11 Hansen (10.1016/j.immuni.2021.06.003_bib19) 2020; 369 Yuan (10.1016/j.immuni.2021.06.003_bib64) 2020; 369 Hoffmann (10.1016/j.immuni.2021.06.003_bib20) 2021; 184 (10.1016/j.immuni.2021.06.003_bib17) 2021 Liu (10.1016/j.immuni.2021.06.003_bib31) 2020; 584 Baden (10.1016/j.immuni.2021.06.003_bib2) 2021; 384 Wang (10.1016/j.immuni.2021.06.003_bib57) 2021; 592 Wu (10.1016/j.immuni.2021.06.003_bib60) 2021; 384 Yuan (10.1016/j.immuni.2021.06.003_bib66) 2021 Tian (10.1016/j.immuni.2021.06.003_bib51) 2021 Tegally (10.1016/j.immuni.2021.06.003_bib50) 2021; 27 (10.1016/j.immuni.2021.06.003_bib42) 2020 Wang (10.1016/j.immuni.2021.06.003_bib55) 2020; 182 Suryadevara (10.1016/j.immuni.2021.06.003_bib49) 2021; 184 Janson (10.1016/j.immuni.2021.06.003_bib23) 2017; 33 Wang (10.1016/j.immuni.2021.06.003_bib56) 2021; 593 |
References_xml | – volume: 369 start-page: 1010 year: 2020 end-page: 1014 ident: bib19 article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail publication-title: Science – volume: 11 start-page: 4081 year: 2020 ident: bib61 article-title: A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge publication-title: Nat. Commun. – volume: 433 start-page: 167058 year: 2021 ident: bib73 article-title: Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants publication-title: Journal of molecular biology – volume: 384 start-page: 1468 year: 2021 end-page: 1470 ident: bib60 article-title: Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine publication-title: N. Engl. J. Med. – year: 2021 ident: bib44 article-title: The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera publication-title: medRxiv – volume: 397 start-page: 452 year: 2021 end-page: 455 ident: bib46 article-title: Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence publication-title: Lancet – volume: 384 start-page: 238 year: 2021 end-page: 251 ident: bib58 article-title: REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19 publication-title: N. Engl. J. Med. – volume: 27 start-page: 1249 year: 2021 end-page: 1251 ident: bib33 article-title: Imported SARS-COV-2 Variant P.1 Detected in Traveler Returning from Brazil to Italy publication-title: Emerg. Infect. Dis. – volume: 584 start-page: 120 year: 2020 end-page: 124 ident: bib47 article-title: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 publication-title: Nature – volume: 592 start-page: 616 year: 2021 end-page: 622 ident: bib57 article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants publication-title: Nature – year: 2020 ident: bib42 article-title: . Investigation of novel SARS-COV-2 variant: Variant of Concern 202012/01: technical briefings – start-page: eabh1139 year: 2021 ident: bib66 article-title: Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants publication-title: Science – year: 2021 ident: bib22 article-title: Serum sample neutralisation of BBIBP-CorV and ZF2001 vaccines to SARS-CoV-2 501Y.V2 publication-title: Lancet Microbe – volume: 589 start-page: 500 year: 2021 end-page: 501 ident: bib4 article-title: Fast-spreading COVID variant can elude immune responses publication-title: Nature – volume: 21 start-page: 39 year: 2021 end-page: 51 ident: bib62 article-title: Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial publication-title: Lancet Infect. Dis. – volume: 118 year: 2021 ident: bib32 article-title: Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2 publication-title: Proc. Natl. Acad. Sci. USA – year: 2021 ident: bib24 article-title: Johnson & Johnson COVID-19 Vaccine Authorized by U.S. FDA For Emergency Use - First Single-Shot Vaccine in Fight Against Global Pandemic – volume: 27 start-page: 440 year: 2021 end-page: 446 ident: bib50 article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa publication-title: Nat. Med. – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib38 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 369 start-page: 650 year: 2020 end-page: 655 ident: bib9 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science – volume: 584 start-page: 115 year: 2020 end-page: 119 ident: bib25 article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Nature – year: 2021 ident: bib11 article-title: SARS-CoV-2 variants show resistance to neutralization by many monoclonal and serum-derived polyclonal antibodies publication-title: Res. Sq – volume: 33 start-page: 444 year: 2017 end-page: 446 ident: bib23 article-title: PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL publication-title: Bioinformatics – volume: 182 start-page: 713 year: 2020 end-page: 721.e9 ident: bib55 article-title: Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2 publication-title: Cell – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: bib72 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta crystallographica. Section D, Biological crystallography – volume: 183 start-page: 1058 year: 2020 end-page: 1069.e19 ident: bib27 article-title: A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model publication-title: Cell – volume: 384 start-page: 229 year: 2021 end-page: 237 ident: bib8 article-title: SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19 publication-title: N. Engl. J. Med. – volume: 583 start-page: 290 year: 2020 end-page: 295 ident: bib39 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature – volume: 593 start-page: 130 year: 2021 end-page: 135 ident: bib56 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature – volume: 371 start-page: 172 year: 2021 end-page: 177 ident: bib37 article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans publication-title: Science – year: 2021 ident: bib36 article-title: Novavax COVID-19 Vaccine Demonstrates 89.3% Efficacy in UK Phase 3 Trial – volume: 27 start-page: 1243 year: 2021 end-page: 1245 ident: bib15 article-title: Novel SARS-CoV-2 Variant Identified in Travelers from Brazil to Japan publication-title: Emerg. Infect. Dis. – volume: 588 start-page: 682 year: 2020 end-page: 687 ident: bib3 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature – volume: 370 start-page: 1464 year: 2020 end-page: 1468 ident: bib21 article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo publication-title: Science – volume: 182 start-page: 812 year: 2020 end-page: 827.e19 ident: bib26 article-title: Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus publication-title: Cell – volume: 584 start-page: 437 year: 2020 end-page: 442 ident: bib45 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature – volume: 384 start-page: 403 year: 2021 end-page: 416 ident: bib2 article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine publication-title: N. Engl. J. Med. – volume: 183 start-page: 1013 year: 2020 end-page: 1023.e13 ident: bib12 article-title: Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy publication-title: Cell – volume: 184 start-page: 64 year: 2021 end-page: 75.e11 ident: bib53 article-title: Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity publication-title: Cell – volume: 52 start-page: 472 year: 2019 end-page: 477 ident: bib63 article-title: Aquarium: an automatic data-processing and experiment information management system for biological macromolecular crystallography beamlines publication-title: J. Appl. Cryst. – volume: 369 start-page: 1119 year: 2020 end-page: 1123 ident: bib64 article-title: Structural basis of a shared antibody response to SARS-CoV-2 publication-title: Science – volume: 184 start-page: 2384 year: 2021 end-page: 2393.e12 ident: bib20 article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies publication-title: Cell – volume: 383 start-page: 2603 year: 2020 end-page: 2615 ident: bib41 article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine publication-title: N. Engl. J. Med. – volume: 592 start-page: 283 year: 2021 end-page: 289 ident: bib52 article-title: BNT162b vaccines protect rhesus macaques from SARS-CoV-2 publication-title: Nature – volume: 184 start-page: 2332 year: 2021 end-page: 2347.e2316 ident: bib74 article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 publication-title: Cell – volume: 40 start-page: 658 year: 2007 end-page: 674 ident: bib35 article-title: Phaser crystallographic software publication-title: J. Appl. Cryst. – volume: 371 start-page: 9 year: 2021 end-page: 10 ident: bib28 article-title: Fast-spreading U.K. virus variant raises alarms publication-title: Science – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: bib30 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature – volume: 184 start-page: 2316 year: 2021 end-page: 2331.e15 ident: bib49 article-title: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein publication-title: Cell – volume: 368 start-page: 630 year: 2020 end-page: 633 ident: bib65 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science – volume: 183 start-page: 739 year: 2020 end-page: 751.e8 ident: bib67 article-title: Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant publication-title: Cell – volume: 29 start-page: 23 year: 2021 end-page: 31.e4 ident: bib59 article-title: D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization publication-title: Cell Host Microbe – year: 2020 ident: bib48 article-title: Characterization and structural basis of a lethal mouse-adapted SARS-CoV-2 publication-title: bioRxiv – volume: 182 start-page: 73 year: 2020 end-page: 84.e16 ident: bib5 article-title: Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells publication-title: Cell – volume: 325 start-page: 632 year: 2021 end-page: 644 ident: bib18 article-title: Effect of Bamlanivimab as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19: A Randomized Clinical Trial publication-title: JAMA – year: 2021 ident: bib51 article-title: Mutation N501Y in RBD of Spike Protein Strengthens the Interaction between COVID-19 and its Receptor ACE2 publication-title: bioRxiv – volume: 383 start-page: 1544 year: 2020 end-page: 1555 ident: bib10 article-title: Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates publication-title: N. Engl. J. Med. – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: bib71 article-title: Features and development of Coot publication-title: Acta crystallographica. Section D, Biological crystallography – volume: 397 start-page: 99 year: 2021 end-page: 111 ident: bib54 article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK publication-title: Lancet – year: 2020 ident: bib43 article-title: Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib69 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 584 start-page: 443 year: 2020 end-page: 449 ident: bib70 article-title: Potently neutralizing and protective human antibodies against SARS-CoV-2 publication-title: Nature – volume: 592 start-page: 116 year: 2021 end-page: 121 ident: bib40 article-title: Spike mutation D614G alters SARS-CoV-2 fitness publication-title: Nature – volume: 584 start-page: 450 year: 2020 end-page: 456 ident: bib31 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature – year: 2021 ident: bib17 article-title: COVID-19 Viral Genome Analysis Pipeline – year: 2021 ident: bib7 article-title: An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants publication-title: Sci. Adv. – volume: 29 start-page: 819 year: 2021 end-page: 833.e7 ident: bib6 article-title: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite publication-title: Cell Host Microbe – volume: 12 start-page: 250 year: 2021 ident: bib16 article-title: Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry publication-title: Nat. Commun. – year: 2021 ident: bib14 article-title: Coronavirus Disease 2019 (COVID-19) – volume: 184 start-page: 2332 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib74 article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2021.03.028 – volume: 27 start-page: 1243 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib15 article-title: Novel SARS-CoV-2 Variant Identified in Travelers from Brazil to Japan publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2704.210138 – volume: 592 start-page: 283 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib52 article-title: BNT162b vaccines protect rhesus macaques from SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-021-03275-y – year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib17 – volume: 182 start-page: 73 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib5 article-title: Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells publication-title: Cell doi: 10.1016/j.cell.2020.05.025 – volume: 589 start-page: 500 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib4 article-title: Fast-spreading COVID variant can elude immune responses publication-title: Nature doi: 10.1038/d41586-021-00121-z – volume: 383 start-page: 2603 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib41 article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 – volume: 11 start-page: 4081 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib61 article-title: A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge publication-title: Nat. Commun. doi: 10.1038/s41467-020-17972-1 – volume: 27 start-page: 1249 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib33 article-title: Imported SARS-COV-2 Variant P.1 Detected in Traveler Returning from Brazil to Italy publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2704.210183 – volume: 184 start-page: 2384 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib20 article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies publication-title: Cell doi: 10.1016/j.cell.2021.03.036 – volume: 592 start-page: 616 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib57 article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants publication-title: Nature doi: 10.1038/s41586-021-03324-6 – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib69 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 369 start-page: 1010 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib19 article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail publication-title: Science doi: 10.1126/science.abd0827 – volume: 384 start-page: 238 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib58 article-title: REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035002 – volume: 29 start-page: 23 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib59 article-title: D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.11.012 – volume: 66 start-page: 486 year: 2010 ident: 10.1016/j.immuni.2021.06.003_bib71 article-title: Features and development of Coot publication-title: Acta crystallographica. Section D, Biological crystallography doi: 10.1107/S0907444910007493 – volume: 183 start-page: 1058 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib27 article-title: A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model publication-title: Cell doi: 10.1016/j.cell.2020.09.049 – year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib24 – volume: 184 start-page: 2316 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib49 article-title: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein publication-title: Cell doi: 10.1016/j.cell.2021.03.029 – volume: 183 start-page: 1013 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib12 article-title: Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy publication-title: Cell doi: 10.1016/j.cell.2020.09.035 – volume: 118 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib32 article-title: Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2 publication-title: Proc. Natl. Acad. Sci. USA – volume: 584 start-page: 450 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib31 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature doi: 10.1038/s41586-020-2571-7 – volume: 27 start-page: 440 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib50 article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa publication-title: Nat. Med. doi: 10.1038/s41591-021-01255-3 – volume: 588 start-page: 682 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib3 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature doi: 10.1038/s41586-020-2852-1 – volume: 584 start-page: 443 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib70 article-title: Potently neutralizing and protective human antibodies against SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2548-6 – year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib43 – volume: 325 start-page: 632 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib18 article-title: Effect of Bamlanivimab as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19: A Randomized Clinical Trial publication-title: JAMA doi: 10.1001/jama.2021.0202 – year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib36 – volume: 21 start-page: 39 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib62 article-title: Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30831-8 – volume: 29 start-page: 819 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib6 article-title: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.03.005 – volume: 384 start-page: 1468 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib60 article-title: Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2102179 – volume: 33 start-page: 444 year: 2017 ident: 10.1016/j.immuni.2021.06.003_bib23 article-title: PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw638 – volume: 584 start-page: 437 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib45 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature doi: 10.1038/s41586-020-2456-9 – volume: 581 start-page: 215 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib30 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 40 start-page: 658 year: 2007 ident: 10.1016/j.immuni.2021.06.003_bib35 article-title: Phaser crystallographic software publication-title: J. Appl. Cryst. doi: 10.1107/S0021889807021206 – year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib51 article-title: Mutation N501Y in RBD of Spike Protein Strengthens the Interaction between COVID-19 and its Receptor ACE2 publication-title: bioRxiv – volume: 369 start-page: 1119 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib64 article-title: Structural basis of a shared antibody response to SARS-CoV-2 publication-title: Science doi: 10.1126/science.abd2321 – volume: 52 start-page: 472 year: 2019 ident: 10.1016/j.immuni.2021.06.003_bib63 article-title: Aquarium: an automatic data-processing and experiment information management system for biological macromolecular crystallography beamlines publication-title: J. Appl. Cryst. doi: 10.1107/S1600576719001183 – volume: 183 start-page: 739 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib67 article-title: Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant publication-title: Cell doi: 10.1016/j.cell.2020.09.032 – volume: 368 start-page: 630 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib65 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science doi: 10.1126/science.abb7269 – volume: 433 start-page: 167058 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib73 article-title: Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants publication-title: Journal of molecular biology doi: 10.1016/j.jmb.2021.167058 – volume: 384 start-page: 403 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib2 article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035389 – volume: 369 start-page: 650 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib9 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science doi: 10.1126/science.abc6952 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.immuni.2021.06.003_bib38 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 182 start-page: 713 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib55 article-title: Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2020.06.008 – volume: 12 start-page: 250 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib16 article-title: Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry publication-title: Nat. Commun. doi: 10.1038/s41467-020-20501-9 – year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib44 article-title: The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera publication-title: medRxiv – year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib42 – year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib48 article-title: Characterization and structural basis of a lethal mouse-adapted SARS-CoV-2 publication-title: bioRxiv – volume: 583 start-page: 290 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib39 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 397 start-page: 452 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib46 article-title: Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence publication-title: Lancet doi: 10.1016/S0140-6736(21)00183-5 – start-page: eabh1139 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib66 article-title: Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants publication-title: Science – year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib14 – volume: 593 start-page: 130 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib56 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature doi: 10.1038/s41586-021-03398-2 – volume: 182 start-page: 812 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib26 article-title: Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus publication-title: Cell doi: 10.1016/j.cell.2020.06.043 – year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib22 article-title: Serum sample neutralisation of BBIBP-CorV and ZF2001 vaccines to SARS-CoV-2 501Y.V2 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(21)00082-3 – volume: 371 start-page: 9 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib28 article-title: Fast-spreading U.K. virus variant raises alarms publication-title: Science doi: 10.1126/science.371.6524.9 – volume: 384 start-page: 229 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib8 article-title: SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2029849 – volume: 371 start-page: 172 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib37 article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans publication-title: Science doi: 10.1126/science.abe5901 – volume: 184 start-page: 64 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib53 article-title: Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity publication-title: Cell doi: 10.1016/j.cell.2020.11.020 – year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib11 article-title: SARS-CoV-2 variants show resistance to neutralization by many monoclonal and serum-derived polyclonal antibodies publication-title: Res. Sq – year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib7 article-title: An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants publication-title: Sci. Adv. – volume: 584 start-page: 115 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib25 article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Nature doi: 10.1038/s41586-020-2380-z – volume: 397 start-page: 99 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib54 article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK publication-title: Lancet doi: 10.1016/S0140-6736(20)32661-1 – volume: 584 start-page: 120 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib47 article-title: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2381-y – volume: 370 start-page: 1464 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib21 article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo publication-title: Science doi: 10.1126/science.abe8499 – volume: 383 start-page: 1544 year: 2020 ident: 10.1016/j.immuni.2021.06.003_bib10 article-title: Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2024671 – volume: 66 start-page: 213 year: 2010 ident: 10.1016/j.immuni.2021.06.003_bib72 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta crystallographica. Section D, Biological crystallography doi: 10.1107/S0907444909052925 – volume: 592 start-page: 116 year: 2021 ident: 10.1016/j.immuni.2021.06.003_bib40 article-title: Spike mutation D614G alters SARS-CoV-2 fitness publication-title: Nature doi: 10.1038/s41586-020-2895-3 |
SSID | ssj0014590 |
Score | 2.6744456 |
Snippet | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current... SummarySevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1611 |
SubjectTerms | ACE2 Angiotensin-converting enzyme 2 Angiotensin-Converting Enzyme 2 - metabolism Animals Antibodies Antibodies, Monoclonal - chemistry Antibodies, Monoclonal - immunology Antibodies, Neutralizing - chemistry Antibodies, Neutralizing - immunology antibody Antigenic Variation - genetics Antigens Coronaviruses COVID-19 COVID-19 - immunology COVID-19 - virology COVID-19 vaccines Crystal structure Disease transmission Domains Host range Host Specificity Humans immune escape Immune Evasion - genetics Immunotherapy Infections Mice Mink Monoclonal antibodies Mutation Neutralization Pandemics Protein Binding Proteins Receptors RNA polymerase SARS-CoV-2 SARS-CoV-2 - genetics SARS-CoV-2 - immunology SARS-CoV-2 - physiology Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - immunology Spike Glycoprotein, Coronavirus - metabolism Structural analysis Vaccines variant of concern Viral diseases Virus Internalization |
Title | Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species |
URI | https://dx.doi.org/10.1016/j.immuni.2021.06.003 https://www.ncbi.nlm.nih.gov/pubmed/34166623 https://www.proquest.com/docview/2551195043 https://www.proquest.com/docview/2545596610 https://pubmed.ncbi.nlm.nih.gov/PMC8185182 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYQE2gv08bYKGPoJu01am3n52NXgdDQeKAD-mbZjaMF0QSRZhJ_Bf_y7uwkWscD0h5bO5WbO9vf-b77zNhXqUVq4okMjOGG0ow4pdIsDERaJNxmXKfWEWQv4rOr8PsiWmyxWV8LQ7TKbu33a7pbrbtvxt3bHN-X5XhOVEIMwqkIBTeahAp-ZZi6Ir7FtyGTEEbZZOAdYu--fM5xvEpXg4FRouBOxbO_Ouv59vQcfv7LovxrWzp9y950eBKmfsjv2Jat9tiOv2HycY_t_uhy5-_ZU68_AnUB8-nlPJjV14GA3xgt4-uFVeuz8g2QqhN6JVS2decgvlITbENkKVhZKhYum1UDusoBASR4re9HWNfQNhamsxOBP0KEmfqhAapgAeIt-WNHoOJOjM_32dXpyc_ZWdBdxxAsoyhZB8JwbkhO3mRFJHKSps_zOC7Q2NJIkdtJYhLNM8NzLfJImlgYShtKLRHDIC77wLarurIHDGxY8CjFuNwmOsykzIplasSS4JOwuohGTPZWUMtOq5yuzLhTPSntVnnbKbKdctw8OWLB8NS91-p4oX_SG1ht-JzC7eSFJ496f1DdnG8UBmfuUt0Qm78MzThbKQWjK1u31CfEEA4x0WTEPnr3GYaKeAJjSUHD2nCsoQMpgW-2VOUvpwhOqAsDxcP__kOf2Gv6RIfWXB6x7fVDaz8j2lqbY_Zqen55c37sptUfPbUrPg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEZQLgvLoQoFB4hrt2s7zuKxabaHtgW3R3ix746hBbFI1G6T-Cv4yM3YSsfRQievaibwZP77xfPMNY5-kFqmJJzIwhhsKM-KSSrMwEGmRcJtxnVpHkD2P55fhl2W03GGzPheGaJXd3u_3dLdbd7-Mu685vi7L8YKohOiEUxIKHjRJ-oA9RDSQUP2Gk-XnIZQQRtlkIB5i9z5_zpG8SpeEgW6i4E7Gs6-ddfd8uos__6VR_nUuHT9jTztACVM_5udsx1b77JEvMXm7zx6fdcHzF-x3L0ACdQGL6bdFMKu_BwJ-obuM3xfWrQ_LN0CyTjgtobKtuwjxqZpgG2JLwdpStnDZrBvQVQ6IIMGLfd_Cpoa2sTCdHQl8CTFm6psGKIUFiLjk7x2BsjvRQX_JLo-PLmbzoKvHEKyiKNkEwnBuSE_eZEUkctKmz_M4LtDa0kiR20liEs0zw3Mt8kiaWBiKG0otEcQgMHvFdqu6sgcMbFjwKEXH3CY6zKTMilVqxIrwk7C6iEZM9lZQq06snGpm_FQ9K-2H8rZTZDvlyHlyxILhqWsv1nFP_6Q3sNqadArPk3uePOzng-oWfaPQO3NVdUNs_jg043KlGIyubN1SnxB9OARFkxF77afPMFQEFOhMChrW1sQaOpAU-HZLVV45SXCCXegpvvnvP_SB7c0vzk7V6cn517fsCbXQDTaXh2x3c9Padwi9Nua9W1p_ANRdLLo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+SARS-CoV-2+variant+mutations+reveals+neutralization+escape+mechanisms+and+the+ability+to+use+ACE2+receptors+from+additional+species&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Wang%2C+Ruoke&rft.au=Zhang%2C+Qi&rft.au=Ge%2C+Jiwan&rft.au=Ren%2C+Wenlin&rft.date=2021-07-13&rft.pub=Elsevier+Limited&rft.issn=1074-7613&rft.eissn=1097-4180&rft.volume=54&rft.issue=7&rft.spage=1611&rft_id=info:doi/10.1016%2Fj.immuni.2021.06.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |