Stomatal Crypts Have Small Effects on Transpiration: A Numerical Model Analysis

Stomata arranged in crypts with trichomes are commonly considered to be adaptations to aridity due to the additional diffusion resistance associated with this arrangement; however, information on the effect of crypts on gas exchange, relative to stomata, is sparse. In this study, three-dimensional F...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 151; no. 4; pp. 2018 - 2027
Main Authors Roth-Nebelsick, Anita, Hassiotou, Foteini, Veneklaas, Erik J
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.12.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stomata arranged in crypts with trichomes are commonly considered to be adaptations to aridity due to the additional diffusion resistance associated with this arrangement; however, information on the effect of crypts on gas exchange, relative to stomata, is sparse. In this study, three-dimensional Finite Element models of encrypted stomata were generated using commercial Computational Fluid Dynamics software. The models were based on crypt and stomatal architectural characteristics of the species Banksia ilicifolia, examined microscopically, and variations thereof. In leaves with open or partially closed stomata, crypts reduced transpiration by less than 15% compared with nonencrypted, superficially positioned stomata. A larger effect of crypts was found only in models with unrealistically high stomatal conductances. Trichomes inside the crypt had virtually no influence on transpiration. Crypt conductance varied with stomatal conductance, boundary layer conductance, and ambient relative humidity, as these factors modified the three-dimensional diffusion patterns inside crypts. It was concluded that it is unlikely that the primary function of crypts and crypt trichomes is to reduce transpiration.
AbstractList Stomata arranged in crypts with trichomes are commonly considered to be adaptations to aridity due to the additional diffusion resistance associated with this arrangement; however, information on the effect of crypts on gas exchange, relative to stomata, is sparse. In this study, three-dimensional Finite Element models of encrypted stomata were generated using commercial Computational Fluid Dynamics software. The models were based on crypt and stomatal architectural characteristics of the species Banksia ilicifolia, examined microscopically, and variations thereof. In leaves with open or partially closed stomata, crypts reduced transpiration by less than 15% compared with nonencrypted, superficially positioned stomata. A larger effect of crypts was found only in models with unrealistically high stomatal conductances. Trichomes inside the crypt had virtually no influence on transpiration. Crypt conductance varied with stomatal conductance, boundary layer conductance, and ambient relative humidity, as these factors modified the three-dimensional diffusion patterns inside crypts. It was concluded that it is unlikely that the primary function of crypts and crypt trichomes is to reduce transpiration.
Stomata arranged in crypts with trichomes are commonly considered to be adaptations to aridity due to the additional diffusion resistance associated with this arrangement; however, information on the effect of crypts on gas exchange, relative to stomata, is sparse. In this study, three-dimensional Finite Element models of encrypted stomata were generated using commercial Computational Fluid Dynamics software. The models were based on crypt and stomatal architectural characteristics of the species Banksia ilicifolia , examined microscopically, and variations thereof. In leaves with open or partially closed stomata, crypts reduced transpiration by less than 15% compared with nonencrypted, superficially positioned stomata. A larger effect of crypts was found only in models with unrealistically high stomatal conductances. Trichomes inside the crypt had virtually no influence on transpiration. Crypt conductance varied with stomatal conductance, boundary layer conductance, and ambient relative humidity, as these factors modified the three-dimensional diffusion patterns inside crypts. It was concluded that it is unlikely that the primary function of crypts and crypt trichomes is to reduce transpiration.
Stomata arranged in crypts with trichomes are commonly considered to be adaptations to aridity due to the additional diffusion resistance associated with this arrangement; however, information on the effect of crypts on gas exchange, relative to stomata, is sparse. In this study, three-dimensional Finite Element models of encrypted stomata were generated using commercial Computational Fluid Dynamics software. The models were based on crypt and stomatal architectural characteristics of the species Banksia ilicifolia, examined microscopically, and variations thereof. In leaves with open or partially closed stomata, crypts reduced transpiration by less than 15% compared with nonencrypted, superficially positioned stomata. A larger effect of crypts was found only in models with unrealistically high stomatal conductances. Trichomes inside the crypt had virtually no influence on transpiration. Crypt conductance varied with stomatal conductance, boundary layer conductance, and ambient relative humidity, as these factors modified the three-dimensional diffusion patterns inside crypts. It was concluded that it is unlikely that the primary function of crypts and crypt trichomes is to reduce transpiration.Stomata arranged in crypts with trichomes are commonly considered to be adaptations to aridity due to the additional diffusion resistance associated with this arrangement; however, information on the effect of crypts on gas exchange, relative to stomata, is sparse. In this study, three-dimensional Finite Element models of encrypted stomata were generated using commercial Computational Fluid Dynamics software. The models were based on crypt and stomatal architectural characteristics of the species Banksia ilicifolia, examined microscopically, and variations thereof. In leaves with open or partially closed stomata, crypts reduced transpiration by less than 15% compared with nonencrypted, superficially positioned stomata. A larger effect of crypts was found only in models with unrealistically high stomatal conductances. Trichomes inside the crypt had virtually no influence on transpiration. Crypt conductance varied with stomatal conductance, boundary layer conductance, and ambient relative humidity, as these factors modified the three-dimensional diffusion patterns inside crypts. It was concluded that it is unlikely that the primary function of crypts and crypt trichomes is to reduce transpiration.
Author Roth-Nebelsick, Anita
Veneklaas, Erik J
Hassiotou, Foteini
AuthorAffiliation State Museum for Natural History Stuttgart, D–70101 Stuttgart, Germany (A.R.-N.); and School of Plant Biology, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia (F.H., E.J.V.)
AuthorAffiliation_xml – name: State Museum for Natural History Stuttgart, D–70101 Stuttgart, Germany (A.R.-N.); and School of Plant Biology, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia (F.H., E.J.V.)
Author_xml – sequence: 1
  fullname: Roth-Nebelsick, Anita
– sequence: 2
  fullname: Hassiotou, Foteini
– sequence: 3
  fullname: Veneklaas, Erik J
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22235561$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19864375$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URLcLR45ALsApix1_xRyQVqvSIhV62PZsOY5TXDl2sLOV9r-vt9muKFI5eeT5zdObNyfgyAdvAHiL4AIhSL4MwwJBsUCECSZegBmiuCorSuojMIMw17CuxTE4SekWQogwIq_AMRI1I5jTGbhcj6FXo3LFKm6HMRXn6s4U6145V5x2ndH5K_jiKiqfBhvVaIP_WiyLX5veRKvz3M_QGlcsvXLbZNNr8LJTLpk3-3cOrr-fXq3Oy4vLsx-r5UWpKeVjiUjdEMhbrQkxTce4hoo3mBKCISdYIM0w7XiHGq3bRjRGESNaXSuIs3PE8Bx8m3SHTdObVhs_RuXkEG2v4lYGZeXTjre_5U24kxWvqRA7gc97gRj-bEwaZW-TNs4pb8ImSY4J4ozmxObg039JwgiFvN6B7__2dDDzmHYGPu4BlXJ0XQ5V23TgqqrClLKdEJ44HUNK0XRS2_Eh-ryKdRJBubu9HIZcCjndPk-V_0wdDDzDv5v42zSGeIAJpJgzzHP_w9TvVJDqJman1-sqBwIRzzIVxfdRPMKN
CODEN PPHYA5
CitedBy_id crossref_primary_10_1007_s00425_020_03405_2
crossref_primary_10_1016_j_pestbp_2015_03_011
crossref_primary_10_1016_j_compag_2013_05_008
crossref_primary_10_1016_j_palaeo_2013_12_035
crossref_primary_10_1093_aob_mct313
crossref_primary_10_1890_09_1988_1
crossref_primary_10_1093_jxb_erae271
crossref_primary_10_12705_675_5
crossref_primary_10_31857_S0006813623030109
crossref_primary_10_1007_s11104_010_0444_9
crossref_primary_10_1002_ajb2_1164
crossref_primary_10_3390_biomimetics8020145
crossref_primary_10_3389_fpls_2020_00881
crossref_primary_10_3390_agronomy13102457
crossref_primary_10_1016_j_scienta_2023_112718
crossref_primary_10_1007_s00468_016_1462_x
crossref_primary_10_1016_j_flora_2018_03_016
crossref_primary_10_1080_02757540_2016_1139090
crossref_primary_10_1016_j_cretres_2013_08_013
crossref_primary_10_1007_s11104_011_0977_6
crossref_primary_10_1590_S0001_37652012005000053
crossref_primary_10_1007_s11104_023_05935_6
crossref_primary_10_1111_pce_15208
crossref_primary_10_1111_nph_14903
crossref_primary_10_1111_pce_12026
crossref_primary_10_1111_j_1365_3040_2012_02597_x
crossref_primary_10_1038_s41565_024_01667_5
crossref_primary_10_1111_j_1469_8137_2012_04285_x
crossref_primary_10_1016_j_cretres_2020_104471
crossref_primary_10_1093_aob_mcab095
crossref_primary_10_1111_j_1756_1051_2012_01668_x
crossref_primary_10_1007_s00606_013_0788_8
crossref_primary_10_1071_BT19073
crossref_primary_10_1093_jxb_erq260
crossref_primary_10_1016_j_compag_2016_02_013
crossref_primary_10_1016_j_flora_2020_151692
crossref_primary_10_1016_j_ijheatmasstransfer_2013_05_075
crossref_primary_10_3390_horticulturae8010026
crossref_primary_10_1007_s12542_019_00466_x
crossref_primary_10_4081_ija_2018_937
crossref_primary_10_1093_aob_mcac055
crossref_primary_10_4081_ija_2016_777
crossref_primary_10_1016_j_jplph_2019_02_004
crossref_primary_10_1093_treephys_tpx072
crossref_primary_10_1071_BT19126
crossref_primary_10_1016_j_plaphy_2021_12_030
crossref_primary_10_1007_s11104_023_06382_z
crossref_primary_10_1093_aob_mcs130
crossref_primary_10_1016_j_revpalbo_2022_104703
crossref_primary_10_3732_ajb_1400191
crossref_primary_10_1016_j_scienta_2023_111835
crossref_primary_10_1371_journal_pone_0134515
crossref_primary_10_3390_f11101028
crossref_primary_10_1007_s12355_021_01067_2
ContentType Journal Article
Copyright Copyright 2009 American Society of Plant Biologists
2015 INIST-CNRS
Copyright © 2009, American Society of Plant Biologists 2009
Copyright_xml – notice: Copyright 2009 American Society of Plant Biologists
– notice: 2015 INIST-CNRS
– notice: Copyright © 2009, American Society of Plant Biologists 2009
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
DOI 10.1104/pp.109.146969
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 2027
ExternalDocumentID PMC2785996
19864375
22235561
10_1104_pp_109_146969
40537637
US201301710925
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHKG
AAPXW
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABPTK
ABTLG
ABUWG
ABXZS
ACBTR
ACFRR
ACGOD
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFDAS
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGUYK
AHMBA
AICQM
AIDAL
AIDBO
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
BYORX
C1A
CBGCD
CCPQU
CS3
CWIXF
D1J
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
FBQ
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HMCUK
HTVGU
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
0R~
AAHBH
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABVGC
ABXSQ
ABXVV
ACHIC
ADGKP
ADQBN
ADXHL
AEUYN
AGORE
AHXOZ
AJBYB
AJNCP
ALIPV
AQVQM
ATGXG
BEYMZ
H13
IPSME
JXSIZ
NU-
PHGZM
PHGZT
AAYXX
ABIME
ABPIB
ABZEO
ACVCV
ACZBC
AGMDO
AHGBF
AJDVS
APJGH
CITATION
LU7
IQODW
PJZUB
PPXIY
PQGLB
ADYWZ
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c557t-148b407dcc44ebf67c0a7b35443074391c635f7f1bccdb9bea4e9dc8a03864163
ISSN 0032-0889
1532-2548
IngestDate Thu Aug 21 18:34:06 EDT 2025
Fri Jul 11 05:19:12 EDT 2025
Tue Aug 05 09:32:50 EDT 2025
Thu Apr 03 07:08:24 EDT 2025
Mon Jul 21 09:16:57 EDT 2025
Tue Jul 01 03:07:43 EDT 2025
Thu Apr 24 22:56:04 EDT 2025
Fri Jun 20 02:19:18 EDT 2025
Wed Dec 27 19:18:19 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Transpiration
Numerical simulation
Stomata
Plant physiology
Modeling
Language English
License http://aspb.org/publications/aspb-journals/open-articles
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c557t-148b407dcc44ebf67c0a7b35443074391c635f7f1bccdb9bea4e9dc8a03864163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This work was supported by the Australian Research Council-New Zealand Research Network for Vegetation Function and by an Australian Postgraduate Award to F.H.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Anita Roth-Nebelsick (rothnebelsick.smns@naturkundemuseum-bw.de).
www.plantphysiol.org/cgi/doi/10.1104/pp.109.146969
PMID 19864375
PQID 46450781
PQPubID 24069
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2785996
proquest_miscellaneous_734176501
proquest_miscellaneous_46450781
pubmed_primary_19864375
pascalfrancis_primary_22235561
crossref_citationtrail_10_1104_pp_109_146969
crossref_primary_10_1104_pp_109_146969
jstor_primary_40537637
fao_agris_US201301710925
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2009
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References 21665734 - Am J Bot. 2002 Aug;89(8):1311-23
21632378 - Am J Bot. 2008 May;95(5):521-30
9778427 - J Theor Biol. 1998 Sep 7;194(1):91-100
16657461 - Plant Physiol. 1970 Aug;46(2):337-42
19286919 - J Exp Bot. 2009;60(8):2303-14
19413689 - New Phytol. 2009;183(1):13-26
19627563 - Plant Cell Environ. 2009 Nov;32(11):1596-611
17996013 - Plant Cell Environ. 2008 May;31(5):602-21
9826687 - Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14256-9
16113223 - Plant Physiol. 2005 Sep;139(1):254-66
References_xml – reference: 19627563 - Plant Cell Environ. 2009 Nov;32(11):1596-611
– reference: 16113223 - Plant Physiol. 2005 Sep;139(1):254-66
– reference: 21665734 - Am J Bot. 2002 Aug;89(8):1311-23
– reference: 16657461 - Plant Physiol. 1970 Aug;46(2):337-42
– reference: 9778427 - J Theor Biol. 1998 Sep 7;194(1):91-100
– reference: 9826687 - Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14256-9
– reference: 21632378 - Am J Bot. 2008 May;95(5):521-30
– reference: 17996013 - Plant Cell Environ. 2008 May;31(5):602-21
– reference: 19413689 - New Phytol. 2009;183(1):13-26
– reference: 19286919 - J Exp Bot. 2009;60(8):2303-14
SSID ssj0001314
Score 2.2409055
Snippet Stomata arranged in crypts with trichomes are commonly considered to be adaptations to aridity due to the additional diffusion resistance associated with this...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2018
SubjectTerms Architectural models
Banksia
Biological and medical sciences
Boundary layers
Finite Element Analysis
Fundamental and applied biological sciences. Psychology
gas exchange
Humidity
Leaves
mathematical models
Models, Biological
Numerical Analysis, Computer-Assisted
Parametric models
physiology
Plant physiology and development
Plant Stomata
Plant Stomata - physiology
Plant Transpiration
Plant Transpiration - physiology
Proteaceae
Proteaceae - physiology
relative humidity
Stomata
Stomatal conductance
Transpiration
Trichomes
Water
Water - physiology
Water vapor
Whole Plant and Ecophysiology
Title Stomatal Crypts Have Small Effects on Transpiration: A Numerical Model Analysis
URI https://www.jstor.org/stable/40537637
https://www.ncbi.nlm.nih.gov/pubmed/19864375
https://www.proquest.com/docview/46450781
https://www.proquest.com/docview/734176501
https://pubmed.ncbi.nlm.nih.gov/PMC2785996
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENakLQcuDK9S8wg6MFyKix-KZXNLSpgAQ2CahsnNY8l2yTS1M4lzKH-BP82uZDt2aWaAi5PYisf2rle70qfvI-RVzPzEC9zYDGLPN5kIfFN4rjADDzI5JPy2FRjzy9gbTdmnWW_W6fxqoJY2hTiRP29dV_I_VoV9YFdcJfsPlq1PCjvgO9gXtmBh2P6VjSdFfqXUP05X18tifTxCKaHJFc42DyucRlbyl89XNY6jfzze6ImahdJCW9TUJM1UFeWMCj3yoXmaIBcd4PLgdRw1xg_OwNTmGIy0WJei7H2IEtE2siHMtsg3KkvOUVtzXh37DnH2chHpJWUQkC_LOapqECK4CeioZpcqqCni99RVakVN8Njm0KPlwr99LR10klSB1zGhWPVbkbnkop03xx10nLXKqJ2UPzXBwJ_9gcVQxHiJrFnYKQResO34ajjidOLgBK6NuFSnt0cOHKg5UA7j_cfPdbduu5oovrr4mrCVvW2dv5Xg7KVRXiFdEXYbrcG0qZZMua2muQnNbeQ65_fJvbJIoX3tcQ9IJ8kekjuDHAqJ60fka-V2VLsdRbejyu1o6XY0z2jL7d7RPq2djiqno5XTPSbTD8Pz05FZ6nKYstfjhQkVtGAWj6VkLBGpx6UVceEikyImpIEtIYtNeWoLKWMRiCRiSRBLP7Jc38MC4JDsZ3mWHBHqem7qyDS1nTRgggs_SqRQn8yKLVsa5E31MENZktajdsoiVMWrxcLlEkEUoX72BnldN19qtpZdDY_AMmF0AT1p2Da_QQ6VueoTMEV55HKDdFv2qxtgio0qswZ5WRk0hCCNM29RluSbdYjwAWTVMgjd0YJDNsmhWoImT7QHbG8AFRRcDhfGW75RN0CG-PaRbP5DMcU73Ef6pae77_YZubt9n5-T_WK1SV5Aml2ILtnjM94lB4Ph-NtZV70MvwFvAdHQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stomatal+Crypts+Have+Small+Effects+on+Transpiration%3A+A+Numerical+Model+Analysis&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Roth-Nebelsick%2C+Anita&rft.au=Hassiotou%2C+Foteini&rft.au=Veneklaas%2C+Erik+J&rft.date=2009-12-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=151&rft.issue=4&rft.spage=2018&rft.epage=2027&rft_id=info:doi/10.1104%2Fpp.109.146969&rft.externalDocID=US201301710925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon