Crosslinking Induced Reassembly of Multiblock Polymers: Addressing the Dilemma of Stability and Responsivity

Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilem...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 7; no. 8; pp. 1902701 - n/a
Main Authors Yang, Rui, Zheng, Yi, Shuai, Xiaoyu, Fan, Fan, He, Xueling, Ding, Mingming, Li, Jianshu, Tan, Hong, Fu, Qiang
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.04.2020
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox‐responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on‐off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications. Crosslinking induced reassembly (CIRA) of multiblock polyurethanes induces a microphase separation between the soft and hard segments and gathers liable disulfide linkages around the interlayer of micelles, thus leading to a simultaneous improvement of stability and responsivity of assemblies. The CIRA strategy enables an intelligent on‐off switch for enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo.
AbstractList Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox‐responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on‐off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications.
Abstract Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox‐responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on‐off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications.
Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox-responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on-off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications.Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox-responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on-off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications.
Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox‐responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on‐off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications. Crosslinking induced reassembly (CIRA) of multiblock polyurethanes induces a microphase separation between the soft and hard segments and gathers liable disulfide linkages around the interlayer of micelles, thus leading to a simultaneous improvement of stability and responsivity of assemblies. The CIRA strategy enables an intelligent on‐off switch for enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo.
Author Li, Jianshu
Fan, Fan
Ding, Mingming
Zheng, Yi
Yang, Rui
Shuai, Xiaoyu
Tan, Hong
He, Xueling
Fu, Qiang
AuthorAffiliation 2 Laboratory Animal Center of Sichuan University Chengdu 610041 China
1 College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
AuthorAffiliation_xml – name: 1 College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
– name: 2 Laboratory Animal Center of Sichuan University Chengdu 610041 China
Author_xml – sequence: 1
  givenname: Rui
  surname: Yang
  fullname: Yang, Rui
  organization: Sichuan University
– sequence: 2
  givenname: Yi
  surname: Zheng
  fullname: Zheng, Yi
  organization: Sichuan University
– sequence: 3
  givenname: Xiaoyu
  surname: Shuai
  fullname: Shuai, Xiaoyu
  organization: Sichuan University
– sequence: 4
  givenname: Fan
  surname: Fan
  fullname: Fan, Fan
  organization: Sichuan University
– sequence: 5
  givenname: Xueling
  surname: He
  fullname: He, Xueling
  organization: Laboratory Animal Center of Sichuan University
– sequence: 6
  givenname: Mingming
  orcidid: 0000-0003-2678-6307
  surname: Ding
  fullname: Ding, Mingming
  email: dmmshx@scu.edu.cn
  organization: Sichuan University
– sequence: 7
  givenname: Jianshu
  orcidid: 0000-0002-1522-7326
  surname: Li
  fullname: Li, Jianshu
  organization: Sichuan University
– sequence: 8
  givenname: Hong
  orcidid: 0000-0003-0695-1619
  surname: Tan
  fullname: Tan, Hong
  email: hongtan@scu.edu.cn
  organization: Sichuan University
– sequence: 9
  givenname: Qiang
  orcidid: 0000-0002-5191-3315
  surname: Fu
  fullname: Fu, Qiang
  organization: Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32328415$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1vEzEQtVARLaFXjmglLlwS_Ln2ckCKUgqRikAUuFre3dnUqddO7d2g_PvukhK1PdDTWDPvvfnwe4mOfPCA0GuCZwRj-t7U2zSjmBSYSkyeoRNKCjVlivOje-9jdJrSGmNMBJOcqBfomFFGFSfiBLlFDCk566-tX2VLX_cV1NkPMClBW7pdFprsa-86W7pQXWffg9u1ENOHbF7XEVIaWd0VZGfWQduaEX7ZmdI62-0y40eptAk-2e2QeIWeN8YlOL2LE_Tr_NPPxZfpxbfPy8X8YloJIcWUmJIUNQdW4EbIIUpDgAMwIupSNYzlnDMmDJN5CZwqJQrZKEIbJgreDFtO0HKvWwez1ptoWxN3Ohir_yZCXGkTO1s50KYxTSFLWZWY8EKAaoiqh8sVwBnUQ5sJ-rjX2vRlC3UFvovGPRB9WPH2Sq_CVksiBRsGnaB3dwIx3PSQOt3aVIFzxkPok6as4EoyKkbo20fQdeijH06lKRc5o1xh9X8UzrlUKh-13tyf-zDwv68fALM9oBodEKE5QAjWo730aC99sNdA4I8Ile1MZ8O4t3VP0v4MFtk90UTPz35fkpwJdgsd5-MC
CitedBy_id crossref_primary_10_1002_advs_202102741
crossref_primary_10_1002_adfm_202214899
crossref_primary_10_1039_D1TB01253C
crossref_primary_10_1016_j_eurpolymj_2022_111235
crossref_primary_10_1021_acsmacrolett_2c00137
crossref_primary_10_1016_j_colsurfa_2023_132321
crossref_primary_10_1021_acsmaterialslett_0c00070
crossref_primary_10_1038_s41467_022_32053_1
crossref_primary_10_1016_j_ijpharm_2021_121094
crossref_primary_10_1039_D2TB02686D
crossref_primary_10_1021_acs_macromol_0c00374
crossref_primary_10_1016_j_jcis_2024_09_182
crossref_primary_10_1016_j_jconrel_2022_07_016
crossref_primary_10_1021_acs_biomac_3c00903
crossref_primary_10_1016_j_actbio_2023_05_030
crossref_primary_10_1016_j_drup_2021_100777
crossref_primary_10_1016_j_colsurfa_2022_128353
crossref_primary_10_1039_D4TB00771A
crossref_primary_10_1016_j_polymer_2023_125985
crossref_primary_10_1016_j_colsurfa_2023_131880
crossref_primary_10_1039_D1SC06457F
crossref_primary_10_1021_acsami_0c10620
crossref_primary_10_1016_j_actbio_2023_08_043
crossref_primary_10_1021_acsapm_4c03864
crossref_primary_10_3390_polym15020317
crossref_primary_10_1021_acs_chemrev_4c00251
crossref_primary_10_1002_cbic_202300132
crossref_primary_10_1016_j_jddst_2024_105736
crossref_primary_10_1016_j_progpolymsci_2024_101803
crossref_primary_10_1021_acs_macromol_0c02826
Cites_doi 10.1517/17425240903380446
10.1126/science.1078192
10.1002/anie.200602168
10.1021/bm401086d
10.1016/j.biomaterials.2013.01.042
10.1016/j.addr.2007.11.010
10.1016/j.biomaterials.2017.08.005
10.1021/ma034032t
10.1021/ma200675w
10.1073/pnas.052653099
10.1038/nbt896
10.1002/adma.201902604
10.1016/j.jconrel.2014.05.042
10.1021/ja408754z
10.1016/j.polymer.2005.06.032
10.1038/nrc706
10.1002/anie.200904260
10.1002/anie.201103806
10.1002/adma.201502865
10.1039/C4CC03153A
10.1039/b926689e
10.1002/adma.201200954
10.1016/j.polymer.2004.12.056
10.1021/ja056726i
10.1038/nmat2992
10.1021/bm401342t
10.1021/ma951386e
10.1016/S0168-3659(01)00275-9
10.1039/b701217a
10.1016/j.biomaterials.2011.08.074
10.1002/adma.201403877
10.1002/anie.201201179
10.1016/j.biomaterials.2015.02.085
10.1039/c0py00376j
10.1016/j.biomaterials.2011.02.006
10.1016/j.progpolymsci.2010.06.003
10.1002/anie.201107144
10.1039/C2BM00096B
10.1016/j.biomaterials.2014.01.018
10.1021/jacs.8b01873
10.1126/science.1226338
10.1002/adhm.201300308
10.1021/bm201730p
10.1016/j.addr.2012.09.013
10.1038/sj.bjc.6602479
10.1038/ncomms15144
10.1016/j.nantod.2015.01.005
10.1002/adma.201102313
10.1007/s10637-011-9709-2
10.1039/c2sm07402h
10.1016/j.biomaterials.2014.01.027
10.1021/ma00193a017
10.1021/ja043042m
10.1038/nmat3776
10.1016/j.cocis.2014.03.014
10.1016/0032-3861(96)89403-1
10.1021/ja053919x
10.1021/nn304439f
10.1021/nl102184c
10.1016/j.nantod.2012.01.002
10.1039/b815918a
10.1016/j.addr.2013.09.008
10.1016/j.biomaterials.2007.03.025
10.1016/j.progpolymsci.2016.05.005
10.1039/b514858h
10.1021/acs.biomac.5b01578
10.1038/nmat2442
10.1021/jacs.7b12776
10.1126/science.1083625
10.1016/j.progpolymsci.2015.10.009
10.1021/ja011206i
10.1002/adma.201705436
10.1016/j.jconrel.2011.06.012
10.1002/anie.200352428
10.1021/nn4002769
10.1016/S0168-3659(02)00016-0
10.1039/c0sm00999g
10.1002/adma.201302215
10.1021/mz300522n
10.1016/j.progpolymsci.2012.07.002
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.201902701
DatabaseName Wiley_OA刊
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library (ProQuest)
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

MEDLINE - Academic

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_afaf97b7cb01495e8f18d1989e43ed43
PMC7175344
32328415
10_1002_advs_201902701
ADVS1635
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Fund for Distinguished Young Scholars of China
  funderid: 51425305
– fundername: National Natural Science Foundation of China
  funderid: 51873118; 21474064; 51203101
– fundername: Project of State Key Laboratory of Polymer Materials Engineering
– fundername: ;
  grantid: 51873118; 21474064; 51203101
– fundername: National Science Fund for Distinguished Young Scholars of China
  grantid: 51425305
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IAO
IGS
ITC
PHGZM
PHGZT
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5575-1ab19d4e390f574e37a1e4ee315db8f33644335a376be4288597f812f3594f153
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:22:37 EDT 2025
Thu Aug 21 18:29:33 EDT 2025
Fri Jul 11 13:03:46 EDT 2025
Mon Jul 14 08:24:56 EDT 2025
Fri Jul 25 03:15:12 EDT 2025
Wed Feb 19 02:30:30 EST 2025
Thu Apr 24 23:12:24 EDT 2025
Tue Jul 01 03:59:22 EDT 2025
Wed Jan 22 16:33:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords fluorescence resonance energy transfer
click chemistry
multiblock polyurethane
drug delivery
crosslinking induced reassembly
Language English
License Attribution
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5575-1ab19d4e390f574e37a1e4ee315db8f33644335a376be4288597f812f3594f153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5191-3315
0000-0002-1522-7326
0000-0003-0695-1619
0000-0003-2678-6307
OpenAccessLink https://www.proquest.com/docview/2456324808?pq-origsite=%requestingapplication%
PMID 32328415
PQID 2406478864
PQPubID 4365299
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_afaf97b7cb01495e8f18d1989e43ed43
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7175344
proquest_miscellaneous_2394873254
proquest_journals_2456324808
proquest_journals_2406478864
pubmed_primary_32328415
crossref_primary_10_1002_advs_201902701
crossref_citationtrail_10_1002_advs_201902701
wiley_primary_10_1002_advs_201902701_ADVS1635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2016 2010; 60 35
2013 2018; 25 30
2010; 10
2008 2014; 35
2017; 8
2015 2015 2005 2006; 10 53 127 35
2018; 140
2003 2012; 300 64
2011 2005; 2 46
2011 2001; 155 72
1996 2005 1989; 37 46 22
2006 2004 2014; 45 43 19
2010 2011 2013 2012; 6 32 7 24
2003 2014; 21 35
2011 2014; 50 26
2002; 2
2011; 10
2009 2013 2012; 8 1 13
2013; 7
2011 2002; 32 80
2011; 7
2012 2005; 30 92
2013; 14
2015; 27
2014 2016; 3 17
2013; 34
2013 2002; 135 99
2003 2016 2018; 300 58 140
2005; 127
2013 2013; 14 2
2019
2013 2013 2014; 38 12 66
2009 2012 2012; 48 51 51
2007 1997 2003; 28 30 36
2010 2014 2012; 7 50 7
2017; 145
2014; 188
2008; 60
2006; 128
2012; 338
2007 2001; 123
2011 2011; 44 23
2012; 8
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_21_3
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_21_2
e_1_2_4_23_3
e_1_2_4_25_1
e_1_2_4_23_2
e_1_2_4_27_1
e_1_2_4_23_4
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_5_1
e_1_2_4_3_2
e_1_2_4_7_1
e_1_2_4_5_2
e_1_2_4_9_1
e_1_2_4_7_2
e_1_2_4_31_2
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_10_2
Weng C. (e_1_2_4_29_1) 2019
e_1_2_4_33_2
e_1_2_4_10_3
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_12_2
e_1_2_4_35_2
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_2
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_37_3
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_2
e_1_2_4_43_2
e_1_2_4_20_1
e_1_2_4_20_3
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_2
e_1_2_4_24_1
e_1_2_4_26_1
e_1_2_4_28_2
e_1_2_4_28_1
e_1_2_4_2_2
e_1_2_4_2_1
e_1_2_4_4_2
e_1_2_4_4_1
e_1_2_4_4_3
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_11_2
e_1_2_4_11_3
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_11_4
e_1_2_4_13_2
e_1_2_4_34_2
e_1_2_4_15_1
e_1_2_4_36_3
e_1_2_4_38_1
e_1_2_4_15_2
e_1_2_4_36_2
e_1_2_4_38_3
e_1_2_4_17_1
e_1_2_4_38_2
e_1_2_4_19_2
e_1_2_4_19_1
e_1_2_4_19_3
References_xml – volume: 155 72
  start-page: 262 191
  year: 2011 2001
  publication-title: J. Controlled Release J. Controlled Release
– volume: 21 35
  start-page: 1387 3489
  year: 2003 2014
  publication-title: Nat. Biotechnol. Biomaterials
– volume: 44 23
  start-page: 6002 H217
  year: 2011 2011
  publication-title: Macromolecules Adv. Mater.
– volume: 37 46 22
  start-page: 3045 2346 1100
  year: 1996 2005 1989
  publication-title: Polymer Polymer Macromolecules
– volume: 7 50 7
  start-page: 49 53
  year: 2010 2014 2012
  publication-title: Expert Opin. Drug Delivery Chem. Commun. Nano Today
– volume: 35
  start-page: 6570 3851
  year: 2008 2014
  publication-title: Chem. Commun. Biomaterials
– volume: 128
  start-page: 1078
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 32 80
  start-page: 4151 101
  year: 2011 2002
  publication-title: Biomaterials J. Controlled Release
– volume: 14 2
  start-page: 3706 40
  year: 2013 2013
  publication-title: Biomacromolecules ACS Macro Lett.
– volume: 60 35
  start-page: 86 1128
  year: 2016 2010
  publication-title: Prog. Polym. Sci. Prog. Polym. Sci.
– volume: 127
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 50 26
  start-page: 9404 8217
  year: 2011 2014
  publication-title: Angew. Chem., Int. Ed. Adv. Mater.
– volume: 188
  start-page: 1
  year: 2014
  publication-title: J. Controlled Release
– volume: 8 1 13
  start-page: 543 265 814
  year: 2009 2013 2012
  publication-title: Nat. Mater. Biomater. Sci. Biomacromolecules
– volume: 140
  start-page: 6604
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 123
  start-page: 3021 9910
  year: 2007 2001
  publication-title: Chem. Commun. J. Am. Chem. Soc.
– volume: 30 92
  start-page: 1621 1240
  year: 2012 2005
  publication-title: Invest. New Drugs Br. J. Cancer
– volume: 338
  start-page: 903
  year: 2012
  publication-title: Science
– volume: 10
  start-page: 389
  year: 2011
  publication-title: Nat. Mater.
– volume: 10
  start-page: 3223
  year: 2010
  publication-title: Nano Lett.
– volume: 25 30
  start-page: 5215
  year: 2013 2018
  publication-title: Adv. Mater. Adv. Mater.
– volume: 60
  start-page: 899
  year: 2008
  publication-title: Adv. Drug Delivery Rev.
– volume: 300 64
  start-page: 615 37
  year: 2003 2012
  publication-title: Science Adv. Drug Delivery Rev.
– volume: 2
  start-page: 48
  year: 2002
  publication-title: Nat. Rev. Cancer
– volume: 6 32 7 24
  start-page: 2087 9515 1918 3639
  year: 2010 2011 2013 2012
  publication-title: Soft Matter Biomaterials ACS Nano Adv. Mater.
– volume: 10 53 127 35
  start-page: 93 370 8236 1068
  year: 2015 2015 2005 2006
  publication-title: Nano Today Biomaterials J. Am. Chem. Soc. Chem. Soc. Rev.
– volume: 7
  start-page: 3246
  year: 2011
  publication-title: Soft Matter
– volume: 145
  start-page: 138
  year: 2017
  publication-title: Biomaterials
– year: 2019
  publication-title: Chin. Chem. Lett.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 135 99
  start-page: 5058
  year: 2013 2002
  publication-title: J. Am. Chem. Soc. Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 6450
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 5414
  year: 2012
  publication-title: Soft Matter
– volume: 14
  start-page: 4407
  year: 2013
  publication-title: Biomacromolecules
– volume: 300 58 140
  start-page: 595 1 1235
  year: 2003 2016 2018
  publication-title: Science Prog. Polym. Sci. J. Am. Chem. Soc.
– volume: 48 51 51
  start-page: 9914 5293 2864
  year: 2009 2012 2012
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 7
  start-page: 1961
  year: 2013
  publication-title: ACS Nano
– volume: 45 43 19
  start-page: 5792 1389 122
  year: 2006 2004 2014
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Curr. Opin. Colloid Interface Sci.
– volume: 28 30 36
  start-page: 3182 4405 4195
  year: 2007 1997 2003
  publication-title: Biomaterials Macromolecules Macromolecules
– volume: 2 46
  start-page: 885 7230
  year: 2011 2005
  publication-title: Polym. Chem. Polymer
– volume: 38 12 66
  start-page: 503 991 58
  year: 2013 2013 2014
  publication-title: Prog. Polym. Sci. Nat. Mater. Adv. Drug Delivery Rev.
– volume: 34
  start-page: 3132
  year: 2013
  publication-title: Biomaterials
– volume: 3 17
  start-page: 752 882
  year: 2014 2016
  publication-title: Adv. Healthcare Mater. Biomacromolecules
– year: 2019
  publication-title: Adv. Mater.
– ident: e_1_2_4_10_1
  doi: 10.1517/17425240903380446
– ident: e_1_2_4_1_1
  doi: 10.1126/science.1078192
– ident: e_1_2_4_21_1
  doi: 10.1002/anie.200602168
– ident: e_1_2_4_12_1
  doi: 10.1021/bm401086d
– ident: e_1_2_4_32_1
  doi: 10.1016/j.biomaterials.2013.01.042
– ident: e_1_2_4_6_1
  doi: 10.1016/j.addr.2007.11.010
– ident: e_1_2_4_25_1
  doi: 10.1016/j.biomaterials.2017.08.005
– ident: e_1_2_4_37_3
  doi: 10.1021/ma034032t
– ident: e_1_2_4_31_1
  doi: 10.1021/ma200675w
– ident: e_1_2_4_34_2
  doi: 10.1073/pnas.052653099
– ident: e_1_2_4_28_1
  doi: 10.1038/nbt896
– year: 2019
  ident: e_1_2_4_29_1
  publication-title: Chin. Chem. Lett.
– ident: e_1_2_4_27_1
  doi: 10.1002/adma.201902604
– ident: e_1_2_4_30_1
  doi: 10.1016/j.jconrel.2014.05.042
– ident: e_1_2_4_34_1
  doi: 10.1021/ja408754z
– ident: e_1_2_4_35_2
  doi: 10.1016/j.polymer.2005.06.032
– ident: e_1_2_4_17_1
  doi: 10.1038/nrc706
– ident: e_1_2_4_20_1
  doi: 10.1002/anie.200904260
– ident: e_1_2_4_15_1
  doi: 10.1002/anie.201103806
– ident: e_1_2_4_44_1
  doi: 10.1002/adma.201502865
– ident: e_1_2_4_10_2
  doi: 10.1039/C4CC03153A
– ident: e_1_2_4_23_1
  doi: 10.1039/b926689e
– ident: e_1_2_4_23_4
  doi: 10.1002/adma.201200954
– ident: e_1_2_4_36_2
  doi: 10.1016/j.polymer.2004.12.056
– ident: e_1_2_4_39_1
  doi: 10.1021/ja056726i
– ident: e_1_2_4_18_1
  doi: 10.1038/nmat2992
– ident: e_1_2_4_26_1
  doi: 10.1021/bm401342t
– ident: e_1_2_4_37_2
  doi: 10.1021/ma951386e
– ident: e_1_2_4_5_2
  doi: 10.1016/S0168-3659(01)00275-9
– ident: e_1_2_4_13_1
  doi: 10.1039/b701217a
– ident: e_1_2_4_23_2
  doi: 10.1016/j.biomaterials.2011.08.074
– ident: e_1_2_4_15_2
  doi: 10.1002/adma.201403877
– ident: e_1_2_4_20_2
  doi: 10.1002/anie.201201179
– ident: e_1_2_4_11_2
  doi: 10.1016/j.biomaterials.2015.02.085
– ident: e_1_2_4_35_1
  doi: 10.1039/c0py00376j
– ident: e_1_2_4_43_1
  doi: 10.1016/j.biomaterials.2011.02.006
– ident: e_1_2_4_2_2
  doi: 10.1016/j.progpolymsci.2010.06.003
– ident: e_1_2_4_20_3
  doi: 10.1002/anie.201107144
– ident: e_1_2_4_38_2
  doi: 10.1039/C2BM00096B
– ident: e_1_2_4_33_2
  doi: 10.1016/j.biomaterials.2014.01.018
– ident: e_1_2_4_42_1
  doi: 10.1021/jacs.8b01873
– ident: e_1_2_4_8_1
  doi: 10.1126/science.1226338
– ident: e_1_2_4_24_1
  doi: 10.1002/adhm.201300308
– ident: e_1_2_4_38_3
  doi: 10.1021/bm201730p
– ident: e_1_2_4_1_2
  doi: 10.1016/j.addr.2012.09.013
– ident: e_1_2_4_7_2
  doi: 10.1038/sj.bjc.6602479
– ident: e_1_2_4_41_1
  doi: 10.1038/ncomms15144
– ident: e_1_2_4_11_1
  doi: 10.1016/j.nantod.2015.01.005
– ident: e_1_2_4_31_2
  doi: 10.1002/adma.201102313
– ident: e_1_2_4_7_1
  doi: 10.1007/s10637-011-9709-2
– ident: e_1_2_4_22_1
  doi: 10.1039/c2sm07402h
– ident: e_1_2_4_28_2
  doi: 10.1016/j.biomaterials.2014.01.027
– ident: e_1_2_4_36_3
  doi: 10.1021/ma00193a017
– ident: e_1_2_4_11_3
  doi: 10.1021/ja043042m
– ident: e_1_2_4_19_2
  doi: 10.1038/nmat3776
– ident: e_1_2_4_21_3
  doi: 10.1016/j.cocis.2014.03.014
– ident: e_1_2_4_36_1
  doi: 10.1016/0032-3861(96)89403-1
– ident: e_1_2_4_14_1
  doi: 10.1021/ja053919x
– ident: e_1_2_4_40_1
  doi: 10.1021/nn304439f
– ident: e_1_2_4_9_1
  doi: 10.1021/nl102184c
– ident: e_1_2_4_10_3
  doi: 10.1016/j.nantod.2012.01.002
– ident: e_1_2_4_33_1
  doi: 10.1039/b815918a
– ident: e_1_2_4_19_3
  doi: 10.1016/j.addr.2013.09.008
– ident: e_1_2_4_37_1
  doi: 10.1016/j.biomaterials.2007.03.025
– ident: e_1_2_4_2_1
  doi: 10.1016/j.progpolymsci.2016.05.005
– ident: e_1_2_4_11_4
  doi: 10.1039/b514858h
– ident: e_1_2_4_24_2
  doi: 10.1021/acs.biomac.5b01578
– ident: e_1_2_4_38_1
  doi: 10.1038/nmat2442
– ident: e_1_2_4_4_3
  doi: 10.1021/jacs.7b12776
– ident: e_1_2_4_4_1
  doi: 10.1126/science.1083625
– ident: e_1_2_4_4_2
  doi: 10.1016/j.progpolymsci.2015.10.009
– ident: e_1_2_4_13_2
  doi: 10.1021/ja011206i
– ident: e_1_2_4_3_2
  doi: 10.1002/adma.201705436
– ident: e_1_2_4_5_1
  doi: 10.1016/j.jconrel.2011.06.012
– ident: e_1_2_4_21_2
  doi: 10.1002/anie.200352428
– ident: e_1_2_4_23_3
  doi: 10.1021/nn4002769
– ident: e_1_2_4_43_2
  doi: 10.1016/S0168-3659(02)00016-0
– ident: e_1_2_4_16_1
  doi: 10.1039/c0sm00999g
– ident: e_1_2_4_3_1
  doi: 10.1002/adma.201302215
– ident: e_1_2_4_12_2
  doi: 10.1021/mz300522n
– ident: e_1_2_4_19_1
  doi: 10.1016/j.progpolymsci.2012.07.002
SSID ssj0001537418
Score 2.3232055
Snippet Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However,...
Abstract Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1902701
SubjectTerms click chemistry
Communication
Communications
crosslinking induced reassembly
drug delivery
Drug delivery systems
Efficiency
fluorescence resonance energy transfer
Fourier transforms
multiblock polyurethane
NMR
Nuclear magnetic resonance
Polymers
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ1_E1q_VKhEE9WHp7ia5JL7VaimCImqhb0s-Jii92xNtC_ffO5PNLXdo6YtPB5e53exk5uY32clvGHsRZtqhH7XEU9nUMmpRG9GGuvNONzGomc2n-D9-mp2cyg9n6myj1RfVhI30wKPiDlxyyWqvg89gHkxqTaRCH5ACosw8nxjzNpKp8XywIFqWNUtj0x24eEXs3Bj_Ol06wKyjUCbr_xfC_LtQchPA5gh0fJfdKdCRH45T3mW3YNhju8U5f_NXhUH69T02P6K7lrYInLpzBIj8CyBQhoWfr_gy8Xzy1mMoO-efl_MVbV-_4Ycx5rpY_BUCQ_4Op7FYOBJHUJrLaFfcDXSpsbKWGk_cZ6fH778dndSlrUIdFIKzunW-tVGCsE1SGj-1a0ECiFZFb5IQCJGEUA7_ejxgdmIw50iIA5JQVibU7AO2MywHeMS4SylGTGJitEp2IK33wbXWRZBOQtAVq9dq7kPhHKfWF_N-ZEvuelqWflqWir2c5H-ObBvXSr6lVZukiCU7f4G20xfb6W-ynYrtr9e8L66Lt5D5_K2ZyWuGFTHcm8ZU7Pk0jD5JL1rcAMtLlBEW80CBuXfFHo4WNE1UIIQ1iJoqprdsa-tJtkeGH98z77cmVlWJ16yzFd6goR5xzVdE2-rx_1DVE3a7o52GXLO0z3Yufl3CU4RjF_5Z9rw_KusyPg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley_OA刊
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA8yX3wR52fdHBkI6kNY2yQ3iW9zcwxBGepgbyWfTry3lX3B_e89J-3tVtwQnwrNadrm5DS_k57zO4S89jNlwY4q5KksmQiKM80rz2pnVRm8nJmcxf_5y-zwWHw6kSc3svh7fohxww0tI3-v0cCtO9-5Jg214QrptmFBqxUmcN3H_FoM6qvF0fUui-RIz4IV5sC7ZlwLsWJuLOudaReTlSkT-N-GOv8OnrwJavOqdPCIPBzgJN3t9b9O7sX2MVkfDPacvh1Ypd89IfM9vOtQKoFixQ4fA_0aATzHhZsvaZdozsZ1sLz9okfdfIlb2u_pbgg5VhauArBI9-ExFguL4gBUc2jtktoWu-qjbbEYxVNyfPDx-94hG0otMC8BsLHKusoEEbkpk1RwVLaKIkZeyeB04hxgE-fSwufIRfBYNPghCbBB4tKIBKP8jKy1XRtfEGpTCgEcmxCMFHUUxjlvK2NDFFZErwrCVsPc-IGHHMthzJueQbluUC3NqJaCvBnlf_cMHHdKfkCtjVLInJ1PdGc_msEQG5tsMsop77JzGHWqdMDAsSh4DIIXZHOl82YwZ7iFyDm5eibuaJbIeq9LXZDtsRnsFH--2DZ2lyDDDfiGHPzxgjzvZ9D4oBxgrQYkVRA1mVuTN5m2tD9PMxe4QqZVAX2yPAv_MUINYJ1vgMDly_-U3yAPatxoyCFLm2Tt4uwyvgI0duG2ssH9AYWTLZg
  priority: 102
  providerName: Wiley-Blackwell
Title Crosslinking Induced Reassembly of Multiblock Polymers: Addressing the Dilemma of Stability and Responsivity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201902701
https://www.ncbi.nlm.nih.gov/pubmed/32328415
https://www.proquest.com/docview/2406478864
https://www.proquest.com/docview/2456324808
https://www.proquest.com/docview/2394873254
https://pubmed.ncbi.nlm.nih.gov/PMC7175344
https://doaj.org/article/afaf97b7cb01495e8f18d1989e43ed43
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxEB7R5MIFUZ4LJTISEnBYNbv2xl4uKH2pQrSKWir1trLXNiCS3dIHUv49M453IYLCKVI8-_J47G_G428AXtUTqdGOMuKpHKfCSp4qntVpbrQc27qYlOEU_9Hx5PBMfDgvzmPA7SqmVXZzYpiobVtTjHybNuhw8Vdj9f7ie0pVo2h3NZbQ2IAhTsFKDWC4s388O_kVZSk40bN0bI3jfFvbH8TSjetgLmMlmG41CqT9f0OafyZM_g5kw0p0cB_uRQjJpiudb8Id1zyAzWikV-xNZJJ--xDmu_TUWB6BUZWO2ll24hAwu4WZL1nrWTiBa3BJ-8Zm7XxJYex3bGptyI_FqxAgsj18jcVCkziC05BOu2S6oVutMmypAMUjODvY_7R7mMbyCmldIEhLM22y0grHy7EvJP5KnTnhHM8Ka5TnHKES54XGKcg49FIU-h4e8YDnRSk89uxjGDRt454C095bi86MtWUhcidKY2qdldo6oYWrZQJp181VHbnHqQTGvFqxJucVqaXq1ZLA617-YsW6cavkDmmtlyK27PBHe_m5isZXaa99KY2sTXAInfKZspQs5gR3VvAEtjqdV9GE8REinMNVE3FLczceE3jZN6Nt0oaLblx7gzK8RH-Qow-ewJPVCOpflCOUVYieEpBrY2vtS9Zbmq9fAv-3JHZVgfdMwyj8Tw9ViG9OEXUXz_79Gc_hbk6xhJCVtAWD68sb9wIB17UZwUYuZiMYTveOPp6Ooo2NQvjiJ1cbLeQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNcEOUZKGAkEHCImsROnCAh1Ke2tF1VpZV6C3ZsA2I3KX2A9k_xG5lxkoUVFE49rbR2Xp7xzDf2-BuAZ1UmFc6jmHgqo1AYycOcx1WYaCUjU6VZ4U_x742y4ZF4d5weL8CP_iwMpVX2NtEbatNUtEa-Qht06PzzKH978jWkqlG0u9qX0GjVYsdOv2PIdvZmewPl-zxJtjYP14dhV1UgrFLEJmGsdFwYYTHYd6nEX6liK6zlcWp07jhHhMB5qnDmaYvgPEfI7dANOp4WwsVUJQJN_qLgWZQMYHFtc7R_8GtVJ-VEB9OzQ0bJijLfiBUc_W4iu8ozvffzRQL-hmz_TND8HTh7z7d1E250kJWttjq2BAu2vgVLnVE4Yy875upXt2G8Tk_tyjEwqgpSWcMOLAJ0O9HjKWsc8yd-NbrQL2y_GU9p2fw1WzXG5-PiVQhI2Qa-xmSiqDuCYZ--O2Wqplu1Gb1U8OIOHF3JwN-FQd3U9j4w5ZwxGDwZU6QisaLQulJxoYwVSthKBhD2w1xWHdc5ldwYly1Lc1KSWMqZWAJ4Met_0rJ8XNpzjaQ260Xs3P6P5vRj2U32UjnlCqllpX0AanMX54aS06zg1ggewHIv87IzGfgI4c_95pm4pLnX_wCezprRFtAGj6ptc4F9eIHxJ8eYP4B7rQbNXpQjdM4RrQUg53Rr7kvmW-rPnzzfuCQ2V4H3DL0W_meESsRT7xHlpw_-_RlP4NrwcG-33N0e7TyE6wmtY_iMqGUYnJ9e2EcI9s71426GMfhw1ZP6JwIDZPk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTkK8IMZnYICRQMBD1Ca26wQJoW1dtTGoqsGkvWV2bAOiTcY-QP3X-Ou4c5xABYOnPVWqnS-f7-539vl3hDwph1KBHiXIUzmIuZEszlhSxqlWcmBKMcz9Kf53k-HOAX9zKA5XyI_2LAymVbY20RtqU5e4Rt7HDTpw_tkg67uQFjEdjV8ff42xghTutLblNJopsmcX3yF8O321OwJZP03T8faHrZ04VBiISwE4JU6UTnLDLQT-Tkj4lSqx3FqWCKMzxxigBcaEAi3UFoB6BvDbgUt0TOTcJVgxAsz_qsSoqEdWN7cn0_1fKzyCITVMyxQ5SPvKfEOGcPDBqQxVaFpP6AsG_A3l_pms-TuI9l5wfJ1cC_CVbjTzbY2s2OoGWQsG4pQ-DyzWL26S2RY-NZRmoFghpLSG7lsA63auZwtaO-pP_2pwp1_otJ4tcAn9Jd0wxufmwlUATukIXmM-V9gdgLFP5V1QVeGtmuxeLH5xixxcysDfJr2qruxdQpVzxkAgZUwueGp5rnWpklwZyxW3pYxI3A5zUQbecyy_MSsaxua0QLEUnVgi8qzrf9wwflzYcxOl1vVCpm7_R33ysQiKXyinXC61LLUPRm3mksxgoprlzBrOIrLeyrwI5gMewf0Z4GzIL2hudSEij7tmsAu42aMqW59DH5ZDLMog_o_InWYGdS_KAEZngNwiIpfm1tKXLLdUnz957nGJzK4c7hn7WfifESoAW70HxC_u_fszHpEroMzF293J3n1yNcUlDZ8ctU56Zyfn9gHgvjP9MCgYJUeXrdM_AcI6aS4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crosslinking+Induced+Reassembly+of+Multiblock+Polymers%3A+Addressing+the+Dilemma+of+Stability+and+Responsivity&rft.jtitle=Advanced+science&rft.au=Yang%2C+Rui&rft.au=Zheng%2C+Yi&rft.au=Shuai%2C+Xiaoyu&rft.au=Fan%2C+Fan&rft.date=2020-04-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=7&rft.issue=8&rft.spage=1902701&rft_id=info:doi/10.1002%2Fadvs.201902701&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon