anti-inflammatory effects of interleukin-4 are not mediated by suppressor of cytokine signalling-1 (SOCS1)
While it is known that the anti-inflammatory effects of interleukin (IL)-4 require new protein synthesis, the exact mechanisms by which IL-4 suppresses the production of pro-inflammatory cytokines by human monocytes and macrophages is unclear. IL-4 rapidly induced suppressor of cytokine signalling-1...
Saved in:
Published in | Immunology Vol. 131; no. 1; pp. 118 - 127 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.09.2010
Blackwell Publishing Ltd Wiley Subscription Services, Inc Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While it is known that the anti-inflammatory effects of interleukin (IL)-4 require new protein synthesis, the exact mechanisms by which IL-4 suppresses the production of pro-inflammatory cytokines by human monocytes and macrophages is unclear. IL-4 rapidly induced suppressor of cytokine signalling-1 (SOCS1) mRNA and protein, which peaked at 60 min, much earlier than lipopolysaccharide (LPS)-induced SOCS1 mRNA and protein which were consistently maximal 4 hr post-exposure. SOCS1 is a molecule generally considered to be induced for negative feedback of inflammatory processes. We investigated whether the early induction of SOCS1 by IL-4 was responsible for the suppression of LPS-induced tumour necrosis factor (TNF)-α production by IL-4. IL-4 suppressed LPS-induced TNF-α in freshly isolated monocytes at the level of transcription but acted by a different, possibly translational, mechanism in monocytes cultured overnight in macrophage colony-stimulating factor (M-CSF). Despite different modes of regulation by IL-4, the kinetics and magnitude of induction of SOCS1 mRNA and protein by IL-4 in the two cell types were identical. There was no significant difference in the suppression by IL-4 of LPS-induced TNF-α production by bone-marrow derived macrophages from wild-type mice, Ifnγ⁻/⁻ mice and mice lacking SOCS1 (Socs1⁻/⁻Ifnγ⁻/⁻). These data suggest that SOCS1 is not involved in the suppression of LPS-induced TNF-α production by IL-4. |
---|---|
AbstractList | While it is known that the anti‐inflammatory effects of interleukin (IL)‐4 require new protein synthesis, the exact mechanisms by which IL‐4 suppresses the production of pro‐inflammatory cytokines by human monocytes and macrophages is unclear. IL‐4 rapidly induced suppressor of cytokine signalling‐1 (SOCS1) mRNA and protein, which peaked at 60 min, much earlier than lipopolysaccharide (LPS)‐induced SOCS1 mRNA and protein which were consistently maximal 4 hr post‐exposure. SOCS1 is a molecule generally considered to be induced for negative feedback of inflammatory processes. We investigated whether the early induction of SOCS1 by IL‐4 was responsible for the suppression of LPS‐induced tumour necrosis factor (TNF)‐α production by IL‐4. IL‐4 suppressed LPS‐induced TNF‐α in freshly isolated monocytes at the level of transcription but acted by a different, possibly translational, mechanism in monocytes cultured overnight in macrophage colony‐stimulating factor (M‐CSF). Despite different modes of regulation by IL‐4, the kinetics and magnitude of induction of SOCS1 mRNA and protein by IL‐4 in the two cell types were identical. There was no significant difference in the suppression by IL‐4 of LPS‐induced TNF‐α production by bone‐marrow derived macrophages from wild‐type mice,
Ifnγ
−/−
mice and mice lacking SOCS1 (
Socs1
−/−
Ifnγ
−/−
). These data suggest that SOCS1 is not involved in the suppression of LPS‐induced TNF‐α production by IL‐4. Summary While it is known that the anti‐inflammatory effects of interleukin (IL)‐4 require new protein synthesis, the exact mechanisms by which IL‐4 suppresses the production of pro‐inflammatory cytokines by human monocytes and macrophages is unclear. IL‐4 rapidly induced suppressor of cytokine signalling‐1 (SOCS1) mRNA and protein, which peaked at 60 min, much earlier than lipopolysaccharide (LPS)‐induced SOCS1 mRNA and protein which were consistently maximal 4 hr post‐exposure. SOCS1 is a molecule generally considered to be induced for negative feedback of inflammatory processes. We investigated whether the early induction of SOCS1 by IL‐4 was responsible for the suppression of LPS‐induced tumour necrosis factor (TNF)‐α production by IL‐4. IL‐4 suppressed LPS‐induced TNF‐α in freshly isolated monocytes at the level of transcription but acted by a different, possibly translational, mechanism in monocytes cultured overnight in macrophage colony‐stimulating factor (M‐CSF). Despite different modes of regulation by IL‐4, the kinetics and magnitude of induction of SOCS1 mRNA and protein by IL‐4 in the two cell types were identical. There was no significant difference in the suppression by IL‐4 of LPS‐induced TNF‐α production by bone‐marrow derived macrophages from wild‐type mice, Ifnγ−/− mice and mice lacking SOCS1 (Socs1−/−Ifnγ−/−). These data suggest that SOCS1 is not involved in the suppression of LPS‐induced TNF‐α production by IL‐4. While it is known that the anti-inflammatory effects of interleukin (IL)-4 require new protein synthesis, the exact mechanisms by which IL-4 suppresses the production of pro-inflammatory cytokines by human monocytes and macrophages is unclear. IL-4 rapidly induced suppressor of cytokine signalling-1 (SOCS1) mRNA and protein, which peaked at 60 min, much earlier than lipopolysaccharide (LPS)-induced SOCS1 mRNA and protein which were consistently maximal 4 hr post-exposure. SOCS1 is a molecule generally considered to be induced for negative feedback of inflammatory processes. We investigated whether the early induction of SOCS1 by IL-4 was responsible for the suppression of LPS-induced tumour necrosis factor (TNF)- alpha production by IL-4. IL-4 suppressed LPS-induced TNF- alpha in freshly isolated monocytes at the level of transcription but acted by a different, possibly translational, mechanism in monocytes cultured overnight in macrophage colony-stimulating factor (M-CSF). Despite different modes of regulation by IL-4, the kinetics and magnitude of induction of SOCS1 mRNA and protein by IL-4 in the two cell types were identical. There was no significant difference in the suppression by IL-4 of LPS-induced TNF- alpha production by bone-marrow derived macrophages from wild-type mice, Ifng--- mice and mice lacking SOCS1 (Socs1---Ifng---). These data suggest that SOCS1 is not involved in the suppression of LPS-induced TNF- alpha production by IL-4. While it is known that the anti-inflammatory effects of interleukin (IL)-4 require new protein synthesis, the exact mechanisms by which IL-4 suppresses the production of pro-inflammatory cytokines by human monocytes and macrophages is unclear. IL-4 rapidly induced suppressor of cytokine signalling-1 (SOCS1) mRNA and protein, which peaked at 60 min, much earlier than lipopolysaccharide (LPS)-induced SOCS1 mRNA and protein which were consistently maximal 4 hr post-exposure. SOCS1 is a molecule generally considered to be induced for negative feedback of inflammatory processes. We investigated whether the early induction of SOCS1 by IL-4 was responsible for the suppression of LPS-induced tumour necrosis factor (TNF)-alpha production by IL-4. IL-4 suppressed LPS-induced TNF-alpha in freshly isolated monocytes at the level of transcription but acted by a different, possibly translational, mechanism in monocytes cultured overnight in macrophage colony-stimulating factor (M-CSF). Despite different modes of regulation by IL-4, the kinetics and magnitude of induction of SOCS1 mRNA and protein by IL-4 in the two cell types were identical. There was no significant difference in the suppression by IL-4 of LPS-induced TNF-alpha production by bone-marrow derived macrophages from wild-type mice, Ifngamma(-/-) mice and mice lacking SOCS1 (Socs1(-/-)Ifngamma(-/-)). These data suggest that SOCS1 is not involved in the suppression of LPS-induced TNF-alpha production by IL-4. While it is known that the anti-inflammatory effects of interleukin (IL)-4 require new protein synthesis, the exact mechanisms by which IL-4 suppresses the production of pro-inflammatory cytokines by human monocytes and macrophages is unclear. IL-4 rapidly induced suppressor of cytokine signalling-1 (SOCS1) mRNA and protein, which peaked at 60 min, much earlier than lipopolysaccharide (LPS)-induced SOCS1 mRNA and protein which were consistently maximal 4 hr post-exposure. SOCS1 is a molecule generally considered to be induced for negative feedback of inflammatory processes. We investigated whether the early induction of SOCS1 by IL-4 was responsible for the suppression of LPS-induced tumour necrosis factor (TNF)-α production by IL-4. IL-4 suppressed LPS-induced TNF-α in freshly isolated monocytes at the level of transcription but acted by a different, possibly translational, mechanism in monocytes cultured overnight in macrophage colony-stimulating factor (M-CSF). Despite different modes of regulation by IL-4, the kinetics and magnitude of induction of SOCS1 mRNA and protein by IL-4 in the two cell types were identical. There was no significant difference in the suppression by IL-4 of LPS-induced TNF-α production by bone-marrow derived macrophages from wild-type mice, Ifnγ⁻/⁻ mice and mice lacking SOCS1 (Socs1⁻/⁻Ifnγ⁻/⁻). These data suggest that SOCS1 is not involved in the suppression of LPS-induced TNF-α production by IL-4. Summary While it is known that the anti-inflammatory effects of interleukin (IL)-4 require new protein synthesis, the exact mechanisms by which IL-4 suppresses the production of pro-inflammatory cytokines by human monocytes and macrophages is unclear. IL-4 rapidly induced suppressor of cytokine signalling-1 (SOCS1) mRNA and protein, which peaked at 60 min, much earlier than lipopolysaccharide (LPS)-induced SOCS1 mRNA and protein which were consistently maximal 4 hr post-exposure. SOCS1 is a molecule generally considered to be induced for negative feedback of inflammatory processes. We investigated whether the early induction of SOCS1 by IL-4 was responsible for the suppression of LPS-induced tumour necrosis factor (TNF)-[alpha] production by IL-4. IL-4 suppressed LPS-induced TNF-[alpha] in freshly isolated monocytes at the level of transcription but acted by a different, possibly translational, mechanism in monocytes cultured overnight in macrophage colony-stimulating factor (M-CSF). Despite different modes of regulation by IL-4, the kinetics and magnitude of induction of SOCS1 mRNA and protein by IL-4 in the two cell types were identical. There was no significant difference in the suppression by IL-4 of LPS-induced TNF-[alpha] production by bone-marrow derived macrophages from wild-type mice, Ifn[gamma]-/- mice and mice lacking SOCS1 (Socs1-/-Ifn[gamma]-/-). These data suggest that SOCS1 is not involved in the suppression of LPS-induced TNF-[alpha] production by IL-4. [PUBLICATION ABSTRACT] |
Author | Woodward, Eleanor A Hart, Prue H Prêle, Cecilia M Kolesnik, Tatiana B Nicholson, Sandra E |
Author_xml | – sequence: 1 fullname: Woodward, Eleanor A – sequence: 2 fullname: Prêle, Cecilia M – sequence: 3 fullname: Nicholson, Sandra E – sequence: 4 fullname: Kolesnik, Tatiana B – sequence: 5 fullname: Hart, Prue H |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20406299$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks2P1CAYxolZ486u_gtK4kE9dOSzlIMmZuLHJrvZw7hnQlsYqS3MQqvb_17qrBP1olyAl9_z5IWHM3DigzcAQIzWOI_X3RrTkheEl2JNUK4iSiq8vnsAVseDE7BCCMuCVIifgrOUuryliPNH4JQghkoi5Qp02o-ucN72ehj0GOIMjbWmGRMMFjo_mtib6avzBYM6GujDCAfTOj2aFtYzTNN-H01KIS58M48hswYmt_O6753fFRi-3F5vtvjVY_DQ6j6ZJ_fzObj58P7z5lNxef3xYvPusmg4F7jQnNHG4JbqGtWYUGFlW4m6lTaXqxKR2tCyEgQLaXilueCUNLi1statlA2m5-DtwXc_1bnVxvgx6l7toxt0nFXQTv154t0XtQvfFJFlKUqWDV7cG8RwO5k0qsGlxvS99iZMSQnOOC2ZRP8mWSUZ4Yxk8vlfZBemmN8oKcxZiYRAaPGrDlQTQ0rR2GPXGKkledWpJWC1BKyW5NXP5NVdlj79_dZH4a-oM_DmAHx3vZn_21hdXF0tq6x_dtBbHZTeRZfUzZYsXwpXgnHE6Q85cse3 |
CitedBy_id | crossref_primary_10_3233_JAD_170255 crossref_primary_10_1155_2017_4601959 crossref_primary_10_3389_fimmu_2022_1044249 crossref_primary_10_1007_s40618_022_01776_9 crossref_primary_10_3390_ijms241814221 crossref_primary_10_1080_09637486_2017_1288199 crossref_primary_10_1007_s12035_018_1016_x crossref_primary_10_1038_s41551_023_01050_0 crossref_primary_10_1016_j_jep_2021_114003 crossref_primary_10_1055_a_2114_8333 crossref_primary_10_3389_fimmu_2023_1223817 crossref_primary_10_1007_s42978_022_00164_2 crossref_primary_10_1016_j_ejphar_2023_176058 crossref_primary_10_1055_a_1813_2057 crossref_primary_10_3390_ijms22168485 crossref_primary_10_1586_14760584_2016_1170598 crossref_primary_10_3389_fmed_2024_1337206 crossref_primary_10_3390_ijms21186546 crossref_primary_10_1088_1555_6611_aac29a crossref_primary_10_1152_ajplung_00288_2022 crossref_primary_10_1016_j_ejphar_2022_175214 crossref_primary_10_1016_j_jff_2018_05_036 crossref_primary_10_3390_ani11040987 crossref_primary_10_1007_s13770_018_0147_5 crossref_primary_10_1016_j_jaci_2023_05_025 crossref_primary_10_1038_s41598_024_61909_3 crossref_primary_10_1038_s41598_024_51932_9 crossref_primary_10_1016_j_biomaterials_2021_121239 crossref_primary_10_1038_s41598_022_19401_3 crossref_primary_10_1080_08820139_2023_2186245 crossref_primary_10_2217_nnm_2018_0221 crossref_primary_10_1016_j_cyto_2012_03_009 crossref_primary_10_1097_MD_0000000000033439 crossref_primary_10_3390_ijms241814392 crossref_primary_10_4103_epj_epj_283_23 crossref_primary_10_1055_a_2181_1018 crossref_primary_10_1111_1750_3841_14168 crossref_primary_10_4161_viru_25641 crossref_primary_10_3390_nu11123000 crossref_primary_10_1007_s00018_022_04397_w crossref_primary_10_1007_s10753_023_01843_0 crossref_primary_10_1002_JLB_3A0520_293RR crossref_primary_10_3390_ph16020149 crossref_primary_10_3390_jcm12206519 crossref_primary_10_3390_metabo13010129 crossref_primary_10_1016_j_biotechadv_2018_07_004 crossref_primary_10_1189_jlb_1010557 crossref_primary_10_2174_2589977512999201109215004 |
Cites_doi | 10.4049/jimmunol.173.2.737 10.1016/j.imbio.2008.07.015 10.4049/jimmunol.162.7.3770 10.1074/jbc.273.44.29202 10.1038/nature03988 10.1016/S0092-8674(00)80047-1 10.4049/jimmunol.177.5.3028 10.1016/S0167-4889(96)00107-3 10.1146/annurev.immunol.021908.132532 10.1002/(SICI)1521-4141(199805)28:05<1719::AID-IMMU1719>3.0.CO;2-Q 10.4049/jimmunol.177.6.3520 10.1038/nri978 10.1074/jbc.270.16.9558 10.1189/jlb.71.6.1026 10.1016/j.cmet.2008.04.003 10.3109/08977190109001087 10.1016/S0022-1759(03)00229-1 10.1002/art.1780371202 10.1016/0167-5699(96)10029-3 10.1152/ajpendo.90632.2008 10.1073/pnas.95.24.14395 10.1074/jbc.272.22.14394 10.1016/j.pharmthera.2009.06.011 10.1038/nature05894 10.4049/jimmunol.171.11.5901 10.1038/nm804 10.1016/S1074-7613(02)00446-6 10.1038/34184 10.1146/annurev.immunol.17.1.701 10.1159/000053271 10.1159/000028096 10.1073/pnas.86.10.3803 10.1074/jbc.M102737200 10.1002/eji.200636910 10.1002/jlb.57.6.909 10.4049/jimmunol.160.8.4048 10.1074/jbc.M509595200 10.4049/jimmunol.146.10.3431 10.1126/science.8332913 10.1016/S1074-7613(02)00449-1 10.4049/jimmunol.156.7.2591 10.4049/jimmunol.180.8.5257 10.1074/jbc.M707442200 10.1038/sj.gene.6364352 10.2174/156802609788085250 10.1084/jem.20080452 10.1074/jbc.M409825200 10.4049/jimmunol.151.10.5603 10.1074/jbc.272.15.10212 10.1074/jbc.C500053200 10.1172/JCI115872 10.4049/jimmunol.181.11.8018 10.1074/jbc.M006227200 10.4049/jimmunol.149.4.1283 10.1073/pnas.96.19.10800 10.4049/jimmunol.163.8.4546 |
ContentType | Journal Article |
Copyright | 2010 The Authors. Journal Compilation © 2010 Blackwell Publishing Ltd Journal compilation © 2010 Blackwell Publishing Ltd |
Copyright_xml | – notice: 2010 The Authors. Journal Compilation © 2010 Blackwell Publishing Ltd – notice: Journal compilation © 2010 Blackwell Publishing Ltd |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QR 7T5 7U9 8FD C1K FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1111/j.1365-2567.2010.03281.x |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Chemoreception Abstracts Immunology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef AIDS and Cancer Research Abstracts MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1365-2567 |
EndPage | 127 |
ExternalDocumentID | 3378166291 10_1111_j_1365_2567_2010_03281_x 20406299 IMM3281 US201301874505 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OC 24P 29I 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHHS AAJUZ AAKAS AANLZ AAONW AASGY AAVGM AAXRX AAZKR ABCQN ABCUV ABCVL ABDBF ABEML ABHUG ABJNI ABPTK ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADBTR ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFDAS AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIACR AIAGR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EPT ESTFP ESX EX3 F00 F01 F04 F5P FBQ FD6 FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HZI HZ~ H~9 IH2 IHE IPNFZ IX1 J0M J5H K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OHT OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 Q~Q R.K ROL RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 UPT V8K W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WRC WVDHM WXI WXSBR X7M XG1 Y6R YF5 YFH YOC YUY ZA5 ZGI ZXP ZZTAW ~IA ~KM ~WT AHBTC AITYG HGLYW OIG CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QL 7QR 7T5 7U9 8FD C1K FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c5571-a543ce1d3ab0b1237f9d87bd9f3ce8602be36872179e58a57532c1df9bad99c13 |
IEDL.DBID | RPM |
ISSN | 0019-2805 |
IngestDate | Tue Sep 17 21:22:08 EDT 2024 Wed Dec 04 04:08:14 EST 2024 Wed Dec 04 07:05:30 EST 2024 Thu Oct 10 20:04:01 EDT 2024 Fri Nov 22 00:51:04 EST 2024 Sat Sep 28 08:16:16 EDT 2024 Sat Aug 24 00:57:08 EDT 2024 Wed Dec 27 19:28:50 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5571-a543ce1d3ab0b1237f9d87bd9f3ce8602be36872179e58a57532c1df9bad99c13 |
Notes | http://dx.doi.org/10.1111/j.1365-2567.2010.03281.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966764 |
PMID | 20406299 |
PQID | 1546077000 |
PQPubID | 37820 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2966764 proquest_miscellaneous_754536490 proquest_miscellaneous_748942542 proquest_journals_1546077000 crossref_primary_10_1111_j_1365_2567_2010_03281_x pubmed_primary_20406299 wiley_primary_10_1111_j_1365_2567_2010_03281_x_IMM3281 fao_agris_US201301874505 |
PublicationCentury | 2000 |
PublicationDate | September 2010 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: September 2010 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Immunology |
PublicationTitleAlternate | Immunology |
PublicationYear | 2010 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Wiley Subscription Services, Inc Blackwell Science Inc |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Blackwell Science Inc |
References | 2002; 17 1998; 160 1993; 23 1989; 86 1996; 1314 1997; 272 1999; 162 2008; 7 1992; 15 2003; 278 2006; 177 2007; 37 1998; 273 1992; 90 1991; 146 1999; 17 2000; 54 2004; 173 2003; 9 2007; 8 2001; 19 2003; 3 1999; 98 2009; 124 1994; 37 1999; 96 2006; 281 1998; 95 1995; 163 1998; 28 1996; 17 2007; 447 1995; 57 2005; 437 2009; 297 1999; 67 2003; 171 2008; 205 2000; 275 1992; 76 2009; 27 1996; 10 2008; 283 1995; 270 2001; 276 2008; 181 2008; 180 2005; 280 1998; 391 2004; 279 2009; 9 1993; 151 2002; 71 2008; 213 1996; 156 18926294 - Immunobiology. 2008;213(9-10):789-803 9826711 - Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14395-9 15849198 - J Biol Chem. 2005 Jun 24;280(25):23496-501 2786204 - Proc Natl Acad Sci U S A. 1989 May;86(10):3803-7 18390706 - J Immunol. 2008 Apr 15;180(8):5257-66 15489227 - J Biol Chem. 2004 Dec 31;279(53):55633-43 1322938 - J Clin Invest. 1992 Aug;90(2):382-8 7986216 - Arthritis Rheum. 1994 Dec;37(12):1715-22 19017994 - J Immunol. 2008 Dec 1;181(11):8018-26 11595817 - Horm Res. 2000;54(5-6):275-80 10490099 - Cell. 1999 Sep 3;98(5):597-608 12050189 - J Leukoc Biol. 2002 Jun;71(6):1026-32 10982806 - J Biol Chem. 2000 Dec 1;275(48):38095-103 16920939 - J Immunol. 2006 Sep 1;177(5):3028-34 12957395 - J Immunol Methods. 2003 Jul;278(1-2):45-56 16473883 - J Biol Chem. 2006 Apr 21;281(16):11135-43 12433365 - Immunity. 2002 Nov;17(5):583-91 9558115 - J Immunol. 1998 Apr 15;160(8):4048-56 8982276 - Biochim Biophys Acta. 1996 Dec 12;1314(3):226-32 17183610 - Eur J Immunol. 2007 Jan;37(1):14-6 10358772 - Annu Rev Immunol. 1999;17:701-38 12433373 - Immunity. 2002 Nov;17(5):677-87 19105661 - Annu Rev Immunol. 2009;27:451-83 8854561 - Immunol Today. 1996 Sep;17(9):424-8 9786931 - J Biol Chem. 1998 Oct 30;273(44):29202-9 8786324 - J Immunol. 1996 Apr 1;156(7):2591-8 18852293 - J Exp Med. 2008 Oct 27;205(11):2595-608 8332913 - Science. 1993 Jul 23;261(5120):472-5 12461524 - Nat Med. 2003 Jan;9(1):40-6 1328039 - Immunology. 1992 Aug;76(4):560-5 9162077 - J Biol Chem. 1997 May 30;272(22):14394-8 14634100 - J Immunol. 2003 Dec 1;171(11):5901-7 16951310 - J Immunol. 2006 Sep 15;177(6):3520-4 19417127 - Am J Physiol Endocrinol Metab. 2009 Jul;297(1):E174-83 2026872 - J Immunol. 1991 May 15;146(10):3431-6 7540642 - J Leukoc Biol. 1995 Jun;57(6):909-18 16127449 - Nature. 2005 Sep 29;437(7059):759-63 10201892 - J Immunol. 1999 Apr 1;162(7):3770-4 1386862 - J Immunol. 1992 Aug 15;149(4):1283-8 17981803 - J Biol Chem. 2008 Jan 25;283(4):1808-17 17093501 - Genes Immun. 2007 Jan;8(1):21-7 9603479 - Eur J Immunol. 1998 May;28(5):1719-26 11306591 - J Biol Chem. 2001 Jun 22;276(25):22086-9 11811777 - Growth Factors. 2001;19(4):207-18 15240659 - J Immunol. 2004 Jul 15;173(2):737-46 17515919 - Nature. 2007 Jun 28;447(7148):1116-20 18522831 - Cell Metab. 2008 Jun;7(6):496-507 9092569 - J Biol Chem. 1997 Apr 11;272(15):10212-9 10485906 - Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10800-5 9422509 - Nature. 1998 Jan 1;391(6662):82-6 19615407 - Pharmacol Ther. 2009 Nov;124(2):141-50 8709636 - Leukemia. 1996 Aug;10(8):1308-16 12511873 - Nat Rev Immunol. 2003 Jan;3(1):23-35 10725788 - Pathobiology. 1999;67(5-6):222-6 10510398 - J Immunol. 1999 Oct 15;163(8):4546-56 19355993 - Curr Top Med Chem. 2009;9(3):309-19 8228249 - J Immunol. 1993 Nov 15;151(10):5603-12 7721885 - J Biol Chem. 1995 Apr 21;270(16):9558-63 e_1_2_7_5_2 Dokter WH (e_1_2_7_20_2) 1996; 10 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_17_2 e_1_2_7_15_2 Takeshita S (e_1_2_7_35_2) 1996; 156 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_49_2 e_1_2_7_28_2 Donnelly RP (e_1_2_7_18_2) 1991; 146 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_58_2 Bonder CS (e_1_2_7_37_2) 1998; 160 e_1_2_7_39_2 Lubberts E (e_1_2_7_11_2) 1995; 163 Fenton MJ (e_1_2_7_3_2) 1992; 15 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_16_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_2 Losman JA (e_1_2_7_23_2) 1999; 162 e_1_2_7_48_2 e_1_2_7_27_2 Hart PH (e_1_2_7_26_2) 1992; 76 e_1_2_7_29_2 Donnelly RP (e_1_2_7_19_2) 1993; 151 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_2 e_1_2_7_59_2 |
References_xml | – volume: 270 start-page: 9558 year: 1995 end-page: 63 article-title: Interleukin (IL)‐10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL‐10 and IL‐4 suppress cytokine synthesis by different mechanisms publication-title: J Biol Chem – volume: 17 start-page: 701 year: 1999 end-page: 38 article-title: The IL‐4 receptor: signaling mechanisms and biologic functions publication-title: Annu Rev Immunol – volume: 171 start-page: 5901 year: 2003 end-page: 7 article-title: IL‐4 and IL‐13 induce SOCS‐1 gene expression in A549 cells by three functional STAT6‐binding motifs located upstream of the transcription initiation site publication-title: J Immunol – volume: 71 start-page: 1026 year: 2002 end-page: 32 article-title: Post‐transcriptional regulation of TNF‐alpha during in vitro differentiation of human monocytes/macrophages in primary culture publication-title: J Leukoc Biol – volume: 151 start-page: 5603 year: 1993 end-page: 12 article-title: Tissue‐specific regulation of IL‐6 production by IL‐4. Differential effects of IL‐4 on nuclear factor‐kappa B activity in monocytes and fibroblasts publication-title: J Immunol – volume: 19 start-page: 207 year: 2001 end-page: 18 article-title: Characterization of IL‐4 receptor components expressed on monocytes and monocyte‐derived macrophages: variation associated with differential signaling by IL‐4 publication-title: Growth Factors – volume: 1314 start-page: 226 year: 1996 end-page: 32 article-title: Interleukin‐4 blocks the release of collagen fragments from bovine nasal cartilage treated with cytokines publication-title: Biochim Biophys Acta – volume: 17 start-page: 424 year: 1996 end-page: 8 article-title: Heterogeneity of human blood monocytes: the CD14 CD16 subpopulation publication-title: Immunol Today – volume: 9 start-page: 40 year: 2003 end-page: 6 article-title: Interleukin‐4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease publication-title: Nat Med – volume: 181 start-page: 8018 year: 2008 end-page: 26 article-title: SOCS1 regulates the IFN but not NFkappaB pathway in TLR‐stimulated human monocytes and macrophages publication-title: J Immunol – volume: 37 start-page: 14 year: 2007 end-page: 6 article-title: New vistas on macrophage differentiation and activation publication-title: Eur J Immunol – volume: 281 start-page: 11135 year: 2006 end-page: 43 article-title: The comparative roles of suppressor of cytokine signaling‐1 and ‐3 in the inhibition and desensitization of cytokine signaling publication-title: J Biol Chem – volume: 180 start-page: 5257 year: 2008 end-page: 66 article-title: Polarization of primary human monocytes by IFN‐gamma induces chromatin changes and recruits RNA Pol II to the TNF‐alpha promoter publication-title: J Immunol – volume: 146 start-page: 3431 year: 1991 end-page: 6 article-title: IL‐1 expression in human monocytes is transcriptionally and posttranscriptionally regulated by IL‐4 publication-title: J Immunol – volume: 177 start-page: 3520 year: 2006 end-page: 4 article-title: TREM‐2 attenuates macrophage activation publication-title: J Immunol – volume: 90 start-page: 382 year: 1992 end-page: 8 article-title: Suppression of metalloproteinase biosynthesis in human alveolar macrophages by interleukin‐4 publication-title: J Clin Invest – volume: 76 start-page: 560 year: 1992 end-page: 5 article-title: Interleukin‐4 suppression of monocyte tumour necrosis factor‐alpha production. Dependence on protein synthesis but not on cyclic AMP production publication-title: Immunology – volume: 98 start-page: 597 year: 1999 end-page: 608 article-title: SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine publication-title: Cell – volume: 156 start-page: 2591 year: 1996 end-page: 8 article-title: Differential regulation of IL‐6 gene transcription and expression by IL‐4 and IL‐10 in human monocytic cell lines publication-title: J Immunol – volume: 297 start-page: E174 year: 2009 end-page: 83 article-title: PPAR‐γ inhibits NF‐κB‐dependent transcriptional activation in skeletal muscle publication-title: Am J Physiol Endocrinol Metab – volume: 447 start-page: 1116 year: 2007 end-page: 20 article-title: Macrophage‐specific PPARgamma controls alternative activation and improves insulin resistance publication-title: Nature – volume: 279 start-page: 55633 year: 2004 end-page: 43 article-title: Constitutive and interleukin‐1‐inducible phosphorylation of p65 NF‐κB at serine 536 is mediated by multiple protein kinases including IκB kinase (IKK)‐α, IKKβ, IKKε, TRAF family member‐associated (TANK)‐binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA‐binding protein‐associated factor II31‐mediated interleukin‐8 transcription publication-title: J Biol Chem – volume: 276 start-page: 22086 year: 2001 end-page: 9 article-title: Suppressor of cytokine signaling‐1 attenuates the duration of interferon gamma signal transduction in vitro and in vivo publication-title: J Biol Chem – volume: 273 start-page: 29202 year: 1998 end-page: 9 article-title: STAT6 is required for the anti‐inflammatory activity of interleukin‐4 in mouse peritoneal macrophages publication-title: J Biol Chem – volume: 95 start-page: 14395 year: 1998 end-page: 9 article-title: Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling‐1 publication-title: Proc Natl Acad Sci USA – volume: 173 start-page: 737 year: 2004 end-page: 46 article-title: Cell proliferation and STAT6 pathways are negatively regulated in T cells by STAT1 and suppressors of cytokine signaling publication-title: J Immunol – volume: 86 start-page: 3803 year: 1989 end-page: 7 article-title: Potential anti‐ inflammatory effects of interleukin‐4. Suppression of human monocyte TNFα, IL‐1 and PGE2 levels publication-title: Proc Natl Acad Sci USA – volume: 3 start-page: 23 year: 2003 end-page: 35 article-title: Alternative activation of macrophages publication-title: Nat Rev Immunol – volume: 391 start-page: 82 year: 1998 end-page: 6 article-title: PPAR‐gamma agonists inhibit production of monocyte inflammatory cytokines publication-title: Nature – volume: 162 start-page: 3770 year: 1999 end-page: 4 article-title: Cutting edge: SOCS‐1 is a potent inhibitor of IL‐4 signal transduction publication-title: J Immunol – volume: 124 start-page: 141 year: 2009 end-page: 50 article-title: Emerging roles of peroxisome proliferator‐activated receptor‐beta/delta in inflammation publication-title: Pharmacol Ther – volume: 9 start-page: 309 year: 2009 end-page: 19 article-title: Histone deacetylase inhibitors in inflammatory disease publication-title: Curr Top Med Chem – volume: 54 start-page: 275 year: 2000 article-title: Regulation of macrophage gene expression by the peroxisome proliferator‐activated receptor‐gamma publication-title: Horm Res – volume: 163 start-page: 4546 year: 1995 end-page: 56 article-title: Adenoviral vector‐mediated overexpression of IL‐4 in the knee joint of mice with collagen‐induced arthritis prevents cartilage destruction publication-title: J Immunol – volume: 8 start-page: 21 year: 2007 end-page: 7 article-title: Suppressor of cytokine signaling‐1 is an IL‐4‐inducible gene in macrophages and feedback inhibits IL‐4 signaling publication-title: Genes Immun – volume: 67 start-page: 222 year: 1999 end-page: 6 article-title: Alternative versus classical activation of macrophages publication-title: Pathobiology – volume: 17 start-page: 677 year: 2002 end-page: 87 article-title: SOCS‐1 participates in negative regulation of LPS responses publication-title: Immunity – volume: 27 start-page: 451 year: 2009 end-page: 83 article-title: Alternative activation of macrophages: an immunologic functional perspective publication-title: Annu Rev Immunol – volume: 272 start-page: 14394 year: 1997 end-page: 8 article-title: Interleukin‐4 and ‐13 inhibit tumor necrosis factor‐alpha mRNA translational activation in lipopolysaccharide‐induced mouse macrophages publication-title: J Biol Chem – volume: 17 start-page: 583 year: 2002 end-page: 91 article-title: SOCS‐1/JAB is a negative regulator of LPS‐induced macrophage activation publication-title: Immunity – volume: 275 start-page: 38095 year: 2000 end-page: 103 article-title: Interleukin‐4/STAT6 represses STAT1 and NF‐kappa B‐dependent transcription through distinct mechanisms publication-title: J Biol Chem – volume: 205 start-page: 2595 year: 2008 end-page: 608 article-title: Tuning sensitivity to IL‐4 and IL‐13: differential expression of IL‐4Ralpha, IL‐13Ralpha1, and gammac regulates relative cytokine sensitivity publication-title: J Exp Med – volume: 28 start-page: 1719 year: 1998 end-page: 26 article-title: IL‐10‐mediated suppression of TNF‐alpha production is independent of its ability to inhibit NF kappa B activity publication-title: Eur J Immunol – volume: 272 start-page: 10212 year: 1997 end-page: 9 article-title: Interleukin‐4 suppression of tumor necrosis factor alpha‐stimulated E‐selectin gene transcription is mediated by STAT6 antagonism of NF‐kappaB publication-title: J Biol Chem – volume: 177 start-page: 3028 year: 2006 end-page: 34 article-title: Simvastatin treatment ameliorates autoimmune disease associated with accelerated atherosclerosis in a murine lupus model publication-title: J Immunol – volume: 57 start-page: 909 year: 1995 end-page: 18 article-title: Monocytes cultured in cytokine‐defined environments differ from freshly isolated monocytes in their responses to IL‐4 and IL‐10 publication-title: J Leukoc Biol – volume: 37 start-page: 1715 year: 1994 end-page: 22 article-title: Interleukin‐4 inhibits bone resorption through an effect on osteoclasts and proinflammatory cytokines in an ex vivo model of bone resorption in rheumatoid arthritis publication-title: Arthritis Rheum – volume: 10 start-page: 1308 year: 1996 end-page: 16 article-title: Effects of IL‐10 and IL‐4 on LPS‐induced transcription factors (AP‐1, NF‐IL6 and NF‐kappa B) which are involved in IL‐6 regulation publication-title: Leukemia – volume: 280 start-page: 23496 year: 2005 end-page: 501 article-title: Bruton’s tyrosine kinase is involved in p65‐mediated transactivation and phosphorylation of p65 on serine 536 during NFkappaB activation by lipopolysaccharide publication-title: J Biol Chem – volume: 96 start-page: 10800 year: 1999 end-page: 5 article-title: Interferons inhibit activation of STAT6 by interleukin 4 in human monocytes by inducing SOCS‐1 gene expression publication-title: Proc Natl Acad Sci USA – volume: 15 start-page: 1283 year: 1992 end-page: 8 article-title: IL‐4 reciprocally regulates IL‐1 and IL‐1 receptor antagonist expression in human monocytes publication-title: J Immunol – volume: 278 start-page: 45 year: 2003 end-page: 56 article-title: Centrifugation facilitates transduction of green fluorescent protein in human monocytes and macrophages by adenovirus at low multiplicity of infection publication-title: J Immunol Methods – volume: 7 start-page: 496 year: 2008 end-page: 507 article-title: Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity‐induced insulin resistance publication-title: Cell Metab – volume: 283 start-page: 1808 year: 2008 end-page: 17 article-title: A pivotal role for interleukin‐4 in atorvastatin‐associated neuroprotection in rat brain publication-title: J Biol Chem – volume: 437 start-page: 759 year: 2005 end-page: 63 article-title: A SUMOylation‐dependent pathway mediates transrepression of inflammatory response genes by PPAR‐gamma publication-title: Nature – volume: 160 start-page: 4048 year: 1998 end-page: 56 article-title: Involvement of the IL‐2 receptor gamma‐chain (gammac) in the control by IL‐4 of human monocyte and macrophage proinflammatory mediator production publication-title: J Immunol – volume: 23 start-page: 472 year: 1993 end-page: 5 article-title: Interleukin‐1 type II receptor: a decoy target for IL‐1 that is regulated by IL‐4 publication-title: Science – volume: 213 start-page: 789 year: 2008 end-page: 803 article-title: The many faces of PPARgamma: anti‐inflammatory by any means? publication-title: Immunobiology – ident: e_1_2_7_24_2 doi: 10.4049/jimmunol.173.2.737 – ident: e_1_2_7_52_2 doi: 10.1016/j.imbio.2008.07.015 – volume: 162 start-page: 3770 year: 1999 ident: e_1_2_7_23_2 article-title: Cutting edge: SOCS‐1 is a potent inhibitor of IL‐4 signal transduction publication-title: J Immunol doi: 10.4049/jimmunol.162.7.3770 contributor: fullname: Losman JA – ident: e_1_2_7_36_2 doi: 10.1074/jbc.273.44.29202 – ident: e_1_2_7_56_2 doi: 10.1038/nature03988 – ident: e_1_2_7_28_2 doi: 10.1016/S0092-8674(00)80047-1 – ident: e_1_2_7_14_2 doi: 10.4049/jimmunol.177.5.3028 – ident: e_1_2_7_6_2 doi: 10.1016/S0167-4889(96)00107-3 – ident: e_1_2_7_15_2 doi: 10.1146/annurev.immunol.021908.132532 – ident: e_1_2_7_16_2 doi: 10.1002/(SICI)1521-4141(199805)28:05<1719::AID-IMMU1719>3.0.CO;2-Q – ident: e_1_2_7_42_2 doi: 10.4049/jimmunol.177.6.3520 – ident: e_1_2_7_9_2 doi: 10.1038/nri978 – ident: e_1_2_7_34_2 doi: 10.1074/jbc.270.16.9558 – ident: e_1_2_7_45_2 doi: 10.1189/jlb.71.6.1026 – ident: e_1_2_7_59_2 doi: 10.1016/j.cmet.2008.04.003 – ident: e_1_2_7_38_2 doi: 10.3109/08977190109001087 – ident: e_1_2_7_41_2 doi: 10.1016/S0022-1759(03)00229-1 – ident: e_1_2_7_7_2 doi: 10.1002/art.1780371202 – ident: e_1_2_7_43_2 doi: 10.1016/0167-5699(96)10029-3 – ident: e_1_2_7_57_2 doi: 10.1152/ajpendo.90632.2008 – ident: e_1_2_7_27_2 doi: 10.1073/pnas.95.24.14395 – ident: e_1_2_7_17_2 doi: 10.1074/jbc.272.22.14394 – ident: e_1_2_7_54_2 doi: 10.1016/j.pharmthera.2009.06.011 – ident: e_1_2_7_58_2 doi: 10.1038/nature05894 – ident: e_1_2_7_22_2 doi: 10.4049/jimmunol.171.11.5901 – ident: e_1_2_7_12_2 doi: 10.1038/nm804 – volume: 10 start-page: 1308 year: 1996 ident: e_1_2_7_20_2 article-title: Effects of IL‐10 and IL‐4 on LPS‐induced transcription factors (AP‐1, NF‐IL6 and NF‐kappa B) which are involved in IL‐6 regulation publication-title: Leukemia contributor: fullname: Dokter WH – ident: e_1_2_7_31_2 doi: 10.1016/S1074-7613(02)00446-6 – ident: e_1_2_7_53_2 doi: 10.1038/34184 – ident: e_1_2_7_21_2 doi: 10.1146/annurev.immunol.17.1.701 – ident: e_1_2_7_55_2 doi: 10.1159/000053271 – ident: e_1_2_7_8_2 doi: 10.1159/000028096 – ident: e_1_2_7_2_2 doi: 10.1073/pnas.86.10.3803 – ident: e_1_2_7_29_2 doi: 10.1074/jbc.M102737200 – ident: e_1_2_7_10_2 doi: 10.1002/eji.200636910 – ident: e_1_2_7_40_2 doi: 10.1002/jlb.57.6.909 – volume: 160 start-page: 4048 year: 1998 ident: e_1_2_7_37_2 article-title: Involvement of the IL‐2 receptor gamma‐chain (gammac) in the control by IL‐4 of human monocyte and macrophage proinflammatory mediator production publication-title: J Immunol doi: 10.4049/jimmunol.160.8.4048 contributor: fullname: Bonder CS – ident: e_1_2_7_33_2 doi: 10.1074/jbc.M509595200 – volume: 146 start-page: 3431 year: 1991 ident: e_1_2_7_18_2 article-title: IL‐1 expression in human monocytes is transcriptionally and posttranscriptionally regulated by IL‐4 publication-title: J Immunol doi: 10.4049/jimmunol.146.10.3431 contributor: fullname: Donnelly RP – ident: e_1_2_7_4_2 doi: 10.1126/science.8332913 – ident: e_1_2_7_30_2 doi: 10.1016/S1074-7613(02)00449-1 – volume: 156 start-page: 2591 year: 1996 ident: e_1_2_7_35_2 article-title: Differential regulation of IL‐6 gene transcription and expression by IL‐4 and IL‐10 in human monocytic cell lines publication-title: J Immunol doi: 10.4049/jimmunol.156.7.2591 contributor: fullname: Takeshita S – ident: e_1_2_7_51_2 doi: 10.4049/jimmunol.180.8.5257 – ident: e_1_2_7_13_2 doi: 10.1074/jbc.M707442200 – ident: e_1_2_7_25_2 doi: 10.1038/sj.gene.6364352 – ident: e_1_2_7_50_2 doi: 10.2174/156802609788085250 – volume: 76 start-page: 560 year: 1992 ident: e_1_2_7_26_2 article-title: Interleukin‐4 suppression of monocyte tumour necrosis factor‐alpha production. Dependence on protein synthesis but not on cyclic AMP production publication-title: Immunology contributor: fullname: Hart PH – ident: e_1_2_7_44_2 doi: 10.1084/jem.20080452 – ident: e_1_2_7_49_2 doi: 10.1074/jbc.M409825200 – volume: 151 start-page: 5603 year: 1993 ident: e_1_2_7_19_2 article-title: Tissue‐specific regulation of IL‐6 production by IL‐4. Differential effects of IL‐4 on nuclear factor‐kappa B activity in monocytes and fibroblasts publication-title: J Immunol doi: 10.4049/jimmunol.151.10.5603 contributor: fullname: Donnelly RP – ident: e_1_2_7_47_2 doi: 10.1074/jbc.272.15.10212 – ident: e_1_2_7_48_2 doi: 10.1074/jbc.C500053200 – ident: e_1_2_7_5_2 doi: 10.1172/JCI115872 – ident: e_1_2_7_32_2 doi: 10.4049/jimmunol.181.11.8018 – ident: e_1_2_7_46_2 doi: 10.1074/jbc.M006227200 – volume: 15 start-page: 1283 year: 1992 ident: e_1_2_7_3_2 article-title: IL‐4 reciprocally regulates IL‐1 and IL‐1 receptor antagonist expression in human monocytes publication-title: J Immunol doi: 10.4049/jimmunol.149.4.1283 contributor: fullname: Fenton MJ – ident: e_1_2_7_39_2 doi: 10.1073/pnas.96.19.10800 – volume: 163 start-page: 4546 year: 1995 ident: e_1_2_7_11_2 article-title: Adenoviral vector‐mediated overexpression of IL‐4 in the knee joint of mice with collagen‐induced arthritis prevents cartilage destruction publication-title: J Immunol doi: 10.4049/jimmunol.163.8.4546 contributor: fullname: Lubberts E |
SSID | ssj0013055 |
Score | 2.255998 |
Snippet | While it is known that the anti-inflammatory effects of interleukin (IL)-4 require new protein synthesis, the exact mechanisms by which IL-4 suppresses the... Summary While it is known that the anti‐inflammatory effects of interleukin (IL)‐4 require new protein synthesis, the exact mechanisms by which IL‐4 suppresses... While it is known that the anti‐inflammatory effects of interleukin (IL)‐4 require new protein synthesis, the exact mechanisms by which IL‐4 suppresses the... Summary While it is known that the anti-inflammatory effects of interleukin (IL)-4 require new protein synthesis, the exact mechanisms by which IL-4 suppresses... |
SourceID | pubmedcentral proquest crossref pubmed wiley fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 118 |
SubjectTerms | Animals Anti-Inflammatory Agents - metabolism Anti-Inflammatory Agents - pharmacology Cells, Cultured Cytokines endotoxin/lipopolysaccharide Humans inflammation Interferon-gamma - pharmacology Interleukin-4 - metabolism Interleukin-4 - pharmacology Lipopolysaccharides - immunology Lipopolysaccharides - pharmacology Macrophages - drug effects Macrophages - immunology Macrophages - metabolism macrophages/monocytes Medical research Mice Mice, Inbred C57BL Monocytes - drug effects Monocytes - immunology Monocytes - metabolism Original Proteins RNA, Messenger - genetics RNA, Messenger - metabolism Rodents Signal Transduction signalling/signal transduction Suppressor of Cytokine Signaling 1 Protein Suppressor of Cytokine Signaling Proteins - drug effects Suppressor of Cytokine Signaling Proteins - genetics Suppressor of Cytokine Signaling Proteins - metabolism Tumor Necrosis Factor-alpha - metabolism |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BSiAufCwfG1iQDxzgkKqOnTg-ooXVglSQKJX2ZtmJA1UhWbWJRDnxE_iN_BJmnLRsYYUQ4lbVdtRM3sw81y8zAI9thdsqn_hYOq9iKWUVW-nKWJSYILxNpfCh2ufr7GQmX52mp4P-id6F6etDbP9wI88I8Zoc3LrVrpMHhVaaqUGhJZKcj4hPcqFI3ff8bfLzQGGcDs0MdJzk43RX1HPhhXYy1eXKNheR0N-1lOc5bkhSxzdgsbm9XpuyGHWtGxVffqn8-H_u_yZcH7gse9aD7xZc8vU-XOm7W6734epkOLe_DS2ikeEznH__-g0hjSj8FE732SAnYU3FqHDF8qPvFvMaZ0lml57VTcvCuy3Ii5lbs1V3FoS7zZJWFOu2wdmekQjFhuLiuJKzJ9M3R1P-9A7Mjl-8OzqJh34PcZGmiseEjMLzUlg3dphRVaXLXLlSV_g19cpyXmQ5blmV9mlukWiKpOBlpZ0ttS64uAt7dVP7A2C-yHHrneOQsFJaKkKvMTLlpfUlx0UR8M2zNWd9WQ9zbjuEhjVkWEOGNcGw5nMEBwgCY99j9DWzaUKgoo6GyCEjONwgwwwxYGWQnGZjpTDnRMC2w-i9dCRja990K0O1fzBqyuQPU5DjikxqvMq9HmrbX5xgBM6QT0SgdkC4nUC1w3dH6vmHUEM80SRulhFkAWN_bQTzcjKhT_f_deEDuNYLMEimdwh77bLzD5HXte5R8NgfwAxAQg priority: 102 providerName: Wiley-Blackwell |
Title | anti-inflammatory effects of interleukin-4 are not mediated by suppressor of cytokine signalling-1 (SOCS1) |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2567.2010.03281.x https://www.ncbi.nlm.nih.gov/pubmed/20406299 https://www.proquest.com/docview/1546077000 https://search.proquest.com/docview/748942542 https://search.proquest.com/docview/754536490 https://pubmed.ncbi.nlm.nih.gov/PMC2966764 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5aJ4F4QWxcFhiTH3iAB6-1YyfxI6rYBlIBUSr1zbITZ1SsSdWLRP89x05SVm1CiJcoip2LfI59viN_-Q7AG1NiWuW4o8K6lAohSmqELWhcYIBwRorYBbXPz8nVRHyayukByO5fmEDaz-3svLqZn1ezH4FbuZjn_Y4n1v86GnLlmZmi34Meht8uRe-2DgayLVugKM8Gcp--E0hdMklbUlfMMxa0qDk6c8KDAuyf8NQrTX0f8rxLoLwNbENkungCj1tISd43n34EB646hgdNkcntMTwctdvnT6FCpyA4lDOKfoWuMA9b7KTldJC6JF49YnnjNj9nFRXELB2p6jUJv5cgNCV2S1abReDO1kvfP9-ua-zriOeBmKDvTRl5O_4yHLN3z2By8eH78Iq2BRdoLmXKqDdN7lgRGzuwGNLSUhVZagtV4mVfrMq6OMkwZ0yVk5lBpBfznBWlsqZQKmfxczis6sqdAHF5hrlvhk2xEcJ4FXiFS0NWGFcwvCkC1o2zXjS6GvpWPoJm0t5M2ptJBzPpXxGcoEG0ucblT0_G3NvalxREEBfBaWcl3U7ClUZ0mAzSFBf9CMiuGaeP3xMxlas3K-3Fd3DZEvwvXRBkxolQ-JQXjdl3X9x5TQTpnkPsOnjx7v0W9Okg4t36cARJcJ1_HgT9cTTyZy__-5Wv4FFDgfBEuVM4XC837jUiq7U9w5ziG8fj5ZSdhVn1G0scHMU |
link.rule.ids | 230,314,727,780,784,885,1375,27924,27925,46294,46718,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BEZQLj_KoocAeOMDBUdZeP_aIClUKTZFII_W22rXXELW1q8SWCCd-Ar-RX8LM2gk1VAghblF210rG38x86_08A_BcF7itsoH1hbGJL4QofC1M7oc5JgirIxFaV-3zMB5Nxdvj6LhrB0TvwrT1IdYP3MgzXLwmB6cH0n0vdxKtKE46iVYYpHyAhPIaej8nfdfrD8HPI4Vh1LUzkH6QDqO-rOfSK_Vy1dVCV5fR0N_VlBdZrktTe7fhdPUHW3XKyaCpzSD78kvtx_9kgTtwq6Oz7FWLv7twxZZbcL1tcLncghvj7uj-HtQISIa3cfb96zdENQLxzB3ws05RwqqCUe2K-altTmYlzhJMzy0rq5q511uQGjOzZIvm3Gl3qzmtyJZ1hbMtIx2KdvXFcSVnLybvdyf85X2Y7r052h35XcsHP4uihPsEjszyPNRmaDCpJoXM08TkssCvqV2WsWGc4q41kTZKNXLNMMh4XkijcykzHj6AjbIq7TYwm6W4-05xKNRCaKpDLzE4pbm2OcdFHvDVzVXnbWUPdWFHhIZVZFhFhlXOsOqzB9uIAqU_YgBW00lAqKKmhkgjPdhZQUN1YWChkJ_GwyTBtOMBWw-jA9OpjC5t1SwUlf_BwCmCP0xBmhvGQuJVHrZYW__iAINwjJTCg6SHwvUEKh_eHylnn1wZ8UCSvll4EDuQ_bUR1P54TJ8e_evCZ7A5OhofqIP9w3eP4WarxyDV3g5s1PPGPkGaV5unzn1_AMa8RGM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB1BERWXAoVSQ4E9cICDo3i9_tgjaolaIAURIvW2WnvXEAXsKHGkhhM_gd_IL2Fm7YQaKoQQtyi7ayXjNx_rfX4D8EQXuK2y3Pois4kvhCh8LTLjhwYThNWRCK1T-zyNj8fi5Vl01vKf6F2YRh9i88CNPMPFa3LwmSm6Tu4YWlGctAytkKdBD-vJayLmknT0j97xnycK_ajtZiB9nvajLqvn0it1UtXVQleXVaG_kykvFrkuSw1uwnT9_xpyyrS3rLNe_uUX6cf_Y4BbsNMWs-x5g77bcMWWu3C9aW-52oXtYXtwfwdqhCPDmzj5_vUbYhph-Nkd77OWT8KqgpFyxfyTXU4nJc4STM8tK6uauZdbsDBm2YotljPH3K3mtCJf1RXOtoxYKNqpi-PKgD0dvTkcBc_uwnjw4v3hsd82fPDzKEoCn6CR28CEOutnmFKTQpo0yYws8GtqlpXZME5xz5pIG6UaK82Q54EpZKaNlHkQ7sFWWZV2H5jNU9x7pzgUaiE0qdBLDE2p0dYEuMiDYH1v1azR9VAX9kNoWEWGVWRY5Qyrzj3YRxAo_QHDrxqPOIGKWhpiEenBwRoZqg0CC4XVadxPEkw6HrDNMLovncno0lbLhSLxHwybgv9hCha5YSwkXuVeA7XNL-YYghHr0oOkA8LNBBIP746Uk49ORJxLYjcLD2KHsb82gjoZDunT_X9d-Bi23x4N1OuT01cP4EZDxiDK3gFs1fOlfYg1Xp09cs77A7bXQxI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+anti-inflammatory+effects+of+interleukin-4+are+not+mediated+by+suppressor+of+cytokine+signalling-1+%28SOCS1%29&rft.jtitle=Immunology&rft.au=Woodward%2C+Eleanor+A&rft.au=Pr%C3%AAle%2C+Cecilia+M&rft.au=Nicholson%2C+Sandra+E&rft.au=Kolesnik%2C+Tatiana+B&rft.date=2010-09-01&rft.eissn=1365-2567&rft.volume=131&rft.issue=1&rft.spage=118&rft_id=info:doi/10.1111%2Fj.1365-2567.2010.03281.x&rft_id=info%3Apmid%2F20406299&rft.externalDocID=20406299 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-2805&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-2805&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-2805&client=summon |