framework for delineating biogeographical regions based on species distributions
Biogeographical regionalizations, such as zoogeographical regions, floristic kingdoms or ecoregions, represent categorizations central to many basic and applied questions in biogeography, ecology, evolution and conservation. Traditionally established by experts based on qualitative evidence, the lac...
Saved in:
Published in | Journal of biogeography Vol. 37; no. 11; pp. 2029 - 2053 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.11.2010
Blackwell Publishing Ltd Blackwell Publishing Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biogeographical regionalizations, such as zoogeographical regions, floristic kingdoms or ecoregions, represent categorizations central to many basic and applied questions in biogeography, ecology, evolution and conservation. Traditionally established by experts based on qualitative evidence, the lack of transparency and quantitative support has set constraints on their utility. The recent availability of global species range maps, novel multivariate techniques and enhanced computational power now enable a quantitative scrutiny and extension of biogeographical regionalizations that will facilitate new and more rigorous uses. In this paper we develop and illustrate a methodological roadmap for species-level biogeographical regionalizations at the global scale and apply it to mammals. Global. We explore the relative usefulness of ordination and clustering methods and validation techniques. The performance of nine different clustering algorithms is tested at different taxonomic levels. The grain of regionalization (i.e. the number of clusters) will usually be driven by the purpose of the study, but we present several approaches that provide guidance. Non-metric multidimensional scaling offers a valuable first step in identifying and illustrating biogeographical transition zones. For the clustering of regions, the nine different hierarchical clustering methods varied greatly in utility, with UPGMA (unweighted pair-group method using arithmetic averages) agglomerative hierarchical clustering having consistently the best performance. The UPGMA approach allows a tree-like phenetic representation of the relative distances of regions and can be applied at different levels of taxonomic resolution. We find that the new quantitative biogeographical regions exhibit both striking similarities to and differences from the classic primary geographical divisions of the world's biota. Specifically, our results provide evidence that the Sahara, northern Africa, the Arabian Peninsula and parts of the Middle East should be regarded as part of the Afrotropics. Further, the position of the New Guinean continental shelf, Lydekker's Line, is supported as an appropriate border to separate the Oriental and Australian regions. We propose that this sort of new, quantitative delineation and relationship assessment across taxonomic and geographical grains is likely to offer opportunities for more rigorous inference in historical and ecological biogeography and conservation. |
---|---|
AbstractList | Aim
Biogeographical regionalizations, such as zoogeographical regions, floristic kingdoms or ecoregions, represent categorizations central to many basic and applied questions in biogeography, ecology, evolution and conservation. Traditionally established by experts based on qualitative evidence, the lack of transparency and quantitative support has set constraints on their utility. The recent availability of global species range maps, novel multivariate techniques and enhanced computational power now enable a quantitative scrutiny and extension of biogeographical regionalizations that will facilitate new and more rigorous uses. In this paper we develop and illustrate a methodological roadmap for species‐level biogeographical regionalizations at the global scale and apply it to mammals.
Location
Global.
Methods
We explore the relative usefulness of ordination and clustering methods and validation techniques. The performance of nine different clustering algorithms is tested at different taxonomic levels. The grain of regionalization (i.e. the number of clusters) will usually be driven by the purpose of the study, but we present several approaches that provide guidance.
Results
Non‐metric multidimensional scaling offers a valuable first step in identifying and illustrating biogeographical transition zones. For the clustering of regions, the nine different hierarchical clustering methods varied greatly in utility, with UPGMA (unweighted pair‐group method using arithmetic averages) agglomerative hierarchical clustering having consistently the best performance. The UPGMA approach allows a tree‐like phenetic representation of the relative distances of regions and can be applied at different levels of taxonomic resolution. We find that the new quantitative biogeographical regions exhibit both striking similarities to and differences from the classic primary geographical divisions of the world’s biota. Specifically, our results provide evidence that the Sahara, northern Africa, the Arabian Peninsula and parts of the Middle East should be regarded as part of the Afrotropics. Further, the position of the New Guinean continental shelf, Lydekker’s Line, is supported as an appropriate border to separate the Oriental and Australian regions.
Main conclusions
We propose that this sort of new, quantitative delineation and relationship assessment across taxonomic and geographical grains is likely to offer opportunities for more rigorous inference in historical and ecological biogeography and conservation. Aim: Biogeographical regionalizations, such as zoogeographical regions, floristic kingdoms or ecoregions, represent categorizations central to many basic and applied questions in biogeography, ecology, evolution and conservation. Traditionally established by experts based on qualitative evidence, the lack of transparency and quantitative support has set constraints on their utility. The recent availability of global species range maps, novel multivariate techniques and enhanced computational power now enable a quantitative scrutiny and extension of biogeographical regionalizations that will facilitate new and more rigorous uses. In this paper we develop and illustrate a methodological roadmap for species-level biogeographical regionalizations at the global scale and apply it to mammals. Location: Global. Methods: We explore the relative usefulness of ordination and clustering methods and validation techniques. The performance of nine different clustering algorithms is tested at different taxonomic levels. The grain of regionalization (i.e. the number of clusters) will usually be driven by the purpose of the study, but we present several approaches that provide guidance. Results: Non-metric multidimensional scaling offers a valuable first step in identifying and illustrating biogeographical transition zones. For the clustering of regions, the nine different hierarchical clustering methods varied greatly in utility, with UPGMA (unweighted pair-group method using arithmetic averages) agglomerative hierarchical clustering having consistently the best performance. The UPGMA approach allows a tree-like phenetic representation of the relative distances of regions and can be applied at different levels of taxonomic resolution. We find that the new quantitative biogeographical regions exhibit both striking similarities to and differences from the classic primary geographical divisions of the world's biota. Specifically, our results provide evidence that the Sahara, northern Africa, the Arabian Peninsula and parts of the Middle East should be regarded as part of the Afrotropics. Further, the position of the New Guinean continental shelf, Lydekker's Line, is supported as an appropriate border to separate the Oriental and Australian regions. Main conclusions: We propose that this sort of new, quantitative delineation and relationship assessment across taxonomic and geographical grains is likely to offer opportunities for more rigorous inference in historical and ecological biogeography and conservation. Biogeographical regionalizations, such as zoogeographical regions, floristic kingdoms or ecoregions, represent categorizations central to many basic and applied questions in biogeography, ecology, evolution and conservation. Traditionally established by experts based on qualitative evidence, the lack of transparency and quantitative support has set constraints on their utility. The recent availability of global species range maps, novel multivariate techniques and enhanced computational power now enable a quantitative scrutiny and extension of biogeographical regionalizations that will facilitate new and more rigorous uses. In this paper we develop and illustrate a methodological roadmap for species-level biogeographical regionalizations at the global scale and apply it to mammals. Global. We explore the relative usefulness of ordination and clustering methods and validation techniques. The performance of nine different clustering algorithms is tested at different taxonomic levels. The grain of regionalization (i.e. the number of clusters) will usually be driven by the purpose of the study, but we present several approaches that provide guidance. Non-metric multidimensional scaling offers a valuable first step in identifying and illustrating biogeographical transition zones. For the clustering of regions, the nine different hierarchical clustering methods varied greatly in utility, with UPGMA (unweighted pair-group method using arithmetic averages) agglomerative hierarchical clustering having consistently the best performance. The UPGMA approach allows a tree-like phenetic representation of the relative distances of regions and can be applied at different levels of taxonomic resolution. We find that the new quantitative biogeographical regions exhibit both striking similarities to and differences from the classic primary geographical divisions of the world's biota. Specifically, our results provide evidence that the Sahara, northern Africa, the Arabian Peninsula and parts of the Middle East should be regarded as part of the Afrotropics. Further, the position of the New Guinean continental shelf, Lydekker's Line, is supported as an appropriate border to separate the Oriental and Australian regions. We propose that this sort of new, quantitative delineation and relationship assessment across taxonomic and geographical grains is likely to offer opportunities for more rigorous inference in historical and ecological biogeography and conservation. Aim Biogeographical regionalizations, such as zoogeographical regions, floristic kingdoms or ecoregions, represent categorizations central to many basic and applied questions in biogeography, ecology, evolution and conservation. Traditionally established by experts based on qualitative evidence, the lack of transparency and quantitative support has set constraints on their utility. The recent availability of global species range maps, novel multivariate techniques and enhanced computational power now enable a quantitative scrutiny and extension of biogeographical regionalizations that will facilitate new and more rigorous uses. In this paper we develop and illustrate a methodological roadmap for species‐level biogeographical regionalizations at the global scale and apply it to mammals. Location Global. Methods We explore the relative usefulness of ordination and clustering methods and validation techniques. The performance of nine different clustering algorithms is tested at different taxonomic levels. The grain of regionalization (i.e. the number of clusters) will usually be driven by the purpose of the study, but we present several approaches that provide guidance. Results Non‐metric multidimensional scaling offers a valuable first step in identifying and illustrating biogeographical transition zones. For the clustering of regions, the nine different hierarchical clustering methods varied greatly in utility, with UPGMA (unweighted pair‐group method using arithmetic averages) agglomerative hierarchical clustering having consistently the best performance. The UPGMA approach allows a tree‐like phenetic representation of the relative distances of regions and can be applied at different levels of taxonomic resolution. We find that the new quantitative biogeographical regions exhibit both striking similarities to and differences from the classic primary geographical divisions of the world’s biota. Specifically, our results provide evidence that the Sahara, northern Africa, the Arabian Peninsula and parts of the Middle East should be regarded as part of the Afrotropics. Further, the position of the New Guinean continental shelf, Lydekker’s Line, is supported as an appropriate border to separate the Oriental and Australian regions. Main conclusions We propose that this sort of new, quantitative delineation and relationship assessment across taxonomic and geographical grains is likely to offer opportunities for more rigorous inference in historical and ecological biogeography and conservation. AbstractAim Biogeographical regionalizations, such as zoogeographical regions, floristic kingdoms or ecoregions, represent categorizations central to many basic and applied questions in biogeography, ecology, evolution and conservation. Traditionally established by experts based on qualitative evidence, the lack of transparency and quantitative support has set constraints on their utility. The recent availability of global species range maps, novel multivariate techniques and enhanced computational power now enable a quantitative scrutiny and extension of biogeographical regionalizations that will facilitate new and more rigorous uses. In this paper we develop and illustrate a methodological roadmap for species-level biogeographical regionalizations at the global scale and apply it to mammals.Location Global.Methods We explore the relative usefulness of ordination and clustering methods and validation techniques. The performance of nine different clustering algorithms is tested at different taxonomic levels. The grain of regionalization (i.e. the number of clusters) will usually be driven by the purpose of the study, but we present several approaches that provide guidance.Results Non-metric multidimensional scaling offers a valuable first step in identifying and illustrating biogeographical transition zones. For the clustering of regions, the nine different hierarchical clustering methods varied greatly in utility, with UPGMA (unweighted pair-group method using arithmetic averages) agglomerative hierarchical clustering having consistently the best performance. The UPGMA approach allows a tree-like phenetic representation of the relative distances of regions and can be applied at different levels of taxonomic resolution. We find that the new quantitative biogeographical regions exhibit both striking similarities to and differences from the classic primary geographical divisions of the world's biota. Specifically, our results provide evidence that the Sahara, northern Africa, the Arabian Peninsula and parts of the Middle East should be regarded as part of the Afrotropics. Further, the position of the New Guinean continental shelf, Lydekker's Line, is supported as an appropriate border to separate the Oriental and Australian regions.Main conclusions We propose that this sort of new, quantitative delineation and relationship assessment across taxonomic and geographical grains is likely to offer opportunities for more rigorous inference in historical and ecological biogeography and conservation. |
Author | Jetz, Walter Kreft, Holger |
Author_xml | – sequence: 1 givenname: Holger surname: Kreft fullname: Kreft, Holger – sequence: 2 givenname: Walter surname: Jetz fullname: Jetz, Walter |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23356417$$DView record in Pascal Francis |
BookMark | eNqNUU1v1DAQtVCR2BZ-AiIXxCnLxI7t5AASraAUVQtSqfZoOc4keJuNFzurbv89Nqn2wIX6Ymvex8jvnZKT0Y1ISFbAsojn_WZZMMFzKup6SSFOgTLJl4dnZHEETsgCGPAcqIQX5DSEDQDUnJUL8qPzeov3zt9lnfNZi4MdUU927LPGuh5d7_XulzV6yDz21o0ha3TANnNjFnZoLIastWHyttlPCX5Jnnd6CPjq8T4jt18-_7z4ml9_v7y6-HSdG84lzxvONFSMgekqwQRttTGiMaYSlBe8YUZWJSCKlnPRdWUBrRSNrhqsSlY2SNkZeTf77rz7vccwqa0NBodBj-j2QVUCmKRQ1_9lSkmppKxOnm8fmTrEH8doRmOD2nm71f5BUca4KAsZedXMM96F4LE7UgpQqRW1USl8lcJXqRX1txV1iNKP_0iNnXRKbvLaDk8x-DAb3NsBH568WH07v0qvqH896zdhcv6oL6GmNYCIeD7jsVQ8HHHt75SQyWq9ulTl6pyt1zcrlbJ4M_M77ZTufczr9iZuZlBUtaRFyf4AoaPKlg |
CODEN | JBIODN |
CitedBy_id | crossref_primary_10_1111_cobi_12151 crossref_primary_10_3390_jof9090898 crossref_primary_10_1007_s10914_024_09714_7 crossref_primary_10_1111_brv_12683 crossref_primary_10_1111_jbi_12133 crossref_primary_10_1017_S0376892922000212 crossref_primary_10_1111_oik_09579 crossref_primary_10_1007_s00300_024_03309_x crossref_primary_10_1111_jbi_13585 crossref_primary_10_3390_su14020587 crossref_primary_10_1098_rspb_2019_1887 crossref_primary_10_1371_journal_pone_0102918 crossref_primary_10_1111_2041_210X_12220 crossref_primary_10_21829_abm126_2019_1428 crossref_primary_10_1111_brv_12323 crossref_primary_10_1016_j_gecco_2025_e03549 crossref_primary_10_1111_ecog_03825 crossref_primary_10_3390_quat1020009 crossref_primary_10_15446_abc_v20n3_46179 crossref_primary_10_7550_rmb_34170 crossref_primary_10_1007_s10531_014_0706_6 crossref_primary_10_3897_BDJ_10_e75303 crossref_primary_10_1111_jvs_12078 crossref_primary_10_1111_jbi_14546 crossref_primary_10_1111_jbi_12241 crossref_primary_10_1111_jbi_13694 crossref_primary_10_1016_j_gecco_2019_e00643 crossref_primary_10_1093_zoolinnean_zly031 crossref_primary_10_1098_rstb_2011_0113 crossref_primary_10_3390_f4041087 crossref_primary_10_1111_cla_12039 crossref_primary_10_1007_s10980_021_01251_5 crossref_primary_10_1071_IS17087 crossref_primary_10_1111_nph_17443 crossref_primary_10_17129_botsci_3462 crossref_primary_10_1007_s10641_023_01441_x crossref_primary_10_7717_peerj_13153 crossref_primary_10_1111_jbi_13438 crossref_primary_10_1038_s41559_017_0089 crossref_primary_10_1111_jbi_13203 crossref_primary_10_1007_s11160_011_9232_8 crossref_primary_10_1111_jbi_12235 crossref_primary_10_3389_fmars_2023_1111249 crossref_primary_10_1038_s41467_024_46757_z crossref_primary_10_1016_j_palaeo_2016_02_050 crossref_primary_10_1016_j_marmicro_2020_101922 crossref_primary_10_1111_gcb_14412 crossref_primary_10_1111_ddi_12752 crossref_primary_10_1139_cjfr_2019_0191 crossref_primary_10_1111_ecog_04815 crossref_primary_10_1016_j_scitotenv_2020_144629 crossref_primary_10_7717_peerj_12054 crossref_primary_10_1111_jbi_12463 crossref_primary_10_1016_j_biocon_2019_108323 crossref_primary_10_1016_j_biocon_2018_05_028 crossref_primary_10_1111_jbi_13674 crossref_primary_10_1016_j_apgeog_2018_08_002 crossref_primary_10_1111_tmi_13914 crossref_primary_10_1371_journal_pone_0055648 crossref_primary_10_1016_j_jnc_2024_126610 crossref_primary_10_1038_s41467_018_07252_4 crossref_primary_10_1073_pnas_2112336119 crossref_primary_10_1111_j_1472_4642_2011_00801_x crossref_primary_10_1111_2041_210X_12029 crossref_primary_10_1111_jbi_12214 crossref_primary_10_1590_1676_0611_BN_2016_0164 crossref_primary_10_1111_2041_210X_12388 crossref_primary_10_1038_srep22400 crossref_primary_10_1111_2041_210X_13478 crossref_primary_10_1016_j_biocon_2012_01_031 crossref_primary_10_1038_s41467_023_38375_y crossref_primary_10_1093_botlinnean_boab099 crossref_primary_10_7717_peerj_16116 crossref_primary_10_17129_botsci_3299 crossref_primary_10_1093_sysbio_syr026 crossref_primary_10_1111_ecog_03625 crossref_primary_10_1111_jbi_12558 crossref_primary_10_1111_jbi_12315 crossref_primary_10_1016_j_biocon_2016_08_022 crossref_primary_10_1111_cla_12448 crossref_primary_10_1111_jbi_12320 crossref_primary_10_1007_s00227_021_03919_7 crossref_primary_10_1111_avsc_12055 crossref_primary_10_1071_SB14042 crossref_primary_10_1111_bij_12142 crossref_primary_10_1111_2041_210X_13492 crossref_primary_10_1093_botlinnean_boab066 crossref_primary_10_1111_geb_12800 crossref_primary_10_1111_jse_13166 crossref_primary_10_1002_ece3_3481 crossref_primary_10_1080_01647954_2015_1084044 crossref_primary_10_1016_j_scitotenv_2019_135231 crossref_primary_10_1038_s41559_021_01439_7 crossref_primary_10_1093_jmammal_gyae055 crossref_primary_10_1080_09397140_2011_10648859 crossref_primary_10_1002_ece3_5669 crossref_primary_10_1111_mam_12210 crossref_primary_10_1007_s10722_024_02241_7 crossref_primary_10_4102_sajs_v107i7_8_462 crossref_primary_10_3389_fevo_2014_00038 crossref_primary_10_1007_s10531_020_02087_2 crossref_primary_10_1038_s41467_024_53860_8 crossref_primary_10_1038_srep28828 crossref_primary_10_3897_natureconservation_3_3710 crossref_primary_10_1007_s10531_023_02613_y crossref_primary_10_1371_journal_pone_0132538 crossref_primary_10_1080_07352689_2018_1482444 crossref_primary_10_1111_j_1365_2699_2012_02739_x crossref_primary_10_4000_vertigo_14645 crossref_primary_10_1038_s41597_024_03845_5 crossref_primary_10_1016_j_quaint_2020_08_038 crossref_primary_10_1111_jbi_13976 crossref_primary_10_1016_j_quaint_2020_08_034 crossref_primary_10_1126_science_aaa8913 crossref_primary_10_1111_geb_12749 crossref_primary_10_1186_s12862_024_02328_w crossref_primary_10_1038_s41598_024_52186_1 crossref_primary_10_1016_j_pld_2019_12_003 crossref_primary_10_1111_jbi_12892 crossref_primary_10_1111_faf_12497 crossref_primary_10_1111_mam_12036 crossref_primary_10_1111_bij_12333 crossref_primary_10_1002_ecs2_2059 crossref_primary_10_1371_journal_pone_0306204 crossref_primary_10_3897_zookeys_973_55327 crossref_primary_10_1007_s10530_021_02550_3 crossref_primary_10_1111_jbi_12758 crossref_primary_10_1111_jbi_13848 crossref_primary_10_1111_ddi_13307 crossref_primary_10_1016_j_jnc_2023_126422 crossref_primary_10_1016_j_rse_2018_05_027 crossref_primary_10_3120_madr_63_02_3_206_1 crossref_primary_10_1111_jbi_13847 crossref_primary_10_4236_oje_2022_123014 crossref_primary_10_1111_jbi_13853 crossref_primary_10_1038_ncomms7848 crossref_primary_10_1093_zoolinnean_zlae091 crossref_primary_10_1111_2041_210X_12513 crossref_primary_10_1016_j_biocon_2022_109630 crossref_primary_10_1111_j_1365_2699_2010_02420_x crossref_primary_10_1002_ecs2_4589 crossref_primary_10_3390_insects9040154 crossref_primary_10_1111_j_1365_2699_2010_02443_x crossref_primary_10_1371_journal_pone_0053143 crossref_primary_10_3390_biology11121794 crossref_primary_10_1371_journal_pone_0183785 crossref_primary_10_1038_s41477_023_01445_6 crossref_primary_10_1134_S1062359016090041 crossref_primary_10_1080_01650521_2023_2254505 crossref_primary_10_1111_geb_12601 crossref_primary_10_1111_jbi_12505 crossref_primary_10_1111_jbi_12747 crossref_primary_10_1111_jbi_12868 crossref_primary_10_1111_jbi_12987 crossref_primary_10_1111_ecog_00860 crossref_primary_10_1093_jcbiol_ruaa029 crossref_primary_10_1016_j_aspen_2024_102254 crossref_primary_10_3389_fmars_2019_00838 crossref_primary_10_1016_j_biocon_2012_04_023 crossref_primary_10_1016_j_jhevol_2024_103547 crossref_primary_10_1371_journal_pone_0081847 crossref_primary_10_1111_ddi_12119 crossref_primary_10_1111_jbi_12612 crossref_primary_10_1111_jbi_12619 crossref_primary_10_1016_j_apgeog_2013_09_023 crossref_primary_10_3897_phytokeys_70_9147 crossref_primary_10_1038_s41598_021_89942_6 crossref_primary_10_1111_jbi_12501 crossref_primary_10_1111_2041_210X_12415 crossref_primary_10_1371_journal_pone_0246829 crossref_primary_10_1073_pnas_1803908115 crossref_primary_10_1016_j_japb_2023_08_005 crossref_primary_10_1016_j_jafrearsci_2020_103870 crossref_primary_10_1111_bij_12898 crossref_primary_10_1093_sysbio_sys061 crossref_primary_10_1111_ddi_12129 crossref_primary_10_1111_jbi_12607 crossref_primary_10_1111_jbi_13941 crossref_primary_10_1007_s13127_019_00411_5 crossref_primary_10_1016_j_ympev_2023_107749 crossref_primary_10_1002_ece3_4718 crossref_primary_10_1007_s00300_020_02626_1 crossref_primary_10_1016_j_ocecoaman_2021_106001 crossref_primary_10_1890_ES14_00201_1 crossref_primary_10_1098_rspb_2024_1965 crossref_primary_10_1111_geb_12533 crossref_primary_10_1111_jbi_12832 crossref_primary_10_1111_jbi_13800 crossref_primary_10_1111_mam_12195 crossref_primary_10_1080_14772000_2022_2039796 crossref_primary_10_1371_journal_pone_0092558 crossref_primary_10_1371_journal_pone_0127692 crossref_primary_10_1111_geb_12771 crossref_primary_10_1038_srep01790 crossref_primary_10_1038_srep09396 crossref_primary_10_1093_sysbio_syt050 crossref_primary_10_1016_j_palaeo_2018_03_018 crossref_primary_10_1111_ddi_12146 crossref_primary_10_14411_eje_2023_004 crossref_primary_10_7717_peerj_17277 crossref_primary_10_1007_s10531_014_0738_y crossref_primary_10_11646_zootaxa_5479_1_1 crossref_primary_10_1111_jbi_12821 crossref_primary_10_1179_2042349713Y_0000000024 crossref_primary_10_1111_jbi_12704 crossref_primary_10_1007_s10531_016_1254_z crossref_primary_10_1080_21513732_2012_686121 crossref_primary_10_31610_trudyzin_2010_314_4_469 crossref_primary_10_1111_2041_210X_13531 crossref_primary_10_31610_trudyzin_2013_317_4_494 crossref_primary_10_1088_1748_9326_aaad74 crossref_primary_10_3390_cli8030042 crossref_primary_10_1111_j_1755_263X_2012_00249_x crossref_primary_10_1016_j_ecolmodel_2015_09_009 crossref_primary_10_1111_j_1365_2699_2012_02728_x crossref_primary_10_1111_jbi_12819 crossref_primary_10_1080_00222933_2021_1977406 crossref_primary_10_1371_journal_pone_0104130 crossref_primary_10_1073_pnas_1402584111 crossref_primary_10_1111_mec_14717 crossref_primary_10_1111_geb_12632 crossref_primary_10_1007_s10531_016_1167_x crossref_primary_10_1016_j_jnc_2019_125778 crossref_primary_10_1007_s10841_015_9795_0 crossref_primary_10_1371_journal_pone_0131728 crossref_primary_10_1093_icesjms_fsaa064 crossref_primary_10_1371_journal_pone_0253152 crossref_primary_10_1016_j_parint_2011_11_003 crossref_primary_10_1038_s41559_023_02150_5 crossref_primary_10_1007_s00531_014_1109_3 crossref_primary_10_1093_biolinnean_blz143 crossref_primary_10_1016_j_jafrearsci_2019_103678 crossref_primary_10_1016_j_chnaes_2016_06_010 crossref_primary_10_1146_annurev_ecolsys_112414_054102 crossref_primary_10_1086_699221 crossref_primary_10_1016_j_pocean_2024_103215 crossref_primary_10_1139_cjb_2015_0234 crossref_primary_10_1111_jbi_12920 crossref_primary_10_1007_s10764_014_9773_5 crossref_primary_10_1111_jbi_12803 crossref_primary_10_1177_0309133318765084 crossref_primary_10_1002_ece3_70461 crossref_primary_10_1111_icad_12760 crossref_primary_10_11646_zootaxa_5536_3_5 crossref_primary_10_1016_j_ympev_2021_107266 crossref_primary_10_1007_s10750_014_1930_5 crossref_primary_10_3389_fpls_2024_1419876 crossref_primary_10_1038_s41598_018_21879_9 crossref_primary_10_1111_evo_12919 crossref_primary_10_1111_geb_12337 crossref_primary_10_7554_eLife_78129 crossref_primary_10_1002_ece3_5059 crossref_primary_10_1016_j_pld_2022_09_006 crossref_primary_10_15553_c2024v791a4 crossref_primary_10_1007_s11258_015_0562_9 crossref_primary_10_1017_S0025315424000432 crossref_primary_10_3390_jof8080773 crossref_primary_10_3389_fgene_2015_00130 crossref_primary_10_1007_s10841_023_00497_5 crossref_primary_10_1093_evolut_qpad015 crossref_primary_10_3389_fgene_2018_00171 crossref_primary_10_1016_j_flora_2021_151850 crossref_primary_10_1093_sysbio_syw087 crossref_primary_10_1186_s40663_019_0196_9 crossref_primary_10_1111_jbi_12900 crossref_primary_10_1016_j_quaint_2013_02_011 crossref_primary_10_1206_3952_1 crossref_primary_10_1016_j_quaint_2018_12_025 crossref_primary_10_1038_s41467_024_46359_9 crossref_primary_10_1111_ecog_06323 crossref_primary_10_1007_s00227_022_04171_3 crossref_primary_10_1038_s41467_018_06291_1 crossref_primary_10_1111_syen_12647 crossref_primary_10_1111_j_1442_9993_2011_02312_x crossref_primary_10_1002_eap_2524 crossref_primary_10_1073_pnas_2120869120 crossref_primary_10_1111_jav_01278 crossref_primary_10_1038_s41598_019_51786_6 crossref_primary_10_1002_ajb2_16235 crossref_primary_10_1144_M38_23 crossref_primary_10_1590_0001_3765202220211019 crossref_primary_10_3897_zookeys_898_37531 crossref_primary_10_1111_nph_19295 crossref_primary_10_1111_ecog_06435 crossref_primary_10_1126_science_aaf5080 crossref_primary_10_1177_1940082918819073 crossref_primary_10_1038_s41467_024_49918_2 crossref_primary_10_2196_jmir_2707 crossref_primary_10_2989_00306525_2013_867550 crossref_primary_10_1111_geb_12670 crossref_primary_10_3389_feart_2018_00200 crossref_primary_10_1080_14772000_2019_1646833 crossref_primary_10_1111_pala_12702 crossref_primary_10_1016_j_ympev_2017_06_002 crossref_primary_10_3390_d15060713 crossref_primary_10_1080_13658816_2012_692371 crossref_primary_10_1111_evo_13080 crossref_primary_10_3897_VCS_2021_61463 crossref_primary_10_1016_j_apgeog_2020_102208 crossref_primary_10_1111_ecog_05374 crossref_primary_10_1126_science_1228282 crossref_primary_10_1038_s41467_019_13164_8 crossref_primary_10_1111_geb_12383 crossref_primary_10_1016_j_quaint_2021_11_009 crossref_primary_10_1007_s12210_017_0631_1 crossref_primary_10_1016_j_quascirev_2016_07_034 crossref_primary_10_3390_d16100621 crossref_primary_10_1371_journal_pone_0196130 crossref_primary_10_1111_jse_12422 crossref_primary_10_3390_insects15070552 crossref_primary_10_1016_j_jsames_2019_102331 crossref_primary_10_3389_fenvs_2022_999483 crossref_primary_10_3390_plants13162281 crossref_primary_10_1080_21513732_2015_1094515 crossref_primary_10_1111_geb_13345 crossref_primary_10_1007_s10750_017_3122_6 crossref_primary_10_2478_jlecol_2020_0009 crossref_primary_10_3390_d15101081 crossref_primary_10_1007_s11355_013_0225_8 crossref_primary_10_1016_j_ecoinf_2012_03_008 crossref_primary_10_1016_j_foreco_2017_06_052 crossref_primary_10_1371_journal_pntd_0009496 crossref_primary_10_1016_j_pocean_2023_103032 crossref_primary_10_1007_s00606_020_01660_0 crossref_primary_10_1016_j_palaeo_2014_10_042 crossref_primary_10_1016_j_tree_2017_08_013 crossref_primary_10_1016_j_ecoinf_2012_02_001 crossref_primary_10_1073_pnas_1523683113 crossref_primary_10_1111_j_1365_2699_2012_02774_x crossref_primary_10_1007_s10531_016_1245_0 crossref_primary_10_3390_insects15010039 crossref_primary_10_1111_geb_13694 crossref_primary_10_1016_j_ympev_2024_108176 crossref_primary_10_1016_j_jasrep_2015_02_008 crossref_primary_10_1016_j_jsames_2016_05_008 crossref_primary_10_1111_1749_4877_12485 crossref_primary_10_1017_qua_2020_44 crossref_primary_10_1111_j_1600_0587_2013_00444_x crossref_primary_10_3390_ijgi11070408 crossref_primary_10_1111_njb_01650 crossref_primary_10_1016_j_flora_2012_01_002 crossref_primary_10_1111_aec_13078 crossref_primary_10_1016_j_cosust_2018_02_002 crossref_primary_10_1111_jse_12527 crossref_primary_10_1071_SB22002 crossref_primary_10_1093_ve_vead079 crossref_primary_10_1016_j_dsr_2023_104077 crossref_primary_10_31610_trudyzin_2014_318_4_433 crossref_primary_10_1126_sciadv_ade4954 crossref_primary_10_1111_jbi_14289 crossref_primary_10_1007_s10750_022_05053_x crossref_primary_10_1016_j_jaridenv_2021_104537 crossref_primary_10_1371_journal_pone_0245818 crossref_primary_10_1371_journal_pone_0059227 crossref_primary_10_1111_jbi_13190 crossref_primary_10_3390_insects16030305 crossref_primary_10_1111_j_1600_0587_2013_00236_x crossref_primary_10_1093_botlinnean_box010 crossref_primary_10_1371_journal_pone_0030941 crossref_primary_10_1111_brv_12287 crossref_primary_10_1016_j_ympev_2012_02_021 crossref_primary_10_1038_s41467_017_01121_2 crossref_primary_10_1016_j_ecoinf_2021_101314 crossref_primary_10_1007_s13127_018_0364_8 crossref_primary_10_1016_j_funeco_2018_06_004 crossref_primary_10_1371_journal_pntd_0012245 crossref_primary_10_2994_SAJH_D_17_00077_1 crossref_primary_10_1016_j_jaridenv_2022_104901 crossref_primary_10_1111_jbi_14156 crossref_primary_10_1080_15623599_2024_2303884 crossref_primary_10_1038_s41598_023_28497_0 crossref_primary_10_1073_pnas_2320674121 crossref_primary_10_1111_pala_12594 crossref_primary_10_1111_bij_12902 crossref_primary_10_15421_012128 crossref_primary_10_3390_w11091743 crossref_primary_10_1111_j_1600_0587_2012_07364_x crossref_primary_10_1038_s41559_017_0114 crossref_primary_10_25225_fozo_v65_i3_a1_2016 crossref_primary_10_1111_jbi_14147 crossref_primary_10_1111_2041_210X_14496 crossref_primary_10_1111_geb_13261 crossref_primary_10_7717_peerj_4786 crossref_primary_10_1016_j_mex_2024_102676 crossref_primary_10_3390_jof8060623 crossref_primary_10_1016_j_pld_2016_11_011 crossref_primary_10_1111_nph_13240 crossref_primary_10_1111_j_1461_0248_2011_01589_x crossref_primary_10_1002_ece3_6790 crossref_primary_10_1093_jmammal_gyac115 crossref_primary_10_1007_s10531_019_01865_x crossref_primary_10_1111_1365_2745_13406 crossref_primary_10_1111_j_1600_0587_2013_00329_x crossref_primary_10_1111_zsc_12151 crossref_primary_10_1126_science_1237541 crossref_primary_10_1016_j_actatropica_2024_107420 crossref_primary_10_1111_evo_13176 crossref_primary_10_1111_jbi_14251 crossref_primary_10_1111_jbi_14131 crossref_primary_10_1073_pnas_1507442112 crossref_primary_10_1111_nph_17844 crossref_primary_10_1093_cz_zoac061 crossref_primary_10_1111_jbi_12194 crossref_primary_10_1002_ece3_11446 crossref_primary_10_1002_ece3_6562 crossref_primary_10_1093_biolinnean_blaa120 crossref_primary_10_12677_IJE_2018_72014 crossref_primary_10_1007_s12229_017_9185_2 crossref_primary_10_1111_ecog_02596 crossref_primary_10_1016_j_palaeo_2024_112222 crossref_primary_10_1111_jbi_14002 crossref_primary_10_1111_boj_12006 crossref_primary_10_1670_20_103 crossref_primary_10_7554_eLife_74503 crossref_primary_10_1016_j_actao_2017_02_001 crossref_primary_10_1002_ecs2_1832 crossref_primary_10_1016_j_quascirev_2023_108313 crossref_primary_10_14710_ik_ijms_26_3_147_154 crossref_primary_10_1371_journal_pone_0248040 crossref_primary_10_7717_peerj_14585 crossref_primary_10_1111_jvs_12541 crossref_primary_10_1016_j_ocecoaman_2024_107213 crossref_primary_10_1080_14772000_2014_894592 crossref_primary_10_2478_jlecol_2019_0013 crossref_primary_10_1111_jbi_14598 crossref_primary_10_1111_cla_12185 crossref_primary_10_1071_SB16053 crossref_primary_10_1016_j_pld_2018_07_003 crossref_primary_10_1071_SB16056 crossref_primary_10_1073_pnas_1601072113 crossref_primary_10_1071_SB16054 crossref_primary_10_1071_SB16055 crossref_primary_10_1111_syen_12306 crossref_primary_10_1071_SB18008 crossref_primary_10_1038_s41467_021_27186_8 crossref_primary_10_1093_cz_zoaa068 crossref_primary_10_1038_ncomms6046 crossref_primary_10_1111_aec_13137 crossref_primary_10_1007_s13127_018_0378_2 crossref_primary_10_12677_OJNS_2018_64048 crossref_primary_10_1371_journal_pone_0208720 crossref_primary_10_1007_s10531_019_01819_3 crossref_primary_10_1111_jbi_13496 crossref_primary_10_1111_jbi_14222 crossref_primary_10_5209_mbot_68529 crossref_primary_10_1111_jbi_13135 crossref_primary_10_1144_SP549_2023_165 crossref_primary_10_1016_j_ympev_2019_03_011 crossref_primary_10_1073_pnas_1302323110 crossref_primary_10_1073_pnas_1306309110 crossref_primary_10_1093_cz_zoac015 crossref_primary_10_1111_brv_13112 crossref_primary_10_1016_j_ympev_2012_09_032 crossref_primary_10_1111_ddi_13917 crossref_primary_10_1038_s42003_020_01154_2 crossref_primary_10_1590_1676_0611_bn_2024_1648 crossref_primary_10_1111_ecog_06762 crossref_primary_10_1111_jbi_14216 crossref_primary_10_1080_00222933_2025_2452382 crossref_primary_10_1111_ecog_04464 crossref_primary_10_1111_jbi_12153 crossref_primary_10_1038_s41467_023_43807_w crossref_primary_10_12677_IJE_2018_73019 crossref_primary_10_1371_journal_pone_0259004 crossref_primary_10_1016_j_actatropica_2023_107063 crossref_primary_10_1080_14772000_2020_1738584 crossref_primary_10_1098_rstb_2011_0022 crossref_primary_10_1111_icad_12807 crossref_primary_10_1126_science_1237471 crossref_primary_10_1002_ece3_70657 crossref_primary_10_1126_sciadv_adi5502 crossref_primary_10_3389_fmars_2021_608867 crossref_primary_10_1111_jbi_12266 crossref_primary_10_3390_app142210563 crossref_primary_10_1007_s10682_021_10103_2 crossref_primary_10_1016_j_catena_2024_107860 crossref_primary_10_1016_j_aspen_2020_11_014 crossref_primary_10_1111_jbi_13475 crossref_primary_10_1525_bio_2012_62_3_7 crossref_primary_10_1016_j_flora_2017_03_011 crossref_primary_10_1111_jbi_12382 |
Cites_doi | 10.1098/rsbl.2007.0449 10.1111/j.1600-0587.1998.tb00409.x 10.1111/j.1096-3642.1858.tb02549.x 10.1046/j.1365-2699.2001.00615.x 10.1126/science.105.2727.367 10.1038/35025052 10.1016/j.tree.2004.09.011 10.1071/BT9540304 10.1111/j.1365-2699.2007.01850.x 10.1046/j.1461-0248.2003.00554.x 10.1016/0006-3207(93)90007-N 10.2307/2259551 10.1016/j.tree.2009.03.011 10.1046/j.1365-2699.1997.00150.x 10.1371/journal.pbio.0050157 10.1007/978-94-009-2063-7 10.1111/j.1461-0248.2005.00726.x 10.1073/pnas.96.13.7358 10.1126/science.272.5268.1601 10.1086/599305 10.1038/215467a0 10.7312/simp92414 10.1046/j.1461-0248.2004.00548.x 10.1046/j.1365-2699.2002.00662.x 10.1111/j.1095-8312.2000.tb01265.x 10.1086/285186 10.2307/2845832 10.1191/0309133306pp489pr 10.1073/pnas.0608361104 10.1017/S0952836901000723 10.2307/2398859 10.1038/339211a0 10.1086/405975 10.1046/j.0021-8790.2001.00563.x 10.1111/j.1469-185X.1982.tb00376.x 10.1046/j.1472-4642.2002.00142.x 10.1111/j.1600-0587.2008.05502.x 10.1017/S0959270900000149 10.1098/rsbl.2005.0396 10.1046/j.1365-2699.2001.00566.x 10.1080/106351501753462867 10.1007/978-1-4684-9181-4 10.2307/2412493 10.1038/nature05634 10.1111/j.2005.0906-7590.04203.x 10.1890/0012-9658(2003)084[1608:PAHAPO]2.0.CO;2 10.2307/2845260 10.2307/2411986 10.1146/annurev.es.26.110195.002105 10.1111/j.1095-8312.2006.00686.x 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 10.1086/279909 10.2307/2844752 10.1093/sysbio/43.3.438 10.1111/j.1365-2699.2005.01295.x 10.1111/j.1365-2699.2005.01317.x 10.1016/0006-3207(72)90119-X 10.1007/BF02294245 10.2307/4108990 10.1111/j.1366-9516.2005.00143.x 10.1111/j.1365-2699.2005.01418.x 10.1007/s00267-003-1084-0 10.1111/j.1365-2699.2004.01186.x 10.1007/BF00389302 10.1590/S0074-02762000000400012 10.1111/j.1096-3642.1860.tb00090.x 10.1111/j.1466-8238.2006.00257.x 10.1111/j.1365-2699.2007.01831.x 10.1038/049610a0 10.1111/j.1095-8312.1996.tb01475.x 10.1086/279416 10.1111/j.1095-8312.1986.tb01753.x 10.1038/nature04291 10.2307/1382545 10.1111/j.1365-2699.2006.01664.x 10.1111/j.1469-8137.1976.tb01517.x 10.1111/j.1461-0248.2008.01256.x 10.2307/1217208 10.2307/2845617 10.1126/science.1165115 10.1046/j.1365-2699.1999.00294.x 10.1093/icb/34.1.33 10.1007/BF00044745 10.1080/10635150490888859 10.1007/BF00038690 10.1126/science.215.4538.1351 10.1007/978-94-009-1199-4_17 10.1046/j.1365-2656.2003.00710.x 10.1146/annurev.ecolsys.37.091305.110239 10.1046/j.1365-2699.2002.00656.x 10.1093/oso/9780198526407.001.0001 10.1371/journal.pbio.0040208 10.2307/3037956 10.1002/9780470316801 10.2307/5518 10.1098/rspb.1996.0087 10.1111/j.1523-1739.2007.00847.x 10.1371/journal.pbio.0050272 10.1098/rspb.2006.0436 10.1017/S0376892900036237 10.1046/j.1365-2699.2003.00836.x 10.1111/j.1466-8238.2007.00318.x 10.1111/j.1365-2699.2007.01822.x 10.1111/jzo.1982.198.4.417 10.1126/science.1103538 10.1111/1467-9868.00293 10.1071/SB9910183 10.1145/331499.331504 10.1016/j.tree.2007.11.005 10.1093/oso/9780198548188.001.0001 10.1023/B:BIOC.0000019396.31168.ba 10.2307/2412970 10.1126/science.1072779 10.1038/nature05237 10.1126/science.253.5024.1099 10.1046/j.1365-2699.2002.00753.x 10.1073/pnas.0803524105 10.1098/rspb.2006.0061 10.2307/2411486 10.1086/394684 10.1080/10635150290102483 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Blackwell Publishing Ltd. 2010 Blackwell Publishing Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2010 Blackwell Publishing Ltd. – notice: 2010 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS |
DBID | FBQ BSCLL AAYXX CITATION IQODW 7S9 L.6 7SN 7ST 7U6 C1K SOI |
DOI | 10.1111/j.1365-2699.2010.02375.x |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef AGRICOLA Ecology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Biology Ecology |
EISSN | 1365-2699 |
EndPage | 2053 |
ExternalDocumentID | 23356417 10_1111_j_1365_2699_2010_02375_x JBI2375 40929006 ark_67375_WNG_4NB3WWSN_7 US201301897214 |
Genre | article |
GeographicLocations | Middle East Australia Africa ISW, Arabian Peninsula |
GeographicLocations_xml | – name: Middle East – name: ISW, Arabian Peninsula – name: Africa – name: Australia |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABHUG ABJNI ABLJU ABPLY ABPPZ ABPTK ABPVW ABTLG ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AI. AIRJO AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU EBS ECGQY EJD EQZMY ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HVGLF HZI HZ~ H~9 IHE IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SAMSI SUPJJ TN5 UB1 VH1 VOH VQP W8V W99 WBKPD WIH WIK WMRSR WOHZO WQJ WRC WSUWO WXSBR XG1 YQT ZZTAW ~02 ~IA ~KM ~WT AAHBH ABXSQ ADACV AHBTC AHXOZ AILXY AITYG AQVQM BSCLL HGLYW IPSME OIG AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX AGHNM CITATION IQODW 7S9 L.6 7SN 7ST 7U6 C1K SOI |
ID | FETCH-LOGICAL-c5575-b53a08330cf86362dacc6bcc862515b3c7840ee6d556ff410d76ba8be8434be23 |
IEDL.DBID | DR2 |
ISSN | 0305-0270 |
IngestDate | Thu Jul 10 20:28:43 EDT 2025 Fri Jul 11 07:29:51 EDT 2025 Mon Jul 21 09:14:21 EDT 2025 Tue Jul 01 01:14:03 EDT 2025 Thu Apr 24 22:55:05 EDT 2025 Wed Jan 22 16:21:57 EST 2025 Thu Jul 03 21:30:49 EDT 2025 Wed Oct 30 09:52:38 EDT 2024 Wed Dec 27 19:06:48 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Cluster analysis multivariate methods faunistic resemblance Conservation Biogeography Method Vertebrata conservation biogeography Mammalia Spatial distribution Geographic distribution mammals ordination Distribution range regionalization zoogeographical realms |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5575-b53a08330cf86362dacc6bcc862515b3c7840ee6d556ff410d76ba8be8434be23 |
Notes | http://dx.doi.org/10.1111/j.1365-2699.2010.02375.x ark:/67375/WNG-4NB3WWSN-7 istex:11DE54819CB8D67B7B5AEBAEBD3AC181EFF253D8 ArticleID:JBI2375 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 772272392 |
PQPubID | 24069 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_860372099 proquest_miscellaneous_772272392 pascalfrancis_primary_23356417 crossref_primary_10_1111_j_1365_2699_2010_02375_x crossref_citationtrail_10_1111_j_1365_2699_2010_02375_x wiley_primary_10_1111_j_1365_2699_2010_02375_x_JBI2375 jstor_primary_40929006 istex_primary_ark_67375_WNG_4NB3WWSN_7 fao_agris_US201301897214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2010 |
PublicationDateYYYYMMDD | 2010-11-01 |
PublicationDate_xml | – month: 11 year: 2010 text: November 2010 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Journal of biogeography |
PublicationYear | 2010 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell Publishing Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell |
References | Buffon, G.L.L., Comte de (1761) Histoire naturelle générale. Imprimerie Royale, Paris. Holdridge, L.R. (1947) Determination of world formations from simple climatic data. Science, 105, 367-368. Hershkovitz, P. (1969) The recent mammals of the Neotropical Region: a zoogeographic and ecological review. Quarterly Review of Biology, 44, 1-70. Lomolino, M.V., Riddle, B.R. & Brown, J.H. (2006) Biogeography, 3rd edn. Sinauer Associates, Sunderland, MA. Wallace, A.R. (1860) On the zoological geography of the Malay Archipelago. Journal of the Proceedings of the Linnean Society of London. Zoology, 4, 172-184. de Klerk, H.M., Crowe, T.M., Fjeldså, J. & Burgess, N.D. (2002) Biogeographical patterns of endemic terrestrial Afrotropical birds. Diversity and Distributions, 8, 147-162. Nimis, P.L. & Bolognini, G. (1993) Quantitative phytogeography of the Italian beech forests. Vegetatio, 109, 125-143. Newton, I. & Dale, L. (2001) A comparative analysis of the avifaunas of different zoogeographical regions. Journal of Zoology, 254, 207-218. Patten, M.A. & Smith-Patten, B.D. (2008) Biogeographical boundaries and Monmonier's algorithm: a case study in the northern Neotropics. Journal of Biogeography, 35, 407-416. Sclater, P.L. (1858) On the general geographical distribution of the members of the class Aves. Journal of the Proceedings of the Linnean Society: Zoology, 2, 130-145. Wallace, A.R. (1894) What are zoological regions? Nature, 49, 610-613. von Humboldt, A. (1806) Essai sur la geographie des plantes; accompagné d'un tableau physique des régions équinoxales, accompagné d'un tableau physique des régions équinoctiales. Schoel & Co., Paris. Avise, J.C. & Johns, G.C. (1999) Proposal for a standardized temporal scheme of biological classification for extant species. Proceedings of the National Academy of Sciences USA, 96, 7358-7363. Jetz, W. & Rahbek, C. (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551. McKnight, M.W., White, P.S., McDonald, R.I., Lamoreux, J.F., Sechrest, W., Ridgely, R.S. & Stuart, S.N. (2007) Putting beta-diversity on the map: broad-scale congruence and coincidence in the extremes. PLoS Biology, 5, 2424-2432. Jetz, W., Wilcove, D.S. & Dobson, A.P. (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5, 1211-1219. Briggs, J.C. (1989) Biogeography and plate tectonics. Elsevier Science Publishers, New York. Sokal, R.R. & Rohlf, F.J. (1962) The comparison of dendrograms by objective methods. Taxon, 11, 33-40. Escalante, T. (2009) Un ensayo sobre regionalización biogeográfica. Revista Mexicana de Biodiversidad, 80, 551-560. Morrone, J.J. (1994) On the identification of areas of endemism. Systematic Biology, 43, 438-441. Vermeij, G.J. (1991) When biotas meet: understanding biotic interchange. Science, 253, 1099-1104. Kent, M. (2006) Numerical classification and ordination methods in biogeography. Progress in Physical Geography, 30, 399-408. Mackey, B.G., Berry, S.L. & Brown, T. (2008) Reconciling approaches to biogeographic regionalization: a systematic and generic framework examined with a case study of the Australian continent. Journal of Biogeography, 35, 213-229. Buckley, L.B. & Jetz, W. (2007) Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society B: Biological Sciences, 274, 1167-1173. Udvardy, M.D.F. (1975) A classification of the biogeographical provinces of the world. International Union for Conservation of Nature (IUCN), Morges, Switzerland. ESRI (2005) ArcGIS 9.2. Environmental Systems Research Institute Inc., Redlands, CA. R Development Core Team (2005) R: a language and environment for statistical computing. R foundation for Statistical Computing, Vienna. Available at: http://cran.r-project.org/. Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L. & Purvis, A. (2007) The delayed rise of present-day mammals. Nature, 446, 507-512. Hurlbert, A.H. & Jetz, W. (2007) Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of the National Academy of Sciences USA, 104, 13384-13389. Stoddart, D.R. (1992) Biogeography of the tropical Pacific. Pacific Science, 46, 276-293. Brown, J.H. & Lomolino, M.V. (1998) Biogeography, 2nd edn. Sinauer Associates, Sunderland, MA. Cox, C.B. (2000) Plate tectonics, seaways and climate in the historical biogeography of mammals. Memórias do Instituto Oswaldo Cruz, 95, 509-516. Cox, C.B. (2001) The biogeographic regions reconsidered. Journal of Biogeography, 28, 511-523. Pearman, P.B., Guisan, A., Broenniman, O. & Randin, C.F. (2008) Niche dynamics in space and time. Trends in Ecology and Evolution, 23, 149-158. Rambaut, A. (2006-2009) FigTree: tree figure drawing tool version 1.2.2. Available at: http://tree.bio.ed.ac.uk/software/figtree. Jain, A.K., Murty, M.N. & Flynn, P.J. (1999) Data clustering: a review. ACM Computing Surveys, 31, 264-323. McLaughlin, S.P. (1989) Natural floristic areas of the western United States. Journal of Biogeography, 16, 239-248. McLaughlin, S.P. (1992) Are floristic areas hierarchically arranged? Journal of Biogeography, 19, 21-32. Wilson, M.V. & Shmida, A. (1984) Measuring beta diversity with presence-absence data. Journal of Ecology, 72, 1055-1064. Goodman, S.M. & Benstead, J.P. (2004) The natural history of Madagascar. University of Chicago Press, Chicago, IL. Lamoreux, J.F., Morrison, J.C., Ricketts, T.H., Olson, D.M., Dinerstein, E., McKnight, M.W. & Shugart, H.H. (2006) Global tests of biodiversity concordance and the importance of endemism. Nature, 440, 212-214. How, R.A. & Kitchener, D.J. (1997) Biogeography of Indonesian snakes. Journal of Biogeography, 24, 725-735. Szumik, C.A. & Goloboff, P.A. (2004) Areas of endemism: an improved optimality criterion. Systematic Biology, 53, 968-977. Jetz, W., Sekercioglu, C.H. & Watson, J.E.M. (2008) Ecological correlates and conservation implications of overestimating species geographic ranges. Conservation Biology, 22, 110-119. Milligan, G.W. & Cooper, M.C. (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159-179. Koleff, P., Gaston, K.J. & Lennon, J.J. (2003) Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72, 367-382. Riddle, B.R. (1998) The historical assembly of continental biotas: Late Quaternary range-shifting, areas of endemism, and biogeographic structure in the North American mammal fauna. Ecography, 21, 437-446. Morrone, J.J. (2002) Biogeographical regions under track and cladistic scrutiny. Journal of Biogeography, 29, 149-152. Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L. & Waller, R.W. (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786. da Silva, J.M.C. & Oren, D.C. (1996) Application of parsimony analysis of endemicity in Amazonian biogeography: an example with primates. Biological Journal of the Linnean Society, 59, 427-437. Wickens, G.E. (1976) The flora of Jebel Marra (Sudan Republic) and its geographical affinities. Kew Bulletin/Additional Series, 5, 1-368. Dasmann, R.F. (1972) Towards a system for classifying natural regions of the world and their representation by national parks and reserves. Biological Conservation, 4, 247-255. Heikinheimo, H., Fortelius, M., Eronen, J. & Mannila, H. (2007) Biogeography of European land mammals shows environmentally distinct and spatially coherent clusters. Journal of Biogeography, 34, 1053-1064. Baselga, A., Jiménez-Valverde, A. & Niccolini, G. (2007) A multiple-site similarity measure independent of richness. Biology Letters, 3, 642-645. Birks, H.J. (1976) The distribution of European pteridophytes: a numerical analysis. New Phytologist, 77, 257-287. Šizling, A.L., Šizlingová, E., Storch, D., Reif, J. & Gaston, K.J. (2009) Rarity, commonness, and the contribution of individual species to species richness patterns. The American Naturalist, 174, 82-93. Sneath, P.H.A. & Sokal, R.R. (1973) Numerical taxonomy: the principles and practice of numerical classification. W. H. Freeman, San Francisco, CA. Conran, J.G. (1995) Family distributions in the Liliiflorae and their biogeographical implications. Journal of Biogeography, 22, 1023-1034. Unmack, P.J. (2001) Biogeography of Australian freshwater fishes. Journal of Biogeography, 28, 1053-1089. Beck, J., Kitching, I.J. & Eduard Linsenmair, K. (2006a) Determinants of regional species richness: an empirical analysis of the number of hawkmoth species (Lepidoptera: Sphingidae) on the Malesian archipelago. Journal of Biogeography, 33, 694-706. Procheş, Ş. (2005) The world's biogeographical regions: cluster analyses based on bat distributions. Journal of Biogeography, 32, 607-614. Woodward, F.I. (1987) Climate and plant distribution. Cambridge University Press, Cambridge. Harrison, S., Ross, S.J. & Lawton, J.H. (1992) Beta-diversity on geographic gradients in Britain. Journal of Animal Ecology, 61, 151-158. Procheş, Ş. (2006) Latitudinal and longitudinal barriers in global biogeography. Biology Letters, 2, 69-72. Mayr, E. (1944) Wallace's Line in the light of recent zoogeographic studies. Quarterly Review of Biology, 19, 1-14. Hubalek, Z. (1982) Coefficients of association and similarity, based on binary (presence-absence) data: an evaluation. Biological Reviews, 57, 669-689. Jongman, R.H., ter Braak, C.J.F. & van Tongeren, O.F.R. (1987) Data analysis in community and landscape ecology. Pudoc, Wageningen. Nelson, G. & Platnick, N.I. (1981) Systematics and biogeography: cladistics and vicariance. Columbia University Press, New York. Beck, J., Kitching, I.J. & Linsenmair, K.E. (2006b) Wallace's line revisited: has vicariance or dispersal shaped the distribution of Malesian hawkmoths (Lepidoptera: Sphingidae)? Biological Journal of the Linnean Society, 89, 455-468. Belbin, L. (1993) Environmental representativeness: 1982; 57 2007; 104 2001; 50 2006; 30 1923; 57 2009; 80 2004; 7 2006; 37 1855 2000; 95 1983; 10 1975 1974; 1 1974 2008; 35 1973 2008; 105 2008; 32 1996; 263 1978 1977; 121 2001; 254 2000; 407 1976; 77 1990 1978; 65 1995; 26 2000; 10 1995; 22 1987 1969; 44 1986 2006; 29 2006; 440 2008; 23 1985 1992; 46 2007; 5 2008; 22 1981 2007; 3 2001; 51 1989 1954; 2 2006; 444 1994; 75 1988 2006b; 89 2007; 446 1993; 109 2006-2009 1986; 13 1997; 24 1999; 26 2002; 8 1998 1876 2002; 4 2000; 71 1993 2001; 28 2009; 174 1991 1962; 11 2004; 306 2006a; 33 2003; 30 1999 2007; 16 1976; 5 1987; 69 2004; 53 2005; 8 2007; 274 1986; 28 1999; 31 1761 1964; 13 1806 2005; 11 1860; 4 1976; 25 1966; 15 2002; 51 1993; 66 1987; 4 1992; 19 2007; 34 1914; 48 2000 1994; 34 2005; 32 1978; 27 1999; 96 1982; 215 1985; 50 2003; 84 2005; 34 1894; 49 1991; 4 1991; 253 2001; 70 2009; 24 1944; 19 2002; 297 1978; 11 2006; 15 2009 2008 2007 2006 2005 2004 2008; 11 2006; 4 2003 2006; 2 2008; 322 2002 1972; 4 2003; 72 1998; 21 1996; 59 1967; 215 2001; 63 1994; 43 1984; 72 2002; 29 1858; 2 2004; 19 1947; 105 2004; 13 1996; 272 1982; 198 1961 1989; 16 2005; 55 1992; 61 e_1_2_7_108_1 Briggs J.C. (e_1_2_7_13_1) 1989 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_142_1 e_1_2_7_146_1 ESRI (e_1_2_7_32_1) 2005 Brown J.H. (e_1_2_7_14_1) 1998 e_1_2_7_116_1 e_1_2_7_90_1 Linder H.P. (e_1_2_7_77_1) 2005; 55 e_1_2_7_94_1 e_1_2_7_71_1 Lomolino M.V. (e_1_2_7_79_1) 2006 Fortelius M. (e_1_2_7_35_1) 2002; 4 e_1_2_7_52_1 e_1_2_7_98_1 Gaston K.J. (e_1_2_7_36_1) 2003 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 Morrone J.J. (e_1_2_7_95_1) 2009 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_158_1 e_1_2_7_139_1 Jongman R.H. (e_1_2_7_65_1) 1987 e_1_2_7_109_1 e_1_2_7_4_1 Ludwig J.A. (e_1_2_7_80_1) 1988 e_1_2_7_128_1 Oksanen J. (e_1_2_7_103_1) 2006 e_1_2_7_105_1 e_1_2_7_8_1 Buffon G.L.L. (e_1_2_7_17_1) 1761 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_147_1 Humphries C.J. (e_1_2_7_56_1) 1999 e_1_2_7_117_1 Escalante T. (e_1_2_7_31_1) 2009; 80 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_74_1 e_1_2_7_97_1 Simpson G.G. (e_1_2_7_127_1) 1977; 121 Udvardy M.D.F. (e_1_2_7_143_1) 1975 e_1_2_7_20_1 e_1_2_7_59_1 e_1_2_7_151_1 Jain A.K. (e_1_2_7_60_1) 1988 McKenna M.C. (e_1_2_7_84_1) 2000 e_1_2_7_155_1 e_1_2_7_136_1 von Humboldt A. (e_1_2_7_55_1) 1806 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_106_1 Salvador S. (e_1_2_7_121_1) 2004 e_1_2_7_129_1 Fielding A. (e_1_2_7_34_1) 2007 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 Takhtajan A. (e_1_2_7_140_1) 1978 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 Saitou N. (e_1_2_7_120_1) 1987; 4 e_1_2_7_144_1 Dasmann R.F. (e_1_2_7_29_1) 1974 Stehli F.G. (e_1_2_7_134_1) 1985 e_1_2_7_148_1 Lomolino M.V. (e_1_2_7_78_1) 2004 Stoddart D.R. (e_1_2_7_135_1) 1992; 46 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 Rambaut A. (e_1_2_7_113_1) 2006 e_1_2_7_6_1 Goodman S.M. (e_1_2_7_38_1) 2004 e_1_2_7_107_1 e_1_2_7_126_1 Hengeveld R. (e_1_2_7_49_1) 1990 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_160_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_145_1 Sneath P.H.A. (e_1_2_7_132_1) 1973 e_1_2_7_149_1 Cox C.B. (e_1_2_7_25_1) 1993 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 Legendre P. (e_1_2_7_73_1) 1998 e_1_2_7_72_1 Nelson G. (e_1_2_7_99_1) 1981 e_1_2_7_111_1 Swofford D.L. (e_1_2_7_137_1) 2002 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 Takhtajan A. (e_1_2_7_141_1) 1986 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 de Candolle A. (e_1_2_7_18_1) 1855 ter Braak C.J.F. (e_1_2_7_11_1) 1987 R Development Core Team (e_1_2_7_112_1) 2005 e_1_2_7_157_1 e_1_2_7_138_1 |
References_xml | – reference: Beck, J., Kitching, I.J. & Eduard Linsenmair, K. (2006a) Determinants of regional species richness: an empirical analysis of the number of hawkmoth species (Lepidoptera: Sphingidae) on the Malesian archipelago. Journal of Biogeography, 33, 694-706. – reference: Ron, S.R. (2000) Biogeographic area relationships of lowland Neotropical rainforest based on raw distributions of vertebrate groups. Biological Journal of the Linnean Society, 71, 379. – reference: Szumik, C.A. & Goloboff, P.A. (2004) Areas of endemism: an improved optimality criterion. Systematic Biology, 53, 968-977. – reference: Conran, J.G. (1995) Family distributions in the Liliiflorae and their biogeographical implications. Journal of Biogeography, 22, 1023-1034. – reference: Cox, C.B. (1974) Vertebrate palaeodistributional patterns and continental drift. Journal of Biogeography, 1, 75-94. – reference: Escalante, T. (2009) Un ensayo sobre regionalización biogeográfica. Revista Mexicana de Biodiversidad, 80, 551-560. – reference: Simpson, G.G. (1961) Principles of animal taxonomy. Columbia University Press, New York. – reference: Qian, H. & Ricklefs, R.E. (2000) Large-scale processes and the Asian bias in species diversity of temperate plants. Nature, 407, 180-182. – reference: Woodward, F.I. (1987) Climate and plant distribution. Cambridge University Press, Cambridge. – reference: Ricklefs, R.E. (2004) A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1-15. – reference: Hagmeier, E.M. & Stults, D. (1964) A numerical analysis of the distributional patterns of North American mammals. Systematic Zoology, 13, 125-155. – reference: Szumik, C.A., Cuezzo, F., Goloboff, P.A. & Chalup, A.E. (2002) An optimality criterion to determine areas of endemism. Systematic Biology, 51, 806-816. – reference: Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D'Amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P. & Kassem, K.R. (2001) Terrestrial ecoregions of the world: a new map of life on earth. BioScience, 51, 933-938. – reference: Crowe, T.M. & Crowe, A.A. (1982) Patterns of distribution, diversity and endemism in Afrotropical birds. Journal of Zoology, 198, 417-442. – reference: Linder, H.P., Lovett, J.C., Mutke, J., Barthlott, W., Jürgens, N., Rebelo, T. & Küper, W. (2005) A numerical re-evaluation of the sub-Saharan phytochoria of mainland Africa. Biologiske Skrifter, 55, 229-252. – reference: Rosen, D.E. (1978) Vicariant patterns and historical explanation in biogeography. Systematic Zoology, 27, 159-188. – reference: Simpson, G.G. (1977) Too many lines: the limits of the Oriental and Australian zoogeographic regions. Proceedings of the American Philosophical Society, 121, 107-120. – reference: de Candolle, A. (1855) Geographie botanique raisonnée. Librairie de Victor Masson, Paris. – reference: McKenna, M.C. & Bell, S.K. (2000) Classification of mammals above the species level. Columbia University Press, New York. – reference: Marshall, L.G., Webb, S.D., Sepkoski, J.J., Jr & Raup, D.M. (1982) Mammalian evolution and the Great American Interchange. Science, 215, 1351-1357. – reference: Newton, I. & Dale, L. (2001) A comparative analysis of the avifaunas of different zoogeographical regions. Journal of Zoology, 254, 207-218. – reference: Vermeij, G.J. (1991) When biotas meet: understanding biotic interchange. Science, 253, 1099-1104. – reference: Buckley, L.B. & Jetz, W. (2008) Linking global turnover of species and environments. Proceedings of the National Academy of Sciences USA, 105, 17836-17841. – reference: Avise, J.C. & Johns, G.C. (1999) Proposal for a standardized temporal scheme of biological classification for extant species. Proceedings of the National Academy of Sciences USA, 96, 7358-7363. – reference: Hawkins, B.A., Porter, E.E. & Diniz-Filho, J.A.F. (2003) Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology, 84, 1608-1623. – reference: Hershkovitz, P. (1969) The recent mammals of the Neotropical Region: a zoogeographic and ecological review. Quarterly Review of Biology, 44, 1-70. – reference: Sneath, P.H.A. (1967) Conifer distributions and continental drift. Nature, 215, 467-470. – reference: Morrone, J.J. & Crisci, J.V. (1995) Historical biogeography: introduction to methods. Annual Review of Ecology and Systematics, 26, 373. – reference: Saitou, N. & Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425. – reference: Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L. & Waller, R.W. (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786. – reference: Morrone, J.J. & Escalante, T. (2002) Parsimony analysis of endemicity (PAE) of Mexican terrestrial mammals at different area units: when size matters. Journal of Biogeography, 29, 1095-1104. – reference: Hubalek, Z. (1982) Coefficients of association and similarity, based on binary (presence-absence) data: an evaluation. Biological Reviews, 57, 669-689. – reference: Humphries, C.J. & Parenti, L.R. (1999) Cladistic biogeography. Oxford University Press, Oxford. – reference: ESRI (2005) ArcGIS 9.2. Environmental Systems Research Institute Inc., Redlands, CA. – reference: Sneath, P.H.A. & Sokal, R.R. (1973) Numerical taxonomy: the principles and practice of numerical classification. W. H. Freeman, San Francisco, CA. – reference: Williams, P.H. (1996) Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proceedings of the Royal Society B: Biological Sciences, 263, 579-588. – reference: Kaufman, L. & Rousseeuw, P.J. (1990) Finding groups in data: an introduction to cluster analysis. Wiley Series in Probability and Mathematical Statistics. Wiley, New York. – reference: Nimis, P.L. & Bolognini, G. (1993) Quantitative phytogeography of the Italian beech forests. Vegetatio, 109, 125-143. – reference: Mackey, B.G., Berry, S.L. & Brown, T. (2008) Reconciling approaches to biogeographic regionalization: a systematic and generic framework examined with a case study of the Australian continent. Journal of Biogeography, 35, 213-229. – reference: Patten, M.A. & Smith-Patten, B.D. (2008) Biogeographical boundaries and Monmonier's algorithm: a case study in the northern Neotropics. Journal of Biogeography, 35, 407-416. – reference: von Humboldt, A. (1806) Essai sur la geographie des plantes; accompagné d'un tableau physique des régions équinoxales, accompagné d'un tableau physique des régions équinoctiales. Schoel & Co., Paris. – reference: Yoder, A.D. & Nowak, M.D. (2006) Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annual Review of Ecology, Evolution, and Systematics, 37, 405-431. – reference: Birks, H.J. (1976) The distribution of European pteridophytes: a numerical analysis. New Phytologist, 77, 257-287. – reference: Cox, C.B. & Moore, P. (1993) Biogeography: an ecological and evolutionary approach, 5th edn. Blackwell, Oxford. – reference: Lennon, J.J., Koleff, P., Greenwood, J.J.D. & Gaston, K.J. (2004) Contribution of rarity and commonness to patterns of species richness. Ecology Letters, 7, 81-87. – reference: Bailey, R.G. & Hogg, H.C. (1986) A world ecoregions map for resource partitioning. Environmental Conservation, 13, 195-202. – reference: Kreft, H., Sommer, J.H. & Barthlott, W. (2006) The significance of geographic range size for spatial diversity patterns in Neotropical palms. Ecography, 29, 21-30. – reference: Cracraft, J. (1994) Species diversity, biogeography, and the evolution of biotas. American Zoologist, 34, 33-47. – reference: R Development Core Team (2005) R: a language and environment for statistical computing. R foundation for Statistical Computing, Vienna. Available at: http://cran.r-project.org/. – reference: Stehli, F.G. & Webb, S.D. (1985) The great biotic American interchange. Plenum, New York. – reference: Jain, A.K. & Dubes, R.C. (1988) Algorithms for clustering data. Prentice Hall, Upper Saddle River, NJ. – reference: Wickens, G.E. (1976) The flora of Jebel Marra (Sudan Republic) and its geographical affinities. Kew Bulletin/Additional Series, 5, 1-368. – reference: Minchin, P.R. (1987) An evaluation of relative robustness of techniques for ecological ordinations. Vegetatio, 69, 89-107. – reference: Heikinheimo, H., Fortelius, M., Eronen, J. & Mannila, H. (2007) Biogeography of European land mammals shows environmentally distinct and spatially coherent clusters. Journal of Biogeography, 34, 1053-1064. – reference: Oksanen, J., Kindt, R., Legendre, P. & O'Hara, R.B. (2006) vegan: community ecology package. Available at: http://cran.r-project.org/ (accessed 6 February 2007). – reference: Procheş, Ş. (2005) The world's biogeographical regions: cluster analyses based on bat distributions. Journal of Biogeography, 32, 607-614. – reference: Chapin, J.P. (1923) Ecological aspects of bird distribution in tropical Africa. The American Naturalist, 57, 106-125. – reference: Nelson, G. (1978) From Candolle to Croizat: comments on the history of biogeography. Journal of the History of Biology, 11, 269-305. – reference: Williams, P.H., de Klerk, H.M. & Crowe, T.M. (1999) Interpreting biogeographical boundaries among Afrotropical birds: spatial patterns in richness gradients and species replacement. Journal of Biogeography, 26, 459-474. – reference: Davies, R.G., Orme, C.D.L., Storch, D., Olson, V.A., Thomas, G.H., Ross, S.G., Ding, T.-S., Rasmussen, P.C., Bennett, P.M., Owens, I.P.F., Blackburn, T.M. & Gaston, K.J. (2007) Topography, energy and the global distribution of bird species richness. Proceedings of the Royal Society B: Biological Sciences, 274, 1189-1197. – reference: Sokal, R.R. & Rohlf, F.J. (1962) The comparison of dendrograms by objective methods. Taxon, 11, 33-40. – reference: Gaston, K.J. (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford. – reference: Fortelius, M., Eronen, J.T., Jernvall, J., Liu, L., Pushkina, D., Rinne, J., Tesakov, A., Vislobokova, I.A., Zhang, Z. & Zhou, L. (2002) Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research, 4, 1005-1016. – reference: Swofford, D.L. (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Beta 10. Sinauer Associates, Sunderland, MA. – reference: Smith, C.H. (1983) A system of world mammal faunal regions. I. Logical and statistical derivation of the regions. Journal of Biogeography, 10, 455-466. – reference: Dasmann, R.F. (1972) Towards a system for classifying natural regions of the world and their representation by national parks and reserves. Biological Conservation, 4, 247-255. – reference: Šizling, A.L., Šizlingová, E., Storch, D., Reif, J. & Gaston, K.J. (2009) Rarity, commonness, and the contribution of individual species to species richness patterns. The American Naturalist, 174, 82-93. – reference: Kent, M. (2006) Numerical classification and ordination methods in biogeography. Progress in Physical Geography, 30, 399-408. – reference: Pearman, P.B., Guisan, A., Broenniman, O. & Randin, C.F. (2008) Niche dynamics in space and time. Trends in Ecology and Evolution, 23, 149-158. – reference: Riddle, B.R. (1998) The historical assembly of continental biotas: Late Quaternary range-shifting, areas of endemism, and biogeographic structure in the North American mammal fauna. Ecography, 21, 437-446. – reference: How, R.A. & Kitchener, D.J. (1997) Biogeography of Indonesian snakes. Journal of Biogeography, 24, 725-735. – reference: Beck, J., Kitching, I.J. & Linsenmair, K.E. (2006b) Wallace's line revisited: has vicariance or dispersal shaped the distribution of Malesian hawkmoths (Lepidoptera: Sphingidae)? Biological Journal of the Linnean Society, 89, 455-468. – reference: Procheş, Ş. (2006) Latitudinal and longitudinal barriers in global biogeography. Biology Letters, 2, 69-72. – reference: McKnight, M.W., White, P.S., McDonald, R.I., Lamoreux, J.F., Sechrest, W., Ridgely, R.S. & Stuart, S.N. (2007) Putting beta-diversity on the map: broad-scale congruence and coincidence in the extremes. PLoS Biology, 5, 2424-2432. – reference: Graham, R.W., Lundelius, E.L., Jr, Graham, M.A., Schroeder, E.K., Toomey, R.S., III, Anderson, E., Barnosky, A.D., Burns, J.A., Churcher, C.S., Grayson, D.K., Guthrie, R.D., Harington, C.R., Jefferson, G.T., Martin, L.D., McDonald, H.G., Morlan, R.E., Jr, Semken, H.A., Webb, S.D., Werdelin, L. & Wilson, M.C. (1996) Spatial response of mammals to late Quaternary environmental fluctuations. Science, 272, 1601-1606. – reference: Briggs, J.C. (1989) Biogeography and plate tectonics. Elsevier Science Publishers, New York. – reference: Jetz, W., Wilcove, D.S. & Dobson, A.P. (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5, 1211-1219. – reference: Morgan, G.S. & Woods, C.A. (1986) Extinction and the zoogeography of West Indian land mammals. Biological Journal of the Linnean Society, 28, 167-203. – reference: Schipper, J., Chanson, J.S., Chiozza, F. et al. (2008) The status of the world's land and marine mammals: diversity, threat, and knowledge. Science, 322, 225-230. – reference: Wallace, A.R. (1894) What are zoological regions? Nature, 49, 610-613. – reference: Wallace, A.R. (1876) The geographical distribution of animals. Harper & Brothers, New York. – reference: Baroni-Urbani, C. & Buser, M.W. (1976) Similarity of binary data. Systematic Zoology, 25, 251-259. – reference: Milligan, G.W. & Cooper, M.C. (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159-179. – reference: Holdridge, L.R. (1947) Determination of world formations from simple climatic data. Science, 105, 367-368. – reference: Morrone, J.J. (2009) Evolutionary biogeography: an integrative approach with case studies. Columbia University Press, New York. – reference: Dasmann, R.F. (1974) Biotic provinces of the world: further development of a system for defining and classifying natural regions for purposes of conservation. International Union for Conservation of Nature and Natural Resources, Morges, Switzerland. – reference: Fielding, A. (2007) Cluster and classification techniques for the biosciences. Cambridge University Press, Cambridge. – reference: Sclater, P.L. (1858) On the general geographical distribution of the members of the class Aves. Journal of the Proceedings of the Linnean Society: Zoology, 2, 130-145. – reference: Rambaut, A. (2006-2009) FigTree: tree figure drawing tool version 1.2.2. Available at: http://tree.bio.ed.ac.uk/software/figtree. – reference: McLaughlin, S.P. (1989) Natural floristic areas of the western United States. Journal of Biogeography, 16, 239-248. – reference: McLaughlin, S.P. (1992) Are floristic areas hierarchically arranged? Journal of Biogeography, 19, 21-32. – reference: Udvardy, M.D.F. (1975) A classification of the biogeographical provinces of the world. International Union for Conservation of Nature (IUCN), Morges, Switzerland. – reference: Melo, A.S., Rangel, T.F.L.V.B. & Diniz-Filho, J.A.F. (2008) Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography, 32, 226-236. – reference: Cox, C.B. (2000) Plate tectonics, seaways and climate in the historical biogeography of mammals. Memórias do Instituto Oswaldo Cruz, 95, 509-516. – reference: Tibshirani, R., Walther, G. & Hastie, T. (2001) Estimating the number of clusters in a data sets via the gap statistic. Journal of the Royal Statistical Society B, 63, 411-423. – reference: Peterson, A.T., Ball, G.L. & Brady, K.W. (2000) Distribution of the birds of the Philippines: biogeography and conservation priorities. Bird Conservation International, 10, 149-167. – reference: Hurlbert, A.H. & White, E.P. (2005) Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecology Letters, 8, 319-327. – reference: Morrone, J.J. (2002) Biogeographical regions under track and cladistic scrutiny. Journal of Biogeography, 29, 149-152. – reference: Samyn, Y. & Tallon, I. (2005) Zoogeography of the shallow-water holothuroids of the western Indian Ocean. Journal of Biogeography, 32, 1523-1538. – reference: Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L. & Purvis, A. (2007) The delayed rise of present-day mammals. Nature, 446, 507-512. – reference: Vane-Wright, R.I. (1991) Transcending the Wallace line: do the western edges of the Australian region and the Australian Plate coincide? Australian Systematic Botany, 4, 183-197. – reference: Goodman, S.M. & Benstead, J.P. (2004) The natural history of Madagascar. University of Chicago Press, Chicago, IL. – reference: McPherson, J.M. & Jetz, W. (2007) Type and spatial structure of distribution data and the perceived determinants of geographical gradients in ecology: the species richness of African birds. Global Ecology and Biogeography, 16, 657-667. – reference: Takhtajan, A. (1978) Floristic regions of the world. Nauka, Leningrad (in Russian). – reference: Baselga, A., Jiménez-Valverde, A. & Niccolini, G. (2007) A multiple-site similarity measure independent of richness. Biology Letters, 3, 642-645. – reference: Xie, Y., Mackinnon, J. & Li, D. (2004) Study on biogeographical divisions of China. Biodiversity and Conservation, 13, 1391-1417. – reference: Belbin, L. (1993) Environmental representativeness: regional partitioning and reserve selection. Biological Conservation, 66, 223-230. – reference: Goodall, D.W. (1954) Objective methods for the classification of vegetation. III. An essay in the use of factor analysis. Australian Journal of Botany, 2, 304-324. – reference: Orme, C.D.L., Davies, R.G., Olson, V.A., Thomas, G.H., Ding, T.-S., Rasmussen, P.C., Ridgely, R.S., Stattersfield, A.J., Bennett, P.M., Owens, I.P.F., Blackburn, T.M. & Gaston, K.J. (2006) Global patterns of geographic range size in birds. PLoS Biology, 4, 1276-1283. – reference: Unmack, P.J. (2001) Biogeography of Australian freshwater fishes. Journal of Biogeography, 28, 1053-1089. – reference: Legendre, P. & Legendre, L. (1998) Numerical ecology. Elsevier, Amsterdam. – reference: Morrone, J.J. (1994) On the identification of areas of endemism. Systematic Biology, 43, 438-441. – reference: de Klerk, H.M., Crowe, T.M., Fjeldså, J. & Burgess, N.D. (2002) Biogeographical patterns of endemic terrestrial Afrotropical birds. Diversity and Distributions, 8, 147-162. – reference: Takhtajan, A. (1986) Floristic regions of the world. University of California Press, Berkeley, CA. – reference: Wiens, J.J. & Donoghue, M.J. (2004) Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19, 639-644. – reference: Brown, J.H. & Lomolino, M.V. (1998) Biogeography, 2nd edn. Sinauer Associates, Sunderland, MA. – reference: Lamoreux, J.F., Morrison, J.C., Ricketts, T.H., Olson, D.M., Dinerstein, E., McKnight, M.W. & Shugart, H.H. (2006) Global tests of biodiversity concordance and the importance of endemism. Nature, 440, 212-214. – reference: Fattorini, S. (2002) Biogeography of the tenebrionid beetles (Coleoptera, Tenebrionidae) on the Aegean Islands (Greece). Journal of Biogeography, 29, 49-67. – reference: Nelson, G. & Platnick, N.I. (1981) Systematics and biogeography: cladistics and vicariance. Columbia University Press, New York. – reference: Rojas-Soto, O.R., Alcántara-Ayala, O. & Navarro, A.G. (2003) Regionalization of the avifauna of the Baja California peninsula, Mexico: a parsimony analysis of endemicity and distributional modelling approach. Journal of Biogeography, 30, 449-461. – reference: Buffon, G.L.L., Comte de (1761) Histoire naturelle générale. Imprimerie Royale, Paris. – reference: Hortal, J., Rodríguez, J., Nieto-Díaz, M. & Lobo, J.M. (2008) Regional and environmental effects on the species richness of mammal assemblages. Journal of Biogeography, 35, 1202-1214. – reference: Cox, C.B. (2001) The biogeographic regions reconsidered. Journal of Biogeography, 28, 511-523. – reference: Harrison, S., Ross, S.J. & Lawton, J.H. (1992) Beta-diversity on geographic gradients in Britain. Journal of Animal Ecology, 61, 151-158. – reference: Kreft, H. & Jetz, W. (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences USA, 104, 5925-5930. – reference: Smith, S.A. & Bermingham, E. (2005) The biogeography of lower Mesoamerican freshwater fishes. Journal of Biogeography, 32, 1835-1854. – reference: Vestal, A.G. (1914) Internal relations of terrestrial associations. The American Naturalist, 48, 413-445. – reference: Brenan, J.P.M. (1978) Some aspects of the phytogeography of tropical Africa. Annals of the Missouri Botanical Garden, 65, 437-478. – reference: Koleff, P., Gaston, K.J. & Lennon, J.J. (2003) Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72, 367-382. – reference: Graham, C.H. & Hijmans, R.J. (2006) A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography, 15, 578-587. – reference: Jain, A.K., Murty, M.N. & Flynn, P.J. (1999) Data clustering: a review. ACM Computing Surveys, 31, 264-323. – reference: Whittaker, R.J., Araújo, M.B., Jepson, P., Ladle, R.J., Watson, J.E.M. & Willis, K.J. (2005) Conservation biogeography: assessment and prospect. Diversity and Distributions, 11, 3-23. – reference: Lennon, J.J., Koleff, P., Greenwood, J.J.D. & Gaston, K.J. (2001) The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979. – reference: Hurlbert, A.H. & Jetz, W. (2007) Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of the National Academy of Sciences USA, 104, 13384-13389. – reference: Lomolino, M.V., Riddle, B.R. & Brown, J.H. (2006) Biogeography, 3rd edn. Sinauer Associates, Sunderland, MA. – reference: Mayr, E. (1944) Wallace's Line in the light of recent zoogeographic studies. Quarterly Review of Biology, 19, 1-14. – reference: Stoddart, D.R. (1992) Biogeography of the tropical Pacific. Pacific Science, 46, 276-293. – reference: Hengeveld, R. (1990) Dynamic biogeography. Cambridge University Press, Cambridge. – reference: Wallace, A.R. (1860) On the zoological geography of the Malay Archipelago. Journal of the Proceedings of the Linnean Society of London. Zoology, 4, 172-184. – reference: Hagmeier, E.M. (1966) A numerical analysis of the distributional patterns of North American mammals. II. Re-evaluation of the provinces. Systematic Zoology, 15, 279-299. – reference: Jetz, W. & Rahbek, C. (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551. – reference: Linder, H.P. (2001) On areas of endemism, with an example from the African Restionaceae. Systematic Biology, 50, 892-912. – reference: da Silva, J.M.C. & Oren, D.C. (1996) Application of parsimony analysis of endemicity in Amazonian biogeography: an example with primates. Biological Journal of the Linnean Society, 59, 427-437. – reference: Cole, F.R., Reeder, D.M. & Wilson, D.E. (1994) A synopsis of distribution patterns and the conservation of mammal species. Journal of Mammalogy, 75, 266-276. – reference: Grenyer, R., Orme, C.D.L., Jackson, S.F., Thomas, G.H., Davies, R.G., Davies, T.J., Jones, K.E., Olson, V.A., Ridgely, R.S., Rasmussen, P.C., Ding, T.-S., Bennett, P.M., Blackburn, T.M., Gaston, K.J., Gittleman, J.L. & Owens, I.P.F. (2006) Global distribution and conservation of rare and threatened vertebrates. Nature, 444, 93-96. – reference: Graham, C.H. & Fine, P.V.A. (2008) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology Letters, 11, 1265-1277. – reference: Jetz, W., Sekercioglu, C.H. & Watson, J.E.M. (2008) Ecological correlates and conservation implications of overestimating species geographic ranges. Conservation Biology, 22, 110-119. – reference: Vences, M., Wollenberg, K.C., Vieites, D.R. & Lees, D.C. (2009) Madagascar as a model region of species diversification. Trends in Ecology and Evolution, 24, 456-465. – reference: Wilson, M.V. & Shmida, A. (1984) Measuring beta diversity with presence-absence data. Journal of Ecology, 72, 1055-1064. – reference: Buckley, L.B. & Jetz, W. (2007) Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society B: Biological Sciences, 274, 1167-1173. – reference: Hargrove, W.W. & Hoffman, F.M. (2005) Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environmental Management, 34, S39-S60. – reference: Jongman, R.H., ter Braak, C.J.F. & van Tongeren, O.F.R. (1987) Data analysis in community and landscape ecology. Pudoc, Wageningen. – reference: Ludwig, J.A. & Reynolds, J.F. (1988) Statistical ecology: a primer on methods and computing. John Wiley and Sons, New York. – volume: 16 start-page: 657 year: 2007 end-page: 667 article-title: Type and spatial structure of distribution data and the perceived determinants of geographical gradients in ecology: the species richness of African birds publication-title: Global Ecology and Biogeography – volume: 43 start-page: 438 year: 1994 end-page: 441 article-title: On the identification of areas of endemism publication-title: Systematic Biology – volume: 53 start-page: 968 year: 2004 end-page: 977 article-title: Areas of endemism: an improved optimality criterion publication-title: Systematic Biology – volume: 297 start-page: 1548 year: 2002 end-page: 1551 article-title: Geographic range size and determinants of avian species richness publication-title: Science – volume: 35 start-page: 213 year: 2008 end-page: 229 article-title: Reconciling approaches to biogeographic regionalization: a systematic and generic framework examined with a case study of the Australian continent publication-title: Journal of Biogeography – year: 1981 – volume: 11 start-page: 33 year: 1962 end-page: 40 article-title: The comparison of dendrograms by objective methods publication-title: Taxon – year: 2005 – volume: 55 start-page: 229 year: 2005 end-page: 252 article-title: A numerical re‐evaluation of the sub‐Saharan phytochoria of mainland Africa publication-title: Biologiske Skrifter – volume: 27 start-page: 159 year: 1978 end-page: 188 article-title: Vicariant patterns and historical explanation in biogeography publication-title: Systematic Zoology – year: 1989 – volume: 29 start-page: 21 year: 2006 end-page: 30 article-title: The significance of geographic range size for spatial diversity patterns in Neotropical palms publication-title: Ecography – volume: 104 start-page: 5925 year: 2007 end-page: 5930 article-title: Global patterns and determinants of vascular plant diversity publication-title: Proceedings of the National Academy of Sciences USA – volume: 72 start-page: 367 year: 2003 end-page: 382 article-title: Measuring beta diversity for presence–absence data publication-title: Journal of Animal Ecology – volume: 59 start-page: 427 year: 1996 end-page: 437 article-title: Application of parsimony analysis of endemicity in Amazonian biogeography: an example with primates publication-title: Biological Journal of the Linnean Society – volume: 30 start-page: 399 year: 2006 end-page: 408 article-title: Numerical classification and ordination methods in biogeography publication-title: Progress in Physical Geography – volume: 16 start-page: 239 year: 1989 end-page: 248 article-title: Natural floristic areas of the western United States publication-title: Journal of Biogeography – volume: 105 start-page: 367 year: 1947 end-page: 368 article-title: Determination of world formations from simple climatic data publication-title: Science – volume: 50 start-page: 892 year: 2001 end-page: 912 article-title: On areas of endemism, with an example from the African Restionaceae publication-title: Systematic Biology – volume: 28 start-page: 167 year: 1986 end-page: 203 article-title: Extinction and the zoogeography of West Indian land mammals publication-title: Biological Journal of the Linnean Society – year: 1975 – volume: 77 start-page: 257 year: 1976 end-page: 287 article-title: The distribution of European pteridophytes: a numerical analysis publication-title: New Phytologist – volume: 274 start-page: 1167 year: 2007 end-page: 1173 article-title: Environmental and historical constraints on global patterns of amphibian richness publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 13 start-page: 1391 year: 2004 end-page: 1417 article-title: Study on biogeographical divisions of China publication-title: Biodiversity and Conservation – volume: 407 start-page: 180 year: 2000 end-page: 182 article-title: Large‐scale processes and the Asian bias in species diversity of temperate plants publication-title: Nature – volume: 19 start-page: 21 year: 1992 end-page: 32 article-title: Are floristic areas hierarchically arranged? publication-title: Journal of Biogeography – volume: 61 start-page: 151 year: 1992 end-page: 158 article-title: Beta‐diversity on geographic gradients in Britain publication-title: Journal of Animal Ecology – year: 1990 – year: 1998 – volume: 254 start-page: 207 year: 2001 end-page: 218 article-title: A comparative analysis of the avifaunas of different zoogeographical regions publication-title: Journal of Zoology – year: 1961 – volume: 215 start-page: 467 year: 1967 end-page: 470 article-title: Conifer distributions and continental drift publication-title: Nature – year: 1986 – volume: 63 start-page: 411 year: 2001 end-page: 423 article-title: Estimating the number of clusters in a data sets via the gap statistic publication-title: Journal of the Royal Statistical Society B – volume: 44 start-page: 1 year: 1969 end-page: 70 article-title: The recent mammals of the Neotropical Region: a zoogeographic and ecological review publication-title: Quarterly Review of Biology – volume: 46 start-page: 276 year: 1992 end-page: 293 article-title: Biogeography of the tropical Pacific publication-title: Pacific Science – volume: 29 start-page: 49 year: 2002 end-page: 67 article-title: Biogeography of the tenebrionid beetles (Coleoptera, Tenebrionidae) on the Aegean Islands (Greece) publication-title: Journal of Biogeography – volume: 109 start-page: 125 year: 1993 end-page: 143 article-title: Quantitative phytogeography of the Italian beech forests publication-title: Vegetatio – volume: 72 start-page: 1055 year: 1984 end-page: 1064 article-title: Measuring beta diversity with presence–absence data publication-title: Journal of Ecology – volume: 66 start-page: 223 year: 1993 end-page: 230 article-title: Environmental representativeness: regional partitioning and reserve selection publication-title: Biological Conservation – volume: 35 start-page: 1202 year: 2008 end-page: 1214 article-title: Regional and environmental effects on the species richness of mammal assemblages publication-title: Journal of Biogeography – volume: 26 start-page: 459 year: 1999 end-page: 474 article-title: Interpreting biogeographical boundaries among Afrotropical birds: spatial patterns in richness gradients and species replacement publication-title: Journal of Biogeography – year: 2008 – volume: 11 start-page: 1265 year: 2008 end-page: 1277 article-title: Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time publication-title: Ecology Letters – volume: 306 start-page: 1783 year: 2004 end-page: 1786 article-title: Status and trends of amphibian declines and extinctions worldwide publication-title: Science – volume: 80 start-page: 551 year: 2009 end-page: 560 article-title: Un ensayo sobre regionalización biogeográfica publication-title: Revista Mexicana de Biodiversidad – year: 1993 – volume: 31 start-page: 264 year: 1999 end-page: 323 article-title: Data clustering: a review publication-title: ACM Computing Surveys – volume: 8 start-page: 147 year: 2002 end-page: 162 article-title: Biogeographical patterns of endemic terrestrial Afrotropical birds publication-title: Diversity and Distributions – volume: 4 start-page: 406 year: 1987 end-page: 425 article-title: The neighbor‐joining method: a new method for reconstructing phylogenetic trees publication-title: Molecular Biology and Evolution – volume: 22 start-page: 1023 year: 1995 end-page: 1034 article-title: Family distributions in the Liliiflorae and their biogeographical implications publication-title: Journal of Biogeography – volume: 96 start-page: 7358 year: 1999 end-page: 7363 article-title: Proposal for a standardized temporal scheme of biological classification for extant species publication-title: Proceedings of the National Academy of Sciences USA – volume: 51 start-page: 933 year: 2001 end-page: 938 article-title: Terrestrial ecoregions of the world: a new map of life on earth publication-title: BioScience – volume: 7 start-page: 81 year: 2004 end-page: 87 article-title: Contribution of rarity and commonness to patterns of species richness publication-title: Ecology Letters – volume: 32 start-page: 226 year: 2008 end-page: 236 article-title: Environmental drivers of beta‐diversity patterns in New‐World birds and mammals publication-title: Ecography – volume: 28 start-page: 1053 year: 2001 end-page: 1089 article-title: Biogeography of Australian freshwater fishes publication-title: Journal of Biogeography – volume: 25 start-page: 251 year: 1976 end-page: 259 article-title: Similarity of binary data publication-title: Systematic Zoology – volume: 37 start-page: 405 year: 2006 end-page: 431 article-title: Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 30 start-page: 449 year: 2003 end-page: 461 article-title: Regionalization of the avifauna of the Baja California peninsula, Mexico: a parsimony analysis of endemicity and distributional modelling approach publication-title: Journal of Biogeography – volume: 48 start-page: 413 year: 1914 end-page: 445 article-title: Internal relations of terrestrial associations publication-title: The American Naturalist – year: 2007 – year: 1987 – year: 1761 – year: 1973 – volume: 29 start-page: 149 year: 2002 end-page: 152 article-title: Biogeographical regions under track and cladistic scrutiny publication-title: Journal of Biogeography – volume: 65 start-page: 437 year: 1978 end-page: 478 article-title: Some aspects of the phytogeography of tropical Africa publication-title: Annals of the Missouri Botanical Garden – volume: 34 start-page: 33 year: 1994 end-page: 47 article-title: Species diversity, biogeography, and the evolution of biotas publication-title: American Zoologist – volume: 198 start-page: 417 year: 1982 end-page: 442 article-title: Patterns of distribution, diversity and endemism in Afrotropical birds publication-title: Journal of Zoology – volume: 446 start-page: 507 year: 2007 end-page: 512 article-title: The delayed rise of present‐day mammals publication-title: Nature – volume: 84 start-page: 1608 year: 2003 end-page: 1623 article-title: Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds publication-title: Ecology – volume: 89 start-page: 455 year: 2006b end-page: 468 article-title: Wallace’s line revisited: has vicariance or dispersal shaped the distribution of Malesian hawkmoths (Lepidoptera: Sphingidae)? publication-title: Biological Journal of the Linnean Society – year: 1806 – volume: 2 start-page: 130 year: 1858 end-page: 145 article-title: On the general geographical distribution of the members of the class Aves publication-title: Journal of the Proceedings of the Linnean Society: Zoology – year: 2002 – volume: 26 start-page: 373 year: 1995 article-title: Historical biogeography: introduction to methods publication-title: Annual Review of Ecology and Systematics – volume: 440 start-page: 212 year: 2006 end-page: 214 article-title: Global tests of biodiversity concordance and the importance of endemism publication-title: Nature – volume: 71 start-page: 379 year: 2000 article-title: Biogeographic area relationships of lowland Neotropical rainforest based on raw distributions of vertebrate groups publication-title: Biological Journal of the Linnean Society – volume: 4 start-page: 183 year: 1991 end-page: 197 article-title: Transcending the Wallace line: do the western edges of the Australian region and the Australian Plate coincide? publication-title: Australian Systematic Botany – volume: 5 start-page: 1 year: 1976 end-page: 368 article-title: The flora of Jebel Marra (Sudan Republic) and its geographical affinities publication-title: Kew Bulletin/Additional Series – year: 1978 – volume: 2 start-page: 69 year: 2006 end-page: 72 article-title: Latitudinal and longitudinal barriers in global biogeography publication-title: Biology Letters – volume: 15 start-page: 578 year: 2006 end-page: 587 article-title: A comparison of methods for mapping species ranges and species richness publication-title: Global Ecology and Biogeography – volume: 5 start-page: 2424 year: 2007 end-page: 2432 article-title: Putting beta‐diversity on the map: broad‐scale congruence and coincidence in the extremes publication-title: PLoS Biology – volume: 69 start-page: 89 year: 1987 end-page: 107 article-title: An evaluation of relative robustness of techniques for ecological ordinations publication-title: Vegetatio – volume: 104 start-page: 13384 year: 2007 end-page: 13389 article-title: Species richness, hotspots, and the scale dependence of range maps in ecology and conservation publication-title: Proceedings of the National Academy of Sciences USA – volume: 11 start-page: 269 year: 1978 end-page: 305 article-title: From Candolle to Croizat: comments on the history of biogeography publication-title: Journal of the History of Biology – volume: 7 start-page: 1 year: 2004 end-page: 15 article-title: A comprehensive framework for global patterns in biodiversity publication-title: Ecology Letters – year: 1985 – year: 2009 – volume: 32 start-page: 1523 year: 2005 end-page: 1538 article-title: Zoogeography of the shallow‐water holothuroids of the western Indian Ocean publication-title: Journal of Biogeography – volume: 4 start-page: 247 year: 1972 end-page: 255 article-title: Towards a system for classifying natural regions of the world and their representation by national parks and reserves publication-title: Biological Conservation – volume: 263 start-page: 579 year: 1996 end-page: 588 article-title: Mapping variations in the strength and breadth of biogeographic transition zones using species turnover publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 10 start-page: 455 year: 1983 end-page: 466 article-title: A system of world mammal faunal regions. I. Logical and statistical derivation of the regions publication-title: Journal of Biogeography – volume: 19 start-page: 1 year: 1944 end-page: 14 article-title: Wallace’s Line in the light of recent zoogeographic studies publication-title: Quarterly Review of Biology – volume: 21 start-page: 437 year: 1998 end-page: 446 article-title: The historical assembly of continental biotas: Late Quaternary range‐shifting, areas of endemism, and biogeographic structure in the North American mammal fauna publication-title: Ecography – volume: 19 start-page: 639 year: 2004 end-page: 644 article-title: Historical biogeography, ecology and species richness publication-title: Trends in Ecology and Evolution – volume: 22 start-page: 110 year: 2008 end-page: 119 article-title: Ecological correlates and conservation implications of overestimating species geographic ranges publication-title: Conservation Biology – year: 1876 – volume: 121 start-page: 107 year: 1977 end-page: 120 article-title: Too many lines: the limits of the Oriental and Australian zoogeographic regions publication-title: Proceedings of the American Philosophical Society – volume: 24 start-page: 456 year: 2009 end-page: 465 article-title: Madagascar as a model region of species diversification publication-title: Trends in Ecology and Evolution – volume: 29 start-page: 1095 year: 2002 end-page: 1104 article-title: Parsimony analysis of endemicity (PAE) of Mexican terrestrial mammals at different area units: when size matters publication-title: Journal of Biogeography – volume: 8 start-page: 319 year: 2005 end-page: 327 article-title: Disparity between range map‐ and survey‐based analyses of species richness: patterns, processes and implications publication-title: Ecology Letters – volume: 322 start-page: 225 year: 2008 end-page: 230 article-title: The status of the world’s land and marine mammals: diversity, threat, and knowledge publication-title: Science – volume: 24 start-page: 725 year: 1997 end-page: 735 article-title: Biogeography of Indonesian snakes publication-title: Journal of Biogeography – volume: 11 start-page: 3 year: 2005 end-page: 23 article-title: Conservation biogeography: assessment and prospect publication-title: Diversity and Distributions – volume: 4 start-page: 1005 year: 2002 end-page: 1016 article-title: Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years publication-title: Evolutionary Ecology Research – volume: 174 start-page: 82 year: 2009 end-page: 93 article-title: Rarity, commonness, and the contribution of individual species to species richness patterns publication-title: The American Naturalist – volume: 57 start-page: 106 year: 1923 end-page: 125 article-title: Ecological aspects of bird distribution in tropical Africa publication-title: The American Naturalist – volume: 57 start-page: 669 year: 1982 end-page: 689 article-title: Coefficients of association and similarity, based on binary (presence‐absence) data: an evaluation publication-title: Biological Reviews – volume: 15 start-page: 279 year: 1966 end-page: 299 article-title: A numerical analysis of the distributional patterns of North American mammals. II. Re‐evaluation of the provinces publication-title: Systematic Zoology – volume: 13 start-page: 195 year: 1986 end-page: 202 article-title: A world ecoregions map for resource partitioning publication-title: Environmental Conservation – year: 2004 – volume: 75 start-page: 266 year: 1994 end-page: 276 article-title: A synopsis of distribution patterns and the conservation of mammal species publication-title: Journal of Mammalogy – volume: 4 start-page: 1276 year: 2006 end-page: 1283 article-title: Global patterns of geographic range size in birds publication-title: PLoS Biology – year: 2006-2009 – volume: 34 start-page: S39 year: 2005 end-page: S60 article-title: Potential of multivariate quantitative methods for delineation and visualization of ecoregions publication-title: Environmental Management – start-page: 576 year: 2004 end-page: 584 – volume: 32 start-page: 1835 year: 2005 end-page: 1854 article-title: The biogeography of lower Mesoamerican freshwater fishes publication-title: Journal of Biogeography – volume: 2 start-page: 304 year: 1954 end-page: 324 article-title: Objective methods for the classification of vegetation. III. An essay in the use of factor analysis publication-title: Australian Journal of Botany – volume: 5 start-page: 1211 year: 2007 end-page: 1219 article-title: Projected impacts of climate and land‐use change on the global diversity of birds publication-title: PLoS Biology – volume: 444 start-page: 93 year: 2006 end-page: 96 article-title: Global distribution and conservation of rare and threatened vertebrates publication-title: Nature – start-page: 91 year: 1987 end-page: 173 – volume: 4 start-page: 172 year: 1860 end-page: 184 article-title: On the zoological geography of the Malay Archipelago publication-title: Journal of the Proceedings of the Linnean Society of London. Zoology – volume: 95 start-page: 509 year: 2000 end-page: 516 article-title: Plate tectonics, seaways and climate in the historical biogeography of mammals publication-title: Memórias do Instituto Oswaldo Cruz – volume: 50 start-page: 159 year: 1985 end-page: 179 article-title: An examination of procedures for determining the number of clusters in a data set publication-title: Psychometrika – start-page: 293 year: 2004 end-page: 296 – volume: 10 start-page: 149 year: 2000 end-page: 167 article-title: Distribution of the birds of the Philippines: biogeography and conservation priorities publication-title: Bird Conservation International – year: 1855 – year: 2003 – year: 2000 – volume: 1 start-page: 75 year: 1974 end-page: 94 article-title: Vertebrate palaeodistributional patterns and continental drift publication-title: Journal of Biogeography – volume: 23 start-page: 149 year: 2008 end-page: 158 article-title: Niche dynamics in space and time publication-title: Trends in Ecology and Evolution – volume: 32 start-page: 607 year: 2005 end-page: 614 article-title: The world’s biogeographical regions: cluster analyses based on bat distributions publication-title: Journal of Biogeography – volume: 28 start-page: 511 year: 2001 end-page: 523 article-title: The biogeographic regions reconsidered publication-title: Journal of Biogeography – volume: 215 start-page: 1351 year: 1982 end-page: 1357 article-title: Mammalian evolution and the Great American Interchange publication-title: Science – volume: 3 start-page: 642 year: 2007 end-page: 645 article-title: A multiple‐site similarity measure independent of richness publication-title: Biology Letters – start-page: 437 year: 1988 end-page: 481 – volume: 272 start-page: 1601 year: 1996 end-page: 1606 article-title: Spatial response of mammals to late Quaternary environmental fluctuations publication-title: Science – volume: 35 start-page: 407 year: 2008 end-page: 416 article-title: Biogeographical boundaries and Monmonier’s algorithm: a case study in the northern Neotropics publication-title: Journal of Biogeography – volume: 13 start-page: 125 year: 1964 end-page: 155 article-title: A numerical analysis of the distributional patterns of North American mammals publication-title: Systematic Zoology – volume: 253 start-page: 1099 year: 1991 end-page: 1104 article-title: When biotas meet: understanding biotic interchange publication-title: Science – volume: 105 start-page: 17836 year: 2008 end-page: 17841 article-title: Linking global turnover of species and environments publication-title: Proceedings of the National Academy of Sciences USA – volume: 49 start-page: 610 year: 1894 end-page: 613 article-title: What are zoological regions? publication-title: Nature – volume: 274 start-page: 1189 year: 2007 end-page: 1197 article-title: Topography, energy and the global distribution of bird species richness publication-title: Proceedings of the Royal Society B: Biological Sciences – year: 1988 – volume: 70 start-page: 966 year: 2001 end-page: 979 article-title: The geographical structure of British bird distributions: diversity, spatial turnover and scale publication-title: Journal of Animal Ecology – year: 2006 – year: 1974 – year: 1991 – volume: 51 start-page: 806 year: 2002 end-page: 816 article-title: An optimality criterion to determine areas of endemism publication-title: Systematic Biology – volume: 34 start-page: 1053 year: 2007 end-page: 1064 article-title: Biogeography of European land mammals shows environmentally distinct and spatially coherent clusters publication-title: Journal of Biogeography – volume: 33 start-page: 694 year: 2006a end-page: 706 article-title: Determinants of regional species richness: an empirical analysis of the number of hawkmoth species (Lepidoptera: Sphingidae) on the Malesian archipelago publication-title: Journal of Biogeography – year: 1999 – ident: e_1_2_7_5_1 doi: 10.1098/rsbl.2007.0449 – ident: e_1_2_7_115_1 doi: 10.1111/j.1600-0587.1998.tb00409.x – ident: e_1_2_7_124_1 doi: 10.1111/j.1096-3642.1858.tb02549.x – volume-title: Data analysis in community and landscape ecology year: 1987 ident: e_1_2_7_65_1 – ident: e_1_2_7_144_1 doi: 10.1046/j.1365-2699.2001.00615.x – ident: e_1_2_7_51_1 doi: 10.1126/science.105.2727.367 – ident: e_1_2_7_111_1 doi: 10.1038/35025052 – ident: e_1_2_7_154_1 doi: 10.1016/j.tree.2004.09.011 – ident: e_1_2_7_37_1 doi: 10.1071/BT9540304 – ident: e_1_2_7_52_1 doi: 10.1111/j.1365-2699.2007.01850.x – ident: e_1_2_7_114_1 doi: 10.1046/j.1461-0248.2003.00554.x – ident: e_1_2_7_8_1 doi: 10.1016/0006-3207(93)90007-N – ident: e_1_2_7_157_1 doi: 10.2307/2259551 – ident: e_1_2_7_146_1 doi: 10.1016/j.tree.2009.03.011 – ident: e_1_2_7_53_1 doi: 10.1046/j.1365-2699.1997.00150.x – volume: 55 start-page: 229 year: 2005 ident: e_1_2_7_77_1 article-title: A numerical re‐evaluation of the sub‐Saharan phytochoria of mainland Africa publication-title: Biologiske Skrifter – ident: e_1_2_7_63_1 doi: 10.1371/journal.pbio.0050157 – ident: e_1_2_7_102_1 doi: 10.1007/978-94-009-2063-7 – ident: e_1_2_7_58_1 doi: 10.1111/j.1461-0248.2005.00726.x – ident: e_1_2_7_2_1 doi: 10.1073/pnas.96.13.7358 – ident: e_1_2_7_41_1 doi: 10.1126/science.272.5268.1601 – volume-title: ArcGIS 9.2 year: 2005 ident: e_1_2_7_32_1 – ident: e_1_2_7_128_1 doi: 10.1086/599305 – ident: e_1_2_7_131_1 doi: 10.1038/215467a0 – volume-title: A classification of the biogeographical provinces of the world year: 1975 ident: e_1_2_7_143_1 – ident: e_1_2_7_126_1 doi: 10.7312/simp92414 – ident: e_1_2_7_75_1 doi: 10.1046/j.1461-0248.2004.00548.x – ident: e_1_2_7_94_1 doi: 10.1046/j.1365-2699.2002.00662.x – ident: e_1_2_7_117_1 doi: 10.1111/j.1095-8312.2000.tb01265.x – ident: e_1_2_7_158_1 doi: 10.1086/285186 – ident: e_1_2_7_21_1 doi: 10.2307/2845832 – ident: e_1_2_7_67_1 doi: 10.1191/0309133306pp489pr – ident: e_1_2_7_70_1 doi: 10.1073/pnas.0608361104 – ident: e_1_2_7_100_1 doi: 10.1017/S0952836901000723 – ident: e_1_2_7_12_1 doi: 10.2307/2398859 – ident: e_1_2_7_150_1 doi: 10.1038/339211a0 – ident: e_1_2_7_50_1 doi: 10.1086/405975 – volume-title: FigTree: tree figure drawing tool version 1.2.2 year: 2006 ident: e_1_2_7_113_1 – ident: e_1_2_7_74_1 doi: 10.1046/j.0021-8790.2001.00563.x – volume-title: Systematics and biogeography: cladistics and vicariance year: 1981 ident: e_1_2_7_99_1 – ident: e_1_2_7_54_1 doi: 10.1111/j.1469-185X.1982.tb00376.x – ident: e_1_2_7_68_1 doi: 10.1046/j.1472-4642.2002.00142.x – ident: e_1_2_7_89_1 doi: 10.1111/j.1600-0587.2008.05502.x – volume-title: R: a language and environment for statistical computing year: 2005 ident: e_1_2_7_112_1 – ident: e_1_2_7_108_1 doi: 10.1017/S0959270900000149 – ident: e_1_2_7_110_1 doi: 10.1098/rsbl.2005.0396 – ident: e_1_2_7_24_1 doi: 10.1046/j.1365-2699.2001.00566.x – volume-title: Cluster and classification techniques for the biosciences year: 2007 ident: e_1_2_7_34_1 – ident: e_1_2_7_76_1 doi: 10.1080/106351501753462867 – volume-title: Classification of mammals above the species level year: 2000 ident: e_1_2_7_84_1 – volume-title: Numerical taxonomy: the principles and practice of numerical classification year: 1973 ident: e_1_2_7_132_1 – volume-title: The great biotic American interchange year: 1985 ident: e_1_2_7_134_1 doi: 10.1007/978-1-4684-9181-4 – ident: e_1_2_7_4_1 doi: 10.2307/2412493 – ident: e_1_2_7_9_1 doi: 10.1038/nature05634 – volume-title: Floristic regions of the world year: 1978 ident: e_1_2_7_140_1 – volume: 4 start-page: 1005 year: 2002 ident: e_1_2_7_35_1 article-title: Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years publication-title: Evolutionary Ecology Research – volume-title: Histoire naturelle générale year: 1761 ident: e_1_2_7_17_1 – ident: e_1_2_7_71_1 doi: 10.1111/j.2005.0906-7590.04203.x – ident: e_1_2_7_47_1 doi: 10.1890/0012-9658(2003)084[1608:PAHAPO]2.0.CO;2 – volume-title: Algorithms for clustering data year: 1988 ident: e_1_2_7_60_1 – ident: e_1_2_7_86_1 doi: 10.2307/2845260 – ident: e_1_2_7_43_1 doi: 10.2307/2411986 – ident: e_1_2_7_96_1 doi: 10.1146/annurev.es.26.110195.002105 – ident: e_1_2_7_7_1 doi: 10.1111/j.1095-8312.2006.00686.x – ident: e_1_2_7_104_1 doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 – ident: e_1_2_7_19_1 doi: 10.1086/279909 – ident: e_1_2_7_129_1 doi: 10.2307/2844752 – ident: e_1_2_7_93_1 doi: 10.1093/sysbio/43.3.438 – volume-title: Numerical ecology year: 1998 ident: e_1_2_7_73_1 – ident: e_1_2_7_122_1 doi: 10.1111/j.1365-2699.2005.01295.x – ident: e_1_2_7_130_1 doi: 10.1111/j.1365-2699.2005.01317.x – ident: e_1_2_7_28_1 doi: 10.1016/0006-3207(72)90119-X – ident: e_1_2_7_90_1 doi: 10.1007/BF02294245 – ident: e_1_2_7_153_1 doi: 10.2307/4108990 – ident: e_1_2_7_152_1 doi: 10.1111/j.1366-9516.2005.00143.x – ident: e_1_2_7_6_1 doi: 10.1111/j.1365-2699.2005.01418.x – ident: e_1_2_7_45_1 doi: 10.1007/s00267-003-1084-0 – ident: e_1_2_7_109_1 doi: 10.1111/j.1365-2699.2004.01186.x – ident: e_1_2_7_98_1 doi: 10.1007/BF00389302 – ident: e_1_2_7_23_1 doi: 10.1590/S0074-02762000000400012 – ident: e_1_2_7_149_1 doi: 10.1111/j.1096-3642.1860.tb00090.x – ident: e_1_2_7_40_1 doi: 10.1111/j.1466-8238.2006.00257.x – ident: e_1_2_7_106_1 doi: 10.1111/j.1365-2699.2007.01831.x – volume-title: Biogeography and plate tectonics year: 1989 ident: e_1_2_7_13_1 – ident: e_1_2_7_151_1 doi: 10.1038/049610a0 – ident: e_1_2_7_125_1 doi: 10.1111/j.1095-8312.1996.tb01475.x – ident: e_1_2_7_148_1 doi: 10.1086/279416 – volume-title: Biogeography: an ecological and evolutionary approach year: 1993 ident: e_1_2_7_25_1 – ident: e_1_2_7_92_1 doi: 10.1111/j.1095-8312.1986.tb01753.x – ident: e_1_2_7_72_1 doi: 10.1038/nature04291 – ident: e_1_2_7_20_1 doi: 10.2307/1382545 – ident: e_1_2_7_48_1 doi: 10.1111/j.1365-2699.2006.01664.x – ident: e_1_2_7_10_1 doi: 10.1111/j.1469-8137.1976.tb01517.x – ident: e_1_2_7_39_1 doi: 10.1111/j.1461-0248.2008.01256.x – ident: e_1_2_7_133_1 doi: 10.2307/1217208 – ident: e_1_2_7_87_1 doi: 10.2307/2845617 – ident: e_1_2_7_123_1 doi: 10.1126/science.1165115 – ident: e_1_2_7_156_1 doi: 10.1046/j.1365-2699.1999.00294.x – ident: e_1_2_7_26_1 doi: 10.1093/icb/34.1.33 – volume-title: Statistical ecology: a primer on methods and computing year: 1988 ident: e_1_2_7_80_1 – ident: e_1_2_7_101_1 doi: 10.1007/BF00044745 – ident: e_1_2_7_138_1 doi: 10.1080/10635150490888859 – ident: e_1_2_7_91_1 doi: 10.1007/BF00038690 – ident: e_1_2_7_82_1 doi: 10.1126/science.215.4538.1351 – ident: e_1_2_7_118_1 doi: 10.1007/978-94-009-1199-4_17 – volume: 80 start-page: 551 year: 2009 ident: e_1_2_7_31_1 article-title: Un ensayo sobre regionalización biogeográfica publication-title: Revista Mexicana de Biodiversidad – volume-title: Dynamic biogeography year: 1990 ident: e_1_2_7_49_1 – ident: e_1_2_7_69_1 doi: 10.1046/j.1365-2656.2003.00710.x – ident: e_1_2_7_160_1 doi: 10.1146/annurev.ecolsys.37.091305.110239 – ident: e_1_2_7_33_1 doi: 10.1046/j.1365-2699.2002.00656.x – volume-title: The structure and dynamics of geographic ranges year: 2003 ident: e_1_2_7_36_1 doi: 10.1093/oso/9780198526407.001.0001 – volume-title: vegan: community ecology package year: 2006 ident: e_1_2_7_103_1 – ident: e_1_2_7_105_1 doi: 10.1371/journal.pbio.0040208 – ident: e_1_2_7_22_1 doi: 10.2307/3037956 – ident: e_1_2_7_66_1 doi: 10.1002/9780470316801 – volume-title: Biogeography year: 2006 ident: e_1_2_7_79_1 – ident: e_1_2_7_46_1 doi: 10.2307/5518 – ident: e_1_2_7_155_1 doi: 10.1098/rspb.1996.0087 – ident: e_1_2_7_64_1 doi: 10.1111/j.1523-1739.2007.00847.x – volume: 4 start-page: 406 year: 1987 ident: e_1_2_7_120_1 article-title: The neighbor‐joining method: a new method for reconstructing phylogenetic trees publication-title: Molecular Biology and Evolution – ident: e_1_2_7_85_1 doi: 10.1371/journal.pbio.0050272 – volume: 121 start-page: 107 year: 1977 ident: e_1_2_7_127_1 article-title: Too many lines: the limits of the Oriental and Australian zoogeographic regions publication-title: Proceedings of the American Philosophical Society – volume-title: Biotic provinces of the world: further development of a system for defining and classifying natural regions for purposes of conservation year: 1974 ident: e_1_2_7_29_1 – ident: e_1_2_7_15_1 doi: 10.1098/rspb.2006.0436 – ident: e_1_2_7_57_1 doi: 10.1111/j.1461-0248.2005.00726.x – volume-title: Biogeography year: 1998 ident: e_1_2_7_14_1 – ident: e_1_2_7_3_1 doi: 10.1017/S0376892900036237 – ident: e_1_2_7_116_1 doi: 10.1046/j.1365-2699.2003.00836.x – volume-title: PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Beta 10 year: 2002 ident: e_1_2_7_137_1 – volume-title: Floristic regions of the world year: 1986 ident: e_1_2_7_141_1 – ident: e_1_2_7_59_1 – start-page: 91 volume-title: Data analysis in community ecology year: 1987 ident: e_1_2_7_11_1 – ident: e_1_2_7_88_1 doi: 10.1111/j.1466-8238.2007.00318.x – ident: e_1_2_7_81_1 doi: 10.1111/j.1365-2699.2007.01822.x – ident: e_1_2_7_27_1 doi: 10.1111/jzo.1982.198.4.417 – volume-title: Essai sur la geographie des plantes; accompagné d’un tableau physique des régions équinoxales, accompagné d’un tableau physique des régions équinoctiales year: 1806 ident: e_1_2_7_55_1 – ident: e_1_2_7_136_1 doi: 10.1126/science.1103538 – ident: e_1_2_7_142_1 doi: 10.1111/1467-9868.00293 – ident: e_1_2_7_145_1 doi: 10.1071/SB9910183 – ident: e_1_2_7_61_1 doi: 10.1145/331499.331504 – start-page: 576 volume-title: Proceedings of the Sixteenth IEEE International Conference on Tools with Artificial Intelligence year: 2004 ident: e_1_2_7_121_1 – ident: e_1_2_7_107_1 doi: 10.1016/j.tree.2007.11.005 – volume-title: Geographie botanique raisonnée year: 1855 ident: e_1_2_7_18_1 – volume-title: Cladistic biogeography year: 1999 ident: e_1_2_7_56_1 doi: 10.1093/oso/9780198548188.001.0001 – volume: 46 start-page: 276 year: 1992 ident: e_1_2_7_135_1 article-title: Biogeography of the tropical Pacific publication-title: Pacific Science – volume-title: Evolutionary biogeography: an integrative approach with case studies year: 2009 ident: e_1_2_7_95_1 – ident: e_1_2_7_159_1 doi: 10.1023/B:BIOC.0000019396.31168.ba – ident: e_1_2_7_119_1 doi: 10.2307/2412970 – ident: e_1_2_7_62_1 doi: 10.1126/science.1072779 – ident: e_1_2_7_42_1 doi: 10.1038/nature05237 – ident: e_1_2_7_147_1 doi: 10.1126/science.253.5024.1099 – ident: e_1_2_7_97_1 doi: 10.1046/j.1365-2699.2002.00753.x – ident: e_1_2_7_16_1 doi: 10.1073/pnas.0803524105 – start-page: 293 volume-title: Frontiers of biogeography: new directions in the geography of nature year: 2004 ident: e_1_2_7_78_1 – ident: e_1_2_7_30_1 doi: 10.1098/rspb.2006.0061 – ident: e_1_2_7_44_1 doi: 10.2307/2411486 – ident: e_1_2_7_83_1 doi: 10.1086/394684 – ident: e_1_2_7_139_1 doi: 10.1080/10635150290102483 – volume-title: The natural history of Madagascar year: 2004 ident: e_1_2_7_38_1 |
SSID | ssj0009534 |
Score | 2.5302668 |
Snippet | Biogeographical regionalizations, such as zoogeographical regions, floristic kingdoms or ecoregions, represent categorizations central to many basic and... Aim: Biogeographical regionalizations, such as zoogeographical regions, floristic kingdoms or ecoregions, represent categorizations central to many basic and... Aim Biogeographical regionalizations, such as zoogeographical regions, floristic kingdoms or ecoregions, represent categorizations central to many basic and... Aim Biogeographical regionalizations, such as zoogeographical regions, floristic kingdoms or ecoregions, represent categorizations central to many basic and... AbstractAim Biogeographical regionalizations, such as zoogeographical regions, floristic kingdoms or ecoregions, represent categorizations central to many... |
SourceID | proquest pascalfrancis crossref wiley jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2029 |
SubjectTerms | algorithms Animal and plant ecology Animal, plant and microbial ecology Biogeography Biological and medical sciences Biological taxonomies cluster analysis conservation biogeography Conservation biology continental shelf Ecoregions evolution experts faunistic resemblance Fundamental and applied biological sciences. Psychology General aspects Geographic regions Mammalia Mammals Middle East multidimensional scaling multivariate methods Ordination regionalization SPECIAL PAPER Species Synecology Temperate regions Tropical regions Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution zoogeographical realms zoogeography |
Title | framework for delineating biogeographical regions based on species distributions |
URI | https://api.istex.fr/ark:/67375/WNG-4NB3WWSN-7/fulltext.pdf https://www.jstor.org/stable/40929006 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2699.2010.02375.x https://www.proquest.com/docview/772272392 https://www.proquest.com/docview/860372099 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtoLSXvkPcR9Ch9ObFK1kPH5OSNA10D0mXzU1IsrwtW-yS3YWkv74z8oN1aSGUniywRuDxjOYb-9MMIe8UBGkvhUilsAoSFCnSQgedCpcXlVZWs1i--PNMns3z8ytx1fGf8CxMWx9i-OCGnhH3a3Rw69ZjJ28ZWkXRMbQYV2KCeBJvID66YDv1d3lbSQq5akxlY1LPHxcaRar7lW0Av6Lqb3rqIvIo7RpUWbU9MEYgdRfqxlh1-oSs-qdsKSqryXbjJv7nbwUg_48anpLHHaSlR60NPiP3Qv2cPGibXN7C6MR3o4ddx_Wvty_IxRGtel4YBeBMSzwYjwC2XlL3rVl2U9GGKHaPAO-gGHJL2tQUz4dCik9LLPvbdexavyTz05MvH87Srr9D6gWgxNQJbgEB8sxXWkIgLa330nkPSRagLMe9guwzBFkKIasqn2alks5qF3TOcxcY3yd7dVOHA0Kth0Sv4iKHSw6LFlZbn5WQ63ERiowlRPXv0viu-Dn24PhudpIg0KNBPRrUo4l6NDcJmQ6SP9oCIHeQOQBzMXYJ-7SZXzL8OzzVWCcpT8j7aEPDWvZ6hdw6EFvMPpp8dswXi8uZUQnZj0Y2TIREnBWwRybkcGR1wwTGuZD5FCRpb4YG9gr8AWTr0GzXBjIpphgg4r9P0TLDvkVFkRAZze7OD23Ojz_h6NW_Cr4mjyI1Ix70fEP2Ntfb8BYQ38YdRl_-BaZ0QFo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VIlQuvKuaR9kDcHPk7Mv2gUNLW5I-cmgbpbdlvV6HqshBTSIS_hp_hR_DjF-KEUgVUg-csocdK_a8vrFnvyHkTQhJ2iopfSVNCAWKkn4cuciXiYizKDQRK-iLTwaqNxSHF_Jijfyoz8KU_BDNCzf0jCJeo4PjC-m2l5ctWnFctWgxHsrOouqwPHLLb1C_Td_390DZbxk72D__0POrEQO-lQBU_ERyAyCEBzaLFMTy1FirEmsB50OiT7gNoQByTqVSqiwT3SANVWKixEWCi8Qh6wHE_7s4UByJ-_dO2QrjLy-5q7A7joVBu43oj_-8lRvvZGYCiBmVvaibJbFz00xBeVk5daMFi1fBdZEdDx6Sn_VzLZtirjrzWdKx33-jnPxPH_wj8qBC7XSndLPHZM3lT8i9co7nElb7tlptVEPlPy-fktMdmtWtbxRqA5ri2X_E6PmYJpeTcbUV3YTigAwIABRRRUonOcUjsJduSlNkNq6Gkk2fkeGt3OYmWc8nudsi1FioZTMuBfwIuGhsImODFMpZLl0cMI-EtfFoW_G745iRL3qlzgO9adSbRr3pQm964ZFuI_m15Di5gcwW2Kc2Y0hFenjG8AN4N0IqKOGRd4XRNtcy11fYPghio8FHLQa7fDQ6G-jQI5uFVTcbRQBgHdKAR7ZbZt5sYJxLJbogSWu71xAO8RuXyd1kPtVQLLKQAej_-5ZIBTiaKY49ogo7v_FN68PdPq6e_6vga7LROz851sf9wdELcr_oRCnOtb4k67PruXsFAHeWbBeBhJJPt-1AvwBAI54k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VIqAX3lVdoOwBuDly9mX7wKElDU0LEWqJ0tt2vV6HqsiumkQk_DT-Cn-GGT-iBIFUIfXAKXvYsWLP6xv72xlCXoWQpK2S0lfShFCgKOnHkYt8mYg4i0ITsbJ98ce-OhiIw1N5ukZ-NGdhqv4Qixdu6BllvEYHv0yzVSevGFpxXDO0GA9la1YTLI_c_BuUb-O3vQ7o-jVj3f3P7w78esKAbyXgFD-R3AAG4YHNIgWhPDXWqsRagPmQ5xNuQ6h_nFOplCrLRDtIQ5WYKHGR4CJx2PQAwv9toYIYx0Z0jtlSw19eta5CchwLg1UW0R__-UpqvJWZAgAz6nrWcCWRuGnGoLusGrqxgoqXsXWZHLsPyM_msVacmIvWdJK07PffOk7-n8_9IblfY3a6WznZI7Lm8sfkTjXFcw6rfVuv7tUj5b_Mn5DjXZo1xDcKlQFN8eQ_IvR8RJPzYlRvRSehOB4D3J8ipkhpkVM8AHvuxjTFvsb1SLLxUzK4kdvcJOt5kbstQo2FSjbjUsCPgIvGJjI2SKGY5dLFAfNI2NiOtnV3dxwy8lUvVXmgN41606g3XepNzzzSXkheVh1OriGzBeapzQgSkR6cMPz83Y6wEZTwyJvSZhfXMlcXSB4EsWH_vRb9PT4cnvR16JHN0qgXG0UAUB2SgEd2Vqx8sYFxLpVogyRtzF5DMMQvXCZ3xXSsoVRkIQPI__ctkQpwMFMce0SVZn7tm9aHez1cbf-r4Ety91Onqz_0-kfPyEZJQykPtT4n65OrqXsB6HaS7JRhhJKzm_afX5exnNM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+for+delineating+biogeographical+regions+based+on+species+distributions&rft.jtitle=Journal+of+biogeography&rft.au=Kreft%2C+Holger&rft.au=Jetz%2C+Walter&rft.date=2010-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=37&rft.issue=11&rft.spage=2029&rft.epage=2053&rft_id=info:doi/10.1111%2Fj.1365-2699.2010.02375.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_4NB3WWSN_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon |