Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation

• Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum):...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 189; no. 3; pp. 701 - 709
Main Authors Hanlon, Meredith T., Coenen, Catharina
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.02.2011
John Wiley & Sons
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. • Mutant and wild-type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root-fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. • In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots. pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. • We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange.
AbstractList Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. Mutant and wild-type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root-fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots, pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange.
• Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. • Mutant and wild-type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root-fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. • In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots. pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. • We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange.
• Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. • Mutant and wild-type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root-fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. • In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots. pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. • We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange.• Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. • Mutant and wild-type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root-fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. • In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots. pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. • We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange.
Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport.
Summary • Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin‐resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. • Mutant and wild‐type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root–fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. • In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots. pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. • We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange.
Author Coenen, Catharina
Hanlon, Meredith T.
Author_xml – sequence: 1
  givenname: Meredith T.
  surname: Hanlon
  fullname: Hanlon, Meredith T.
– sequence: 2
  givenname: Catharina
  surname: Coenen
  fullname: Coenen, Catharina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21091696$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFRwAisSibDP6LHS9AqipoQRUgQSV2luPcgKMkLnYyzPD0OE2ZRRdQS5avfL9zLN9zhA4GPwBCGcFrktardk24UHlJmFxTnG4xK4Rcbx-g1b5xgFYY0zIXXHw7REcxthhjVQj6CB1SghURSqzQh3MYYHQ2g42rYbCQNT5kZtq6IXPDxncb6GEYU52ZUE3RTp0JWb-zPoQf7rdJDTc6Mzo_PEYPG9NFeHJ7HqOrd2-_nl3kl5_O35-dXua2KKTMacNVURLZcCBgCa2pqFglamYMg0JJzpW0plZU1oYaIYBWlZDAWNOUxsiSHaOTxfc6-J8TxFH3LlroOjOAn6IulSKM04L_n2RK4pIJmsiX_yQJEwWmRFCV0Bd30NZPYUg_1rQglGHBOUvUs1tqqnqo9XVwvQk7_XfyCSgXwAYfY4BmjxCs55B1q-cs9ZylnkPWNyHrbZK-uSO1bryJYAzGdfcxeL0Y_HId7O79sP74-WKukv7pom_j6MNez7FKE8Uk9Z8v_cZ4bb4HF_XVl-TEMFFpl4L9Aexa0dg
CitedBy_id crossref_primary_10_1016_j_pbi_2014_04_003
crossref_primary_10_1038_s41598_017_18445_0
crossref_primary_10_1007_s11032_023_01361_9
crossref_primary_10_3390_ijms24065193
crossref_primary_10_1093_jxb_eraa111
crossref_primary_10_1093_jxb_erx432
crossref_primary_10_1128_spectrum_01645_21
crossref_primary_10_3390_genes10010059
crossref_primary_10_3390_ijms23115960
crossref_primary_10_1007_s11816_015_0358_3
crossref_primary_10_1016_j_jplph_2020_153115
crossref_primary_10_1007_s13199_021_00793_1
crossref_primary_10_1016_j_plantsci_2023_111638
crossref_primary_10_1038_s41438_021_00524_z
crossref_primary_10_1016_j_ijbiomac_2023_123806
crossref_primary_10_1016_j_pedsph_2023_10_004
crossref_primary_10_1016_j_agwat_2017_12_012
crossref_primary_10_1111_nph_13103
crossref_primary_10_1111_tpj_12045
crossref_primary_10_1016_j_envexpbot_2014_07_006
crossref_primary_10_17221_54_2012_PPS
crossref_primary_10_3389_fpls_2022_984909
crossref_primary_10_3389_fpls_2016_01240
crossref_primary_10_3389_fpls_2022_1022696
crossref_primary_10_1093_plphys_kiab280
crossref_primary_10_1093_pcp_pcu212
crossref_primary_10_1093_treephys_tpaa109
crossref_primary_10_3390_plants4030606
crossref_primary_10_1016_j_rhisph_2022_100632
crossref_primary_10_1016_j_algal_2021_102217
crossref_primary_10_3390_plants12040792
crossref_primary_10_1016_j_plantsci_2021_110854
crossref_primary_10_3390_agronomy12123214
crossref_primary_10_1080_07352689_2023_2256093
crossref_primary_10_1093_aob_mct041
crossref_primary_10_1139_b11_046
crossref_primary_10_3389_fpls_2018_01800
crossref_primary_10_3390_jof9080845
crossref_primary_10_1186_s43008_024_00165_6
crossref_primary_10_1007_s00253_017_8608_7
crossref_primary_10_1038_nature10873
crossref_primary_10_1111_ppl_12274
crossref_primary_10_4161_psb_6_9_16365
crossref_primary_10_1016_j_sjbs_2024_103956
crossref_primary_10_1093_pcp_pcx013
crossref_primary_10_1093_pcp_pcx178
crossref_primary_10_1111_nph_13779
crossref_primary_10_3390_f13122188
crossref_primary_10_1016_j_jarmap_2023_100515
crossref_primary_10_4236_ajps_2014_512189
crossref_primary_10_1093_aob_mct258
crossref_primary_10_1371_journal_pone_0277701
crossref_primary_10_4161_psb_29593
crossref_primary_10_1094_MPMI_10_15_0240_FI
crossref_primary_10_3390_jof7110908
crossref_primary_10_1016_j_scp_2022_100755
crossref_primary_10_1111_pce_12036
crossref_primary_10_3390_biom13111649
crossref_primary_10_1016_j_micres_2024_128028
crossref_primary_10_1111_pce_14210
crossref_primary_10_1186_s12864_019_6162_7
crossref_primary_10_1007_s00572_016_0706_3
crossref_primary_10_1080_15592324_2023_2180159
crossref_primary_10_1080_03650340_2020_1870677
crossref_primary_10_1016_j_jplph_2012_11_002
crossref_primary_10_1111_nph_16023
crossref_primary_10_3390_ijms23095284
crossref_primary_10_1021_acs_jafc_3c02709
crossref_primary_10_3389_fmicb_2024_1472449
crossref_primary_10_1111_nph_18128
crossref_primary_10_3389_fpls_2022_853435
crossref_primary_10_1111_mpp_12393
crossref_primary_10_3390_jof9090945
crossref_primary_10_4161_psb_23656
crossref_primary_10_4161_psb_25637
crossref_primary_10_1007_s00572_020_00986_4
crossref_primary_10_1002_elps_201300568
crossref_primary_10_1093_aob_mct229
crossref_primary_10_3390_ijms23179822
crossref_primary_10_3390_ijms19103146
crossref_primary_10_1016_j_micres_2024_127602
crossref_primary_10_1111_tpj_12515
crossref_primary_10_1093_aob_mct067
crossref_primary_10_1111_nph_12862
crossref_primary_10_1104_pp_114_246595
crossref_primary_10_1111_nph_14246
crossref_primary_10_1038_s41598_021_85497_8
crossref_primary_10_1111_pce_14580
crossref_primary_10_1093_aobpla_plv050
crossref_primary_10_1016_j_envexpbot_2023_105633
crossref_primary_10_1080_17429145_2015_1005180
crossref_primary_10_1104_pp_111_172627
crossref_primary_10_1134_S0003683816050112
crossref_primary_10_1093_aob_mct181
Cites_doi 10.1104/pp.102.016196
10.1128/AEM.53.12.2908-2913.1987
10.1034/j.1399-3054.2000.100109.x
10.1104/pp.010132
10.1016/j.jplph.2009.11.014
10.1111/j.1469-8137.1990.tb00476.x
10.1111/j.1399-3054.1962.tb08052.x
10.1111/j.1399-3054.2007.00983.x
10.1093/jxb/erm134
10.1007/s00425-005-0003-4
10.1094/MPMI.2000.13.6.693
10.1146/annurev.micro.58.030603.123749
10.1104/pp.103.025478
10.1105/tpc.13.4.843
10.1111/j.1469-8137.2006.01840.x
10.1007/s00122-006-0332-0
10.1046/j.1469-8137.2002.00388.x
10.1104/pp.117.1.63
10.1007/s00344-008-9049-4
10.1007/BF00152749
10.1111/j.1469-8137.1988.tb03698.x
10.1111/j.1469-8137.1996.tb01847.x
10.1016/j.phytochem.2006.09.025
10.1111/j.1469-8137.1983.tb03454.x
10.1038/nature03608
10.1104/pp.109.147231
10.1007/s00425-005-0202-z
10.1111/j.1365-313X.2006.02702.x
10.1111/j.1469-8137.1994.tb04029.x
10.1093/jxb/erq089
10.1128/AEM.64.12.5004-5007.1998
10.1111/j.1469-8137.1994.tb02973.x
10.1139/b04-087
10.1007/s003440000021
10.1007/s00572-001-0151-8
10.1111/j.1469-8137.2009.02839.x
10.1104/pp.109.137646
10.1007/BF00195714
10.1023/A:1026430019738
10.1111/j.1365-313X.2005.02522.x
10.1242/dev.02753
10.1023/A:1006437205596
10.1111/j.1365-313X.2005.02548.x
10.1101/cshperspect.a001537
10.1111/j.1469-8137.2007.02107.x
10.1016/j.jplph.2005.01.014
10.1007/s00572-007-0133-6
10.1104/pp.82.3.713
10.1111/j.1438-8677.2009.00267.x
10.1093/jxb/erq041
10.1104/pp.52.4.385
10.1111/j.1399-3054.2006.00812.x
10.1016/S0953-7562(96)80164-X
ContentType Journal Article
Copyright Copyright © 2011 New Phytologist Trust
2010 The Authors. New Phytologist © 2010 New Phytologist Trust
2010 The Authors. New Phytologist © 2010 New Phytologist Trust.
Copyright Wiley Subscription Services, Inc. Feb 2011
Copyright_xml – notice: Copyright © 2011 New Phytologist Trust
– notice: 2010 The Authors. New Phytologist © 2010 New Phytologist Trust
– notice: 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.
– notice: Copyright Wiley Subscription Services, Inc. Feb 2011
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7S9
L.6
7X8
DOI 10.1111/j.1469-8137.2010.03567.x
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 709
ExternalDocumentID 21091696
10_1111_j_1469_8137_2010_03567_x
NPH3567
40983901
US201301930186
Genre rapidPublication
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABLJU
ABPLY
ABPTK
ABPVW
ABTLG
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFMIJ
AFPWT
AFVGU
AFZJQ
AGJLS
AGUYK
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DWIUU
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LW7
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
79B
AAHBH
AAHQN
AAMMB
AAMNL
AAYCA
ABSQW
ABVKB
ABXSQ
ACHIC
AEFGJ
AEYWJ
AFWVQ
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
ALVPJ
AQVQM
HGLYW
IPSME
OIG
AAYXX
ABGDZ
ADXHL
AGHNM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c5577-2f495817f4e1ec12d26b3b6d3aa3e5974497cad927da2a66e2bb67e33ff8aa783
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 07:18:06 EDT 2025
Fri Jul 11 16:28:50 EDT 2025
Fri Jul 11 10:30:58 EDT 2025
Fri Jul 25 12:05:34 EDT 2025
Wed Feb 19 02:28:00 EST 2025
Thu Apr 24 23:03:46 EDT 2025
Tue Jul 01 03:09:06 EDT 2025
Wed Jan 22 16:56:53 EST 2025
Thu Jul 03 22:56:18 EDT 2025
Wed Dec 27 19:20:29 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2010 The Authors. New Phytologist © 2010 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5577-2f495817f4e1ec12d26b3b6d3aa3e5974497cad927da2a66e2bb67e33ff8aa783
Notes http://dx.doi.org/10.1111/j.1469-8137.2010.03567.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1469-8137.2010.03567.x
PMID 21091696
PQID 2512306443
PQPubID 2026848
PageCount 9
ParticipantIDs proquest_miscellaneous_899134254
proquest_miscellaneous_839708362
proquest_miscellaneous_1365021629
proquest_journals_2512306443
pubmed_primary_21091696
crossref_primary_10_1111_j_1469_8137_2010_03567_x
crossref_citationtrail_10_1111_j_1469_8137_2010_03567_x
wiley_primary_10_1111_j_1469_8137_2010_03567_x_NPH3567
jstor_primary_40983901
fao_agris_US201301930186
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2011
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: February 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2011
Publisher Blackwell Publishing Ltd
John Wiley & Sons
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons
– name: Wiley Subscription Services, Inc
References 2010; 12
1973; 52
2002; 154
2002; 12
2000; 44
2006; 132
1996; 100
1983; 94
2009; 151
1998; 117
2006; 172
1988; 108
2010; 61
2007; 134
2000; 19
1986; 82
2005; 222
2000; 13
2008; 27
2007; 175
2007; 131
2001; 13
2007; 68
2007; 17
1987; 53
2007; 129
2004; 82
2010
2009; 182
2005; 435
2010; 167
2008; 59
1997
1962; 15
1995; 195
1998; 64
2003; 133
2005; 44
2003; 131
1991; 5
2006; 113
1994; 127
2005; 162
1994; 128
1990; 115
2006; 46
2000; 226
2000; 109
2005; 59
2006; 224
1966
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
Smith S (e_1_2_6_51_1) 1997
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Hewitt EJ (e_1_2_6_28_1) 1966
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 94
  start-page: 401
  year: 1983
  end-page: 407
  article-title: Indole‐3‐acetic acid production by mycorrhizal fungi determined by gas chromatography‐mass spectrometry
  publication-title: New Phytologist
– volume: 64
  start-page: 5004
  year: 1998
  end-page: 5007
  article-title: Ink and vinegar, a simple staining technique for arbuscular‐mycorrhizal fungi
  publication-title: Applied Environmental Microbiology
– year: 1966
– volume: 195
  start-page: 548
  year: 1995
  end-page: 553
  article-title: Characterization of the growth and auxin physiology of roots of the tomato mutant,
  publication-title: Planta
– volume: 68
  start-page: 101
  year: 2007
  end-page: 110
  article-title: Jasmonates in arbuscular mycorrhizal interactions
  publication-title: Phytochemistry
– volume: 131
  start-page: 581
  year: 2007
  end-page: 589
  article-title: affects plant growth by auxin production
  publication-title: Physiologia Plantarum
– volume: 53
  start-page: 2908
  year: 1987
  end-page: 2913
  article-title: Biosynthesis of indole‐3‐acetic acid by the pine ectomycorrhizal fungus,
  publication-title: Applied and Environmental Microbiology
– volume: 128
  start-page: 645
  year: 1994
  end-page: 657
  article-title: Auxin overproducer mutants of Romagnesi have increased mycorrhizal activity
  publication-title: New Phytologist
– volume: 44
  start-page: 195
  year: 2005
  end-page: 207
  article-title: Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in via the DMI1/DMI2 signalling pathway
  publication-title: Plant Journal
– volume: 435
  start-page: 824
  year: 2005
  end-page: 827
  article-title: Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
  publication-title: Nature
– volume: 151
  start-page: 1991
  year: 2009
  end-page: 2005
  article-title: The ectomycorrhizal fungus stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling
  publication-title: Plant Physiology
– volume: 59
  start-page: 19
  year: 2005
  end-page: 42
  article-title: Signaling in the arbuscular mycorrhizal symbiosis
  publication-title: Annual Review of Microbiology
– volume: 151
  start-page: 400
  year: 2009
  end-page: 412
  article-title: Interactions between auxin and strigolactone in shoot branching control
  publication-title: Plant Physiology
– volume: 44
  start-page: 73
  year: 2000
  end-page: 84
  article-title: The mutation alters auxin induction of a subset of the Aux/IAA gene family in tomato
  publication-title: Plant Molecular Biology
– volume: 100
  start-page: 328
  year: 1996
  end-page: 332
  article-title: Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus in an system in the absence of host roots
  publication-title: Mycological Research
– volume: 12
  start-page: 224
  year: 2010
  end-page: 228
  article-title: The ( ) mutant of tomato shows enhanced accumulation of PIN1 auxin transport facilitator protein
  publication-title: Plant Biology
– volume: 131
  start-page: 1692
  year: 2003
  end-page: 1704
  article-title: Cytokinin inhibits a subset of ‐dependent primary auxin responses in tomato
  publication-title: Plant Physiology
– volume: 127
  start-page: 703
  year: 1994
  end-page: 709
  article-title: Early processes involved in host recognition by arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 44
  start-page: 569
  year: 2005
  end-page: 580
  article-title: Hormonally controlled expression of the Arabidopsis shoot branching regulatory gene
  publication-title: Plant Journal
– volume: 82
  start-page: 1186
  year: 2004
  end-page: 1197
  article-title: Partner communication in the arbuscular mycorrhizal interaction
  publication-title: Canadian Journal of Botany
– volume: 113
  start-page: 673
  year: 2006
  end-page: 683
  article-title: Genetic characterization of the polycotyledon locus in tomato
  publication-title: Theoretical Applied Genetics
– year: 1997
– volume: 167
  start-page: 606
  year: 2010
  end-page: 613
  article-title: Mycorrhization of the and tomato mutants in relation to abscisic acid and ethylene contents
  publication-title: Journal of Plant Physiology
– volume: 27
  start-page: 221
  year: 2008
  end-page: 230
  article-title: The jasmonic acid signalling pathway restricts the development of the arbuscular mycorrhizal association in tomato
  publication-title: Journal of Plant Growth Regulation
– year: 2010
  article-title: Auxin control of root development
  publication-title: Cold Spring Harbor Perspectives in Biology
– volume: 133
  start-page: 113
  year: 2003
  end-page: 125
  article-title: The mutant of tomato shows enhanced polar auxin transport
  publication-title: Plant Physiology
– volume: 17
  start-page: 349
  year: 2007
  end-page: 353
  article-title: Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading?
  publication-title: Mycorrhiza
– volume: 182
  start-page: 829
  year: 2009
  end-page: 837
  article-title: induces changes in root system architecture of rice independently of common symbiosis signaling
  publication-title: New Phytologist
– volume: 172
  start-page: 35
  year: 2006
  end-page: 46
  article-title: A journey through signaling in arbuscular mycorrhizal symbioses 2006
  publication-title: New Phytologist
– volume: 132
  start-page: 281
  year: 2006
  end-page: 288
  article-title: Effect of phosphorus deficiency on growth angle of basal roots in
  publication-title: New Phytologist
– volume: 154
  start-page: 501
  year: 2002
  end-page: 507
  article-title: Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with
  publication-title: New Phytologist
– volume: 13
  start-page: 843
  year: 2001
  end-page: 852
  article-title: Auxin transport promotes Arabidopsis lateral root initiation
  publication-title: Plant Cell
– volume: 46
  start-page: 436
  year: 2006
  end-page: 447
  article-title: Mutations in the ( ) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle
  publication-title: Plant Journal
– volume: 108
  start-page: 211
  year: 1988
  end-page: 218
  article-title: Early events of vesicular‐arbuscular mycorrhiza formation on Ri T‐DNA transformed roots
  publication-title: New Phytologist
– volume: 12
  start-page: 37
  year: 2002
  end-page: 42
  article-title: Breaking dormancy in spores of the arbuscular mycorrhizal fungus : a critical cold‐storage period
  publication-title: Mycorrhiza
– volume: 5
  start-page: 25
  year: 1991
  end-page: 28
  article-title: Solubilization of gellan gels by chelation of cations
  publication-title: Biotechnology Techniques
– volume: 222
  start-page: 709
  year: 2005
  end-page: 715
  article-title: Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007
  publication-title: Planta
– volume: 175
  start-page: 554
  year: 2007
  end-page: 564
  article-title: Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza
  publication-title: New Phytologist
– volume: 226
  start-page: 29
  year: 2000
  end-page: 35
  article-title: IAA and ZR content in leek ( L.), as influenced by P nutrition and arbuscular mycorrhizas, in relation to plant development
  publication-title: Plant and Soil
– volume: 115
  start-page: 495
  year: 1990
  end-page: 501
  article-title: A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 224
  start-page: 133
  year: 2006
  end-page: 144
  article-title: The gene of tomato encodes a cyclophilin: a novel player in auxin signaling
  publication-title: Planta
– volume: 59
  start-page: 67
  year: 2008
  end-page: 74
  article-title: Hormonal control of shoot branching
  publication-title: Journal of Experimental Botany
– volume: 134
  start-page: 681
  year: 2007
  end-page: 690
  article-title: Auxin‐dependent regulation of lateral root positioning in the basal meristem of Arabidopsis
  publication-title: Development
– volume: 162
  start-page: 1210
  year: 2005
  end-page: 1219
  article-title: Auxins in the development of an arbuscular mycorrhizal symbiosis in maize
  publication-title: Journal of Plant Physiology
– volume: 131
  start-page: 186
  year: 2003
  end-page: 197
  article-title: Regulation of early tomato fruit development by the gene
  publication-title: Plant Physiology
– volume: 109
  start-page: 58
  year: 2000
  end-page: 67
  article-title: AM fungi might affect the root morphology of maize by increasing indole‐3‐butyric acid biosynthesis
  publication-title: Physiologia Plantarum
– volume: 61
  start-page: 2589
  year: 2010
  end-page: 2601
  article-title: Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway
  publication-title: Journal of Experimental Botany
– volume: 129
  start-page: 320
  year: 2007
  end-page: 333
  article-title: Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in during early stages of colonization
  publication-title: Physiologia Plantarum
– volume: 82
  start-page: 713
  year: 1986
  end-page: 717
  article-title: Insensitivity of the tomato mutant to auxin
  publication-title: Plant Physiology
– volume: 13
  start-page: 693
  year: 2000
  end-page: 698
  article-title: The pre‐symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates
  publication-title: Molecular Plant–Microbe Interactions
– volume: 15
  start-page: 495
  year: 1962
  end-page: 501
  article-title: A revised medium for rapid growth and bioassays with tobacco tissue cultures
  publication-title: Physiologia Plantarum
– volume: 19
  start-page: 144
  year: 2000
  end-page: 154
  article-title: The roles of auxins and cytokinins in mycorrhizal symbioses
  publication-title: Journal of Plant Growth Regulation
– volume: 117
  start-page: 63
  year: 1998
  end-page: 72
  article-title: The diageotropica gene differentially affects auxin and cytokinin responses throughout development in tomato
  publication-title: Plant Physiology
– volume: 61
  start-page: 1739
  year: 2010
  end-page: 1749
  article-title: A tomato strigolactone‐impaired mutant displays aberrant shoot morphology and plant interactions
  publication-title: Journal of Experimental Botany
– volume: 52
  start-page: 385
  year: 1973
  end-page: 389
  article-title: Some physiological characteristics of the ethylene‐requiring tomato mutant
  publication-title: Plant Physiology
– volume-title: Sand and water culture methods used in the study of plant nutrition
  year: 1966
  ident: e_1_2_6_28_1
– ident: e_1_2_6_12_1
  doi: 10.1104/pp.102.016196
– ident: e_1_2_6_19_1
  doi: 10.1128/AEM.53.12.2908-2913.1987
– ident: e_1_2_6_32_1
  doi: 10.1034/j.1399-3054.2000.100109.x
– ident: e_1_2_6_5_1
  doi: 10.1104/pp.010132
– ident: e_1_2_6_48_1
  doi: 10.1016/j.jplph.2009.11.014
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1469-8137.1990.tb00476.x
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1399-3054.2007.00983.x
– ident: e_1_2_6_45_1
  doi: 10.1093/jxb/erm134
– ident: e_1_2_6_39_1
  doi: 10.1007/s00425-005-0003-4
– ident: e_1_2_6_10_1
  doi: 10.1094/MPMI.2000.13.6.693
– ident: e_1_2_6_23_1
  doi: 10.1146/annurev.micro.58.030603.123749
– ident: e_1_2_6_3_1
  doi: 10.1104/pp.103.025478
– ident: e_1_2_6_11_1
  doi: 10.1105/tpc.13.4.843
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1469-8137.2006.01840.x
– ident: e_1_2_6_37_1
  doi: 10.1007/s00122-006-0332-0
– ident: e_1_2_6_49_1
  doi: 10.1046/j.1469-8137.2002.00388.x
– ident: e_1_2_6_13_1
  doi: 10.1104/pp.117.1.63
– ident: e_1_2_6_27_1
  doi: 10.1007/s00344-008-9049-4
– ident: e_1_2_6_15_1
  doi: 10.1007/BF00152749
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1469-8137.1988.tb03698.x
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1469-8137.1996.tb01847.x
– ident: e_1_2_6_24_1
  doi: 10.1016/j.phytochem.2006.09.025
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1469-8137.1983.tb03454.x
– ident: e_1_2_6_2_1
  doi: 10.1038/nature03608
– ident: e_1_2_6_17_1
  doi: 10.1104/pp.109.147231
– ident: e_1_2_6_43_1
  doi: 10.1007/s00425-005-0202-z
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1365-313X.2006.02702.x
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1469-8137.1994.tb04029.x
– ident: e_1_2_6_36_1
  doi: 10.1093/jxb/erq089
– ident: e_1_2_6_55_1
  doi: 10.1128/AEM.64.12.5004-5007.1998
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1469-8137.1994.tb02973.x
– ident: e_1_2_6_8_1
  doi: 10.1139/b04-087
– ident: e_1_2_6_6_1
  doi: 10.1007/s003440000021
– ident: e_1_2_6_31_1
  doi: 10.1007/s00572-001-0151-8
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1469-8137.2009.02839.x
– volume-title: Mycorrhizal symbiosis
  year: 1997
  ident: e_1_2_6_51_1
– ident: e_1_2_6_25_1
  doi: 10.1104/pp.109.137646
– ident: e_1_2_6_40_1
  doi: 10.1007/BF00195714
– ident: e_1_2_6_53_1
  doi: 10.1023/A:1026430019738
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1365-313X.2005.02522.x
– ident: e_1_2_6_14_1
  doi: 10.1242/dev.02753
– ident: e_1_2_6_42_1
  doi: 10.1023/A:1006437205596
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1365-313X.2005.02548.x
– ident: e_1_2_6_46_1
  doi: 10.1101/cshperspect.a001537
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1469-8137.2007.02107.x
– ident: e_1_2_6_18_1
  doi: 10.1016/j.jplph.2005.01.014
– ident: e_1_2_6_54_1
  doi: 10.1007/s00572-007-0133-6
– ident: e_1_2_6_33_1
  doi: 10.1104/pp.82.3.713
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1438-8677.2009.00267.x
– ident: e_1_2_6_35_1
  doi: 10.1093/jxb/erq041
– ident: e_1_2_6_56_1
  doi: 10.1104/pp.52.4.385
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1399-3054.2006.00812.x
– ident: e_1_2_6_52_1
  doi: 10.1016/S0953-7562(96)80164-X
SSID ssj0009562
Score 2.3492384
Snippet • Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis...
Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that...
Summary • Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the...
SourceID proquest
pubmed
crossref
wiley
jstor
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 701
SubjectTerms arbuscular mycorrhiza (AM)
Arbuscular mycorrhizas
auxin
Auxins
branching
Colonization
diageotropica
Fungal spores
Fungi
Genes, Plant
genetics
Glomeromycota
Glomeromycota - growth & development
Glomus intraradices
growth & development
Hormones
hosts
Hyphae
Hyphae - growth & development
Indoleacetic Acids
Indoleacetic Acids - metabolism
Inoculation
Lycopersicon esculentum
Lycopersicon esculentum - genetics
Lycopersicon esculentum - metabolism
Lycopersicon esculentum - microbiology
metabolism
Microbial colonization
microbiology
mutants
Mutation
Mycorrhizae
Mycorrhizae - genetics
Mycorrhizae - growth & development
Mycorrhizae - metabolism
mycorrhizal fungi
Organ culture
physiology
Plant Growth Regulators
Plant Growth Regulators - metabolism
Plant growth substances
Plant hormones
Plant roots
Plants
polycotyledon
Rapid report
Resistant mutant
Rhizophagus intraradices
Root systems
Roots
Seedlings
Signal Transduction
Signal Transduction - physiology
Signaling
Solanum
Solanum lycopersicum
Spores
Symbiosis
Symbiosis - genetics
Symbiosis - physiology
Tomatoes
vesicular arbuscular mycorrhizae
Title Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation
URI https://www.jstor.org/stable/40983901
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8137.2010.03567.x
https://www.ncbi.nlm.nih.gov/pubmed/21091696
https://www.proquest.com/docview/2512306443
https://www.proquest.com/docview/1365021629
https://www.proquest.com/docview/839708362
https://www.proquest.com/docview/899134254
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFL1sZQ992dqtXdx2Q4W9OsSSLdmP7VgJhZWxLpA3IdlSG7o5o3Ggya_vvf5iKV0pY28CWdbXvdK58vERwKdR5KMcQVuI8-tD0h8JTZrnYYHoniuPe2At9vz1Qo4n8fk0mbb8J_oXptGH6A_cyDPq9Zoc3NjFQyenIyyhWoaWSKQaEp4k6hbho-_8D_1dyTtBZhnL6Sap59EXbexUL72Zd5TFx8DoJratN6ezN3DTdavhpNwMl5Ud5usHio__p9878LrFsOykMbpdeOHKt_DqdI44c_UOzknJGnOYay8sZYiLmVnezUo2K3E1rBXKK0wzg1PaEGHZrxWGwbfXs7XBjFnVGMweTM6-_Pg8DtsbG8I8SZQKucd4K42Uj13k8ogXXFphZSGMEY5ClzhTuSkyrgrDjZSOWyuVE8L71BiVin3YKuelGwCLJUZSPsvsyClMJwhjbZpYsq2YqghAdbOj81bOnG7V-Kk3wppM00BpGihdD5S-CyDqS_5uJD2eUWaABqDNFa68enLJ6XsvQt9RlMoA9mur6N-FEXNKJ0kBHHVmotuFYaEJTlLQF4sAjvtsdGn6TmNKN18uNJkvQi_JswDYX57BGhQJi_MnHsmIVcGTOID3jZH2TeQkByszbLusTe3Z46Avvo0pdfCvBQ9huzmVJ0LQEWxVt0v3AWFdZT_WDnsPBvE3iw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQkuvEsDBYwEx6w2TmInBw5AqbavFYKutDdjJzasgCzqZsVu_xp_hR_DTF5iq4IqpB64WXLsOJ6Hv7EnnwGe9QMXZAjafJSv84l_xNdJlvk5onsuHa6BFdnz0VAMRtH-OB6vwY_2X5iaH6LbcCPLqPw1GThtSJ-1ctrDCmWTohXGQvYWTYblgV1-x_ht9mJvB4X9nPPdN8evB35zxYCfxbGUPncYICSBdJENbBbwnAsTGpGHWoeWsHaUykznKZe55loIy40R0oahc4nWMgmx33W4QheKE3H_zjv-G-Ov4C0FtIjEeDWN6NyRr6yN605P2yTJ8-DvKpqulsPdm_Czncg6C-Zzb16aXnZ6hmPyP53pW3CjgensZW1Xt2HNFnfg6qspQunlXdgnsm6sYba5k5Uh9Gd6vpgUbFKgw69I2EssM41aW-f6sq9LjPRPPk1ONVZMytom7sHoUr5jEzaKaWG3gEUCg0WXpqZvJZZjROomiQ2ZT0Sv8EC26qCyhrGdLg75olYit1SRYBQJRlWCUQsPgq7lt5q15AJttlDjlP6Ii4saved0pI3ovh8kwoPNSg27vqJ-mtBmmQfbrV6qxvfNFCFmimuj0IOnXTV6LTqK0oWdzmeKkisRXQqeesD-8Ay-QRJ3Ov_LIykljvA48uB-bRXdEDkx3ooUxy4q3b7wPKjh2wGVHvxrwydwbXB8dKgO94YHD-F6fQhB-U_bsFGezO0jRLGleVx5CwYfLttofgEqRpYn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7aBkK8cB8LDAgSPKZKHMeOH3gAStVtUE1Apb4ZJ3FGBaTTmop2P42_wp_hnNxEp4EmpD3wZsmx4_hc_B375DPAMz_IgxRBm4fyzT3iH_FMnKZehuieyRzXwIrs-d1IDMd8fxJNNuBH-y9MzQ_RbbiRZVT-mgz8OMvPGjltYYWyydAKIyF7yybB8sCuvmP4Nn-x10dZP2ds8Obj66HX3DDgpVEkpcdyjA_iQObcBjYNWMZEEiYiC40JLUFtrmRqMsVkZpgRwrIkEdKGYZ7Hxsg4xH434QoXvqJrI_rv2W-Ev4K1DNCCi8l6FtG5I19bGjdzM2tzJM9Dv-tguloNBzfhZzuPdRLMl96iTHrp6RmKyf9zom_BjQakuy9rq7oNG7a4A1dfzRBIr-7CPlF1Y41rmxtZXQT-rlksp4U7LdDdVxTsJZZdgzpbZ_q631YY5598np4arJiWtUXcg_GlfMc2bBWzwu6AywWGirlSiW8lliPE6UkcJWQ8nF7hgGy1QacNXztdG_JVr8VtSpNgNAlGV4LRSweCruVxzVlygTY7qHDaHOHSoscfGB1oI7b3g1g4sF1pYdcX91VMW2UO7LZqqRvPN9eElymq5aEDT7tq9Fl0EGUKO1vMNaVWIrYUTDng_uEZfIMk5nT2l0cUpY2wiDtwvzaKboiM-G6FwrGLSrUvPA96dDik0oN_bfgErh32B_rt3ujgIVyvTyAo-WkXtsqThX2EELZMHle-woVPl20zvwCgvJTW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+evidence+for+auxin+involvement+in+arbuscular+mycorrhiza+initiation&rft.jtitle=The+New+phytologist&rft.au=Hanlon%2C+Meredith+T&rft.au=Coenen%2C+Catharina&rft.date=2011-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=189&rft.issue=3&rft.spage=701&rft.epage=709&rft_id=info:doi/10.1111%2Fj.1469-8137.2010.03567.x&rft.externalDocID=US201301930186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon