Crosslinking Induced Reassembly of Multiblock Polymers: Addressing the Dilemma of Stability and Responsivity
Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilem...
Saved in:
Published in | Advanced science Vol. 7; no. 8; pp. 1902701 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.04.2020
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox‐responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on‐off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications.
Crosslinking induced reassembly (CIRA) of multiblock polyurethanes induces a microphase separation between the soft and hard segments and gathers liable disulfide linkages around the interlayer of micelles, thus leading to a simultaneous improvement of stability and responsivity of assemblies. The CIRA strategy enables an intelligent on‐off switch for enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. |
---|---|
AbstractList | Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox‐responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on‐off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications. Abstract Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox‐responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on‐off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications. Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox-responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on-off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications.Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox-responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on-off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications. Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox‐responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on‐off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications. Crosslinking induced reassembly (CIRA) of multiblock polyurethanes induces a microphase separation between the soft and hard segments and gathers liable disulfide linkages around the interlayer of micelles, thus leading to a simultaneous improvement of stability and responsivity of assemblies. The CIRA strategy enables an intelligent on‐off switch for enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. |
Author | Li, Jianshu Fan, Fan Ding, Mingming Zheng, Yi Yang, Rui Shuai, Xiaoyu Tan, Hong He, Xueling Fu, Qiang |
AuthorAffiliation | 2 Laboratory Animal Center of Sichuan University Chengdu 610041 China 1 College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China |
AuthorAffiliation_xml | – name: 1 College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China – name: 2 Laboratory Animal Center of Sichuan University Chengdu 610041 China |
Author_xml | – sequence: 1 givenname: Rui surname: Yang fullname: Yang, Rui organization: Sichuan University – sequence: 2 givenname: Yi surname: Zheng fullname: Zheng, Yi organization: Sichuan University – sequence: 3 givenname: Xiaoyu surname: Shuai fullname: Shuai, Xiaoyu organization: Sichuan University – sequence: 4 givenname: Fan surname: Fan fullname: Fan, Fan organization: Sichuan University – sequence: 5 givenname: Xueling surname: He fullname: He, Xueling organization: Laboratory Animal Center of Sichuan University – sequence: 6 givenname: Mingming orcidid: 0000-0003-2678-6307 surname: Ding fullname: Ding, Mingming email: dmmshx@scu.edu.cn organization: Sichuan University – sequence: 7 givenname: Jianshu orcidid: 0000-0002-1522-7326 surname: Li fullname: Li, Jianshu organization: Sichuan University – sequence: 8 givenname: Hong orcidid: 0000-0003-0695-1619 surname: Tan fullname: Tan, Hong email: hongtan@scu.edu.cn organization: Sichuan University – sequence: 9 givenname: Qiang orcidid: 0000-0002-5191-3315 surname: Fu fullname: Fu, Qiang organization: Sichuan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32328415$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEQtVARLaFXjmglLlwS_Ln2ckCKUgqRikAUuFre3dnUqddO7d2g_PvukhK1PdDTWDPvvfnwe4mOfPCA0GuCZwRj-t7U2zSjmBSYSkyeoRNKCjVlivOje-9jdJrSGmNMBJOcqBfomFFGFSfiBLlFDCk566-tX2VLX_cV1NkPMClBW7pdFprsa-86W7pQXWffg9u1ENOHbF7XEVIaWd0VZGfWQduaEX7ZmdI62-0y40eptAk-2e2QeIWeN8YlOL2LE_Tr_NPPxZfpxbfPy8X8YloJIcWUmJIUNQdW4EbIIUpDgAMwIupSNYzlnDMmDJN5CZwqJQrZKEIbJgreDFtO0HKvWwez1ptoWxN3Ohir_yZCXGkTO1s50KYxTSFLWZWY8EKAaoiqh8sVwBnUQ5sJ-rjX2vRlC3UFvovGPRB9WPH2Sq_CVksiBRsGnaB3dwIx3PSQOt3aVIFzxkPok6as4EoyKkbo20fQdeijH06lKRc5o1xh9X8UzrlUKh-13tyf-zDwv68fALM9oBodEKE5QAjWo730aC99sNdA4I8Ile1MZ8O4t3VP0v4MFtk90UTPz35fkpwJdgsd5-MC |
CitedBy_id | crossref_primary_10_1002_advs_202102741 crossref_primary_10_1002_adfm_202214899 crossref_primary_10_1039_D1TB01253C crossref_primary_10_1016_j_eurpolymj_2022_111235 crossref_primary_10_1021_acsmacrolett_2c00137 crossref_primary_10_1016_j_colsurfa_2023_132321 crossref_primary_10_1021_acsmaterialslett_0c00070 crossref_primary_10_1038_s41467_022_32053_1 crossref_primary_10_1016_j_ijpharm_2021_121094 crossref_primary_10_1039_D2TB02686D crossref_primary_10_1021_acs_macromol_0c00374 crossref_primary_10_1016_j_jcis_2024_09_182 crossref_primary_10_1016_j_jconrel_2022_07_016 crossref_primary_10_1021_acs_biomac_3c00903 crossref_primary_10_1016_j_actbio_2023_05_030 crossref_primary_10_1016_j_drup_2021_100777 crossref_primary_10_1016_j_colsurfa_2022_128353 crossref_primary_10_1039_D4TB00771A crossref_primary_10_1016_j_polymer_2023_125985 crossref_primary_10_1016_j_colsurfa_2023_131880 crossref_primary_10_1039_D1SC06457F crossref_primary_10_1021_acsami_0c10620 crossref_primary_10_1016_j_actbio_2023_08_043 crossref_primary_10_1021_acsapm_4c03864 crossref_primary_10_3390_polym15020317 crossref_primary_10_1021_acs_chemrev_4c00251 crossref_primary_10_1002_cbic_202300132 crossref_primary_10_1016_j_jddst_2024_105736 crossref_primary_10_1016_j_progpolymsci_2024_101803 crossref_primary_10_1021_acs_macromol_0c02826 |
Cites_doi | 10.1517/17425240903380446 10.1126/science.1078192 10.1002/anie.200602168 10.1021/bm401086d 10.1016/j.biomaterials.2013.01.042 10.1016/j.addr.2007.11.010 10.1016/j.biomaterials.2017.08.005 10.1021/ma034032t 10.1021/ma200675w 10.1073/pnas.052653099 10.1038/nbt896 10.1002/adma.201902604 10.1016/j.jconrel.2014.05.042 10.1021/ja408754z 10.1016/j.polymer.2005.06.032 10.1038/nrc706 10.1002/anie.200904260 10.1002/anie.201103806 10.1002/adma.201502865 10.1039/C4CC03153A 10.1039/b926689e 10.1002/adma.201200954 10.1016/j.polymer.2004.12.056 10.1021/ja056726i 10.1038/nmat2992 10.1021/bm401342t 10.1021/ma951386e 10.1016/S0168-3659(01)00275-9 10.1039/b701217a 10.1016/j.biomaterials.2011.08.074 10.1002/adma.201403877 10.1002/anie.201201179 10.1016/j.biomaterials.2015.02.085 10.1039/c0py00376j 10.1016/j.biomaterials.2011.02.006 10.1016/j.progpolymsci.2010.06.003 10.1002/anie.201107144 10.1039/C2BM00096B 10.1016/j.biomaterials.2014.01.018 10.1021/jacs.8b01873 10.1126/science.1226338 10.1002/adhm.201300308 10.1021/bm201730p 10.1016/j.addr.2012.09.013 10.1038/sj.bjc.6602479 10.1038/ncomms15144 10.1016/j.nantod.2015.01.005 10.1002/adma.201102313 10.1007/s10637-011-9709-2 10.1039/c2sm07402h 10.1016/j.biomaterials.2014.01.027 10.1021/ma00193a017 10.1021/ja043042m 10.1038/nmat3776 10.1016/j.cocis.2014.03.014 10.1016/0032-3861(96)89403-1 10.1021/ja053919x 10.1021/nn304439f 10.1021/nl102184c 10.1016/j.nantod.2012.01.002 10.1039/b815918a 10.1016/j.addr.2013.09.008 10.1016/j.biomaterials.2007.03.025 10.1016/j.progpolymsci.2016.05.005 10.1039/b514858h 10.1021/acs.biomac.5b01578 10.1038/nmat2442 10.1021/jacs.7b12776 10.1126/science.1083625 10.1016/j.progpolymsci.2015.10.009 10.1021/ja011206i 10.1002/adma.201705436 10.1016/j.jconrel.2011.06.012 10.1002/anie.200352428 10.1021/nn4002769 10.1016/S0168-3659(02)00016-0 10.1039/c0sm00999g 10.1002/adma.201302215 10.1021/mz300522n 10.1016/j.progpolymsci.2012.07.002 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.201902701 |
DatabaseName | Wiley_OA刊 CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library (ProQuest) Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_afaf97b7cb01495e8f18d1989e43ed43 PMC7175344 32328415 10_1002_advs_201902701 ADVS1635 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars of China funderid: 51425305 – fundername: National Natural Science Foundation of China funderid: 51873118; 21474064; 51203101 – fundername: Project of State Key Laboratory of Polymer Materials Engineering – fundername: ; grantid: 51873118; 21474064; 51203101 – fundername: National Science Fund for Distinguished Young Scholars of China grantid: 51425305 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IAO IGS ITC PHGZM PHGZT NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5575-1ab19d4e390f574e37a1e4ee315db8f33644335a376be4288597f812f3594f153 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:22:37 EDT 2025 Thu Aug 21 18:29:33 EDT 2025 Fri Jul 11 13:03:46 EDT 2025 Mon Jul 14 08:24:56 EDT 2025 Fri Jul 25 03:15:12 EDT 2025 Wed Feb 19 02:30:30 EST 2025 Thu Apr 24 23:12:24 EDT 2025 Tue Jul 01 03:59:22 EDT 2025 Wed Jan 22 16:33:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | fluorescence resonance energy transfer click chemistry multiblock polyurethane drug delivery crosslinking induced reassembly |
Language | English |
License | Attribution 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5575-1ab19d4e390f574e37a1e4ee315db8f33644335a376be4288597f812f3594f153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5191-3315 0000-0002-1522-7326 0000-0003-0695-1619 0000-0003-2678-6307 |
OpenAccessLink | https://www.proquest.com/docview/2456324808?pq-origsite=%requestingapplication% |
PMID | 32328415 |
PQID | 2406478864 |
PQPubID | 4365299 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_afaf97b7cb01495e8f18d1989e43ed43 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7175344 proquest_miscellaneous_2394873254 proquest_journals_2456324808 proquest_journals_2406478864 pubmed_primary_32328415 crossref_primary_10_1002_advs_201902701 crossref_citationtrail_10_1002_advs_201902701 wiley_primary_10_1002_advs_201902701_ADVS1635 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2016 2010; 60 35 2013 2018; 25 30 2010; 10 2008 2014; 35 2017; 8 2015 2015 2005 2006; 10 53 127 35 2018; 140 2003 2012; 300 64 2011 2005; 2 46 2011 2001; 155 72 1996 2005 1989; 37 46 22 2006 2004 2014; 45 43 19 2010 2011 2013 2012; 6 32 7 24 2003 2014; 21 35 2011 2014; 50 26 2002; 2 2011; 10 2009 2013 2012; 8 1 13 2013; 7 2011 2002; 32 80 2011; 7 2012 2005; 30 92 2013; 14 2015; 27 2014 2016; 3 17 2013; 34 2013 2002; 135 99 2003 2016 2018; 300 58 140 2005; 127 2013 2013; 14 2 2019 2013 2013 2014; 38 12 66 2009 2012 2012; 48 51 51 2007 1997 2003; 28 30 36 2010 2014 2012; 7 50 7 2017; 145 2014; 188 2008; 60 2006; 128 2012; 338 2007 2001; 123 2011 2011; 44 23 2012; 8 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_21_3 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_21_2 e_1_2_4_23_3 e_1_2_4_25_1 e_1_2_4_23_2 e_1_2_4_27_1 e_1_2_4_23_4 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_5_1 e_1_2_4_3_2 e_1_2_4_7_1 e_1_2_4_5_2 e_1_2_4_9_1 e_1_2_4_7_2 e_1_2_4_31_2 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_10_2 Weng C. (e_1_2_4_29_1) 2019 e_1_2_4_33_2 e_1_2_4_10_3 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_12_2 e_1_2_4_35_2 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_2 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_37_3 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_2 e_1_2_4_43_2 e_1_2_4_20_1 e_1_2_4_20_3 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_2 e_1_2_4_24_1 e_1_2_4_26_1 e_1_2_4_28_2 e_1_2_4_28_1 e_1_2_4_2_2 e_1_2_4_2_1 e_1_2_4_4_2 e_1_2_4_4_1 e_1_2_4_4_3 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_11_2 e_1_2_4_11_3 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_11_4 e_1_2_4_13_2 e_1_2_4_34_2 e_1_2_4_15_1 e_1_2_4_36_3 e_1_2_4_38_1 e_1_2_4_15_2 e_1_2_4_36_2 e_1_2_4_38_3 e_1_2_4_17_1 e_1_2_4_38_2 e_1_2_4_19_2 e_1_2_4_19_1 e_1_2_4_19_3 |
References_xml | – volume: 155 72 start-page: 262 191 year: 2011 2001 publication-title: J. Controlled Release J. Controlled Release – volume: 21 35 start-page: 1387 3489 year: 2003 2014 publication-title: Nat. Biotechnol. Biomaterials – volume: 44 23 start-page: 6002 H217 year: 2011 2011 publication-title: Macromolecules Adv. Mater. – volume: 37 46 22 start-page: 3045 2346 1100 year: 1996 2005 1989 publication-title: Polymer Polymer Macromolecules – volume: 7 50 7 start-page: 49 53 year: 2010 2014 2012 publication-title: Expert Opin. Drug Delivery Chem. Commun. Nano Today – volume: 35 start-page: 6570 3851 year: 2008 2014 publication-title: Chem. Commun. Biomaterials – volume: 128 start-page: 1078 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 32 80 start-page: 4151 101 year: 2011 2002 publication-title: Biomaterials J. Controlled Release – volume: 14 2 start-page: 3706 40 year: 2013 2013 publication-title: Biomacromolecules ACS Macro Lett. – volume: 60 35 start-page: 86 1128 year: 2016 2010 publication-title: Prog. Polym. Sci. Prog. Polym. Sci. – volume: 127 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 50 26 start-page: 9404 8217 year: 2011 2014 publication-title: Angew. Chem., Int. Ed. Adv. Mater. – volume: 188 start-page: 1 year: 2014 publication-title: J. Controlled Release – volume: 8 1 13 start-page: 543 265 814 year: 2009 2013 2012 publication-title: Nat. Mater. Biomater. Sci. Biomacromolecules – volume: 140 start-page: 6604 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 123 start-page: 3021 9910 year: 2007 2001 publication-title: Chem. Commun. J. Am. Chem. Soc. – volume: 30 92 start-page: 1621 1240 year: 2012 2005 publication-title: Invest. New Drugs Br. J. Cancer – volume: 338 start-page: 903 year: 2012 publication-title: Science – volume: 10 start-page: 389 year: 2011 publication-title: Nat. Mater. – volume: 10 start-page: 3223 year: 2010 publication-title: Nano Lett. – volume: 25 30 start-page: 5215 year: 2013 2018 publication-title: Adv. Mater. Adv. Mater. – volume: 60 start-page: 899 year: 2008 publication-title: Adv. Drug Delivery Rev. – volume: 300 64 start-page: 615 37 year: 2003 2012 publication-title: Science Adv. Drug Delivery Rev. – volume: 2 start-page: 48 year: 2002 publication-title: Nat. Rev. Cancer – volume: 6 32 7 24 start-page: 2087 9515 1918 3639 year: 2010 2011 2013 2012 publication-title: Soft Matter Biomaterials ACS Nano Adv. Mater. – volume: 10 53 127 35 start-page: 93 370 8236 1068 year: 2015 2015 2005 2006 publication-title: Nano Today Biomaterials J. Am. Chem. Soc. Chem. Soc. Rev. – volume: 7 start-page: 3246 year: 2011 publication-title: Soft Matter – volume: 145 start-page: 138 year: 2017 publication-title: Biomaterials – year: 2019 publication-title: Chin. Chem. Lett. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 135 99 start-page: 5058 year: 2013 2002 publication-title: J. Am. Chem. Soc. Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 6450 year: 2015 publication-title: Adv. Mater. – volume: 8 start-page: 5414 year: 2012 publication-title: Soft Matter – volume: 14 start-page: 4407 year: 2013 publication-title: Biomacromolecules – volume: 300 58 140 start-page: 595 1 1235 year: 2003 2016 2018 publication-title: Science Prog. Polym. Sci. J. Am. Chem. Soc. – volume: 48 51 51 start-page: 9914 5293 2864 year: 2009 2012 2012 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 7 start-page: 1961 year: 2013 publication-title: ACS Nano – volume: 45 43 19 start-page: 5792 1389 122 year: 2006 2004 2014 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Curr. Opin. Colloid Interface Sci. – volume: 28 30 36 start-page: 3182 4405 4195 year: 2007 1997 2003 publication-title: Biomaterials Macromolecules Macromolecules – volume: 2 46 start-page: 885 7230 year: 2011 2005 publication-title: Polym. Chem. Polymer – volume: 38 12 66 start-page: 503 991 58 year: 2013 2013 2014 publication-title: Prog. Polym. Sci. Nat. Mater. Adv. Drug Delivery Rev. – volume: 34 start-page: 3132 year: 2013 publication-title: Biomaterials – volume: 3 17 start-page: 752 882 year: 2014 2016 publication-title: Adv. Healthcare Mater. Biomacromolecules – year: 2019 publication-title: Adv. Mater. – ident: e_1_2_4_10_1 doi: 10.1517/17425240903380446 – ident: e_1_2_4_1_1 doi: 10.1126/science.1078192 – ident: e_1_2_4_21_1 doi: 10.1002/anie.200602168 – ident: e_1_2_4_12_1 doi: 10.1021/bm401086d – ident: e_1_2_4_32_1 doi: 10.1016/j.biomaterials.2013.01.042 – ident: e_1_2_4_6_1 doi: 10.1016/j.addr.2007.11.010 – ident: e_1_2_4_25_1 doi: 10.1016/j.biomaterials.2017.08.005 – ident: e_1_2_4_37_3 doi: 10.1021/ma034032t – ident: e_1_2_4_31_1 doi: 10.1021/ma200675w – ident: e_1_2_4_34_2 doi: 10.1073/pnas.052653099 – ident: e_1_2_4_28_1 doi: 10.1038/nbt896 – year: 2019 ident: e_1_2_4_29_1 publication-title: Chin. Chem. Lett. – ident: e_1_2_4_27_1 doi: 10.1002/adma.201902604 – ident: e_1_2_4_30_1 doi: 10.1016/j.jconrel.2014.05.042 – ident: e_1_2_4_34_1 doi: 10.1021/ja408754z – ident: e_1_2_4_35_2 doi: 10.1016/j.polymer.2005.06.032 – ident: e_1_2_4_17_1 doi: 10.1038/nrc706 – ident: e_1_2_4_20_1 doi: 10.1002/anie.200904260 – ident: e_1_2_4_15_1 doi: 10.1002/anie.201103806 – ident: e_1_2_4_44_1 doi: 10.1002/adma.201502865 – ident: e_1_2_4_10_2 doi: 10.1039/C4CC03153A – ident: e_1_2_4_23_1 doi: 10.1039/b926689e – ident: e_1_2_4_23_4 doi: 10.1002/adma.201200954 – ident: e_1_2_4_36_2 doi: 10.1016/j.polymer.2004.12.056 – ident: e_1_2_4_39_1 doi: 10.1021/ja056726i – ident: e_1_2_4_18_1 doi: 10.1038/nmat2992 – ident: e_1_2_4_26_1 doi: 10.1021/bm401342t – ident: e_1_2_4_37_2 doi: 10.1021/ma951386e – ident: e_1_2_4_5_2 doi: 10.1016/S0168-3659(01)00275-9 – ident: e_1_2_4_13_1 doi: 10.1039/b701217a – ident: e_1_2_4_23_2 doi: 10.1016/j.biomaterials.2011.08.074 – ident: e_1_2_4_15_2 doi: 10.1002/adma.201403877 – ident: e_1_2_4_20_2 doi: 10.1002/anie.201201179 – ident: e_1_2_4_11_2 doi: 10.1016/j.biomaterials.2015.02.085 – ident: e_1_2_4_35_1 doi: 10.1039/c0py00376j – ident: e_1_2_4_43_1 doi: 10.1016/j.biomaterials.2011.02.006 – ident: e_1_2_4_2_2 doi: 10.1016/j.progpolymsci.2010.06.003 – ident: e_1_2_4_20_3 doi: 10.1002/anie.201107144 – ident: e_1_2_4_38_2 doi: 10.1039/C2BM00096B – ident: e_1_2_4_33_2 doi: 10.1016/j.biomaterials.2014.01.018 – ident: e_1_2_4_42_1 doi: 10.1021/jacs.8b01873 – ident: e_1_2_4_8_1 doi: 10.1126/science.1226338 – ident: e_1_2_4_24_1 doi: 10.1002/adhm.201300308 – ident: e_1_2_4_38_3 doi: 10.1021/bm201730p – ident: e_1_2_4_1_2 doi: 10.1016/j.addr.2012.09.013 – ident: e_1_2_4_7_2 doi: 10.1038/sj.bjc.6602479 – ident: e_1_2_4_41_1 doi: 10.1038/ncomms15144 – ident: e_1_2_4_11_1 doi: 10.1016/j.nantod.2015.01.005 – ident: e_1_2_4_31_2 doi: 10.1002/adma.201102313 – ident: e_1_2_4_7_1 doi: 10.1007/s10637-011-9709-2 – ident: e_1_2_4_22_1 doi: 10.1039/c2sm07402h – ident: e_1_2_4_28_2 doi: 10.1016/j.biomaterials.2014.01.027 – ident: e_1_2_4_36_3 doi: 10.1021/ma00193a017 – ident: e_1_2_4_11_3 doi: 10.1021/ja043042m – ident: e_1_2_4_19_2 doi: 10.1038/nmat3776 – ident: e_1_2_4_21_3 doi: 10.1016/j.cocis.2014.03.014 – ident: e_1_2_4_36_1 doi: 10.1016/0032-3861(96)89403-1 – ident: e_1_2_4_14_1 doi: 10.1021/ja053919x – ident: e_1_2_4_40_1 doi: 10.1021/nn304439f – ident: e_1_2_4_9_1 doi: 10.1021/nl102184c – ident: e_1_2_4_10_3 doi: 10.1016/j.nantod.2012.01.002 – ident: e_1_2_4_33_1 doi: 10.1039/b815918a – ident: e_1_2_4_19_3 doi: 10.1016/j.addr.2013.09.008 – ident: e_1_2_4_37_1 doi: 10.1016/j.biomaterials.2007.03.025 – ident: e_1_2_4_2_1 doi: 10.1016/j.progpolymsci.2016.05.005 – ident: e_1_2_4_11_4 doi: 10.1039/b514858h – ident: e_1_2_4_24_2 doi: 10.1021/acs.biomac.5b01578 – ident: e_1_2_4_38_1 doi: 10.1038/nmat2442 – ident: e_1_2_4_4_3 doi: 10.1021/jacs.7b12776 – ident: e_1_2_4_4_1 doi: 10.1126/science.1083625 – ident: e_1_2_4_4_2 doi: 10.1016/j.progpolymsci.2015.10.009 – ident: e_1_2_4_13_2 doi: 10.1021/ja011206i – ident: e_1_2_4_3_2 doi: 10.1002/adma.201705436 – ident: e_1_2_4_5_1 doi: 10.1016/j.jconrel.2011.06.012 – ident: e_1_2_4_21_2 doi: 10.1002/anie.200352428 – ident: e_1_2_4_23_3 doi: 10.1021/nn4002769 – ident: e_1_2_4_43_2 doi: 10.1016/S0168-3659(02)00016-0 – ident: e_1_2_4_16_1 doi: 10.1039/c0sm00999g – ident: e_1_2_4_3_1 doi: 10.1002/adma.201302215 – ident: e_1_2_4_12_2 doi: 10.1021/mz300522n – ident: e_1_2_4_19_1 doi: 10.1016/j.progpolymsci.2012.07.002 |
SSID | ssj0001537418 |
Score | 2.3232055 |
Snippet | Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However,... Abstract Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies.... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1902701 |
SubjectTerms | click chemistry Communication Communications crosslinking induced reassembly drug delivery Drug delivery systems Efficiency fluorescence resonance energy transfer Fourier transforms multiblock polyurethane NMR Nuclear magnetic resonance Polymers |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ1_E1q_VKhEE9WHp7ia5JL7VaimCImqhb0s-Jii92xNtC_ffO5PNLXdo6YtPB5e53exk5uY32clvGHsRZtqhH7XEU9nUMmpRG9GGuvNONzGomc2n-D9-mp2cyg9n6myj1RfVhI30wKPiDlxyyWqvg89gHkxqTaRCH5ACosw8nxjzNpKp8XywIFqWNUtj0x24eEXs3Bj_Ol06wKyjUCbr_xfC_LtQchPA5gh0fJfdKdCRH45T3mW3YNhju8U5f_NXhUH69T02P6K7lrYInLpzBIj8CyBQhoWfr_gy8Xzy1mMoO-efl_MVbV-_4Ycx5rpY_BUCQ_4Op7FYOBJHUJrLaFfcDXSpsbKWGk_cZ6fH778dndSlrUIdFIKzunW-tVGCsE1SGj-1a0ECiFZFb5IQCJGEUA7_ejxgdmIw50iIA5JQVibU7AO2MywHeMS4SylGTGJitEp2IK33wbXWRZBOQtAVq9dq7kPhHKfWF_N-ZEvuelqWflqWir2c5H-ObBvXSr6lVZukiCU7f4G20xfb6W-ynYrtr9e8L66Lt5D5_K2ZyWuGFTHcm8ZU7Pk0jD5JL1rcAMtLlBEW80CBuXfFHo4WNE1UIIQ1iJoqprdsa-tJtkeGH98z77cmVlWJ16yzFd6goR5xzVdE2-rx_1DVE3a7o52GXLO0z3Yufl3CU4RjF_5Z9rw_KusyPg priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley_OA刊 dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA8yX3wR52fdHBkI6kNY2yQ3iW9zcwxBGepgbyWfTry3lX3B_e89J-3tVtwQnwrNadrm5DS_k57zO4S89jNlwY4q5KksmQiKM80rz2pnVRm8nJmcxf_5y-zwWHw6kSc3svh7fohxww0tI3-v0cCtO9-5Jg214QrptmFBqxUmcN3H_FoM6qvF0fUui-RIz4IV5sC7ZlwLsWJuLOudaReTlSkT-N-GOv8OnrwJavOqdPCIPBzgJN3t9b9O7sX2MVkfDPacvh1Ypd89IfM9vOtQKoFixQ4fA_0aATzHhZsvaZdozsZ1sLz9okfdfIlb2u_pbgg5VhauArBI9-ExFguL4gBUc2jtktoWu-qjbbEYxVNyfPDx-94hG0otMC8BsLHKusoEEbkpk1RwVLaKIkZeyeB04hxgE-fSwufIRfBYNPghCbBB4tKIBKP8jKy1XRtfEGpTCgEcmxCMFHUUxjlvK2NDFFZErwrCVsPc-IGHHMthzJueQbluUC3NqJaCvBnlf_cMHHdKfkCtjVLInJ1PdGc_msEQG5tsMsop77JzGHWqdMDAsSh4DIIXZHOl82YwZ7iFyDm5eibuaJbIeq9LXZDtsRnsFH--2DZ2lyDDDfiGHPzxgjzvZ9D4oBxgrQYkVRA1mVuTN5m2tD9PMxe4QqZVAX2yPAv_MUINYJ1vgMDly_-U3yAPatxoyCFLm2Tt4uwyvgI0duG2ssH9AYWTLZg priority: 102 providerName: Wiley-Blackwell |
Title | Crosslinking Induced Reassembly of Multiblock Polymers: Addressing the Dilemma of Stability and Responsivity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201902701 https://www.ncbi.nlm.nih.gov/pubmed/32328415 https://www.proquest.com/docview/2406478864 https://www.proquest.com/docview/2456324808 https://www.proquest.com/docview/2394873254 https://pubmed.ncbi.nlm.nih.gov/PMC7175344 https://doaj.org/article/afaf97b7cb01495e8f18d1989e43ed43 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxEB7R5MIFUZ4LJTISEnBYNbv2xl4uKH2pQrSKWir1trLXNiCS3dIHUv49M453IYLCKVI8-_J47G_G428AXtUTqdGOMuKpHKfCSp4qntVpbrQc27qYlOEU_9Hx5PBMfDgvzmPA7SqmVXZzYpiobVtTjHybNuhw8Vdj9f7ie0pVo2h3NZbQ2IAhTsFKDWC4s388O_kVZSk40bN0bI3jfFvbH8TSjetgLmMlmG41CqT9f0OafyZM_g5kw0p0cB_uRQjJpiudb8Id1zyAzWikV-xNZJJ--xDmu_TUWB6BUZWO2ll24hAwu4WZL1nrWTiBa3BJ-8Zm7XxJYex3bGptyI_FqxAgsj18jcVCkziC05BOu2S6oVutMmypAMUjODvY_7R7mMbyCmldIEhLM22y0grHy7EvJP5KnTnhHM8Ka5TnHKES54XGKcg49FIU-h4e8YDnRSk89uxjGDRt454C095bi86MtWUhcidKY2qdldo6oYWrZQJp181VHbnHqQTGvFqxJucVqaXq1ZLA617-YsW6cavkDmmtlyK27PBHe_m5isZXaa99KY2sTXAInfKZspQs5gR3VvAEtjqdV9GE8REinMNVE3FLczceE3jZN6Nt0oaLblx7gzK8RH-Qow-ewJPVCOpflCOUVYieEpBrY2vtS9Zbmq9fAv-3JHZVgfdMwyj8Tw9ViG9OEXUXz_79Gc_hbk6xhJCVtAWD68sb9wIB17UZwUYuZiMYTveOPp6Ooo2NQvjiJ1cbLeQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNcEOUZKGAkEHCImsROnCAh1Ke2tF1VpZV6C3ZsA2I3KX2A9k_xG5lxkoUVFE49rbR2Xp7xzDf2-BuAZ1UmFc6jmHgqo1AYycOcx1WYaCUjU6VZ4U_x742y4ZF4d5weL8CP_iwMpVX2NtEbatNUtEa-Qht06PzzKH978jWkqlG0u9qX0GjVYsdOv2PIdvZmewPl-zxJtjYP14dhV1UgrFLEJmGsdFwYYTHYd6nEX6liK6zlcWp07jhHhMB5qnDmaYvgPEfI7dANOp4WwsVUJQJN_qLgWZQMYHFtc7R_8GtVJ-VEB9OzQ0bJijLfiBUc_W4iu8ozvffzRQL-hmz_TND8HTh7z7d1E250kJWttjq2BAu2vgVLnVE4Yy875upXt2G8Tk_tyjEwqgpSWcMOLAJ0O9HjKWsc8yd-NbrQL2y_GU9p2fw1WzXG5-PiVQhI2Qa-xmSiqDuCYZ--O2Wqplu1Gb1U8OIOHF3JwN-FQd3U9j4w5ZwxGDwZU6QisaLQulJxoYwVSthKBhD2w1xWHdc5ldwYly1Lc1KSWMqZWAJ4Met_0rJ8XNpzjaQ260Xs3P6P5vRj2U32UjnlCqllpX0AanMX54aS06zg1ggewHIv87IzGfgI4c_95pm4pLnX_wCezprRFtAGj6ptc4F9eIHxJ8eYP4B7rQbNXpQjdM4RrQUg53Rr7kvmW-rPnzzfuCQ2V4H3DL0W_meESsRT7xHlpw_-_RlP4NrwcG-33N0e7TyE6wmtY_iMqGUYnJ9e2EcI9s71426GMfhw1ZP6JwIDZPk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTkK8IMZnYICRQMBD1Ca26wQJoW1dtTGoqsGkvWV2bAOiTcY-QP3X-Ou4c5xABYOnPVWqnS-f7-539vl3hDwph1KBHiXIUzmIuZEszlhSxqlWcmBKMcz9Kf53k-HOAX9zKA5XyI_2LAymVbY20RtqU5e4Rt7HDTpw_tkg67uQFjEdjV8ff42xghTutLblNJopsmcX3yF8O321OwJZP03T8faHrZ04VBiISwE4JU6UTnLDLQT-Tkj4lSqx3FqWCKMzxxigBcaEAi3UFoB6BvDbgUt0TOTcJVgxAsz_qsSoqEdWN7cn0_1fKzyCITVMyxQ5SPvKfEOGcPDBqQxVaFpP6AsG_A3l_pms-TuI9l5wfJ1cC_CVbjTzbY2s2OoGWQsG4pQ-DyzWL26S2RY-NZRmoFghpLSG7lsA63auZwtaO-pP_2pwp1_otJ4tcAn9Jd0wxufmwlUATukIXmM-V9gdgLFP5V1QVeGtmuxeLH5xixxcysDfJr2qruxdQpVzxkAgZUwueGp5rnWpklwZyxW3pYxI3A5zUQbecyy_MSsaxua0QLEUnVgi8qzrf9wwflzYcxOl1vVCpm7_R33ysQiKXyinXC61LLUPRm3mksxgoprlzBrOIrLeyrwI5gMewf0Z4GzIL2hudSEij7tmsAu42aMqW59DH5ZDLMog_o_InWYGdS_KAEZngNwiIpfm1tKXLLdUnz957nGJzK4c7hn7WfifESoAW70HxC_u_fszHpEroMzF293J3n1yNcUlDZ8ctU56Zyfn9gHgvjP9MCgYJUeXrdM_AcI6aS4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crosslinking+Induced+Reassembly+of+Multiblock+Polymers%3A+Addressing+the+Dilemma+of+Stability+and+Responsivity&rft.jtitle=Advanced+science&rft.au=Yang%2C+Rui&rft.au=Zheng%2C+Yi&rft.au=Shuai%2C+Xiaoyu&rft.au=Fan%2C+Fan&rft.date=2020-04-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=7&rft.issue=8&rft.spage=1902701&rft_id=info:doi/10.1002%2Fadvs.201902701&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |