Near‐Infrared‐Responded High Sensitivity Nanoprobe for Steady and Visualized Detection of Albumin in Hepatic Organoids and Mouse Liver
Exploring the advanced techniques for protein detection facilitates cell fate investigation. However, it remains challenging to quantify and visualize the protein with one single probe. Here, a luminescent approach to detect hepatic cell fate marker albumin in vitro and living cell labeling with upc...
Saved in:
Published in | Advanced science Vol. 9; no. 26; pp. e2202505 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.09.2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exploring the advanced techniques for protein detection facilitates cell fate investigation. However, it remains challenging to quantify and visualize the protein with one single probe. Here, a luminescent approach to detect hepatic cell fate marker albumin in vitro and living cell labeling with upconversion nanoparticles (UCNPs), which are conjugated with antibody (Ab) and rose bengal hexanoic acid (RBHA) is reported. To guarantee the detection quality and accuracy, an “OFF–ON” strategy is adopted: in the presence of albumin, the luminescence of nanoparticles remains suppressed owing to energy transfer to the quencher. Upon albumin binding to the antibody, the luminescence is recovered under near‐infrared light. In various bio‐samples, the UCNPs‐Ab‐RBHA (UCAR) nanoprobe can sense albumin with a broad detection range (5–315 ng mL−1). When applied to liver ductal organoid culture medium, the UCAR can monitor hepatocyte differentiation in real time by sensing the secreted albumin. Further, UCAR enables live imaging of cellular albumin in cells, organoids, and tissues. In a CCl4‐induced liver injury model, UCAR detects reduced albumin in liver tissue and serum. Thus, a biocompatible nanoprobe for both quantification and imaging of protein in complex biological environment with superior stability and high sensitivity is provided.
Förster resonance energy transfer‐based UCNPs‐Ab‐RBHA (upconversion nanoparticles‐antibody‐rose bengal hexanoic acid, UCAR) nanoprobe adopts an “OFF–ON” strategy to detect target protein. Under near‐infrared light, UCAR nanoprobe enables protein quantification in vitro and target cell labeling in living cells, organoids, and mouse liver with superior stability and high sensitivity, showing great potential in protein/cell tracking in vivo and clinical diagnosis. |
---|---|
AbstractList | Exploring the advanced techniques for protein detection facilitates cell fate investigation. However, it remains challenging to quantify and visualize the protein with one single probe. Here, a luminescent approach to detect hepatic cell fate marker albumin in vitro and living cell labeling with upconversion nanoparticles (UCNPs), which are conjugated with antibody (Ab) and rose bengal hexanoic acid (RBHA) is reported. To guarantee the detection quality and accuracy, an "OFF-ON" strategy is adopted: in the presence of albumin, the luminescence of nanoparticles remains suppressed owing to energy transfer to the quencher. Upon albumin binding to the antibody, the luminescence is recovered under near-infrared light. In various bio-samples, the UCNPs-Ab-RBHA (UCAR) nanoprobe can sense albumin with a broad detection range (5-315 ng mL
). When applied to liver ductal organoid culture medium, the UCAR can monitor hepatocyte differentiation in real time by sensing the secreted albumin. Further, UCAR enables live imaging of cellular albumin in cells, organoids, and tissues. In a CCl
-induced liver injury model, UCAR detects reduced albumin in liver tissue and serum. Thus, a biocompatible nanoprobe for both quantification and imaging of protein in complex biological environment with superior stability and high sensitivity is provided. Exploring the advanced techniques for protein detection facilitates cell fate investigation. However, it remains challenging to quantify and visualize the protein with one single probe. Here, a luminescent approach to detect hepatic cell fate marker albumin in vitro and living cell labeling with upconversion nanoparticles (UCNPs), which are conjugated with antibody (Ab) and rose bengal hexanoic acid (RBHA) is reported. To guarantee the detection quality and accuracy, an “OFF–ON” strategy is adopted: in the presence of albumin, the luminescence of nanoparticles remains suppressed owing to energy transfer to the quencher. Upon albumin binding to the antibody, the luminescence is recovered under near-infrared light. In various bio-samples, the UCNPs-Ab-RBHA (UCAR) nanoprobe can sense albumin with a broad detection range (5–315 ng mL−1). When applied to liver ductal organoid culture medium, the UCAR can monitor hepatocyte differentiation in real time by sensing the secreted albumin. Further, UCAR enables live imaging of cellular albumin in cells, organoids, and tissues. In a CCl4-induced liver injury model, UCAR detects reduced albumin in liver tissue and serum. Thus, a biocompatible nanoprobe for both quantification and imaging of protein in complex biological environment with superior stability and high sensitivity is provided. Exploring the advanced techniques for protein detection facilitates cell fate investigation. However, it remains challenging to quantify and visualize the protein with one single probe. Here, a luminescent approach to detect hepatic cell fate marker albumin in vitro and living cell labeling with upconversion nanoparticles (UCNPs), which are conjugated with antibody (Ab) and rose bengal hexanoic acid (RBHA) is reported. To guarantee the detection quality and accuracy, an “OFF–ON” strategy is adopted: in the presence of albumin, the luminescence of nanoparticles remains suppressed owing to energy transfer to the quencher. Upon albumin binding to the antibody, the luminescence is recovered under near‐infrared light. In various bio‐samples, the UC NPs‐ A b‐ R BHA (UCAR) nanoprobe can sense albumin with a broad detection range (5–315 ng mL −1 ). When applied to liver ductal organoid culture medium, the UCAR can monitor hepatocyte differentiation in real time by sensing the secreted albumin. Further, UCAR enables live imaging of cellular albumin in cells, organoids, and tissues. In a CCl 4 ‐induced liver injury model, UCAR detects reduced albumin in liver tissue and serum. Thus, a biocompatible nanoprobe for both quantification and imaging of protein in complex biological environment with superior stability and high sensitivity is provided. Exploring the advanced techniques for protein detection facilitates cell fate investigation. However, it remains challenging to quantify and visualize the protein with one single probe. Here, a luminescent approach to detect hepatic cell fate marker albumin in vitro and living cell labeling with upconversion nanoparticles (UCNPs), which are conjugated with antibody (Ab) and rose bengal hexanoic acid (RBHA) is reported. To guarantee the detection quality and accuracy, an "OFF-ON" strategy is adopted: in the presence of albumin, the luminescence of nanoparticles remains suppressed owing to energy transfer to the quencher. Upon albumin binding to the antibody, the luminescence is recovered under near-infrared light. In various bio-samples, the UCNPs-Ab-RBHA (UCAR) nanoprobe can sense albumin with a broad detection range (5-315 ng mL-1 ). When applied to liver ductal organoid culture medium, the UCAR can monitor hepatocyte differentiation in real time by sensing the secreted albumin. Further, UCAR enables live imaging of cellular albumin in cells, organoids, and tissues. In a CCl4 -induced liver injury model, UCAR detects reduced albumin in liver tissue and serum. Thus, a biocompatible nanoprobe for both quantification and imaging of protein in complex biological environment with superior stability and high sensitivity is provided.Exploring the advanced techniques for protein detection facilitates cell fate investigation. However, it remains challenging to quantify and visualize the protein with one single probe. Here, a luminescent approach to detect hepatic cell fate marker albumin in vitro and living cell labeling with upconversion nanoparticles (UCNPs), which are conjugated with antibody (Ab) and rose bengal hexanoic acid (RBHA) is reported. To guarantee the detection quality and accuracy, an "OFF-ON" strategy is adopted: in the presence of albumin, the luminescence of nanoparticles remains suppressed owing to energy transfer to the quencher. Upon albumin binding to the antibody, the luminescence is recovered under near-infrared light. In various bio-samples, the UCNPs-Ab-RBHA (UCAR) nanoprobe can sense albumin with a broad detection range (5-315 ng mL-1 ). When applied to liver ductal organoid culture medium, the UCAR can monitor hepatocyte differentiation in real time by sensing the secreted albumin. Further, UCAR enables live imaging of cellular albumin in cells, organoids, and tissues. In a CCl4 -induced liver injury model, UCAR detects reduced albumin in liver tissue and serum. Thus, a biocompatible nanoprobe for both quantification and imaging of protein in complex biological environment with superior stability and high sensitivity is provided. Exploring the advanced techniques for protein detection facilitates cell fate investigation. However, it remains challenging to quantify and visualize the protein with one single probe. Here, a luminescent approach to detect hepatic cell fate marker albumin in vitro and living cell labeling with upconversion nanoparticles (UCNPs), which are conjugated with antibody (Ab) and rose bengal hexanoic acid (RBHA) is reported. To guarantee the detection quality and accuracy, an “OFF–ON” strategy is adopted: in the presence of albumin, the luminescence of nanoparticles remains suppressed owing to energy transfer to the quencher. Upon albumin binding to the antibody, the luminescence is recovered under near‐infrared light. In various bio‐samples, the UC NPs‐ A b‐ R BHA (UCAR) nanoprobe can sense albumin with a broad detection range (5–315 ng mL −1 ). When applied to liver ductal organoid culture medium, the UCAR can monitor hepatocyte differentiation in real time by sensing the secreted albumin. Further, UCAR enables live imaging of cellular albumin in cells, organoids, and tissues. In a CCl 4 ‐induced liver injury model, UCAR detects reduced albumin in liver tissue and serum. Thus, a biocompatible nanoprobe for both quantification and imaging of protein in complex biological environment with superior stability and high sensitivity is provided. Förster resonance energy transfer‐based UCNPs‐Ab‐RBHA (upconversion nanoparticles‐antibody‐rose bengal hexanoic acid, UCAR) nanoprobe adopts an “OFF–ON” strategy to detect target protein. Under near‐infrared light, UCAR nanoprobe enables protein quantification in vitro and target cell labeling in living cells, organoids, and mouse liver with superior stability and high sensitivity, showing great potential in protein/cell tracking in vivo and clinical diagnosis. Abstract Exploring the advanced techniques for protein detection facilitates cell fate investigation. However, it remains challenging to quantify and visualize the protein with one single probe. Here, a luminescent approach to detect hepatic cell fate marker albumin in vitro and living cell labeling with upconversion nanoparticles (UCNPs), which are conjugated with antibody (Ab) and rose bengal hexanoic acid (RBHA) is reported. To guarantee the detection quality and accuracy, an “OFF–ON” strategy is adopted: in the presence of albumin, the luminescence of nanoparticles remains suppressed owing to energy transfer to the quencher. Upon albumin binding to the antibody, the luminescence is recovered under near‐infrared light. In various bio‐samples, the UCNPs‐Ab‐RBHA (UCAR) nanoprobe can sense albumin with a broad detection range (5–315 ng mL−1). When applied to liver ductal organoid culture medium, the UCAR can monitor hepatocyte differentiation in real time by sensing the secreted albumin. Further, UCAR enables live imaging of cellular albumin in cells, organoids, and tissues. In a CCl4‐induced liver injury model, UCAR detects reduced albumin in liver tissue and serum. Thus, a biocompatible nanoprobe for both quantification and imaging of protein in complex biological environment with superior stability and high sensitivity is provided. Exploring the advanced techniques for protein detection facilitates cell fate investigation. However, it remains challenging to quantify and visualize the protein with one single probe. Here, a luminescent approach to detect hepatic cell fate marker albumin in vitro and living cell labeling with upconversion nanoparticles (UCNPs), which are conjugated with antibody (Ab) and rose bengal hexanoic acid (RBHA) is reported. To guarantee the detection quality and accuracy, an “OFF–ON” strategy is adopted: in the presence of albumin, the luminescence of nanoparticles remains suppressed owing to energy transfer to the quencher. Upon albumin binding to the antibody, the luminescence is recovered under near‐infrared light. In various bio‐samples, the UCNPs‐Ab‐RBHA (UCAR) nanoprobe can sense albumin with a broad detection range (5–315 ng mL−1). When applied to liver ductal organoid culture medium, the UCAR can monitor hepatocyte differentiation in real time by sensing the secreted albumin. Further, UCAR enables live imaging of cellular albumin in cells, organoids, and tissues. In a CCl4‐induced liver injury model, UCAR detects reduced albumin in liver tissue and serum. Thus, a biocompatible nanoprobe for both quantification and imaging of protein in complex biological environment with superior stability and high sensitivity is provided. Förster resonance energy transfer‐based UCNPs‐Ab‐RBHA (upconversion nanoparticles‐antibody‐rose bengal hexanoic acid, UCAR) nanoprobe adopts an “OFF–ON” strategy to detect target protein. Under near‐infrared light, UCAR nanoprobe enables protein quantification in vitro and target cell labeling in living cells, organoids, and mouse liver with superior stability and high sensitivity, showing great potential in protein/cell tracking in vivo and clinical diagnosis. |
Author | Wang, Jihua Tian, Meng Shen, Congcong Wang, Zhenxing Xu, Shicai Lv, Enguang Wei, Jinsong Li, Xuewen Zhao, Bing Sun, Wan Li, Xiaoyu Tian, Shizheng Liu, Guofeng Li, Chonghui |
AuthorAffiliation | 3 Greater Bay Area Institute of Precision Medicine (Guangzhou) Fudan University Nansha District Guangzhou 511458 China 2 State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai 200438 China 1 Shandong Key Laboratory of Biophysics Institute of Biophysics College of Physics and Electronic Information Dezhou University Dezhou 253023 China |
AuthorAffiliation_xml | – name: 2 State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai 200438 China – name: 1 Shandong Key Laboratory of Biophysics Institute of Biophysics College of Physics and Electronic Information Dezhou University Dezhou 253023 China – name: 3 Greater Bay Area Institute of Precision Medicine (Guangzhou) Fudan University Nansha District Guangzhou 511458 China |
Author_xml | – sequence: 1 givenname: Guofeng surname: Liu fullname: Liu, Guofeng organization: Dezhou University – sequence: 2 givenname: Jinsong orcidid: 0000-0003-2343-9705 surname: Wei fullname: Wei, Jinsong organization: Fudan University – sequence: 3 givenname: Xiaoyu surname: Li fullname: Li, Xiaoyu organization: Fudan University – sequence: 4 givenname: Meng surname: Tian fullname: Tian, Meng organization: Dezhou University – sequence: 5 givenname: Zhenxing surname: Wang fullname: Wang, Zhenxing organization: Dezhou University – sequence: 6 givenname: Congcong surname: Shen fullname: Shen, Congcong organization: Dezhou University – sequence: 7 givenname: Wan surname: Sun fullname: Sun, Wan organization: Dezhou University – sequence: 8 givenname: Chonghui surname: Li fullname: Li, Chonghui organization: Dezhou University – sequence: 9 givenname: Xuewen surname: Li fullname: Li, Xuewen organization: Fudan University – sequence: 10 givenname: Enguang surname: Lv fullname: Lv, Enguang organization: Dezhou University – sequence: 11 givenname: Shizheng surname: Tian fullname: Tian, Shizheng organization: Fudan University – sequence: 12 givenname: Jihua surname: Wang fullname: Wang, Jihua email: jhwang@dzu.edu.cn organization: Dezhou University – sequence: 13 givenname: Shicai surname: Xu fullname: Xu, Shicai email: shicaixu@dzu.edu.cn organization: Dezhou University – sequence: 14 givenname: Bing orcidid: 0000-0001-9891-3569 surname: Zhao fullname: Zhao, Bing email: bingzhao@fudan.edu.cn organization: Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35853243$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEQXaEiWkqvHNFKXLikeP0R716QqhZIpNBKBHq1xutx6mpjp_YmKJw4c-I38ktwmhK1vVQaySP7vTfPM_Oy2PPBY1G8rshxRQh9D2aVjimhOQQRz4oDWjX1gNWc793L94ujlK4JIZVgklf1i2KfiVowytlB8fscIf799WfsbYSIJqdfMS2CN2jKkZtdlVP0yfVu5fp1eQ4-LGLQWNoQy2mPYNYleFNeurSEzv3MpDPsse1d8GWw5Umnl3PnyxwjXEDv2vIizrKKM-mW-CUsE5YTt8L4qnhuoUt4dHceFt8_ffx2OhpMLj6PT08mg1YIyQbaSE3tEFAwBjWXaLRmlgKpqJTMCoktEqYl6kZz0LoGK2vBTQvDIafA2GEx3uqaANdqEd0c4loFcOr2IsSZgpiddqisFijrFvmmkm0E2MaKxpBGg2aGQNb6sNVaLPUcTYu-j9A9EH344t2VmoWVargUgtdZ4N2dQAw3S0y9mrvUYteBx9waRYcNJbKqqypD3z6CXodl9LlVisqKU8Gq4TCj3tx3tLPyf-QZcLwFtDGkFNHuIBVRm7VSm7VSu7XKBP6I0LoeNhPOP3Ldk7QfrsP1E0XUydnllNOGsX8Yw-X4 |
CitedBy_id | crossref_primary_10_1021_cbmi_3c00059 crossref_primary_10_1039_D3NJ03752E crossref_primary_10_1016_j_jcis_2024_07_091 crossref_primary_10_1002_mabi_202300223 crossref_primary_10_1088_1361_6528_ad115e crossref_primary_10_1002_advs_202412526 crossref_primary_10_3390_s25051341 crossref_primary_10_3389_fimmu_2023_1172262 crossref_primary_10_1039_D4BM00774C crossref_primary_10_1002_smll_202404482 crossref_primary_10_3390_molecules29173998 crossref_primary_10_1155_2024_8368987 crossref_primary_10_1016_j_cej_2022_140456 crossref_primary_10_3390_molecules29061402 crossref_primary_10_1021_acsomega_4c08801 crossref_primary_10_1088_1361_6528_ad3363 crossref_primary_10_1016_j_ccr_2023_215632 crossref_primary_10_1016_j_snb_2024_135576 crossref_primary_10_1016_j_foodcont_2024_110666 crossref_primary_10_1021_acsomega_4c04588 crossref_primary_10_3390_app15052634 crossref_primary_10_1002_advs_202302804 crossref_primary_10_1021_acsomega_4c03431 crossref_primary_10_1016_j_surfcoat_2025_131791 crossref_primary_10_1021_acsnano_4c13330 crossref_primary_10_1016_j_talanta_2025_127524 crossref_primary_10_3390_molecules30051132 crossref_primary_10_1007_s11626_023_00817_8 crossref_primary_10_1039_D4CP01325E crossref_primary_10_1016_j_cej_2024_154454 crossref_primary_10_1021_acs_analchem_3c01120 crossref_primary_10_1016_j_actbio_2025_02_054 crossref_primary_10_1002_lpor_202301028 crossref_primary_10_1016_j_microc_2024_112312 crossref_primary_10_1039_D3NA01112G crossref_primary_10_1088_1361_6501_ad3bdc crossref_primary_10_1016_j_microc_2025_113341 crossref_primary_10_1039_D3NA00564J crossref_primary_10_1039_D4AY00315B |
Cites_doi | 10.1016/j.cell.2014.11.050 10.1016/j.cell.2018.11.013 10.1038/s41467-019-13796-w 10.1038/nprot.2016.097 10.1016/bs.apha.2019.03.001 10.1002/adma.201900321 10.1039/C5SC03363B 10.1186/1475-2891-9-69 10.1039/C1CS15238F 10.1021/ja4075002 10.1074/jbc.RA119.008616 10.1038/s41586-018-0075-5 10.1016/j.dyepig.2008.02.003 10.1016/j.cej.2019.122992 10.1016/j.addr.2018.07.011 10.1038/labinvest.2012.145 10.1016/j.imlet.2018.06.002 10.1038/227561a0 10.1016/j.biomaterials.2012.11.047 10.1002/adma.202070141 10.1038/s41570-018-0057-z 10.2174/0929867023369673 10.3748/wjg.v21.i18.5473 10.1002/advs.201700609 10.1016/j.fct.2009.01.018 10.1039/C8SC00670A 10.1016/j.jhep.2018.01.005 10.1016/j.mam.2011.12.002 10.1038/s41598-020-70680-0 10.1002/lsm.10138 10.1002/adma.200901356 10.1016/j.jcyt.2018.10.007 10.1016/j.jpba.2017.04.023 10.1039/C4CS00175C 10.1021/ja00332a021 10.1016/j.nano.2019.102135 10.1021/ac201631b 10.1021/nn201896m 10.1172/JCI107041 10.1002/pmic.201600240 10.1021/jacs.0c07022 10.1016/j.cclet.2018.03.004 10.1021/acs.analchem.7b02923 10.1038/s41467-018-04813-5 10.1021/acs.analchem.7b05341 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202202505 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Proquest Central ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_fb5e78ce43a84f95af9f59d09bab3d0a PMC9475548 35853243 10_1002_advs_202202505 ADVS4293 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2018YFA0109400 – fundername: Taishan Scholars Program of Shandong Province funderid: tsqn201812104 – fundername: Shanghai Pilot Program for Basic Research – Fudan University funderid: 21TQ1400100(21TQ003) – fundername: National Natural Science Foundation of China funderid: 62071085; 22104011; 12104085; 32022022 – fundername: Qingchuang Science and Technology Plan of Shandong Province funderid: 2019KJJ017 – fundername: National Key Research and Development Program of China grantid: 2018YFA0109400 – fundername: National Natural Science Foundation of China grantid: 22104011 – fundername: Shanghai Pilot Program for Basic Research - Fudan University grantid: 21TQ1400100(21TQ003) – fundername: National Natural Science Foundation of China grantid: 32022022 – fundername: National Natural Science Foundation of China grantid: 62071085 – fundername: National Natural Science Foundation of China grantid: 12104085 – fundername: Taishan Scholars Program of Shandong Province grantid: tsqn201812104 – fundername: Qingchuang Science and Technology Plan of Shandong Province grantid: 2019KJJ017 – fundername: ; grantid: 2018YFA0109400 – fundername: Shanghai Pilot Program for Basic Research – Fudan University grantid: 21TQ1400100(21TQ003) – fundername: ; grantid: 62071085; 22104011; 12104085; 32022022 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5573-bd7b2f6ae533a847edbb3f2a012773f57ece03b7eb9b4abb8af7854dca6642a33 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:32:04 EDT 2025 Thu Aug 21 18:39:17 EDT 2025 Fri Jul 11 03:16:36 EDT 2025 Sat Jul 26 02:36:55 EDT 2025 Mon Jul 21 06:00:45 EDT 2025 Thu Apr 24 22:54:07 EDT 2025 Tue Jul 01 03:59:43 EDT 2025 Wed Jan 22 16:22:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | near-infrared-responded high sensitivity nanoprobe mouse liver living cell labeling hepatic organoids protein quantification and imaging |
Language | English |
License | Attribution 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5573-bd7b2f6ae533a847edbb3f2a012773f57ece03b7eb9b4abb8af7854dca6642a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2343-9705 0000-0001-9891-3569 |
OpenAccessLink | https://doaj.org/article/fb5e78ce43a84f95af9f59d09bab3d0a |
PMID | 35853243 |
PQID | 2714253166 |
PQPubID | 4365299 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fb5e78ce43a84f95af9f59d09bab3d0a pubmedcentral_primary_oai_pubmedcentral_nih_gov_9475548 proquest_miscellaneous_2692071811 proquest_journals_2714253166 pubmed_primary_35853243 crossref_primary_10_1002_advs_202202505 crossref_citationtrail_10_1002_advs_202202505 wiley_primary_10_1002_advs_202202505_ADVS4293 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2015; 160 2009; 21 2008 1984 2009 2003; 79 106 47 32 2017 2011 2016; 89 83 7 2020 2019; 142 31 2020 2018; 10 200 1970; 227 2011; 5 2012; 33 2020 2020 2018 2018; 11 32 9 5 2016; 11 2018; 175 2018; 9 2018; 2 2018; 557 2019; 85 2017; 17 2013; 34 2019; 21 2018 2020; 29 382 2015; 44 2015; 21 2018; 90 2013; 135 2018 2019; 68 294 2020; 24 2002 2018; 9 130 1972 2013; 51 93 2010 2017 1990; 9 144 31 2012; 41 e_1_2_9_30_1 e_1_2_9_10_2 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_12_2 e_1_2_9_13_1 e_1_2_9_10_3 e_1_2_9_12_1 Niwa Y. (e_1_2_9_15_3) 1990; 31 e_1_2_9_14_2 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_16_2 e_1_2_9_17_1 e_1_2_9_15_2 e_1_2_9_16_1 e_1_2_9_17_3 e_1_2_9_19_1 e_1_2_9_17_2 e_1_2_9_18_1 e_1_2_9_17_4 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_22_2 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_4_4 e_1_2_9_7_1 e_1_2_9_4_3 e_1_2_9_6_1 e_1_2_9_4_2 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_2 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_28_2 e_1_2_9_29_1 |
References_xml | – volume: 11 start-page: 1724 year: 2016 publication-title: Nat. Protoc. – volume: 11 32 9 5 start-page: 4 2415 year: 2020 2020 2018 2018 publication-title: Nat. Commun. Adv. Mater. Nat. Commun. Adv. Sci. – volume: 10 200 start-page: 5 year: 2020 2018 publication-title: Sci. Rep. Immunol. Lett. – volume: 17 year: 2017 publication-title: Proteomics – volume: 9 start-page: 5242 year: 2018 publication-title: Chem. Sci. – volume: 9 130 start-page: 1463 73 year: 2002 2018 publication-title: Curr. Med. Chem. Adv. Drug Delivery Rev. – volume: 33 start-page: 209 year: 2012 publication-title: Mol. Aspects Med. – volume: 51 93 start-page: 2310 218 year: 1972 2013 publication-title: J. Clin. Invest. Lab. Invest. – volume: 175 start-page: 1591 year: 2018 publication-title: Cell – volume: 34 start-page: 2289 year: 2013 publication-title: Biomaterials – volume: 90 start-page: 3024 year: 2018 publication-title: Anal. Chem. – volume: 41 start-page: 2641 year: 2012 publication-title: Chem. Soc. Rev. – volume: 89 83 7 start-page: 8130 2246 year: 2017 2011 2016 publication-title: Anal. Chem. Anal. Chem. Chem. Sci. – volume: 557 start-page: 247 year: 2018 publication-title: Nature – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 4467 year: 2009 publication-title: Adv. Mater. – volume: 5 start-page: 7838 year: 2011 publication-title: ACS Nano – volume: 142 31 year: 2020 2019 publication-title: J. Am. Chem. Soc. Adv. Mater. – volume: 21 start-page: 113 year: 2019 publication-title: Cytotherapy – volume: 227 start-page: 561 year: 1970 publication-title: Nature – volume: 21 start-page: 5473 year: 2015 publication-title: World J. Gastroenterol. – volume: 79 106 47 32 start-page: 170 5879 855 101 year: 2008 1984 2009 2003 publication-title: Dyes Pigm. J. Am. Chem. Soc. Food Chem. Toxicol. Lasers Surg. Med. – volume: 9 144 31 start-page: 69 138 11 year: 2010 2017 1990 publication-title: Nutr. J. J. Pharm. Biomed. Anal. J. Clin. Lab. Immunol. – volume: 68 294 start-page: 1049 year: 2018 2019 publication-title: J. Hepatol. J. Biol. Chem. – volume: 29 382 start-page: 1321 year: 2018 2020 publication-title: Chin. Chem. Lett. Chem. Eng. J. – volume: 44 start-page: 1509 year: 2015 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 437 year: 2018 publication-title: Nat. Rev. Chem. – volume: 85 start-page: 241 year: 2019 publication-title: Adv. Pharmacol. – volume: 160 start-page: 299 year: 2015 publication-title: Cell – volume: 24 year: 2020 publication-title: Nanomed.: Nanotechnol., Biol. Med. – ident: e_1_2_9_23_1 doi: 10.1016/j.cell.2014.11.050 – ident: e_1_2_9_30_1 doi: 10.1016/j.cell.2018.11.013 – ident: e_1_2_9_4_1 doi: 10.1038/s41467-019-13796-w – ident: e_1_2_9_21_1 doi: 10.1038/nprot.2016.097 – ident: e_1_2_9_29_1 doi: 10.1016/bs.apha.2019.03.001 – ident: e_1_2_9_12_2 doi: 10.1002/adma.201900321 – ident: e_1_2_9_10_3 doi: 10.1039/C5SC03363B – ident: e_1_2_9_15_1 doi: 10.1186/1475-2891-9-69 – ident: e_1_2_9_3_1 doi: 10.1039/C1CS15238F – ident: e_1_2_9_18_1 doi: 10.1021/ja4075002 – ident: e_1_2_9_16_2 doi: 10.1074/jbc.RA119.008616 – ident: e_1_2_9_24_1 doi: 10.1038/s41586-018-0075-5 – ident: e_1_2_9_17_1 doi: 10.1016/j.dyepig.2008.02.003 – ident: e_1_2_9_22_2 doi: 10.1016/j.cej.2019.122992 – ident: e_1_2_9_14_2 doi: 10.1016/j.addr.2018.07.011 – ident: e_1_2_9_25_2 doi: 10.1038/labinvest.2012.145 – ident: e_1_2_9_28_2 doi: 10.1016/j.imlet.2018.06.002 – ident: e_1_2_9_1_1 doi: 10.1038/227561a0 – ident: e_1_2_9_8_1 doi: 10.1016/j.biomaterials.2012.11.047 – ident: e_1_2_9_4_2 doi: 10.1002/adma.202070141 – ident: e_1_2_9_20_1 doi: 10.1038/s41570-018-0057-z – ident: e_1_2_9_14_1 doi: 10.2174/0929867023369673 – ident: e_1_2_9_26_1 doi: 10.3748/wjg.v21.i18.5473 – ident: e_1_2_9_4_4 doi: 10.1002/advs.201700609 – ident: e_1_2_9_17_3 doi: 10.1016/j.fct.2009.01.018 – ident: e_1_2_9_9_1 doi: 10.1039/C8SC00670A – ident: e_1_2_9_16_1 doi: 10.1016/j.jhep.2018.01.005 – ident: e_1_2_9_13_1 doi: 10.1016/j.mam.2011.12.002 – ident: e_1_2_9_28_1 doi: 10.1038/s41598-020-70680-0 – ident: e_1_2_9_17_4 doi: 10.1002/lsm.10138 – ident: e_1_2_9_7_1 doi: 10.1002/adma.200901356 – ident: e_1_2_9_27_1 doi: 10.1016/j.jcyt.2018.10.007 – ident: e_1_2_9_15_2 doi: 10.1016/j.jpba.2017.04.023 – ident: e_1_2_9_5_1 doi: 10.1039/C4CS00175C – ident: e_1_2_9_17_2 doi: 10.1021/ja00332a021 – ident: e_1_2_9_19_1 doi: 10.1016/j.nano.2019.102135 – ident: e_1_2_9_10_2 doi: 10.1021/ac201631b – ident: e_1_2_9_6_1 doi: 10.1021/nn201896m – ident: e_1_2_9_25_1 doi: 10.1172/JCI107041 – ident: e_1_2_9_2_1 doi: 10.1002/pmic.201600240 – ident: e_1_2_9_12_1 doi: 10.1021/jacs.0c07022 – ident: e_1_2_9_22_1 doi: 10.1016/j.cclet.2018.03.004 – volume: 31 start-page: 11 year: 1990 ident: e_1_2_9_15_3 publication-title: J. Clin. Lab. Immunol. – ident: e_1_2_9_10_1 doi: 10.1021/acs.analchem.7b02923 – ident: e_1_2_9_4_3 doi: 10.1038/s41467-018-04813-5 – ident: e_1_2_9_11_1 doi: 10.1021/acs.analchem.7b05341 |
SSID | ssj0001537418 |
Score | 2.442808 |
Snippet | Exploring the advanced techniques for protein detection facilitates cell fate investigation. However, it remains challenging to quantify and visualize the... Abstract Exploring the advanced techniques for protein detection facilitates cell fate investigation. However, it remains challenging to quantify and visualize... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2202505 |
SubjectTerms | Albumins Animals Antibodies Biocompatibility Biomarkers hepatic organoids Infrared Rays Lasers Ligands Liver living cell labeling Mice mouse liver Nanoparticles near‐infrared‐responded high sensitivity nanoprobe Organoids protein quantification and imaging Proteins Quantum dots |
SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge-GCWp6BgoyEBBysZu0kjk-IQqsF0RVqKeot8hNWQkm72SLBD-B3M-N4AyteUk6JrTieGfuL_fkbQh47pQUeymVKioIVMAEzrcAg3sFNWwLGiDu6R_Nqdlq8OSvP0oJbn2iV6zExDtSus7hGvsflFNxLTKvq-fkFw6xRuLuaUmhcJVswBNf1hGztH8zfHf9cZSkFyrOs1RpzvqfdF1Tp5jxO_huzURTt_xPS_J0w-SuQjTPR4Ta5niAkfTHYfIdc8e0NspOCtKdPk5L0s5vk-xz8mL1uwxJp5uw48mGddxTZHfQEuetD8ggKg2yHuWU8BRBLkeTrvlLdOvph0eOxy29Q6ZVfRd5WS7tA49L-oqVwzTyysi2Nxzq7hetjxaPusvf0LdI-bpHTw4P3L2csJV5gtiylYMZJw0OlPWBBDdOXd8aIwDVuU0sRSukxy5iR3ihTaGNqHWRdFs7qCn5nwPi3yaTtWn-X0NzU0tU2AIpzRai45lpxY1VZ2MLnlc4IWxugsUmVHJNjfG4GPWXeoMGa0WAZeTKWPx_0OP5ach_tOZZCHe14o1t-bFJYNsGUXtbWF_idQZU6qAAtzZXRRrgcmre79oYmBTe8YnTFjDwaH0NY4l6Lbj30b8MrxQG91dNpRu4MzjO2RMAvGuBYkRG54VYbTd180i4-RelvVUjAfzX0WnTA_3RBA9DmBACHuPfvz7hPrmGdgTq3Syar5aV_AFhrZR6mgPoBsqAqcA priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLggyjOlICMhAYeoWT_i-MirWhCtEKWoN8uObVipStBmi9SeOHPiN_JLmHGyaSNACGkPq8TZeD0z9mf78zeEPPLacjyUm2vFRS5gAM6tBoMEDxdrCRgj7eju7ZfzQ_HmSB5dOMXf60OMC24YGam_xgC3rts5Fw21_ivKbTOWRvHL5Aqer0VSHxPvzldZJEd5FswwB7PrnFdCrJUbC7Yz_YnJyJQE_P-EOn8nT14EtWlU2r1Org1wkj7r7b9JLoXmBtkcArajTwZV6ac3yfd98Omf3368buISSefw9X3ix_rgKbI96AFy2ftkEhQ63RZzzQQKoJYi6defUtt4-nHR4THMM3joZVglHldD20jTUv-iofCZB2Rp1zQd82wXvksP7rUnXaBvkQZyixzuvvrwYp4PiRjyWkrFc-eVY7G0AbChheEseOd4ZBa3rRWPUgXMOuZUcNoJ61xlo6qk8LUtYXoDznCbbDRtE-4SWrhK-aqOgOq8iCWzzGrmai1FLUJR2ozkayOYelApx2QZx6bXV2YGjWZGo2Xk8Vj-S6_P8deSz9GmYynU1U4X2uUnM4SpiU4GVdVB4P-MWtqoI9S00M467guo3vbaI8wQ7PAKNYOej8_KMiMPx9sQprj3YpsA7WtYqRmguWo2y8id3oHGmnCYsgGu5RlRE9eaVHV6p1l8TlLgWijAgxW0WnLCfzSBAahzAACEb_1n-XvkKl7suXXbZGO1PAn3AYyt3IMUb78AQNsxFw priority: 102 providerName: Wiley-Blackwell |
Title | Near‐Infrared‐Responded High Sensitivity Nanoprobe for Steady and Visualized Detection of Albumin in Hepatic Organoids and Mouse Liver |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202202505 https://www.ncbi.nlm.nih.gov/pubmed/35853243 https://www.proquest.com/docview/2714253166 https://www.proquest.com/docview/2692071811 https://pubmed.ncbi.nlm.nih.gov/PMC9475548 https://doaj.org/article/fb5e78ce43a84f95af9f59d09bab3d0a |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBZbd9lltPvptgsqDLYdTB39sKxju7akowmlWUdvRrIkFhh2adLBdtp5p_2N-0v2nuyYhG30MjDE2HIi3nvy-xR9-h4hr5w2HDflplpxkQpIwKnR4BDv4GIlAWPEFd3xJB9divdX8mql1Bdywlp54NZw-8FKr4rKC24KEbQ0QQepXaatsdxlERpBzluZTLX7gznKsixVGjO2b9wXVOdmLCb9tSwUxfr_hjD_JEquAtiYgU42yaMOOtKDtstb5J6vH5OtbnDO6ZtOQfrtE_JjAvH76_vP0zrcIMEcTi8iF9Z5R5HZQafIW28LR1B4wTZYV8ZTALAUCb7uKzW1ox9nc9xy-Q0eOvKLyNmqaRNo_Ft_VlM4Rh4Z2RWNWzqbmZvHB8fN7dzTM6R8PCWXJ8cf3o3SruhCWkmpeGqdsizkxgMOBIsr76zlgRlcolY8SOWxwphV3morjLWFCaqQwlUmh6kMOP4Z2aib2r8gNLOFckUVAME5EXJmmNHMVlqKSvgsNwlJl04oq06RHAtjfC5bLWVWotPK3mkJed23v261OP7Z8hB92rdCDe14ASKr7CKrvCuyErK7jIiyG9jwE2oIbzk-zPOE7PW3YUjiOoupPdi3ZLlmgNyK4TAhz9sA6nvCYXoGGJYnRK2F1lpX1-_Us09R9lsLBdivAKvFILzDBCXAmimADb79P2yxQx7iN7fkul2ysbi59S8BjS3sgNxn4nxAHhwcjc-m8Hl4PDm_GMTh-BsgxTrZ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLam7gFeEONaGGAkEPAQLbWdOH5AiLFNLWsrtAvaW7BjGyqhZLQdaPwAfg6_kXOcC1Tcnib1KbFVx-fk-IvP5-8Q8sgqzfFQbqQkF5GABTjSCgziLFwsEsAYIaM7mabDY_H6JDlZI9_bszBIq2xjYgjUtipwj3yLyQG4Fx-k6YvTTxFWjcLsaltCo3aLfXf-BT7ZFs9HO2Dfx4zt7R69GkZNVYGoSBLJI2OlYT7VDoCOhtjsrDHcM405WMl9Ih2W0DLSGWWENibTXmaJsIVOAatr3ACFkL8ueBqzHlnf3p2-Ofi5q5NwlINp1SFjtqXtZ1QFZyyAjZXVLxQJ-BOy_Z2g-StwDivf3lVypYGs9GXtYxtkzZXXyEYTFBb0aaNc_ew6-TaFCYpGpZ8jrT06CPxb6yxFNgk9RK58XayCQlCvsJaNowCaKZKK7TnVpaVvZws85vkVOu24ZeCJlbTyNKQSZiWF39AhC7yg4RhpNbOL0HFSnS0cHSPN5AY5vhCT3CS9sirdbUJjk0mbFR5QoxU-ZZppxUyhElEIF6e6T6LWAHnRqKBjMY6Pea3fzHI0WN4ZrE-edO1Pa_2Pv7bcRnt2rVC3O1yo5u_zJgzk3iROZoUT-JxeJdorDyONldGG2xiGt9l6Q94EE_iLzvX75GF3G8IA5nZ06WB-c5YqBmgxGwz65FbtPN1IOHwSAm7mfSJX3GplqKt3ytmHIDWuhAS8mcGsBQf8zxTkAKUOAeDwO_9-jAfk0vBoMs7Ho-n-XXIZ-9e0vU3SW87P3D3AeUtzv3m5KHl30e_zD-H7aMU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYS4IMozUMBIIOAQbdZO4viAEGW72qXtqmop6i3YsU1XqpKyuwWVH8CP4tcx4zxgxetUKafEVmzPePzZ83mGkCdGKo6XckMpeBzGsACHSoJArIGXRQIYw3t096bp-Ch-e5wcr5Hv7V0YpFW2NtEbalMVeEbeZ2IA6sUHadp3DS1ifzh6dfYpxAxS6Glt02nUKrJjL77A9m3xcjIEWT9lbLT97s04bDIMhEWSCB5qIzRzqbIAehTYaWu05o4p9McK7hJhMZ2WFlZLHSutM-VElsSmUCngdoWHoWD-1wXuinpkfWt7un_w84Qn4Rgapo0UGbG-Mp8xQjhjHnisrIQ-YcCfUO7vZM1fQbRfBUfXybUGvtLXtb5tkDVb3iAbjYFY0OdNFOsXN8m3KQxQOCndHCnu4YHn4hprKDJL6CHy5uvEFRQMfIV5bSwFAE2RYGwuqCoNfT9b4JXPr1BpaJeeM1bSylHvVpiVFJ6xRUZ4Qf2V0mpmFr7iXnW-sHQXKSe3yNGliOQ26ZVVae8SGulMmKxwgCBN7FKmmJJMFzKJi9hGqQpI2AogL5qI6JiY4zSvYzmzHAWWdwILyLOu_FkdC-SvJbdQnl0pjOHtX1Tzj3ljEnKnEyuywsbYTycT5aSDlkZSK81NBM3bbLUhbwwL_KKbBgF53H0Gk4B-HlVaGN-cpZKBQmaDQUDu1MrTtYTD9hAwNA-IWFGrlaaufilnJz7suIwFYM8MRs0r4H-GIAdYdQhgh9_7dzcekSswj_PdyXTnPrmK1WsG3ybpLefn9gFAvqV-2MwtSj5c9nT-AYWzbPo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Infrared-Responded+High+Sensitivity+Nanoprobe+for+Steady+and+Visualized+Detection+of+Albumin+in+Hepatic+Organoids+and+Mouse+Liver&rft.jtitle=Advanced+science&rft.au=Liu%2C+Guofeng&rft.au=Wei%2C+Jinsong&rft.au=Li%2C+Xiaoyu&rft.au=Tian%2C+Meng&rft.date=2022-09-01&rft.eissn=2198-3844&rft.volume=9&rft.issue=26&rft.spage=e2202505&rft_id=info:doi/10.1002%2Fadvs.202202505&rft_id=info%3Apmid%2F35853243&rft.externalDocID=35853243 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |