All in One, Self‐Powered Bionic Artificial Nerve Based on a Triboelectric Nanogenerator

Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all‐in‐one, tailorable artificial perception, and transmission nerve (APTN) was developed for...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 8; no. 12; pp. 2004727 - n/a
Main Authors Zhang, Qian, Zhang, Zixuan, Liang, Qijie, Shi, Qiongfeng, Zhu, Minglu, Lee, Chengkuo
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.06.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all‐in‐one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L‐shaped APTN is demonstrated for the application of single‐electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low‐cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human–machine interface, and robotics applications. An all‐in‐one, tailorable artificial perception, and transmission nerve is developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The as‐mentioned process consumes no electrical energy at all. In addition to detecting 2D stimuli by a single‐electrode mode, a self‐powered prosthetic arm is also demonstrated.
AbstractList Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all‐in‐one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L‐shaped APTN is demonstrated for the application of single‐electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low‐cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human–machine interface, and robotics applications. An all‐in‐one, tailorable artificial perception, and transmission nerve is developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The as‐mentioned process consumes no electrical energy at all. In addition to detecting 2D stimuli by a single‐electrode mode, a self‐powered prosthetic arm is also demonstrated.
Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all‐in‐one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L‐shaped APTN is demonstrated for the application of single‐electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low‐cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human–machine interface, and robotics applications.
Abstract Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all‐in‐one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L‐shaped APTN is demonstrated for the application of single‐electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low‐cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human–machine interface, and robotics applications.
Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all-in-one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L-shaped APTN is demonstrated for the application of single-electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low-cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human-machine interface, and robotics applications.Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in artificial sensory and nervous systems. Here, an all-in-one, tailorable artificial perception, and transmission nerve (APTN) was developed for mimicking the biological sensory and nervous ability to detect and transmit the location information of mechanical stimulation. The APTN shows excellent reliability with a single triboelectric electrode for the detection of multiple pixels, by employing a gradient thickness dielectric layer and a grid surface structure. The sliding mode is used on the APTN to eliminate the amplitude influence of output signal, such as force, interlayer distance. By tailoring the geometry, an L-shaped APTN is demonstrated for the application of single-electrode bionic artificial nerve for 2D detection. In addition, an APTN based prosthetic arm is also fabricated to biomimetically identify and transmit the stimuli location signal to pattern the feedback. With features of low-cost, easy installation, and good flexibility, the APTN renders as a promising artificial sensory and nervous system for artificial intelligence, human-machine interface, and robotics applications.
Author Zhang, Zixuan
Zhang, Qian
Shi, Qiongfeng
Zhu, Minglu
Liang, Qijie
Lee, Chengkuo
AuthorAffiliation 4 Department of Physics National University of Singapore 2 Science Drive 3 Singapore 117551 Singapore
1 Department of Electrical and Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore
6 NUS Graduate School for Integrative Science and Engineering (NGS) National University of Singapore Singapore 117456 Singapore
2 Center for Intelligent Sensors and MEMS (CISM) National University of Singapore 5 Engineering Drive 1 Singapore 117608 Singapore
3 National University of Singapore Suzhou Research Institute (NUSRI) Suzhou Industrial Park Suzhou 215123 China
5 Singapore Institute of Manufacturing Technology and National University of Singapore (SIMTech‐NUS) Joint Lab on Large‐area Flexible Hybrid Electronics National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore
AuthorAffiliation_xml – name: 6 NUS Graduate School for Integrative Science and Engineering (NGS) National University of Singapore Singapore 117456 Singapore
– name: 2 Center for Intelligent Sensors and MEMS (CISM) National University of Singapore 5 Engineering Drive 1 Singapore 117608 Singapore
– name: 1 Department of Electrical and Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore
– name: 4 Department of Physics National University of Singapore 2 Science Drive 3 Singapore 117551 Singapore
– name: 3 National University of Singapore Suzhou Research Institute (NUSRI) Suzhou Industrial Park Suzhou 215123 China
– name: 5 Singapore Institute of Manufacturing Technology and National University of Singapore (SIMTech‐NUS) Joint Lab on Large‐area Flexible Hybrid Electronics National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore
Author_xml – sequence: 1
  givenname: Qian
  orcidid: 0000-0002-1774-9726
  surname: Zhang
  fullname: Zhang, Qian
  organization: National University of Singapore
– sequence: 2
  givenname: Zixuan
  surname: Zhang
  fullname: Zhang, Zixuan
  organization: National University of Singapore Suzhou Research Institute (NUSRI)
– sequence: 3
  givenname: Qijie
  surname: Liang
  fullname: Liang, Qijie
  organization: National University of Singapore
– sequence: 4
  givenname: Qiongfeng
  surname: Shi
  fullname: Shi, Qiongfeng
  organization: National University of Singapore
– sequence: 5
  givenname: Minglu
  surname: Zhu
  fullname: Zhu, Minglu
  organization: National University of Singapore
– sequence: 6
  givenname: Chengkuo
  orcidid: 0000-0002-8886-3649
  surname: Lee
  fullname: Lee, Chengkuo
  email: elelc@nus.edu.sg
  organization: National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34194933$$D View this record in MEDLINE/PubMed
BookMark eNqFks9uEzEQxleoiJbSK0e0EhcOJPhv7L0gpaVApapFaoTEyZrYs8GRY7feTare-gg8I0-CQ0rU9kBPHnl-882M_b2sdmKKWFWvKRlSQtgHcKtuyAgjRCimnlV7jDZ6wLUQO_fi3eqg6-aEECq5ElS_qHa5oI1oON-rfoxDqH2szyO-ry8wtL9vf31L15jR1Yc-RW_rce59662HUJ9hXmF9CF3JplhDPcl-mjCg7XMhzyCmGUbM0Kf8qnreQujw4O7cryafjydHXwen519OjsanAyul4gMqHVMjRUBJaZ0ogQVEqhRaShRwxqgShLqGj3ij2xE4BCclaMKblgu-X51sZF2CubnMfgH5xiTw5u9FyjMDZQEb0CCdSqco1YRxoRuERhHrVCMpL3IaitbHjdblcrpAZzH2GcID0YeZ6H-aWVoZzZgQXBWBd3cCOV0tsevNwncWQ4CIadkZJoWSoqy9nvvtI3SeljmWlzJspKhqBNf0v5QUQijF5ahQb-7PvR343zcXYLgBbE5dl7HdIpSYtZXM2kpma6VSIB4VWN9DXwxR9vbhybJrH_DmiSZm_On7BROa8z-9JNqa
CitedBy_id crossref_primary_10_1021_acsanm_2c05360
crossref_primary_10_1007_s12274_024_6759_2
crossref_primary_10_1016_j_nanoen_2023_108792
crossref_primary_10_1002_advs_202103694
crossref_primary_10_1021_acsami_1c18449
crossref_primary_10_1021_acsami_1c19734
crossref_primary_10_3390_ma14216366
crossref_primary_10_1016_j_cej_2024_152884
crossref_primary_10_1002_adem_202301897
crossref_primary_10_1002_advs_202414173
crossref_primary_10_1016_j_nanoen_2023_108436
crossref_primary_10_1002_adfm_202203555
crossref_primary_10_1088_2631_7990_ad65cc
crossref_primary_10_1016_j_nanoen_2022_107471
crossref_primary_10_1002_adfm_202208120
crossref_primary_10_1002_sys3_4
crossref_primary_10_1002_adma_202418108
crossref_primary_10_1038_s44287_025_00145_x
crossref_primary_10_3390_nano12111936
crossref_primary_10_1021_acsami_2c20925
crossref_primary_10_1002_adfm_202105169
crossref_primary_10_1039_D3NR04983C
crossref_primary_10_1002_sus2_196
crossref_primary_10_1002_adfm_202308353
crossref_primary_10_1080_15376494_2023_2242848
crossref_primary_10_1007_s12274_023_5879_4
crossref_primary_10_1016_j_rser_2023_113529
crossref_primary_10_1016_j_cej_2023_147075
crossref_primary_10_3390_nano11112975
crossref_primary_10_1039_D2NA00608A
crossref_primary_10_1109_OJCAS_2021_3123272
crossref_primary_10_1007_s42765_023_00334_z
crossref_primary_10_1002_advs_202101834
crossref_primary_10_1016_j_compscitech_2022_109542
Cites_doi 10.1039/C7NR02249B
10.1007/s13534-020-00173-6
10.1016/j.nanoen.2019.05.033
10.1021/acsnano.0c05794
10.1021/acsnano.8b00303
10.1016/j.rser.2016.12.015
10.1038/nmat4671
10.1016/j.nanoen.2019.104182
10.1021/acsnano.8b07567
10.1002/aenm.201701629
10.1038/s41467-020-18471-z
10.3389/fnins.2016.00209
10.1002/adma.201604961
10.1002/aisy.201900175
10.1016/j.nanoen.2020.105414
10.1007/s00422-018-0787-5
10.1038/ncomms6747
10.1126/science.aao0098
10.1002/advs.201900617
10.1016/j.nanoen.2019.01.002
10.1021/acsnano.0c04158
10.1021/nn4037514
10.1007/s40820-019-0251-7
10.1038/nrn2833
10.1016/j.eml.2015.03.001
10.1038/srep09080
10.1126/science.1261689
10.1016/j.nanoen.2012.01.004
10.1002/adfm.201703801
10.1002/advs.201801883
10.1038/s41928-019-0257-7
10.1016/j.nanoen.2020.105582
10.1002/adma.201000282
10.1016/j.nanoen.2016.10.046
10.1126/science.1166818
10.1038/ncomms4158
10.1002/adma.201807609
10.1002/adma.201606703
10.1016/j.nanoen.2019.03.079
10.1016/j.nanoen.2019.104035
10.1126/sciadv.aaz8693
10.1016/j.neuroimage.2007.02.003
10.1021/acsami.0c04718
10.1126/scirobotics.aax2352
10.1016/j.nanoen.2014.10.035
10.1038/s41467-019-13653-w
10.1016/j.nanoen.2020.104912
10.1039/D0EE00825G
10.1002/aenm.202002756
10.1016/j.nanoen.2017.11.001
10.1016/j.nanoen.2020.105052
10.1021/acsami.5b09907
10.1016/j.nanoen.2013.08.004
10.1038/srep16063
10.1021/acsnano.8b06747
10.1021/nn403838y
10.1021/acs.chemmater.0c02421
10.1179/016164104225013798
10.1126/sciadv.1700694
10.1002/adfm.201803117
10.1002/smll.201702929
10.1039/C4NR05512H
10.1002/adma.201503288
10.1039/c3ee42571a
10.1016/j.nanoen.2018.10.078
10.1016/j.nanoen.2019.104266
10.1002/adma.202000351
10.1109/LED.2020.2972038
10.1016/j.nanoen.2020.105325
10.1021/acsnano.6b05815
ContentType Journal Article
Copyright 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
2021 The Authors. Advanced Science published by Wiley‐VCH GmbH.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202004727
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

Publicly Available Content Database
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_e1b5d7118023489ea970cd79513a808a
PMC8224437
34194933
10_1002_advs_202004727
ADVS2483
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Agency for Science, Technology and Research (A*STAR), Singapore and Narodowe Centrum Badańi Rozwoju (NCBR), Poland Joint
  funderid: Grant (R‐263‐000‐C91‐305)
– fundername: National Key Research and Development Program of China
  funderid: 2019YFB2004800
– fundername: Collaborative Research Project under the SIMTech‐NUS Joint Laboratory, “SIMTech‐NUS Joint Lab on Large‐area Flexible Hybrid Electronics“
– fundername: Agency for Science, Technology and Research (A*STAR), Singapore and Narodowe Centrum Badańi Rozwoju (NCBR), Poland Joint
  grantid: Grant (R‐263‐000‐C91‐305)
– fundername: ;
  grantid: 2019YFB2004800
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5573-15d27670a755cd470acaee177ec107a32217401d936398f6adead55a8039f343
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:27:30 EDT 2025
Thu Aug 21 18:15:21 EDT 2025
Fri Jul 11 14:20:04 EDT 2025
Mon Jul 14 10:37:05 EDT 2025
Fri Jul 25 06:23:23 EDT 2025
Wed Feb 19 02:27:59 EST 2025
Tue Jul 01 03:59:29 EDT 2025
Thu Apr 24 22:53:05 EDT 2025
Wed Jan 22 16:30:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords triboelectric nanogenerators
sensory system
bionic artificial nerves
nervous system
self‐powered sensors
Language English
License Attribution
2021 The Authors. Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5573-15d27670a755cd470acaee177ec107a32217401d936398f6adead55a8039f343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8886-3649
0000-0002-1774-9726
OpenAccessLink https://www.proquest.com/docview/2544477356?pq-origsite=%requestingapplication%
PMID 34194933
PQID 2544477356
PQPubID 4365299
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_e1b5d7118023489ea970cd79513a808a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8224437
proquest_miscellaneous_2547545734
proquest_journals_2671794381
proquest_journals_2544477356
pubmed_primary_34194933
crossref_primary_10_1002_advs_202004727
crossref_citationtrail_10_1002_advs_202004727
wiley_primary_10_1002_advs_202004727_ADVS2483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2010; 11
2017; 7
2017; 42
2018; 360
2017; 3
2013; 2
2015; 347
2019; 11
2019; 55
2019; 57
2019; 13
2004; 26
2016; 30
2020; 14
2020; 13
2020; 12
2020; 11
2020; 10
2013; 7
2013; 6
2007; 35
2017; 9
2010; 22
2021; 79
2020; 6
2014; 5
2019; 60
2020; 2
2019; 62
2017; 70
2019; 65
2019; 113
2009; 324
2021; 81
2018; 28
2019; 4
2015; 5
2019; 6
2015; 3
2019; 31
2020; 41
2019; 2
2015; 11
2016; 10
2017; 29
2020; 78
2020; 76
2020; 32
2016; 15
2015; 7
2015; 27
2012; 1
2020; 74
2017; 13
2020; 67
2018; 12
2016; 8
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 7
  start-page: 1896
  year: 2015
  publication-title: Nanoscale
– volume: 32
  start-page: 7438
  year: 2020
  publication-title: Chem. Mater.
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 5
  start-page: 3158
  year: 2014
  publication-title: Nat. Commun.
– volume: 7
  start-page: 9213
  year: 2013
  publication-title: ACS Nano
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 9066
  year: 2020
  publication-title: ACS Nano
– volume: 8
  start-page: 736
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 62
  start-page: 355
  year: 2019
  publication-title: Nano Energy
– volume: 81
  year: 2021
  publication-title: Nano Energy
– volume: 55
  start-page: 151
  year: 2019
  publication-title: Nano Energy
– volume: 2
  start-page: 693
  year: 2013
  publication-title: Nano Energy
– volume: 10
  start-page: 517
  year: 2020
  publication-title: Biomed. Eng. Lett.
– volume: 2
  start-page: 243
  year: 2019
  publication-title: Nat. Electron.
– volume: 10
  start-page: 9044
  year: 2016
  publication-title: ACS Nano
– volume: 12
  start-page: 3487
  year: 2018
  publication-title: ACS Nano
– volume: 35
  start-page: 1674
  year: 2007
  publication-title: Neuroimage
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 41
  start-page: 617
  year: 2020
  publication-title: IEEE Electron Device Lett.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 42
  start-page: 300
  year: 2017
  publication-title: Nano Energy
– volume: 113
  start-page: 201
  year: 2019
  publication-title: Biol. Cybern.
– volume: 324
  start-page: 403
  year: 2009
  publication-title: Science
– volume: 11
  start-page: 58
  year: 2020
  publication-title: Nat. Commun.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 26
  start-page: 151
  year: 2004
  publication-title: Neurol. Res.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 8266
  year: 2013
  publication-title: ACS Nano
– volume: 4
  year: 2019
  publication-title: Sci. Robot.
– volume: 360
  start-page: 998
  year: 2018
  publication-title: Science
– volume: 11
  start-page: 162
  year: 2015
  publication-title: Nano Energy
– volume: 60
  start-page: 377
  year: 2019
  publication-title: Nano Energy
– volume: 76
  year: 2020
  publication-title: Nano Energy
– volume: 15
  start-page: 937
  year: 2016
  publication-title: Nat. Mater.
– volume: 347
  year: 2015
  publication-title: Science
– volume: 13
  start-page: 1940
  year: 2019
  publication-title: ACS Nano
– volume: 22
  start-page: 2448
  year: 2010
  publication-title: Adv. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 79
  year: 2021
  publication-title: Nano Energy
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 11
  start-page: 417
  year: 2010
  publication-title: Nat. Rev. Neurosci.
– volume: 30
  start-page: 450
  year: 2016
  publication-title: Nano Energy
– volume: 5
  start-page: 5747
  year: 2014
  publication-title: Nat. Commun.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 1
  start-page: 328
  year: 2012
  publication-title: Nano Energy
– volume: 9
  start-page: 9668
  year: 2017
  publication-title: Nanoscale
– volume: 11
  start-page: 19
  year: 2019
  publication-title: Nano‐Micro Lett.
– volume: 2
  year: 2020
  publication-title: Adv. Intell. Syst.
– volume: 10
  start-page: 209
  year: 2016
  publication-title: Front. Neurosci.
– volume: 11
  start-page: 4609
  year: 2020
  publication-title: Nat. Commun.
– volume: 27
  start-page: 6230
  year: 2015
  publication-title: Adv. Mater.
– volume: 70
  start-page: 1108
  year: 2017
  publication-title: Renewable Sustainable Energy Rev.
– volume: 57
  start-page: 851
  year: 2019
  publication-title: Nano Energy
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 59
  year: 2015
  publication-title: Extreme Mech. Lett.
– volume: 6
  start-page: 3576
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 13
  start-page: 2404
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 5
  start-page: 9080
  year: 2015
  publication-title: Sci. Rep.
– ident: e_1_2_8_45_1
  doi: 10.1039/C7NR02249B
– ident: e_1_2_8_62_1
  doi: 10.1007/s13534-020-00173-6
– ident: e_1_2_8_42_1
  doi: 10.1016/j.nanoen.2019.05.033
– ident: e_1_2_8_6_1
  doi: 10.1021/acsnano.0c05794
– ident: e_1_2_8_35_1
  doi: 10.1021/acsnano.8b00303
– ident: e_1_2_8_10_1
  doi: 10.1016/j.rser.2016.12.015
– ident: e_1_2_8_5_1
  doi: 10.1038/nmat4671
– ident: e_1_2_8_48_1
  doi: 10.1016/j.nanoen.2019.104182
– ident: e_1_2_8_65_1
  doi: 10.1021/acsnano.8b07567
– ident: e_1_2_8_24_1
  doi: 10.1002/aenm.201701629
– ident: e_1_2_8_51_1
  doi: 10.1038/s41467-020-18471-z
– ident: e_1_2_8_8_1
  doi: 10.3389/fnins.2016.00209
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.201604961
– ident: e_1_2_8_36_1
  doi: 10.1002/aisy.201900175
– ident: e_1_2_8_40_1
  doi: 10.1016/j.nanoen.2020.105414
– ident: e_1_2_8_9_1
  doi: 10.1007/s00422-018-0787-5
– ident: e_1_2_8_12_1
  doi: 10.1038/ncomms6747
– ident: e_1_2_8_11_1
  doi: 10.1126/science.aao0098
– ident: e_1_2_8_56_1
  doi: 10.1002/advs.201900617
– ident: e_1_2_8_18_1
  doi: 10.1016/j.nanoen.2019.01.002
– ident: e_1_2_8_43_1
  doi: 10.1021/acsnano.0c04158
– ident: e_1_2_8_28_1
  doi: 10.1021/nn4037514
– ident: e_1_2_8_26_1
  doi: 10.1007/s40820-019-0251-7
– ident: e_1_2_8_4_1
  doi: 10.1038/nrn2833
– ident: e_1_2_8_14_1
  doi: 10.1016/j.eml.2015.03.001
– ident: e_1_2_8_21_1
  doi: 10.1038/srep09080
– ident: e_1_2_8_16_1
  doi: 10.1126/science.1261689
– ident: e_1_2_8_17_1
  doi: 10.1016/j.nanoen.2012.01.004
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.201703801
– ident: e_1_2_8_29_1
  doi: 10.1002/advs.201801883
– ident: e_1_2_8_70_1
  doi: 10.1038/s41928-019-0257-7
– ident: e_1_2_8_57_1
  doi: 10.1016/j.nanoen.2020.105582
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.201000282
– ident: e_1_2_8_66_1
  doi: 10.1016/j.nanoen.2016.10.046
– ident: e_1_2_8_1_1
  doi: 10.1126/science.1166818
– ident: e_1_2_8_15_1
  doi: 10.1038/ncomms4158
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.201807609
– ident: e_1_2_8_41_1
  doi: 10.1002/adma.201606703
– ident: e_1_2_8_33_1
  doi: 10.1016/j.nanoen.2019.03.079
– ident: e_1_2_8_34_1
  doi: 10.1016/j.nanoen.2019.104035
– ident: e_1_2_8_44_1
  doi: 10.1126/sciadv.aaz8693
– ident: e_1_2_8_2_1
  doi: 10.1016/j.neuroimage.2007.02.003
– ident: e_1_2_8_49_1
  doi: 10.1021/acsami.0c04718
– ident: e_1_2_8_3_1
  doi: 10.1126/scirobotics.aax2352
– ident: e_1_2_8_23_1
  doi: 10.1016/j.nanoen.2014.10.035
– ident: e_1_2_8_27_1
  doi: 10.1038/s41467-019-13653-w
– ident: e_1_2_8_50_1
  doi: 10.1016/j.nanoen.2020.104912
– ident: e_1_2_8_55_1
  doi: 10.1039/D0EE00825G
– ident: e_1_2_8_20_1
  doi: 10.1002/aenm.202002756
– ident: e_1_2_8_31_1
  doi: 10.1016/j.nanoen.2017.11.001
– ident: e_1_2_8_39_1
  doi: 10.1016/j.nanoen.2020.105052
– ident: e_1_2_8_63_1
  doi: 10.1021/acsami.5b09907
– ident: e_1_2_8_32_1
  doi: 10.1016/j.nanoen.2013.08.004
– ident: e_1_2_8_54_1
  doi: 10.1038/srep16063
– ident: e_1_2_8_67_1
  doi: 10.1021/acsnano.8b06747
– ident: e_1_2_8_22_1
  doi: 10.1021/nn403838y
– ident: e_1_2_8_61_1
  doi: 10.1021/acs.chemmater.0c02421
– ident: e_1_2_8_68_1
  doi: 10.1179/016164104225013798
– ident: e_1_2_8_30_1
  doi: 10.1126/sciadv.1700694
– ident: e_1_2_8_37_1
  doi: 10.1002/adfm.201803117
– ident: e_1_2_8_58_1
  doi: 10.1002/smll.201702929
– ident: e_1_2_8_59_1
  doi: 10.1039/C4NR05512H
– ident: e_1_2_8_60_1
  doi: 10.1002/adma.201503288
– ident: e_1_2_8_64_1
  doi: 10.1039/c3ee42571a
– ident: e_1_2_8_46_1
  doi: 10.1016/j.nanoen.2018.10.078
– ident: e_1_2_8_53_1
  doi: 10.1016/j.nanoen.2019.104266
– ident: e_1_2_8_69_1
  doi: 10.1002/adma.202000351
– ident: e_1_2_8_47_1
  doi: 10.1109/LED.2020.2972038
– ident: e_1_2_8_52_1
  doi: 10.1016/j.nanoen.2020.105325
– ident: e_1_2_8_25_1
  doi: 10.1021/acsnano.6b05815
SSID ssj0001537418
Score 2.3816094
Snippet Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired innovations in...
Abstract Sensory and nerve systems play important role in mediating the interactions with the world. The pursuit of neuromorphic computing has inspired...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2004727
SubjectTerms Artificial Intelligence
Artificial Limbs
bionic artificial nerves
Bionics - methods
Biosensing Techniques - methods
Electrodes
Energy
Equipment Design - methods
Friction
Humans
Nanotechnology - methods
Nervous system
Noise
Printing, Three-Dimensional
Prostheses
Rubber
Scanning electron microscopy
self‐powered sensors
Sensors
sensory system
Signal to noise ratio
Silicones
Simulation
triboelectric nanogenerators
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1RaxQxEICH0qe-FKtW17YSoVAFl-5ukp3ksVcsRWgVWqE-Ldkkq4VjV7T12Z_Q3-gvcZLsLXdY6Ytvx2XI7U5mLjPZ2W8A9o1A3aJXue2KNhdaiVx7ylrRGott5bo2QlzPzuvTT-L9lbxaavUVasISHjgp7tCXrXSYQGVCaW80FtYhBQbcqELF0Ij2vKVkKr0fzAOWZUFpLKpD434GOncV8Yi4sgtFWP99EebfhZLLAWzcgU4eweYYOrKjdMlbsOb7x7A1OucP9nokSL95Ap-P5nN23bMPvX_LLvy8-_3r7mNoh-Ydm4UDWBtnSfAIdh6KHtmMtjPHhp4ZFmgiQ-qPQ5L0_zt8iVNTev4ULk_eXR6f5mMPhdxKiTwvpauwxsKglNYJ-mCN9yWit5T4GXLnMvTkc5pTqKK62jgyLSlJtVx3XPBtWO-H3j8HJlsrvfK2lp0VKEvTlSRWU7oktePaZ5AvVNrYkS8e2lzMm0RGrpqwBM20BBkcTPLfElnjn5KzsEKTVCBixy_ITprRTpqH7CSD3cX6NqOb0k9IIQQil_X9wzVGgJ4qM3g1DZP_hYcqpvfDbZwCKQpFLjJ4lqxlutDAyhOa8wxwxY5W7mR1pL_-GhnfobhXcLr1PFrcAxpqKIa5qITiL_6HqnZgowqVO_GsaRfWb77f-j0KvW7al9HL_gDB9ChR
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley-Blackwell Open Access Titles
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1da9YwFICDzhtvxPlZNyWCoIJhbZP0JJd7xTEE52AT5lVJk3QOXlrZ17U_wd_oL_GctG-34kS8K80hbXJymnPS5DmMvXIKbAPRCN_mjVDWKGEjRq3gnYemDG2TIK6f9qrdL-rjkT66dop_4ENMC25kGel7TQbumrOtK2ioC5eE2y4T7xBuszt0vpbo-aXav1pl0ZLwLJRhDqNrIY1SK3JjXm7Nq5jNTAngf5PX-efmyetObZqVdu6ze6M7ybcH_a-zW7F7wNZHgz3jb0aq9NuH7Ov2cslPOv65i-_4QVy2v3783KcUaTHwBS3K-lTLAJTge7QRki9wigu877jjRBjph5w5KInf5P44VY0h-yN2uPPh8P2uGPMqCK81SFHoUEIFuQOtfVB44V2MBUD0GAw6NPGC8vQFK9F9MW3lAg43rZ3JpW2lko_ZWtd38SnjuvE6mugr3XoFunBtgWIVhlDaBmljxsSqS2s_Mscp9cWyHmjJZU0qqCcVZOz1JP99oG38VXJBGpqkiJKdbvSnx_VodHUsGh1ggNwpY6OzkPsA6FRKbIxxGdtc6bceTRcfoZVSAFJXNxdXkKB6psjYy6kYbZJ-tLgu9hepCkDPFKTK2JNhtEwvSvw8ZaXMGMzG0awl85Lu5FviftOGXyWx6SKNuH_0UI1-zUGpjHz2n_Ib7G5JG3fSUtMmWzs_vYjP0fM6b14k4_oNoxolVA
  priority: 102
  providerName: Wiley-Blackwell
Title All in One, Self‐Powered Bionic Artificial Nerve Based on a Triboelectric Nanogenerator
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202004727
https://www.ncbi.nlm.nih.gov/pubmed/34194933
https://www.proquest.com/docview/2544477356
https://www.proquest.com/docview/2671794381
https://www.proquest.com/docview/2547545734
https://pubmed.ncbi.nlm.nih.gov/PMC8224437
https://doaj.org/article/e1b5d7118023489ea970cd79513a808a
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ1fb9MwEMAttr7wghh_A6MyEhIgES2J7Zz9hFrYNCFWKjqk8RQ5trNNqpKxPzzzEfiMfBLOjhuoGPBW1ZZb5-7su8vpd4Q80xxUDU6mpsnqlCvJU-UwagWjDdSFbeoAcT2Ylfuf-LsjcRQTbhexrHJ1JoaD2nbG58h3PEqLAzBRvj77kvquUf7tamyhsUFGeARLDL5G093Z_OOvLItgHs-yojVmxY62Xz2luwiYRFi7jQK0_zpP88-Cyd8d2XAT7d0mt6ILSSe9zLfIDdfeIVvRSC_oi0iSfnmXfJ4sl_S0pR9a94ou3LL58e373LdFc5ZOfSLWhFV6iASd-eJHOsVrzdKupZp6qkjX98nBmXgOd8dhaQzT75HDvd3DN_tp7KWQGiGApbmwBZSQaRDCWI4fjHYuB3AGA0CNZp373nxWMXRZZFNqiyomhJYZUw3j7D7ZbLvWPSRU1EY46UwpGsNB5LrJcVqJYZNQlimXkHT1SCsTOeO-3cWy6gnJReVFUA0iSMjzYf5ZT9j468ypl9Awy5Oxwxfd-XEVDa1yeS0s9GA7LpXTCjJjAR1JhpuROiHbK_lW0VzxJwblun64hADSk3lCng7DaIf-5YpuXXcVlgD0RoHxhDzotWX4o56ZxxVjCYE1PVrbyfpIe3oSWN--yJcz3HoaNO4_T6hCX2ZRcMke_XuXj8nNwtfmhGzSNtm8PL9yT9C5uqzHZKPg8zEZTd4evF-Moz2NQ6riJz9WJaQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuiPIbKGAkECARNYntOD4g1IVWW9ouFV2kcooc2ymVVknZbkHceARehJfiSRg7P7CiwKm3KB45sWc8f5l8A_BQMSELYbNQl1ERMpmxUFqMWoVWWhSJKQsP4ro7Tkfv2OsDfrAE37t_YVxZZacTvaI2tXY58jUHpcWEoDx9cfwxdF2j3NfVroVGIxbb9stnDNlOnm-9Qv4-SpLNjcnLUdh2FQg154KGMTeJSEWkBOfaMLzQytpYCKsxFFIo4LHrUmckReOdlakyuNmcqyyisqSM4rQXYJlRjGQGsDzcGO-9_ZXU4dShwXTgkFGypswnBwqeeFRGsWD8fI-AsxzbP-szf_ebveHbvAKXW4-VrDcitgJLtroKK61OOCFPWuDqp9fg_fp0So4q8qayz8i-nZY_vn7bc13YrCFDl_fVfpYGs4KMXa0lGaIVNaSuiCIOxKRu2vIgJar9-tBPPa9n12FyHpt8AwZVXdlbQHihuc2sTnmpmeCxKmMkSzFK49JQaQMIuy3NdQtr7rprTPMGkDnJHQvyngUBPO7pjxtAj79SDh2HeioHxO1v1LPDvD3XuY0LbkSDo8cyaZUUkTYC_VaKi8lUAKsdf_NWO-Ajelk-ezgVHrcviwN40A_jsXffclRl61M_hUDnV1AWwM1GWvoXdRB9TFIagFiQo4WVLI5URx88tLirKWYUlx56ifvPDuXoOu0nLKO3_73K-3BxNNndyXe2xtt34FLiyoJ8ImsVBvPZqb2Lft28uNeeJgL5OZ_fn5VHXNM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYS4IMpvoICRQIBEtElsx_EBoS7tqqWwVLSVyilybKdUWiVluwVx4xF4HV6HJ2Hs_MCKAqfeonjkxJ5fTybfADxUTMhC2CzUZVSETGYslBZPrUIrLYrElIUHcX0zSTf32asDfrAE37t_YVxZZWcTvaE2tXY58qGD0mJCUJ4Oy7YsYmd9_OL4Y-g6SLkvrV07jUZEtu2Xz3h8O3m-tY68fpQk4429l5th22Eg1JwLGsbcJCIVkRKca8PwQitrYyGsxmORQmGPXcc6Iyk68qxMlcGN51xlEZUlZRSnvQDLSCKiASyPNiY7734leDh1yDAdUGSUDJX55ADCE4_QKBYcoe8XcFaQ-2et5u8xtHeC4ytwuY1eyVojbiuwZKursNLahxPypAWxfnoN3q9Np-SoIm8r-4zs2mn54-u3HdeRzRoycjlg7Wdp8CvIxNVdkhF6VEPqiijiAE3qpkUPUqILqA_91PN6dh32zmOTb8Cgqit7CwgvNLeZ1SkvNRM8VmWMZCme2Lg0VNoAwm5Lc91CnLtOG9O8AWdOcseCvGdBAI97-uMG3OOvlCPHoZ7KgXL7G_XsMG91PLdxwY1oMPVYJq2SItJGYAxLcTGZCmC142_eWgp8RC_XZw-nwmP4ZXEAD_phNAHuu46qbH3qpxAYCAvKArjZSEv_og6uj0lKAxALcrSwksWR6uiDhxl39cWM4tJDL3H_2aEcw6jdhGX09r9XeR8uot7mr7cm23fgUuIqhHxOaxUG89mpvYsh3ry41yoTgfyc1fcnB4FhCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All+in+One%2C+Self-Powered+Bionic+Artificial+Nerve+Based+on+a+Triboelectric+Nanogenerator&rft.jtitle=Advanced+science&rft.au=Zhang%2C+Qian&rft.au=Zhang%2C+Zixuan&rft.au=Liang%2C+Qijie&rft.au=Shi%2C+Qiongfeng&rft.date=2021-06-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=8&rft.issue=12&rft.spage=2004727&rft_id=info:doi/10.1002%2Fadvs.202004727&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon