Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation
• Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum):...
Saved in:
Published in | The New phytologist Vol. 189; no. 3; pp. 701 - 709 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.02.2011
John Wiley & Sons Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | • Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. • Mutant and wild-type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root-fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. • In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots. pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. • We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange. |
---|---|
AbstractList | Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. Mutant and wild-type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root-fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots, pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange. • Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. • Mutant and wild-type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root-fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. • In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots. pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. • We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange. • Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. • Mutant and wild-type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root-fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. • In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots. pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. • We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange.• Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. • Mutant and wild-type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root-fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. • In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots. pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. • We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange. Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. Summary • Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin‐resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. • Mutant and wild‐type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root–fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. • In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots. pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. • We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange. |
Author | Coenen, Catharina Hanlon, Meredith T. |
Author_xml | – sequence: 1 givenname: Meredith T. surname: Hanlon fullname: Hanlon, Meredith T. – sequence: 2 givenname: Catharina surname: Coenen fullname: Coenen, Catharina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21091696$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URKeFRwAisSibDP6LHS9AqipoQRUgQSV2luPcgKMkLnYyzPD0OE2ZRRdQS5avfL9zLN9zhA4GPwBCGcFrktardk24UHlJmFxTnG4xK4Rcbx-g1b5xgFYY0zIXXHw7REcxthhjVQj6CB1SghURSqzQh3MYYHQ2g42rYbCQNT5kZtq6IXPDxncb6GEYU52ZUE3RTp0JWb-zPoQf7rdJDTc6Mzo_PEYPG9NFeHJ7HqOrd2-_nl3kl5_O35-dXua2KKTMacNVURLZcCBgCa2pqFglamYMg0JJzpW0plZU1oYaIYBWlZDAWNOUxsiSHaOTxfc6-J8TxFH3LlroOjOAn6IulSKM04L_n2RK4pIJmsiX_yQJEwWmRFCV0Bd30NZPYUg_1rQglGHBOUvUs1tqqnqo9XVwvQk7_XfyCSgXwAYfY4BmjxCs55B1q-cs9ZylnkPWNyHrbZK-uSO1bryJYAzGdfcxeL0Y_HId7O79sP74-WKukv7pom_j6MNez7FKE8Uk9Z8v_cZ4bb4HF_XVl-TEMFFpl4L9Aexa0dg |
CitedBy_id | crossref_primary_10_1016_j_pbi_2014_04_003 crossref_primary_10_1038_s41598_017_18445_0 crossref_primary_10_1007_s11032_023_01361_9 crossref_primary_10_3390_ijms24065193 crossref_primary_10_1093_jxb_eraa111 crossref_primary_10_1093_jxb_erx432 crossref_primary_10_1128_spectrum_01645_21 crossref_primary_10_3390_genes10010059 crossref_primary_10_3390_ijms23115960 crossref_primary_10_1007_s11816_015_0358_3 crossref_primary_10_1016_j_jplph_2020_153115 crossref_primary_10_1007_s13199_021_00793_1 crossref_primary_10_1016_j_plantsci_2023_111638 crossref_primary_10_1038_s41438_021_00524_z crossref_primary_10_1016_j_ijbiomac_2023_123806 crossref_primary_10_1016_j_pedsph_2023_10_004 crossref_primary_10_1016_j_agwat_2017_12_012 crossref_primary_10_1111_nph_13103 crossref_primary_10_1111_tpj_12045 crossref_primary_10_1016_j_envexpbot_2014_07_006 crossref_primary_10_17221_54_2012_PPS crossref_primary_10_3389_fpls_2022_984909 crossref_primary_10_3389_fpls_2016_01240 crossref_primary_10_3389_fpls_2022_1022696 crossref_primary_10_1093_plphys_kiab280 crossref_primary_10_1093_pcp_pcu212 crossref_primary_10_1093_treephys_tpaa109 crossref_primary_10_3390_plants4030606 crossref_primary_10_1016_j_rhisph_2022_100632 crossref_primary_10_1016_j_algal_2021_102217 crossref_primary_10_3390_plants12040792 crossref_primary_10_1016_j_plantsci_2021_110854 crossref_primary_10_3390_agronomy12123214 crossref_primary_10_1080_07352689_2023_2256093 crossref_primary_10_1093_aob_mct041 crossref_primary_10_1139_b11_046 crossref_primary_10_3389_fpls_2018_01800 crossref_primary_10_3390_jof9080845 crossref_primary_10_1186_s43008_024_00165_6 crossref_primary_10_1007_s00253_017_8608_7 crossref_primary_10_1038_nature10873 crossref_primary_10_1111_ppl_12274 crossref_primary_10_4161_psb_6_9_16365 crossref_primary_10_1016_j_sjbs_2024_103956 crossref_primary_10_1093_pcp_pcx013 crossref_primary_10_1093_pcp_pcx178 crossref_primary_10_1111_nph_13779 crossref_primary_10_3390_f13122188 crossref_primary_10_1016_j_jarmap_2023_100515 crossref_primary_10_4236_ajps_2014_512189 crossref_primary_10_1093_aob_mct258 crossref_primary_10_1371_journal_pone_0277701 crossref_primary_10_4161_psb_29593 crossref_primary_10_1094_MPMI_10_15_0240_FI crossref_primary_10_3390_jof7110908 crossref_primary_10_1016_j_scp_2022_100755 crossref_primary_10_1111_pce_12036 crossref_primary_10_3390_biom13111649 crossref_primary_10_1016_j_micres_2024_128028 crossref_primary_10_1111_pce_14210 crossref_primary_10_1186_s12864_019_6162_7 crossref_primary_10_1007_s00572_016_0706_3 crossref_primary_10_1080_15592324_2023_2180159 crossref_primary_10_1080_03650340_2020_1870677 crossref_primary_10_1016_j_jplph_2012_11_002 crossref_primary_10_1111_nph_16023 crossref_primary_10_3390_ijms23095284 crossref_primary_10_1021_acs_jafc_3c02709 crossref_primary_10_3389_fmicb_2024_1472449 crossref_primary_10_1111_nph_18128 crossref_primary_10_3389_fpls_2022_853435 crossref_primary_10_1111_mpp_12393 crossref_primary_10_3390_jof9090945 crossref_primary_10_4161_psb_23656 crossref_primary_10_4161_psb_25637 crossref_primary_10_1007_s00572_020_00986_4 crossref_primary_10_1002_elps_201300568 crossref_primary_10_1093_aob_mct229 crossref_primary_10_3390_ijms23179822 crossref_primary_10_3390_ijms19103146 crossref_primary_10_1016_j_micres_2024_127602 crossref_primary_10_1111_tpj_12515 crossref_primary_10_1093_aob_mct067 crossref_primary_10_1111_nph_12862 crossref_primary_10_1104_pp_114_246595 crossref_primary_10_1111_nph_14246 crossref_primary_10_1038_s41598_021_85497_8 crossref_primary_10_1111_pce_14580 crossref_primary_10_1093_aobpla_plv050 crossref_primary_10_1016_j_envexpbot_2023_105633 crossref_primary_10_1080_17429145_2015_1005180 crossref_primary_10_1104_pp_111_172627 crossref_primary_10_1134_S0003683816050112 crossref_primary_10_1093_aob_mct181 |
Cites_doi | 10.1104/pp.102.016196 10.1128/AEM.53.12.2908-2913.1987 10.1034/j.1399-3054.2000.100109.x 10.1104/pp.010132 10.1016/j.jplph.2009.11.014 10.1111/j.1469-8137.1990.tb00476.x 10.1111/j.1399-3054.1962.tb08052.x 10.1111/j.1399-3054.2007.00983.x 10.1093/jxb/erm134 10.1007/s00425-005-0003-4 10.1094/MPMI.2000.13.6.693 10.1146/annurev.micro.58.030603.123749 10.1104/pp.103.025478 10.1105/tpc.13.4.843 10.1111/j.1469-8137.2006.01840.x 10.1007/s00122-006-0332-0 10.1046/j.1469-8137.2002.00388.x 10.1104/pp.117.1.63 10.1007/s00344-008-9049-4 10.1007/BF00152749 10.1111/j.1469-8137.1988.tb03698.x 10.1111/j.1469-8137.1996.tb01847.x 10.1016/j.phytochem.2006.09.025 10.1111/j.1469-8137.1983.tb03454.x 10.1038/nature03608 10.1104/pp.109.147231 10.1007/s00425-005-0202-z 10.1111/j.1365-313X.2006.02702.x 10.1111/j.1469-8137.1994.tb04029.x 10.1093/jxb/erq089 10.1128/AEM.64.12.5004-5007.1998 10.1111/j.1469-8137.1994.tb02973.x 10.1139/b04-087 10.1007/s003440000021 10.1007/s00572-001-0151-8 10.1111/j.1469-8137.2009.02839.x 10.1104/pp.109.137646 10.1007/BF00195714 10.1023/A:1026430019738 10.1111/j.1365-313X.2005.02522.x 10.1242/dev.02753 10.1023/A:1006437205596 10.1111/j.1365-313X.2005.02548.x 10.1101/cshperspect.a001537 10.1111/j.1469-8137.2007.02107.x 10.1016/j.jplph.2005.01.014 10.1007/s00572-007-0133-6 10.1104/pp.82.3.713 10.1111/j.1438-8677.2009.00267.x 10.1093/jxb/erq041 10.1104/pp.52.4.385 10.1111/j.1399-3054.2006.00812.x 10.1016/S0953-7562(96)80164-X |
ContentType | Journal Article |
Copyright | Copyright © 2011 New Phytologist Trust 2010 The Authors. New Phytologist © 2010 New Phytologist Trust 2010 The Authors. New Phytologist © 2010 New Phytologist Trust. Copyright Wiley Subscription Services, Inc. Feb 2011 |
Copyright_xml | – notice: Copyright © 2011 New Phytologist Trust – notice: 2010 The Authors. New Phytologist © 2010 New Phytologist Trust – notice: 2010 The Authors. New Phytologist © 2010 New Phytologist Trust. – notice: Copyright Wiley Subscription Services, Inc. Feb 2011 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7S9 L.6 7X8 |
DOI | 10.1111/j.1469-8137.2010.03567.x |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 709 |
ExternalDocumentID | 21091696 10_1111_j_1469_8137_2010_03567_x NPH3567 40983901 US201301930186 |
Genre | rapidPublication Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AASVR AAXRX AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABHUG ABLJU ABPLY ABPTK ABPVW ABTLG ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFMIJ AFPWT AFVGU AFZJQ AGJLS AGUYK AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DWIUU E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HZI HZ~ IHE IPNFZ IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LW7 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT 79B AAHBH AAHQN AAMMB AAMNL AAYCA ABSQW ABVKB ABXSQ ACHIC AEFGJ AEYWJ AFWVQ AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG ALVPJ AQVQM HGLYW IPSME OIG AAYXX ABGDZ ADXHL AGHNM CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5577-2f495817f4e1ec12d26b3b6d3aa3e5974497cad927da2a66e2bb67e33ff8aa783 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 07:18:06 EDT 2025 Fri Jul 11 16:28:50 EDT 2025 Fri Jul 11 10:30:58 EDT 2025 Fri Jul 25 12:05:34 EDT 2025 Wed Feb 19 02:28:00 EST 2025 Thu Apr 24 23:03:46 EDT 2025 Tue Jul 01 03:09:06 EDT 2025 Wed Jan 22 16:56:53 EST 2025 Thu Jul 03 22:56:18 EDT 2025 Wed Dec 27 19:20:29 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2010 The Authors. New Phytologist © 2010 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5577-2f495817f4e1ec12d26b3b6d3aa3e5974497cad927da2a66e2bb67e33ff8aa783 |
Notes | http://dx.doi.org/10.1111/j.1469-8137.2010.03567.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1469-8137.2010.03567.x |
PMID | 21091696 |
PQID | 2512306443 |
PQPubID | 2026848 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_899134254 proquest_miscellaneous_839708362 proquest_miscellaneous_1365021629 proquest_journals_2512306443 pubmed_primary_21091696 crossref_primary_10_1111_j_1469_8137_2010_03567_x crossref_citationtrail_10_1111_j_1469_8137_2010_03567_x wiley_primary_10_1111_j_1469_8137_2010_03567_x_NPH3567 jstor_primary_40983901 fao_agris_US201301930186 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2011 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: February 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons – name: Wiley Subscription Services, Inc |
References | 2010; 12 1973; 52 2002; 154 2002; 12 2000; 44 2006; 132 1996; 100 1983; 94 2009; 151 1998; 117 2006; 172 1988; 108 2010; 61 2007; 134 2000; 19 1986; 82 2005; 222 2000; 13 2008; 27 2007; 175 2007; 131 2001; 13 2007; 68 2007; 17 1987; 53 2007; 129 2004; 82 2010 2009; 182 2005; 435 2010; 167 2008; 59 1997 1962; 15 1995; 195 1998; 64 2003; 133 2005; 44 2003; 131 1991; 5 2006; 113 1994; 127 2005; 162 1994; 128 1990; 115 2006; 46 2000; 226 2000; 109 2005; 59 2006; 224 1966 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 Smith S (e_1_2_6_51_1) 1997 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Hewitt EJ (e_1_2_6_28_1) 1966 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 94 start-page: 401 year: 1983 end-page: 407 article-title: Indole‐3‐acetic acid production by mycorrhizal fungi determined by gas chromatography‐mass spectrometry publication-title: New Phytologist – volume: 64 start-page: 5004 year: 1998 end-page: 5007 article-title: Ink and vinegar, a simple staining technique for arbuscular‐mycorrhizal fungi publication-title: Applied Environmental Microbiology – year: 1966 – volume: 195 start-page: 548 year: 1995 end-page: 553 article-title: Characterization of the growth and auxin physiology of roots of the tomato mutant, publication-title: Planta – volume: 68 start-page: 101 year: 2007 end-page: 110 article-title: Jasmonates in arbuscular mycorrhizal interactions publication-title: Phytochemistry – volume: 131 start-page: 581 year: 2007 end-page: 589 article-title: affects plant growth by auxin production publication-title: Physiologia Plantarum – volume: 53 start-page: 2908 year: 1987 end-page: 2913 article-title: Biosynthesis of indole‐3‐acetic acid by the pine ectomycorrhizal fungus, publication-title: Applied and Environmental Microbiology – volume: 128 start-page: 645 year: 1994 end-page: 657 article-title: Auxin overproducer mutants of Romagnesi have increased mycorrhizal activity publication-title: New Phytologist – volume: 44 start-page: 195 year: 2005 end-page: 207 article-title: Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in via the DMI1/DMI2 signalling pathway publication-title: Plant Journal – volume: 435 start-page: 824 year: 2005 end-page: 827 article-title: Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi publication-title: Nature – volume: 151 start-page: 1991 year: 2009 end-page: 2005 article-title: The ectomycorrhizal fungus stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling publication-title: Plant Physiology – volume: 59 start-page: 19 year: 2005 end-page: 42 article-title: Signaling in the arbuscular mycorrhizal symbiosis publication-title: Annual Review of Microbiology – volume: 151 start-page: 400 year: 2009 end-page: 412 article-title: Interactions between auxin and strigolactone in shoot branching control publication-title: Plant Physiology – volume: 44 start-page: 73 year: 2000 end-page: 84 article-title: The mutation alters auxin induction of a subset of the Aux/IAA gene family in tomato publication-title: Plant Molecular Biology – volume: 100 start-page: 328 year: 1996 end-page: 332 article-title: Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus in an system in the absence of host roots publication-title: Mycological Research – volume: 12 start-page: 224 year: 2010 end-page: 228 article-title: The ( ) mutant of tomato shows enhanced accumulation of PIN1 auxin transport facilitator protein publication-title: Plant Biology – volume: 131 start-page: 1692 year: 2003 end-page: 1704 article-title: Cytokinin inhibits a subset of ‐dependent primary auxin responses in tomato publication-title: Plant Physiology – volume: 127 start-page: 703 year: 1994 end-page: 709 article-title: Early processes involved in host recognition by arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 44 start-page: 569 year: 2005 end-page: 580 article-title: Hormonally controlled expression of the Arabidopsis shoot branching regulatory gene publication-title: Plant Journal – volume: 82 start-page: 1186 year: 2004 end-page: 1197 article-title: Partner communication in the arbuscular mycorrhizal interaction publication-title: Canadian Journal of Botany – volume: 113 start-page: 673 year: 2006 end-page: 683 article-title: Genetic characterization of the polycotyledon locus in tomato publication-title: Theoretical Applied Genetics – year: 1997 – volume: 167 start-page: 606 year: 2010 end-page: 613 article-title: Mycorrhization of the and tomato mutants in relation to abscisic acid and ethylene contents publication-title: Journal of Plant Physiology – volume: 27 start-page: 221 year: 2008 end-page: 230 article-title: The jasmonic acid signalling pathway restricts the development of the arbuscular mycorrhizal association in tomato publication-title: Journal of Plant Growth Regulation – year: 2010 article-title: Auxin control of root development publication-title: Cold Spring Harbor Perspectives in Biology – volume: 133 start-page: 113 year: 2003 end-page: 125 article-title: The mutant of tomato shows enhanced polar auxin transport publication-title: Plant Physiology – volume: 17 start-page: 349 year: 2007 end-page: 353 article-title: Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading? publication-title: Mycorrhiza – volume: 182 start-page: 829 year: 2009 end-page: 837 article-title: induces changes in root system architecture of rice independently of common symbiosis signaling publication-title: New Phytologist – volume: 172 start-page: 35 year: 2006 end-page: 46 article-title: A journey through signaling in arbuscular mycorrhizal symbioses 2006 publication-title: New Phytologist – volume: 132 start-page: 281 year: 2006 end-page: 288 article-title: Effect of phosphorus deficiency on growth angle of basal roots in publication-title: New Phytologist – volume: 154 start-page: 501 year: 2002 end-page: 507 article-title: Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with publication-title: New Phytologist – volume: 13 start-page: 843 year: 2001 end-page: 852 article-title: Auxin transport promotes Arabidopsis lateral root initiation publication-title: Plant Cell – volume: 46 start-page: 436 year: 2006 end-page: 447 article-title: Mutations in the ( ) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle publication-title: Plant Journal – volume: 108 start-page: 211 year: 1988 end-page: 218 article-title: Early events of vesicular‐arbuscular mycorrhiza formation on Ri T‐DNA transformed roots publication-title: New Phytologist – volume: 12 start-page: 37 year: 2002 end-page: 42 article-title: Breaking dormancy in spores of the arbuscular mycorrhizal fungus : a critical cold‐storage period publication-title: Mycorrhiza – volume: 5 start-page: 25 year: 1991 end-page: 28 article-title: Solubilization of gellan gels by chelation of cations publication-title: Biotechnology Techniques – volume: 222 start-page: 709 year: 2005 end-page: 715 article-title: Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007 publication-title: Planta – volume: 175 start-page: 554 year: 2007 end-page: 564 article-title: Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza publication-title: New Phytologist – volume: 226 start-page: 29 year: 2000 end-page: 35 article-title: IAA and ZR content in leek ( L.), as influenced by P nutrition and arbuscular mycorrhizas, in relation to plant development publication-title: Plant and Soil – volume: 115 start-page: 495 year: 1990 end-page: 501 article-title: A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 224 start-page: 133 year: 2006 end-page: 144 article-title: The gene of tomato encodes a cyclophilin: a novel player in auxin signaling publication-title: Planta – volume: 59 start-page: 67 year: 2008 end-page: 74 article-title: Hormonal control of shoot branching publication-title: Journal of Experimental Botany – volume: 134 start-page: 681 year: 2007 end-page: 690 article-title: Auxin‐dependent regulation of lateral root positioning in the basal meristem of Arabidopsis publication-title: Development – volume: 162 start-page: 1210 year: 2005 end-page: 1219 article-title: Auxins in the development of an arbuscular mycorrhizal symbiosis in maize publication-title: Journal of Plant Physiology – volume: 131 start-page: 186 year: 2003 end-page: 197 article-title: Regulation of early tomato fruit development by the gene publication-title: Plant Physiology – volume: 109 start-page: 58 year: 2000 end-page: 67 article-title: AM fungi might affect the root morphology of maize by increasing indole‐3‐butyric acid biosynthesis publication-title: Physiologia Plantarum – volume: 61 start-page: 2589 year: 2010 end-page: 2601 article-title: Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway publication-title: Journal of Experimental Botany – volume: 129 start-page: 320 year: 2007 end-page: 333 article-title: Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in during early stages of colonization publication-title: Physiologia Plantarum – volume: 82 start-page: 713 year: 1986 end-page: 717 article-title: Insensitivity of the tomato mutant to auxin publication-title: Plant Physiology – volume: 13 start-page: 693 year: 2000 end-page: 698 article-title: The pre‐symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates publication-title: Molecular Plant–Microbe Interactions – volume: 15 start-page: 495 year: 1962 end-page: 501 article-title: A revised medium for rapid growth and bioassays with tobacco tissue cultures publication-title: Physiologia Plantarum – volume: 19 start-page: 144 year: 2000 end-page: 154 article-title: The roles of auxins and cytokinins in mycorrhizal symbioses publication-title: Journal of Plant Growth Regulation – volume: 117 start-page: 63 year: 1998 end-page: 72 article-title: The diageotropica gene differentially affects auxin and cytokinin responses throughout development in tomato publication-title: Plant Physiology – volume: 61 start-page: 1739 year: 2010 end-page: 1749 article-title: A tomato strigolactone‐impaired mutant displays aberrant shoot morphology and plant interactions publication-title: Journal of Experimental Botany – volume: 52 start-page: 385 year: 1973 end-page: 389 article-title: Some physiological characteristics of the ethylene‐requiring tomato mutant publication-title: Plant Physiology – volume-title: Sand and water culture methods used in the study of plant nutrition year: 1966 ident: e_1_2_6_28_1 – ident: e_1_2_6_12_1 doi: 10.1104/pp.102.016196 – ident: e_1_2_6_19_1 doi: 10.1128/AEM.53.12.2908-2913.1987 – ident: e_1_2_6_32_1 doi: 10.1034/j.1399-3054.2000.100109.x – ident: e_1_2_6_5_1 doi: 10.1104/pp.010132 – ident: e_1_2_6_48_1 doi: 10.1016/j.jplph.2009.11.014 – ident: e_1_2_6_38_1 doi: 10.1111/j.1469-8137.1990.tb00476.x – ident: e_1_2_6_41_1 doi: 10.1111/j.1399-3054.1962.tb08052.x – ident: e_1_2_6_50_1 doi: 10.1111/j.1399-3054.2007.00983.x – ident: e_1_2_6_45_1 doi: 10.1093/jxb/erm134 – ident: e_1_2_6_39_1 doi: 10.1007/s00425-005-0003-4 – ident: e_1_2_6_10_1 doi: 10.1094/MPMI.2000.13.6.693 – ident: e_1_2_6_23_1 doi: 10.1146/annurev.micro.58.030603.123749 – ident: e_1_2_6_3_1 doi: 10.1104/pp.103.025478 – ident: e_1_2_6_11_1 doi: 10.1105/tpc.13.4.843 – ident: e_1_2_6_47_1 doi: 10.1111/j.1469-8137.2006.01840.x – ident: e_1_2_6_37_1 doi: 10.1007/s00122-006-0332-0 – ident: e_1_2_6_49_1 doi: 10.1046/j.1469-8137.2002.00388.x – ident: e_1_2_6_13_1 doi: 10.1104/pp.117.1.63 – ident: e_1_2_6_27_1 doi: 10.1007/s00344-008-9049-4 – ident: e_1_2_6_15_1 doi: 10.1007/BF00152749 – ident: e_1_2_6_7_1 doi: 10.1111/j.1469-8137.1988.tb03698.x – ident: e_1_2_6_9_1 doi: 10.1111/j.1469-8137.1996.tb01847.x – ident: e_1_2_6_24_1 doi: 10.1016/j.phytochem.2006.09.025 – ident: e_1_2_6_16_1 doi: 10.1111/j.1469-8137.1983.tb03454.x – ident: e_1_2_6_2_1 doi: 10.1038/nature03608 – ident: e_1_2_6_17_1 doi: 10.1104/pp.109.147231 – ident: e_1_2_6_43_1 doi: 10.1007/s00425-005-0202-z – ident: e_1_2_6_29_1 doi: 10.1111/j.1365-313X.2006.02702.x – ident: e_1_2_6_20_1 doi: 10.1111/j.1469-8137.1994.tb04029.x – ident: e_1_2_6_36_1 doi: 10.1093/jxb/erq089 – ident: e_1_2_6_55_1 doi: 10.1128/AEM.64.12.5004-5007.1998 – ident: e_1_2_6_21_1 doi: 10.1111/j.1469-8137.1994.tb02973.x – ident: e_1_2_6_8_1 doi: 10.1139/b04-087 – ident: e_1_2_6_6_1 doi: 10.1007/s003440000021 – ident: e_1_2_6_31_1 doi: 10.1007/s00572-001-0151-8 – ident: e_1_2_6_22_1 doi: 10.1111/j.1469-8137.2009.02839.x – volume-title: Mycorrhizal symbiosis year: 1997 ident: e_1_2_6_51_1 – ident: e_1_2_6_25_1 doi: 10.1104/pp.109.137646 – ident: e_1_2_6_40_1 doi: 10.1007/BF00195714 – ident: e_1_2_6_53_1 doi: 10.1023/A:1026430019738 – ident: e_1_2_6_44_1 doi: 10.1111/j.1365-313X.2005.02522.x – ident: e_1_2_6_14_1 doi: 10.1242/dev.02753 – ident: e_1_2_6_42_1 doi: 10.1023/A:1006437205596 – ident: e_1_2_6_4_1 doi: 10.1111/j.1365-313X.2005.02548.x – ident: e_1_2_6_46_1 doi: 10.1101/cshperspect.a001537 – ident: e_1_2_6_26_1 doi: 10.1111/j.1469-8137.2007.02107.x – ident: e_1_2_6_18_1 doi: 10.1016/j.jplph.2005.01.014 – ident: e_1_2_6_54_1 doi: 10.1007/s00572-007-0133-6 – ident: e_1_2_6_33_1 doi: 10.1104/pp.82.3.713 – ident: e_1_2_6_34_1 doi: 10.1111/j.1438-8677.2009.00267.x – ident: e_1_2_6_35_1 doi: 10.1093/jxb/erq041 – ident: e_1_2_6_56_1 doi: 10.1104/pp.52.4.385 – ident: e_1_2_6_30_1 doi: 10.1111/j.1399-3054.2006.00812.x – ident: e_1_2_6_52_1 doi: 10.1016/S0953-7562(96)80164-X |
SSID | ssj0009562 |
Score | 2.3492384 |
Snippet | • Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis... Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that... Summary • Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the... |
SourceID | proquest pubmed crossref wiley jstor fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 701 |
SubjectTerms | arbuscular mycorrhiza (AM) Arbuscular mycorrhizas auxin Auxins branching Colonization diageotropica Fungal spores Fungi Genes, Plant genetics Glomeromycota Glomeromycota - growth & development Glomus intraradices growth & development Hormones hosts Hyphae Hyphae - growth & development Indoleacetic Acids Indoleacetic Acids - metabolism Inoculation Lycopersicon esculentum Lycopersicon esculentum - genetics Lycopersicon esculentum - metabolism Lycopersicon esculentum - microbiology metabolism Microbial colonization microbiology mutants Mutation Mycorrhizae Mycorrhizae - genetics Mycorrhizae - growth & development Mycorrhizae - metabolism mycorrhizal fungi Organ culture physiology Plant Growth Regulators Plant Growth Regulators - metabolism Plant growth substances Plant hormones Plant roots Plants polycotyledon Rapid report Resistant mutant Rhizophagus intraradices Root systems Roots Seedlings Signal Transduction Signal Transduction - physiology Signaling Solanum Solanum lycopersicum Spores Symbiosis Symbiosis - genetics Symbiosis - physiology Tomatoes vesicular arbuscular mycorrhizae |
Title | Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation |
URI | https://www.jstor.org/stable/40983901 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8137.2010.03567.x https://www.ncbi.nlm.nih.gov/pubmed/21091696 https://www.proquest.com/docview/2512306443 https://www.proquest.com/docview/1365021629 https://www.proquest.com/docview/839708362 https://www.proquest.com/docview/899134254 |
Volume | 189 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFL1sZQ992dqtXdx2Q4W9OsSSLdmP7VgJhZWxLpA3IdlSG7o5o3Ggya_vvf5iKV0pY28CWdbXvdK58vERwKdR5KMcQVuI8-tD0h8JTZrnYYHoniuPe2At9vz1Qo4n8fk0mbb8J_oXptGH6A_cyDPq9Zoc3NjFQyenIyyhWoaWSKQaEp4k6hbho-_8D_1dyTtBZhnL6Sap59EXbexUL72Zd5TFx8DoJratN6ezN3DTdavhpNwMl5Ud5usHio__p9878LrFsOykMbpdeOHKt_DqdI44c_UOzknJGnOYay8sZYiLmVnezUo2K3E1rBXKK0wzg1PaEGHZrxWGwbfXs7XBjFnVGMweTM6-_Pg8DtsbG8I8SZQKucd4K42Uj13k8ogXXFphZSGMEY5ClzhTuSkyrgrDjZSOWyuVE8L71BiVin3YKuelGwCLJUZSPsvsyClMJwhjbZpYsq2YqghAdbOj81bOnG7V-Kk3wppM00BpGihdD5S-CyDqS_5uJD2eUWaABqDNFa68enLJ6XsvQt9RlMoA9mur6N-FEXNKJ0kBHHVmotuFYaEJTlLQF4sAjvtsdGn6TmNKN18uNJkvQi_JswDYX57BGhQJi_MnHsmIVcGTOID3jZH2TeQkByszbLusTe3Z46Avvo0pdfCvBQ9huzmVJ0LQEWxVt0v3AWFdZT_WDnsPBvE3iw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQkuvEsDBYwEx6w2TmInBw5AqbavFYKutDdjJzasgCzqZsVu_xp_hR_DTF5iq4IqpB64WXLsOJ6Hv7EnnwGe9QMXZAjafJSv84l_xNdJlvk5onsuHa6BFdnz0VAMRtH-OB6vwY_2X5iaH6LbcCPLqPw1GThtSJ-1ctrDCmWTohXGQvYWTYblgV1-x_ht9mJvB4X9nPPdN8evB35zxYCfxbGUPncYICSBdJENbBbwnAsTGpGHWoeWsHaUykznKZe55loIy40R0oahc4nWMgmx33W4QheKE3H_zjv-G-Ov4C0FtIjEeDWN6NyRr6yN605P2yTJ8-DvKpqulsPdm_Czncg6C-Zzb16aXnZ6hmPyP53pW3CjgensZW1Xt2HNFnfg6qspQunlXdgnsm6sYba5k5Uh9Gd6vpgUbFKgw69I2EssM41aW-f6sq9LjPRPPk1ONVZMytom7sHoUr5jEzaKaWG3gEUCg0WXpqZvJZZjROomiQ2ZT0Sv8EC26qCyhrGdLg75olYit1SRYBQJRlWCUQsPgq7lt5q15AJttlDjlP6Ii4saved0pI3ovh8kwoPNSg27vqJ-mtBmmQfbrV6qxvfNFCFmimuj0IOnXTV6LTqK0oWdzmeKkisRXQqeesD-8Ay-QRJ3Ov_LIykljvA48uB-bRXdEDkx3ooUxy4q3b7wPKjh2wGVHvxrwydwbXB8dKgO94YHD-F6fQhB-U_bsFGezO0jRLGleVx5CwYfLttofgEqRpYn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7aBkK8cB8LDAgSPKZKHMeOH3gAStVtUE1Apb4ZJ3FGBaTTmop2P42_wp_hnNxEp4EmpD3wZsmx4_hc_B375DPAMz_IgxRBm4fyzT3iH_FMnKZehuieyRzXwIrs-d1IDMd8fxJNNuBH-y9MzQ_RbbiRZVT-mgz8OMvPGjltYYWyydAKIyF7yybB8sCuvmP4Nn-x10dZP2ds8Obj66HX3DDgpVEkpcdyjA_iQObcBjYNWMZEEiYiC40JLUFtrmRqMsVkZpgRwrIkEdKGYZ7Hxsg4xH434QoXvqJrI_rv2W-Ev4K1DNCCi8l6FtG5I19bGjdzM2tzJM9Dv-tguloNBzfhZzuPdRLMl96iTHrp6RmKyf9zom_BjQakuy9rq7oNG7a4A1dfzRBIr-7CPlF1Y41rmxtZXQT-rlksp4U7LdDdVxTsJZZdgzpbZ_q631YY5598np4arJiWtUXcg_GlfMc2bBWzwu6AywWGirlSiW8lliPE6UkcJWQ8nF7hgGy1QacNXztdG_JVr8VtSpNgNAlGV4LRSweCruVxzVlygTY7qHDaHOHSoscfGB1oI7b3g1g4sF1pYdcX91VMW2UO7LZqqRvPN9eElymq5aEDT7tq9Fl0EGUKO1vMNaVWIrYUTDng_uEZfIMk5nT2l0cUpY2wiDtwvzaKboiM-G6FwrGLSrUvPA96dDik0oN_bfgErh32B_rt3ujgIVyvTyAo-WkXtsqThX2EELZMHle-woVPl20zvwCgvJTW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+evidence+for+auxin+involvement+in+arbuscular+mycorrhiza+initiation&rft.jtitle=The+New+phytologist&rft.au=Hanlon%2C+Meredith+T&rft.au=Coenen%2C+Catharina&rft.date=2011-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=189&rft.issue=3&rft.spage=701&rft.epage=709&rft_id=info:doi/10.1111%2Fj.1469-8137.2010.03567.x&rft.externalDocID=US201301930186 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |