All in One, Self‐Powered Bionic Artificial Nerve Based on a Triboelectric Nanogenerator
Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all‐in‐one, tailorable artificial perception, and transmission nerve (APTN) was developed for...
Saved in:
Published in | Advanced science Vol. 8; no. 12; pp. 2004727 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.06.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all‐in‐one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L‐shaped APTN is demonstrated for the application of single‐electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low‐cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human–machine interface, and robotics applications.
An all‐in‐one, tailorable artificial perception, and transmission nerve is developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The as‐mentioned process consumes no electrical energy at all. In addition to detecting 2D stimuli by a single‐electrode mode, a self‐powered prosthetic arm is also demonstrated. |
---|---|
AbstractList | Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all‐in‐one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L‐shaped APTN is demonstrated for the application of single‐electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low‐cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human–machine interface, and robotics applications.
An all‐in‐one, tailorable artificial perception, and transmission nerve is developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The as‐mentioned process consumes no electrical energy at all. In addition to detecting 2D stimuli by a single‐electrode mode, a self‐powered prosthetic arm is also demonstrated. Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all‐in‐one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L‐shaped APTN is demonstrated for the application of single‐electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low‐cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human–machine interface, and robotics applications. Abstract Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all‐in‐one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L‐shaped APTN is demonstrated for the application of single‐electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low‐cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human–machine interface, and robotics applications. Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all-in-one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L-shaped APTN is demonstrated for the application of single-electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low-cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human-machine interface, and robotics applications.Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all-in-one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L-shaped APTN is demonstrated for the application of single-electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low-cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human-machine interface, and robotics applications. |
Author | Zhang, Zixuan Zhang, Qian Shi, Qiongfeng Zhu, Minglu Liang, Qijie Lee, Chengkuo |
AuthorAffiliation | 4 Department of Physics National University of Singapore 2 Science Drive 3 Singapore 117551 Singapore 1 Department of Electrical and Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore 6 NUS Graduate School for Integrative Science and Engineering (NGS) National University of Singapore Singapore 117456 Singapore 2 Center for Intelligent Sensors and MEMS (CISM) National University of Singapore 5 Engineering Drive 1 Singapore 117608 Singapore 3 National University of Singapore Suzhou Research Institute (NUSRI) Suzhou Industrial Park Suzhou 215123 China 5 Singapore Institute of Manufacturing Technology and National University of Singapore (SIMTech‐NUS) Joint Lab on Large‐area Flexible Hybrid Electronics National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore |
AuthorAffiliation_xml | – name: 6 NUS Graduate School for Integrative Science and Engineering (NGS) National University of Singapore Singapore 117456 Singapore – name: 2 Center for Intelligent Sensors and MEMS (CISM) National University of Singapore 5 Engineering Drive 1 Singapore 117608 Singapore – name: 1 Department of Electrical and Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore – name: 4 Department of Physics National University of Singapore 2 Science Drive 3 Singapore 117551 Singapore – name: 3 National University of Singapore Suzhou Research Institute (NUSRI) Suzhou Industrial Park Suzhou 215123 China – name: 5 Singapore Institute of Manufacturing Technology and National University of Singapore (SIMTech‐NUS) Joint Lab on Large‐area Flexible Hybrid Electronics National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore |
Author_xml | – sequence: 1 givenname: Qian orcidid: 0000-0002-1774-9726 surname: Zhang fullname: Zhang, Qian organization: National University of Singapore – sequence: 2 givenname: Zixuan surname: Zhang fullname: Zhang, Zixuan organization: National University of Singapore Suzhou Research Institute (NUSRI) – sequence: 3 givenname: Qijie surname: Liang fullname: Liang, Qijie organization: National University of Singapore – sequence: 4 givenname: Qiongfeng surname: Shi fullname: Shi, Qiongfeng organization: National University of Singapore – sequence: 5 givenname: Minglu surname: Zhu fullname: Zhu, Minglu organization: National University of Singapore – sequence: 6 givenname: Chengkuo orcidid: 0000-0002-8886-3649 surname: Lee fullname: Lee, Chengkuo email: elelc@nus.edu.sg organization: National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34194933$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9uEzEQxleoiJbSK0e0EhcOJPhv7L0gpaVApapFaoTEyZrYs8GRY7feTare-gg8I0-CQ0rU9kBPHnl-882M_b2sdmKKWFWvKRlSQtgHcKtuyAgjRCimnlV7jDZ6wLUQO_fi3eqg6-aEECq5ElS_qHa5oI1oON-rfoxDqH2szyO-ry8wtL9vf31L15jR1Yc-RW_rce59662HUJ9hXmF9CF3JplhDPcl-mjCg7XMhzyCmGUbM0Kf8qnreQujw4O7cryafjydHXwen519OjsanAyul4gMqHVMjRUBJaZ0ogQVEqhRaShRwxqgShLqGj3ij2xE4BCclaMKblgu-X51sZF2CubnMfgH5xiTw5u9FyjMDZQEb0CCdSqco1YRxoRuERhHrVCMpL3IaitbHjdblcrpAZzH2GcID0YeZ6H-aWVoZzZgQXBWBd3cCOV0tsevNwncWQ4CIadkZJoWSoqy9nvvtI3SeljmWlzJspKhqBNf0v5QUQijF5ahQb-7PvR343zcXYLgBbE5dl7HdIpSYtZXM2kpma6VSIB4VWN9DXwxR9vbhybJrH_DmiSZm_On7BROa8z-9JNqa |
CitedBy_id | crossref_primary_10_1021_acsanm_2c05360 crossref_primary_10_1007_s12274_024_6759_2 crossref_primary_10_1016_j_nanoen_2023_108792 crossref_primary_10_1002_advs_202103694 crossref_primary_10_1021_acsami_1c18449 crossref_primary_10_1021_acsami_1c19734 crossref_primary_10_3390_ma14216366 crossref_primary_10_1016_j_cej_2024_152884 crossref_primary_10_1002_adem_202301897 crossref_primary_10_1002_advs_202414173 crossref_primary_10_1016_j_nanoen_2023_108436 crossref_primary_10_1002_adfm_202203555 crossref_primary_10_1088_2631_7990_ad65cc crossref_primary_10_1016_j_nanoen_2022_107471 crossref_primary_10_1002_adfm_202208120 crossref_primary_10_1002_sys3_4 crossref_primary_10_1002_adma_202418108 crossref_primary_10_1038_s44287_025_00145_x crossref_primary_10_3390_nano12111936 crossref_primary_10_1021_acsami_2c20925 crossref_primary_10_1002_adfm_202105169 crossref_primary_10_1039_D3NR04983C crossref_primary_10_1002_sus2_196 crossref_primary_10_1002_adfm_202308353 crossref_primary_10_1080_15376494_2023_2242848 crossref_primary_10_1007_s12274_023_5879_4 crossref_primary_10_1016_j_rser_2023_113529 crossref_primary_10_1016_j_cej_2023_147075 crossref_primary_10_3390_nano11112975 crossref_primary_10_1039_D2NA00608A crossref_primary_10_1109_OJCAS_2021_3123272 crossref_primary_10_1007_s42765_023_00334_z crossref_primary_10_1002_advs_202101834 crossref_primary_10_1016_j_compscitech_2022_109542 |
Cites_doi | 10.1039/C7NR02249B 10.1007/s13534-020-00173-6 10.1016/j.nanoen.2019.05.033 10.1021/acsnano.0c05794 10.1021/acsnano.8b00303 10.1016/j.rser.2016.12.015 10.1038/nmat4671 10.1016/j.nanoen.2019.104182 10.1021/acsnano.8b07567 10.1002/aenm.201701629 10.1038/s41467-020-18471-z 10.3389/fnins.2016.00209 10.1002/adma.201604961 10.1002/aisy.201900175 10.1016/j.nanoen.2020.105414 10.1007/s00422-018-0787-5 10.1038/ncomms6747 10.1126/science.aao0098 10.1002/advs.201900617 10.1016/j.nanoen.2019.01.002 10.1021/acsnano.0c04158 10.1021/nn4037514 10.1007/s40820-019-0251-7 10.1038/nrn2833 10.1016/j.eml.2015.03.001 10.1038/srep09080 10.1126/science.1261689 10.1016/j.nanoen.2012.01.004 10.1002/adfm.201703801 10.1002/advs.201801883 10.1038/s41928-019-0257-7 10.1016/j.nanoen.2020.105582 10.1002/adma.201000282 10.1016/j.nanoen.2016.10.046 10.1126/science.1166818 10.1038/ncomms4158 10.1002/adma.201807609 10.1002/adma.201606703 10.1016/j.nanoen.2019.03.079 10.1016/j.nanoen.2019.104035 10.1126/sciadv.aaz8693 10.1016/j.neuroimage.2007.02.003 10.1021/acsami.0c04718 10.1126/scirobotics.aax2352 10.1016/j.nanoen.2014.10.035 10.1038/s41467-019-13653-w 10.1016/j.nanoen.2020.104912 10.1039/D0EE00825G 10.1002/aenm.202002756 10.1016/j.nanoen.2017.11.001 10.1016/j.nanoen.2020.105052 10.1021/acsami.5b09907 10.1016/j.nanoen.2013.08.004 10.1038/srep16063 10.1021/acsnano.8b06747 10.1021/nn403838y 10.1021/acs.chemmater.0c02421 10.1179/016164104225013798 10.1126/sciadv.1700694 10.1002/adfm.201803117 10.1002/smll.201702929 10.1039/C4NR05512H 10.1002/adma.201503288 10.1039/c3ee42571a 10.1016/j.nanoen.2018.10.078 10.1016/j.nanoen.2019.104266 10.1002/adma.202000351 10.1109/LED.2020.2972038 10.1016/j.nanoen.2020.105325 10.1021/acsnano.6b05815 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202004727 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_e1b5d7118023489ea970cd79513a808a PMC8224437 34194933 10_1002_advs_202004727 ADVS2483 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Agency for Science, Technology and Research (A*STAR), Singapore and Narodowe Centrum Badańi Rozwoju (NCBR), Poland Joint funderid: Grant (R‐263‐000‐C91‐305) – fundername: National Key Research and Development Program of China funderid: 2019YFB2004800 – fundername: Collaborative Research Project under the SIMTech‐NUS Joint Laboratory, “SIMTech‐NUS Joint Lab on Large‐area Flexible Hybrid Electronics“ – fundername: Agency for Science, Technology and Research (A*STAR), Singapore and Narodowe Centrum Badańi Rozwoju (NCBR), Poland Joint grantid: Grant (R‐263‐000‐C91‐305) – fundername: ; grantid: 2019YFB2004800 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5573-15d27670a755cd470acaee177ec107a32217401d936398f6adead55a8039f343 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:27:30 EDT 2025 Thu Aug 21 18:15:21 EDT 2025 Fri Jul 11 14:20:04 EDT 2025 Mon Jul 14 10:37:05 EDT 2025 Fri Jul 25 06:23:23 EDT 2025 Wed Feb 19 02:27:59 EST 2025 Tue Jul 01 03:59:29 EDT 2025 Thu Apr 24 22:53:05 EDT 2025 Wed Jan 22 16:30:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | triboelectric nanogenerators sensory system bionic artificial nerves nervous system self‐powered sensors |
Language | English |
License | Attribution 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5573-15d27670a755cd470acaee177ec107a32217401d936398f6adead55a8039f343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8886-3649 0000-0002-1774-9726 |
OpenAccessLink | https://www.proquest.com/docview/2544477356?pq-origsite=%requestingapplication% |
PMID | 34194933 |
PQID | 2544477356 |
PQPubID | 4365299 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e1b5d7118023489ea970cd79513a808a pubmedcentral_primary_oai_pubmedcentral_nih_gov_8224437 proquest_miscellaneous_2547545734 proquest_journals_2671794381 proquest_journals_2544477356 pubmed_primary_34194933 crossref_primary_10_1002_advs_202004727 crossref_citationtrail_10_1002_advs_202004727 wiley_primary_10_1002_advs_202004727_ADVS2483 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2010; 11 2017; 7 2017; 42 2018; 360 2017; 3 2013; 2 2015; 347 2019; 11 2019; 55 2019; 57 2019; 13 2004; 26 2016; 30 2020; 14 2020; 13 2020; 12 2020; 11 2020; 10 2013; 7 2013; 6 2007; 35 2017; 9 2010; 22 2021; 79 2020; 6 2014; 5 2019; 60 2020; 2 2019; 62 2017; 70 2019; 65 2019; 113 2009; 324 2021; 81 2018; 28 2019; 4 2015; 5 2019; 6 2015; 3 2019; 31 2020; 41 2019; 2 2015; 11 2016; 10 2017; 29 2020; 78 2020; 76 2020; 32 2016; 15 2015; 7 2015; 27 2012; 1 2020; 74 2017; 13 2020; 67 2018; 12 2016; 8 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 74 year: 2020 publication-title: Nano Energy – volume: 7 start-page: 1896 year: 2015 publication-title: Nanoscale – volume: 32 start-page: 7438 year: 2020 publication-title: Chem. Mater. – volume: 67 year: 2020 publication-title: Nano Energy – volume: 5 start-page: 3158 year: 2014 publication-title: Nat. Commun. – volume: 7 start-page: 9213 year: 2013 publication-title: ACS Nano – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 9066 year: 2020 publication-title: ACS Nano – volume: 8 start-page: 736 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 62 start-page: 355 year: 2019 publication-title: Nano Energy – volume: 81 year: 2021 publication-title: Nano Energy – volume: 55 start-page: 151 year: 2019 publication-title: Nano Energy – volume: 2 start-page: 693 year: 2013 publication-title: Nano Energy – volume: 10 start-page: 517 year: 2020 publication-title: Biomed. Eng. Lett. – volume: 2 start-page: 243 year: 2019 publication-title: Nat. Electron. – volume: 10 start-page: 9044 year: 2016 publication-title: ACS Nano – volume: 12 start-page: 3487 year: 2018 publication-title: ACS Nano – volume: 35 start-page: 1674 year: 2007 publication-title: Neuroimage – volume: 14 year: 2020 publication-title: ACS Nano – volume: 41 start-page: 617 year: 2020 publication-title: IEEE Electron Device Lett. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 42 start-page: 300 year: 2017 publication-title: Nano Energy – volume: 113 start-page: 201 year: 2019 publication-title: Biol. Cybern. – volume: 324 start-page: 403 year: 2009 publication-title: Science – volume: 11 start-page: 58 year: 2020 publication-title: Nat. Commun. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 26 start-page: 151 year: 2004 publication-title: Neurol. Res. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 8266 year: 2013 publication-title: ACS Nano – volume: 4 year: 2019 publication-title: Sci. Robot. – volume: 360 start-page: 998 year: 2018 publication-title: Science – volume: 11 start-page: 162 year: 2015 publication-title: Nano Energy – volume: 60 start-page: 377 year: 2019 publication-title: Nano Energy – volume: 76 year: 2020 publication-title: Nano Energy – volume: 15 start-page: 937 year: 2016 publication-title: Nat. Mater. – volume: 347 year: 2015 publication-title: Science – volume: 13 start-page: 1940 year: 2019 publication-title: ACS Nano – volume: 22 start-page: 2448 year: 2010 publication-title: Adv. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 79 year: 2021 publication-title: Nano Energy – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 11 start-page: 417 year: 2010 publication-title: Nat. Rev. Neurosci. – volume: 30 start-page: 450 year: 2016 publication-title: Nano Energy – volume: 5 start-page: 5747 year: 2014 publication-title: Nat. Commun. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 1 start-page: 328 year: 2012 publication-title: Nano Energy – volume: 9 start-page: 9668 year: 2017 publication-title: Nanoscale – volume: 11 start-page: 19 year: 2019 publication-title: Nano‐Micro Lett. – volume: 2 year: 2020 publication-title: Adv. Intell. Syst. – volume: 10 start-page: 209 year: 2016 publication-title: Front. Neurosci. – volume: 11 start-page: 4609 year: 2020 publication-title: Nat. Commun. – volume: 27 start-page: 6230 year: 2015 publication-title: Adv. Mater. – volume: 70 start-page: 1108 year: 2017 publication-title: Renewable Sustainable Energy Rev. – volume: 57 start-page: 851 year: 2019 publication-title: Nano Energy – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 start-page: 59 year: 2015 publication-title: Extreme Mech. Lett. – volume: 6 start-page: 3576 year: 2013 publication-title: Energy Environ. Sci. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 65 year: 2019 publication-title: Nano Energy – volume: 13 start-page: 2404 year: 2020 publication-title: Energy Environ. Sci. – volume: 13 year: 2017 publication-title: Small – volume: 5 start-page: 9080 year: 2015 publication-title: Sci. Rep. – ident: e_1_2_8_45_1 doi: 10.1039/C7NR02249B – ident: e_1_2_8_62_1 doi: 10.1007/s13534-020-00173-6 – ident: e_1_2_8_42_1 doi: 10.1016/j.nanoen.2019.05.033 – ident: e_1_2_8_6_1 doi: 10.1021/acsnano.0c05794 – ident: e_1_2_8_35_1 doi: 10.1021/acsnano.8b00303 – ident: e_1_2_8_10_1 doi: 10.1016/j.rser.2016.12.015 – ident: e_1_2_8_5_1 doi: 10.1038/nmat4671 – ident: e_1_2_8_48_1 doi: 10.1016/j.nanoen.2019.104182 – ident: e_1_2_8_65_1 doi: 10.1021/acsnano.8b07567 – ident: e_1_2_8_24_1 doi: 10.1002/aenm.201701629 – ident: e_1_2_8_51_1 doi: 10.1038/s41467-020-18471-z – ident: e_1_2_8_8_1 doi: 10.3389/fnins.2016.00209 – ident: e_1_2_8_38_1 doi: 10.1002/adma.201604961 – ident: e_1_2_8_36_1 doi: 10.1002/aisy.201900175 – ident: e_1_2_8_40_1 doi: 10.1016/j.nanoen.2020.105414 – ident: e_1_2_8_9_1 doi: 10.1007/s00422-018-0787-5 – ident: e_1_2_8_12_1 doi: 10.1038/ncomms6747 – ident: e_1_2_8_11_1 doi: 10.1126/science.aao0098 – ident: e_1_2_8_56_1 doi: 10.1002/advs.201900617 – ident: e_1_2_8_18_1 doi: 10.1016/j.nanoen.2019.01.002 – ident: e_1_2_8_43_1 doi: 10.1021/acsnano.0c04158 – ident: e_1_2_8_28_1 doi: 10.1021/nn4037514 – ident: e_1_2_8_26_1 doi: 10.1007/s40820-019-0251-7 – ident: e_1_2_8_4_1 doi: 10.1038/nrn2833 – ident: e_1_2_8_14_1 doi: 10.1016/j.eml.2015.03.001 – ident: e_1_2_8_21_1 doi: 10.1038/srep09080 – ident: e_1_2_8_16_1 doi: 10.1126/science.1261689 – ident: e_1_2_8_17_1 doi: 10.1016/j.nanoen.2012.01.004 – ident: e_1_2_8_19_1 doi: 10.1002/adfm.201703801 – ident: e_1_2_8_29_1 doi: 10.1002/advs.201801883 – ident: e_1_2_8_70_1 doi: 10.1038/s41928-019-0257-7 – ident: e_1_2_8_57_1 doi: 10.1016/j.nanoen.2020.105582 – ident: e_1_2_8_13_1 doi: 10.1002/adma.201000282 – ident: e_1_2_8_66_1 doi: 10.1016/j.nanoen.2016.10.046 – ident: e_1_2_8_1_1 doi: 10.1126/science.1166818 – ident: e_1_2_8_15_1 doi: 10.1038/ncomms4158 – ident: e_1_2_8_7_1 doi: 10.1002/adma.201807609 – ident: e_1_2_8_41_1 doi: 10.1002/adma.201606703 – ident: e_1_2_8_33_1 doi: 10.1016/j.nanoen.2019.03.079 – ident: e_1_2_8_34_1 doi: 10.1016/j.nanoen.2019.104035 – ident: e_1_2_8_44_1 doi: 10.1126/sciadv.aaz8693 – ident: e_1_2_8_2_1 doi: 10.1016/j.neuroimage.2007.02.003 – ident: e_1_2_8_49_1 doi: 10.1021/acsami.0c04718 – ident: e_1_2_8_3_1 doi: 10.1126/scirobotics.aax2352 – ident: e_1_2_8_23_1 doi: 10.1016/j.nanoen.2014.10.035 – ident: e_1_2_8_27_1 doi: 10.1038/s41467-019-13653-w – ident: e_1_2_8_50_1 doi: 10.1016/j.nanoen.2020.104912 – ident: e_1_2_8_55_1 doi: 10.1039/D0EE00825G – ident: e_1_2_8_20_1 doi: 10.1002/aenm.202002756 – ident: e_1_2_8_31_1 doi: 10.1016/j.nanoen.2017.11.001 – ident: e_1_2_8_39_1 doi: 10.1016/j.nanoen.2020.105052 – ident: e_1_2_8_63_1 doi: 10.1021/acsami.5b09907 – ident: e_1_2_8_32_1 doi: 10.1016/j.nanoen.2013.08.004 – ident: e_1_2_8_54_1 doi: 10.1038/srep16063 – ident: e_1_2_8_67_1 doi: 10.1021/acsnano.8b06747 – ident: e_1_2_8_22_1 doi: 10.1021/nn403838y – ident: e_1_2_8_61_1 doi: 10.1021/acs.chemmater.0c02421 – ident: e_1_2_8_68_1 doi: 10.1179/016164104225013798 – ident: e_1_2_8_30_1 doi: 10.1126/sciadv.1700694 – ident: e_1_2_8_37_1 doi: 10.1002/adfm.201803117 – ident: e_1_2_8_58_1 doi: 10.1002/smll.201702929 – ident: e_1_2_8_59_1 doi: 10.1039/C4NR05512H – ident: e_1_2_8_60_1 doi: 10.1002/adma.201503288 – ident: e_1_2_8_64_1 doi: 10.1039/c3ee42571a – ident: e_1_2_8_46_1 doi: 10.1016/j.nanoen.2018.10.078 – ident: e_1_2_8_53_1 doi: 10.1016/j.nanoen.2019.104266 – ident: e_1_2_8_69_1 doi: 10.1002/adma.202000351 – ident: e_1_2_8_47_1 doi: 10.1109/LED.2020.2972038 – ident: e_1_2_8_52_1 doi: 10.1016/j.nanoen.2020.105325 – ident: e_1_2_8_25_1 doi: 10.1021/acsnano.6b05815 |
SSID | ssj0001537418 |
Score | 2.3816094 |
Snippet | Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in... Abstract Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2004727 |
SubjectTerms | Artificial Intelligence Artificial Limbs bionic artificial nerves Bionics - methods Biosensing Techniques - methods Electrodes Energy Equipment Design - methods Friction Humans Nanotechnology - methods Nervous system Noise Printing, Three-Dimensional Prostheses Rubber Scanning electron microscopy self‐powered sensors Sensors sensory system Signal to noise ratio Silicones Simulation triboelectric nanogenerators |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1RaxQxEICH0qe-FKtW17YSoVAFl-5ukp3ksVcsRWgVWqE-Ldkkq4VjV7T12Z_Q3-gvcZLsLXdY6Ytvx2XI7U5mLjPZ2W8A9o1A3aJXue2KNhdaiVx7ylrRGott5bo2QlzPzuvTT-L9lbxaavUVasISHjgp7tCXrXSYQGVCaW80FtYhBQbcqELF0Ij2vKVkKr0fzAOWZUFpLKpD434GOncV8Yi4sgtFWP99EebfhZLLAWzcgU4eweYYOrKjdMlbsOb7x7A1OucP9nokSL95Ap-P5nN23bMPvX_LLvy8-_3r7mNoh-Ydm4UDWBtnSfAIdh6KHtmMtjPHhp4ZFmgiQ-qPQ5L0_zt8iVNTev4ULk_eXR6f5mMPhdxKiTwvpauwxsKglNYJ-mCN9yWit5T4GXLnMvTkc5pTqKK62jgyLSlJtVx3XPBtWO-H3j8HJlsrvfK2lp0VKEvTlSRWU7oktePaZ5AvVNrYkS8e2lzMm0RGrpqwBM20BBkcTPLfElnjn5KzsEKTVCBixy_ITprRTpqH7CSD3cX6NqOb0k9IIQQil_X9wzVGgJ4qM3g1DZP_hYcqpvfDbZwCKQpFLjJ4lqxlutDAyhOa8wxwxY5W7mR1pL_-GhnfobhXcLr1PFrcAxpqKIa5qITiL_6HqnZgowqVO_GsaRfWb77f-j0KvW7al9HL_gDB9ChR priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley-Blackwell Open Access Titles dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1da9YwFICDzhtvxPlZNyWCoIJhbZP0JJd7xTEE52AT5lVJk3QOXlrZ17U_wd_oL_GctG-34kS8K80hbXJymnPS5DmMvXIKbAPRCN_mjVDWKGEjRq3gnYemDG2TIK6f9qrdL-rjkT66dop_4ENMC25kGel7TQbumrOtK2ioC5eE2y4T7xBuszt0vpbo-aXav1pl0ZLwLJRhDqNrIY1SK3JjXm7Nq5jNTAngf5PX-efmyetObZqVdu6ze6M7ybcH_a-zW7F7wNZHgz3jb0aq9NuH7Ov2cslPOv65i-_4QVy2v3783KcUaTHwBS3K-lTLAJTge7QRki9wigu877jjRBjph5w5KInf5P44VY0h-yN2uPPh8P2uGPMqCK81SFHoUEIFuQOtfVB44V2MBUD0GAw6NPGC8vQFK9F9MW3lAg43rZ3JpW2lko_ZWtd38SnjuvE6mugr3XoFunBtgWIVhlDaBmljxsSqS2s_Mscp9cWyHmjJZU0qqCcVZOz1JP99oG38VXJBGpqkiJKdbvSnx_VodHUsGh1ggNwpY6OzkPsA6FRKbIxxGdtc6bceTRcfoZVSAFJXNxdXkKB6psjYy6kYbZJ-tLgu9hepCkDPFKTK2JNhtEwvSvw8ZaXMGMzG0awl85Lu5FviftOGXyWx6SKNuH_0UI1-zUGpjHz2n_Ib7G5JG3fSUtMmWzs_vYjP0fM6b14k4_oNoxolVA priority: 102 providerName: Wiley-Blackwell |
Title | All in One, Self‐Powered Bionic Artificial Nerve Based on a Triboelectric Nanogenerator |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202004727 https://www.ncbi.nlm.nih.gov/pubmed/34194933 https://www.proquest.com/docview/2544477356 https://www.proquest.com/docview/2671794381 https://www.proquest.com/docview/2547545734 https://pubmed.ncbi.nlm.nih.gov/PMC8224437 https://doaj.org/article/e1b5d7118023489ea970cd79513a808a |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ1fb9MwEMAttr7wghh_A6MyEhIgES2J7Zz9hFrYNCFWKjqk8RQ5trNNqpKxPzzzEfiMfBLOjhuoGPBW1ZZb5-7su8vpd4Q80xxUDU6mpsnqlCvJU-UwagWjDdSFbeoAcT2Ylfuf-LsjcRQTbhexrHJ1JoaD2nbG58h3PEqLAzBRvj77kvquUf7tamyhsUFGeARLDL5G093Z_OOvLItgHs-yojVmxY62Xz2luwiYRFi7jQK0_zpP88-Cyd8d2XAT7d0mt6ILSSe9zLfIDdfeIVvRSC_oi0iSfnmXfJ4sl_S0pR9a94ou3LL58e373LdFc5ZOfSLWhFV6iASd-eJHOsVrzdKupZp6qkjX98nBmXgOd8dhaQzT75HDvd3DN_tp7KWQGiGApbmwBZSQaRDCWI4fjHYuB3AGA0CNZp373nxWMXRZZFNqiyomhJYZUw3j7D7ZbLvWPSRU1EY46UwpGsNB5LrJcVqJYZNQlimXkHT1SCsTOeO-3cWy6gnJReVFUA0iSMjzYf5ZT9j468ypl9Awy5Oxwxfd-XEVDa1yeS0s9GA7LpXTCjJjAR1JhpuROiHbK_lW0VzxJwblun64hADSk3lCng7DaIf-5YpuXXcVlgD0RoHxhDzotWX4o56ZxxVjCYE1PVrbyfpIe3oSWN--yJcz3HoaNO4_T6hCX2ZRcMke_XuXj8nNwtfmhGzSNtm8PL9yT9C5uqzHZKPg8zEZTd4evF-Moz2NQ6riJz9WJaQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuiPIbKGAkECARNYntOD4g1IVWW9ouFV2kcooc2ymVVknZbkHceARehJfiSRg7P7CiwKm3KB45sWc8f5l8A_BQMSELYbNQl1ERMpmxUFqMWoVWWhSJKQsP4ro7Tkfv2OsDfrAE37t_YVxZZacTvaI2tXY58jUHpcWEoDx9cfwxdF2j3NfVroVGIxbb9stnDNlOnm-9Qv4-SpLNjcnLUdh2FQg154KGMTeJSEWkBOfaMLzQytpYCKsxFFIo4LHrUmckReOdlakyuNmcqyyisqSM4rQXYJlRjGQGsDzcGO-9_ZXU4dShwXTgkFGypswnBwqeeFRGsWD8fI-AsxzbP-szf_ebveHbvAKXW4-VrDcitgJLtroKK61OOCFPWuDqp9fg_fp0So4q8qayz8i-nZY_vn7bc13YrCFDl_fVfpYGs4KMXa0lGaIVNaSuiCIOxKRu2vIgJar9-tBPPa9n12FyHpt8AwZVXdlbQHihuc2sTnmpmeCxKmMkSzFK49JQaQMIuy3NdQtr7rprTPMGkDnJHQvyngUBPO7pjxtAj79SDh2HeioHxO1v1LPDvD3XuY0LbkSDo8cyaZUUkTYC_VaKi8lUAKsdf_NWO-Ajelk-ezgVHrcviwN40A_jsXffclRl61M_hUDnV1AWwM1GWvoXdRB9TFIagFiQo4WVLI5URx88tLirKWYUlx56ifvPDuXoOu0nLKO3_73K-3BxNNndyXe2xtt34FLiyoJ8ImsVBvPZqb2Lft28uNeeJgL5OZ_fn5VHXNM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYS4IMpvoICRQIBEtElsx_EBoS7tqqWwVLSVyilybKdUWiVluwVx4xF4HV6HJ2Hs_MCKAqfeonjkxJ5fTybfADxUTMhC2CzUZVSETGYslBZPrUIrLYrElIUHcX0zSTf32asDfrAE37t_YVxZZWcTvaE2tXY58qGD0mJCUJ4Oy7YsYmd9_OL4Y-g6SLkvrV07jUZEtu2Xz3h8O3m-tY68fpQk4429l5th22Eg1JwLGsbcJCIVkRKca8PwQitrYyGsxmORQmGPXcc6Iyk68qxMlcGN51xlEZUlZRSnvQDLSCKiASyPNiY7734leDh1yDAdUGSUDJX55ADCE4_QKBYcoe8XcFaQ-2et5u8xtHeC4ytwuY1eyVojbiuwZKursNLahxPypAWxfnoN3q9Np-SoIm8r-4zs2mn54-u3HdeRzRoycjlg7Wdp8CvIxNVdkhF6VEPqiijiAE3qpkUPUqILqA_91PN6dh32zmOTb8Cgqit7CwgvNLeZ1SkvNRM8VmWMZCme2Lg0VNoAwm5Lc91CnLtOG9O8AWdOcseCvGdBAI97-uMG3OOvlCPHoZ7KgXL7G_XsMG91PLdxwY1oMPVYJq2SItJGYAxLcTGZCmC142_eWgp8RC_XZw-nwmP4ZXEAD_phNAHuu46qbH3qpxAYCAvKArjZSEv_og6uj0lKAxALcrSwksWR6uiDhxl39cWM4tJDL3H_2aEcw6jdhGX09r9XeR8uot7mr7cm23fgUuIqhHxOaxUG89mpvYsh3ry41yoTgfyc1fcnB4FhCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All+in+One%2C+Self-Powered+Bionic+Artificial+Nerve+Based+on+a+Triboelectric+Nanogenerator&rft.jtitle=Advanced+science&rft.au=Zhang%2C+Qian&rft.au=Zhang%2C+Zixuan&rft.au=Liang%2C+Qijie&rft.au=Shi%2C+Qiongfeng&rft.date=2021-06-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=8&rft.issue=12&rft.spage=2004727&rft_id=info:doi/10.1002%2Fadvs.202004727&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |