Aqueous Two‐Phase Emulsion Bioink‐Enabled 3D Bioprinting of Porous Hydrogels
3D bioprinting technology provides programmable and customizable platforms to engineer cell‐laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gel...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 50; pp. e1805460 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 3D bioprinting technology provides programmable and customizable platforms to engineer cell‐laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, a cell‐benign approach is reported to directly bioprint porous‐structured hydrogel constructs by using an aqueous two‐phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell‐laden hydrogel constructs by extrusion bioprinting or digital micromirror device‐based stereolithographic bioprinting. The porous structure of the 3D‐bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cell types (human hepatocellular carcinoma cells, human umbilical vein endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D‐bioprinted porous hydrogel patterns show enhanced cell viability, spreading, and proliferation compared to the standard (i.e., nonporous) hydrogel constructs. The 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous‐structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, drug development, and personalized therapeutics.
An aqueous two‐phase emulsion bioink is developed to create bioprinted porous‐structured hydrogel constructs. Interconnected micropores within the bioprinted hydrogel constructs enhance the growth, spreading, and proliferation of encapsulated living cells. |
---|---|
AbstractList | 3D bioprinting technology provides programmable and customizable platforms to engineer cell‐laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, a cell‐benign approach is reported to directly bioprint porous‐structured hydrogel constructs by using an aqueous two‐phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell‐laden hydrogel constructs by extrusion bioprinting or digital micromirror device‐based stereolithographic bioprinting. The porous structure of the 3D‐bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cell types (human hepatocellular carcinoma cells, human umbilical vein endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D‐bioprinted porous hydrogel patterns show enhanced cell viability, spreading, and proliferation compared to the standard (i.e., nonporous) hydrogel constructs. The 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous‐structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, drug development, and personalized therapeutics. 3D bioprinting technology provides programmable and customizable platforms to engineer cell‐laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, a cell‐benign approach is reported to directly bioprint porous‐structured hydrogel constructs by using an aqueous two‐phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell‐laden hydrogel constructs by extrusion bioprinting or digital micromirror device‐based stereolithographic bioprinting. The porous structure of the 3D‐bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cell types (human hepatocellular carcinoma cells, human umbilical vein endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D‐bioprinted porous hydrogel patterns show enhanced cell viability, spreading, and proliferation compared to the standard (i.e., nonporous) hydrogel constructs. The 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous‐structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, drug development, and personalized therapeutics. An aqueous two‐phase emulsion bioink is developed to create bioprinted porous‐structured hydrogel constructs. Interconnected micropores within the bioprinted hydrogel constructs enhance the growth, spreading, and proliferation of encapsulated living cells. 3D bioprinting technology provides programmable and customizable platforms to engineer cell-laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, a cell-benign approach is reported to directly bioprint porous-structured hydrogel constructs by using an aqueous two-phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell-laden hydrogel constructs by extrusion bioprinting or digital micromirror device-based stereolithographic bioprinting. The porous structure of the 3D-bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cell types (human hepatocellular carcinoma cells, human umbilical vein endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D-bioprinted porous hydrogel patterns show enhanced cell viability, spreading, and proliferation compared to the standard (i.e., nonporous) hydrogel constructs. The 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous-structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, drug development, and personalized therapeutics.3D bioprinting technology provides programmable and customizable platforms to engineer cell-laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, a cell-benign approach is reported to directly bioprint porous-structured hydrogel constructs by using an aqueous two-phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell-laden hydrogel constructs by extrusion bioprinting or digital micromirror device-based stereolithographic bioprinting. The porous structure of the 3D-bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cell types (human hepatocellular carcinoma cells, human umbilical vein endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D-bioprinted porous hydrogel patterns show enhanced cell viability, spreading, and proliferation compared to the standard (i.e., nonporous) hydrogel constructs. The 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous-structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, drug development, and personalized therapeutics. The three-dimensional (3D) bioprinting technology provides programmable and customizable platforms to engineer cell-laden constructs mimicing human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, we report a novel cell-benign approach to directly bioprint porous-structured hydrogel constructs by using an aqueous two-phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell-laden hydrogel constructs by extrusion bioprinting or digital micromirror device-based stereolithographic bioprinting. Porous structure of the 3D-bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cells (human hepatocellular carcinoma cells, human umbilical endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D-bioprinted porous cell-laden hydrogel patterns showed enhanced cell viability, spreading, and proliferation compared to the standard (i.e. non-porous) hydrogel constructs. The new 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous-structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, and personalized therapeutics. |
Author | Maharjan, Sushila Miri, Amir K. Chai, Rong‐Rong Yang, Jing‐Zhou Jiang, Nan Hassan, Shabir Cao, Xia Ying, Guo‐Liang Yin, Yi‐Xia Zhang, Yu Shrike |
Author_xml | – sequence: 1 givenname: Guo‐Liang surname: Ying fullname: Ying, Guo‐Liang organization: Wuhan Institute of Technology – sequence: 2 givenname: Nan surname: Jiang fullname: Jiang, Nan organization: Harvard University – sequence: 3 givenname: Sushila surname: Maharjan fullname: Maharjan, Sushila organization: Research Institute for Bioscience and Biotechnology – sequence: 4 givenname: Yi‐Xia surname: Yin fullname: Yin, Yi‐Xia organization: Wuhan University of Technology – sequence: 5 givenname: Rong‐Rong surname: Chai fullname: Chai, Rong‐Rong organization: Harvard Medical School – sequence: 6 givenname: Xia surname: Cao fullname: Cao, Xia organization: Harvard Medical School – sequence: 7 givenname: Jing‐Zhou surname: Yang fullname: Yang, Jing‐Zhou organization: National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing – sequence: 8 givenname: Amir K. surname: Miri fullname: Miri, Amir K. organization: Harvard Medical School – sequence: 9 givenname: Shabir surname: Hassan fullname: Hassan, Shabir organization: Harvard Medical School – sequence: 10 givenname: Yu Shrike orcidid: 0000-0002-0045-0808 surname: Zhang fullname: Zhang, Yu Shrike email: yszhang@research.bwh.harvard.edu organization: Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30345555$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcFu1DAUtFAR3RauHFEkLlyyPDt2El-Qtu22RSpiD-VsOY6zdXHsYidUe-MT-MZ-SR1t2dJKCF8sPc-M580coD3nnUboLYY5BiAfZdvLOQFcA6MlvEAzzAjOKXC2h2bAC5bzktb76CDGawDgJZSv0H4BBWXpzNBq8WPUfozZ5a2_-_V7dSWjzpb9aKPxLjsy3rjvab50srG6zYqTaXYTjBuMW2e-y1Y-TPTzTRv8Wtv4Gr3spI36zcN9iL6dLi-Pz_OLr2efjxcXuWKsgrzTXdeABNrqltCOKKkwZ01FSqUqzjUoSYkmLekq3GDMNHDKOi1pUZRQNVAcok9b3Zux6XWrtBuCtCJZ62XYCC-NePrizJVY-5-ipEBYXSeBDw8CwacM4iB6E5W2VropEEEwY5hyAjRB3z-DXvsxuLTehCpYTQmfBN_97Whn5U_YCTDfAlTwMQbd7SAYxNSmmNoUuzYTgT4jKDPIITWTNjL23zS-pd0aqzf_-UQsTr4sHrn3qai2PA |
CitedBy_id | crossref_primary_10_1002_adfm_202102685 crossref_primary_10_1002_adhm_202102810 crossref_primary_10_1111_aor_14232 crossref_primary_10_1016_j_ijbiomac_2024_135999 crossref_primary_10_1073_pnas_2112704118 crossref_primary_10_1039_D1LC00967B crossref_primary_10_1021_acsbiomaterials_0c01158 crossref_primary_10_1002_smll_202107128 crossref_primary_10_1021_acsami_0c01264 crossref_primary_10_1007_s42242_024_00273_7 crossref_primary_10_1002_adfm_202400431 crossref_primary_10_1002_adma_202412127 crossref_primary_10_1016_j_carbpol_2022_119161 crossref_primary_10_3390_ma13173834 crossref_primary_10_1039_D4BM01206B crossref_primary_10_1002_adma_201903975 crossref_primary_10_3390_mi13071038 crossref_primary_10_1007_s42242_018_0028_8 crossref_primary_10_1007_s13770_021_00376_7 crossref_primary_10_1021_acsami_4c22450 crossref_primary_10_1111_cpr_13453 crossref_primary_10_1007_s43152_023_00050_1 crossref_primary_10_1089_ten_tea_2022_0180 crossref_primary_10_1088_1758_5090_ac5936 crossref_primary_10_1002_adfm_202009574 crossref_primary_10_1039_D0MH01293A crossref_primary_10_1088_1758_5090_ab9906 crossref_primary_10_1021_acs_biomac_2c01250 crossref_primary_10_1021_acsami_9b09782 crossref_primary_10_1002_adma_201902516 crossref_primary_10_1002_adma_202108931 crossref_primary_10_1002_EXP_20230141 crossref_primary_10_1016_j_memsci_2020_118732 crossref_primary_10_1021_acs_biomac_0c01671 crossref_primary_10_1002_adma_201906423 crossref_primary_10_1021_acsbiomaterials_4c00465 crossref_primary_10_1088_1758_5090_aba411 crossref_primary_10_1039_D0TB02553D crossref_primary_10_1039_D4MH00924J crossref_primary_10_1038_s41427_022_00385_5 crossref_primary_10_1002_adfm_202000086 crossref_primary_10_1002_adhm_202200027 crossref_primary_10_1021_acs_chemrev_9b00812 crossref_primary_10_1088_1748_605X_ad2556 crossref_primary_10_3233_BME_230068 crossref_primary_10_1002_adma_202107038 crossref_primary_10_1002_admt_202400060 crossref_primary_10_1002_adma_202416260 crossref_primary_10_1039_D1BM00695A crossref_primary_10_1088_1758_5090_ac8fb8 crossref_primary_10_1002_marc_202100895 crossref_primary_10_1021_acsnano_4c05380 crossref_primary_10_1016_j_cej_2021_128723 crossref_primary_10_1016_j_ijbiomac_2022_08_171 crossref_primary_10_1039_D1TB02628C crossref_primary_10_1002_mabi_202200357 crossref_primary_10_1016_j_bioactmat_2020_06_001 crossref_primary_10_3390_biomedicines11061742 crossref_primary_10_1021_acsami_0c16714 crossref_primary_10_1021_acs_chemrev_0c00077 crossref_primary_10_1002_admt_201800632 crossref_primary_10_1016_j_mser_2022_100672 crossref_primary_10_1002_adhm_202203148 crossref_primary_10_1039_D2TB00576J crossref_primary_10_1089_ten_tea_2023_0149 crossref_primary_10_1002_asia_202001331 crossref_primary_10_1016_j_bprint_2019_e00071 crossref_primary_10_1002_admt_202400157 crossref_primary_10_1126_sciadv_adg3478 crossref_primary_10_1093_rb_rbab026 crossref_primary_10_1021_acs_langmuir_4c04604 crossref_primary_10_1002_admt_201800741 crossref_primary_10_1088_1758_5090_ac49d5 crossref_primary_10_1088_1758_5090_ab39c5 crossref_primary_10_1002_adhm_202403583 crossref_primary_10_1007_s00113_019_0636_6 crossref_primary_10_34133_bmr_0146 crossref_primary_10_1002_adfm_202000187 crossref_primary_10_1002_advs_202102627 crossref_primary_10_1002_mba2_51 crossref_primary_10_1089_ten_tea_2020_0350 crossref_primary_10_1002_adfm_202004307 crossref_primary_10_1002_adfm_202315035 crossref_primary_10_1038_s41467_021_26791_x crossref_primary_10_1002_advs_202100201 crossref_primary_10_1039_D4MH00431K crossref_primary_10_1002_adhm_202302170 crossref_primary_10_1002_adma_202409362 crossref_primary_10_1007_s10853_021_06829_7 crossref_primary_10_1002_adma_202210748 crossref_primary_10_1002_smll_202311092 crossref_primary_10_1063_5_0018548 crossref_primary_10_1002_adfm_201902990 crossref_primary_10_1002_admi_202101071 crossref_primary_10_1016_j_cej_2023_145433 crossref_primary_10_1002_smll_202501594 crossref_primary_10_1007_s42242_024_00317_y crossref_primary_10_1021_acsomega_3c01265 crossref_primary_10_1016_j_seppur_2022_120472 crossref_primary_10_1002_mabi_202000179 crossref_primary_10_3390_gels7040199 crossref_primary_10_1021_acs_biomac_3c00057 crossref_primary_10_1021_acs_langmuir_3c02579 crossref_primary_10_1002_adhm_202000156 crossref_primary_10_1002_adfm_202007475 crossref_primary_10_1039_D1TC02117F crossref_primary_10_1002_adfm_202310369 crossref_primary_10_1002_chem_202101472 crossref_primary_10_1016_j_bioactmat_2021_03_023 crossref_primary_10_1002_adfm_202316222 crossref_primary_10_1016_j_apsusc_2023_158578 crossref_primary_10_1063_5_0185484 crossref_primary_10_3389_fbioe_2022_953031 crossref_primary_10_3390_polym12092156 crossref_primary_10_1002_adma_202410452 crossref_primary_10_1002_adfm_202402341 crossref_primary_10_1002_mabi_202300289 crossref_primary_10_1038_s44222_024_00268_0 crossref_primary_10_1007_s42242_022_00207_1 crossref_primary_10_3390_molecules27217444 crossref_primary_10_1002_advs_202309932 crossref_primary_10_1557_s43578_021_00182_w crossref_primary_10_1002_marc_202300508 crossref_primary_10_1039_D4BM01192A crossref_primary_10_1038_s41467_023_38394_9 crossref_primary_10_1002_anbr_202100073 crossref_primary_10_1021_acs_biomac_1c01105 crossref_primary_10_3390_polym11020341 crossref_primary_10_1002_adfm_202210521 crossref_primary_10_1016_j_matt_2020_10_022 crossref_primary_10_1007_s42242_023_00236_4 crossref_primary_10_1016_j_cej_2022_138982 crossref_primary_10_1016_j_compositesa_2024_108492 crossref_primary_10_1021_acsnano_0c08510 crossref_primary_10_1002_smll_201901920 crossref_primary_10_1002_adfm_202417704 crossref_primary_10_1007_s42242_024_00281_7 crossref_primary_10_1038_s41467_022_31002_2 crossref_primary_10_1016_j_matt_2021_07_006 crossref_primary_10_1016_j_eng_2020_06_031 crossref_primary_10_1021_acs_chemmater_0c03556 crossref_primary_10_1002_adfm_202005929 crossref_primary_10_1021_acsbiomaterials_2c01164 crossref_primary_10_1073_pnas_2206762120 crossref_primary_10_1002_adbi_202200264 crossref_primary_10_1002_adma_202105386 crossref_primary_10_1038_s41467_022_30997_y crossref_primary_10_1042_EBC20200098 crossref_primary_10_1021_acsbiomaterials_1c00544 crossref_primary_10_1039_D3BM00159H crossref_primary_10_1002_btm2_10330 crossref_primary_10_1039_D1BM01673C crossref_primary_10_1002_adfm_202415799 crossref_primary_10_1002_adma_201907491 crossref_primary_10_1016_j_smaim_2022_01_007 crossref_primary_10_1002_adfm_202003740 crossref_primary_10_1002_adfm_202303368 crossref_primary_10_1016_j_mtcomm_2022_104071 crossref_primary_10_1002_pssr_202200199 crossref_primary_10_1002_adhm_202203243 crossref_primary_10_1016_j_matdes_2021_110079 crossref_primary_10_1007_s42247_024_00678_1 crossref_primary_10_1002_adhm_202101659 crossref_primary_10_1007_s40883_022_00250_5 crossref_primary_10_1002_admt_202201763 crossref_primary_10_1038_s43586_021_00073_8 crossref_primary_10_1016_j_apmt_2019_05_014 crossref_primary_10_1016_j_chempr_2019_07_016 crossref_primary_10_1002_adma_202102661 crossref_primary_10_1016_j_mtbio_2020_100074 crossref_primary_10_1038_s41578_020_0204_2 crossref_primary_10_1021_acsabm_0c00933 crossref_primary_10_1002_adma_202008670 crossref_primary_10_1002_smll_202200180 crossref_primary_10_1021_acsami_3c19556 crossref_primary_10_1002_smll_201904290 crossref_primary_10_1021_acs_biomac_3c00909 crossref_primary_10_1039_D0MH00813C crossref_primary_10_1002_adbi_201900238 crossref_primary_10_3390_bioengineering10121418 crossref_primary_10_1002_smll_202106357 crossref_primary_10_1021_acs_biomac_4c00671 crossref_primary_10_1039_D2BM01499H crossref_primary_10_1021_acs_biomac_3c01318 crossref_primary_10_1039_D3CP00921A crossref_primary_10_1002_adhm_202000543 crossref_primary_10_1021_acsami_1c10311 crossref_primary_10_1002_adfm_202211897 crossref_primary_10_1002_adfm_202214129 crossref_primary_10_1016_j_cej_2020_125563 crossref_primary_10_1007_s42242_020_00062_y crossref_primary_10_1016_j_pmatsci_2023_101072 crossref_primary_10_1007_s42242_020_00121_4 crossref_primary_10_1016_j_mser_2022_100702 crossref_primary_10_1038_s44222_024_00251_9 crossref_primary_10_1063_5_0062823 crossref_primary_10_1098_rsta_2020_0344 crossref_primary_10_1002_adma_201902042 crossref_primary_10_1002_admt_202201102 crossref_primary_10_1002_adhm_202200965 crossref_primary_10_1002_cjoc_202300253 crossref_primary_10_1021_acs_chemrev_9b00834 crossref_primary_10_1002_smll_202208089 crossref_primary_10_1016_j_biomaterials_2019_119632 crossref_primary_10_1177_08853282211018567 crossref_primary_10_3389_fbioe_2022_821852 crossref_primary_10_1088_1758_5090_ac6bbe crossref_primary_10_1007_s42242_022_00208_0 crossref_primary_10_3390_jfb16030100 crossref_primary_10_1038_s41467_024_46774_y crossref_primary_10_1038_s43586_023_00231_0 crossref_primary_10_1002_advs_202204609 crossref_primary_10_1016_j_mfglet_2023_08_015 crossref_primary_10_1021_acsbiomaterials_3c01132 crossref_primary_10_1021_acsbiomaterials_2c01127 crossref_primary_10_1039_D0NJ02629H crossref_primary_10_1039_C9CS00466A crossref_primary_10_1002_adhm_202100408 crossref_primary_10_3390_polym14194233 crossref_primary_10_1016_j_matdes_2023_111729 crossref_primary_10_1021_acs_macromol_3c00557 crossref_primary_10_1021_acsami_2c00761 crossref_primary_10_1126_sciadv_adl6343 crossref_primary_10_1002_adhm_202300395 crossref_primary_10_1021_acsami_4c08693 crossref_primary_10_1088_1748_605X_adc059 crossref_primary_10_1002_adma_202107759 crossref_primary_10_1002_adma_201904209 |
Cites_doi | 10.1016/j.addr.2012.09.010 10.1002/adma.200501423 10.3390/ma9100797 10.1016/j.copbio.2016.03.014 10.1016/j.biomaterials.2005.03.016 10.1016/S0142-9612(00)00201-5 10.1007/s12195-015-0423-6 10.1002/adma.201604630 10.1088/1758-5090/aa9d44 10.1073/pnas.1607350114 10.1016/j.jiec.2017.02.012 10.1016/j.actbio.2010.10.026 10.1002/adma.201606061 10.1038/nprot.2016.123 10.1039/C8SC01130C 10.1016/j.biomaterials.2014.07.013 10.1002/9783527689934 10.1002/marc.201600236 10.1080/09205063.2018.1426425 10.1002/adma.200802106 10.1007/s10853-006-7023-8 10.1007/s11837-016-1969-z 10.1039/C4SC02638A 10.1021/nn203711s 10.1039/C7BM00110J 10.1021/ma034366i 10.1002/adhm.201600022 10.1002/adhm.201800160 10.1002/bip.20871 10.1016/j.jconrel.2015.08.049 10.1016/0378-4347(96)00042-4 10.1016/j.biomaterials.2015.08.045 10.1038/srep29977 10.1002/smll.201501798 10.1002/adma.201800242 10.1089/ten.teb.2009.0639 10.1002/smll.201302182 10.1016/S0142-9612(03)00340-5 10.1038/nmat4407 10.1016/j.molliq.2013.12.035 10.1016/j.tibtech.2016.01.002 10.1007/s10439-016-1612-8 10.1126/science.1069210 10.1039/C4TC02215G 10.1016/j.molliq.2014.03.016 10.1016/j.actbio.2012.10.011 10.1002/adhm.201601451 10.1016/j.biomaterials.2008.09.041 10.1038/nmat2515 10.1002/biot.201400635 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1002/adma.201805460 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | PMC6402588 30345555 10_1002_adma_201805460 ADMA201805460 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: New England Anti‐Vivisection Society (NEAVS) – fundername: Natural and Science Foundation of Hubei Province funderid: 2014CFB778 – fundername: National Institutes of Health funderid: K99CA201603; R21EB025270; R21EB026175 – fundername: National Institutes of Health grantid: K99CA201603 – fundername: Natural and Science Foundation of Hubei Province grantid: 2014CFB778 – fundername: New England Anti-Vivisection Society (NEAVS) – fundername: NIBIB NIH HHS grantid: R21 EB025270 – fundername: National Institutes of Health grantid: R21EB026175 – fundername: NCI NIH HHS grantid: K99 CA201603 – fundername: National Institutes of Health grantid: R21EB025270 – fundername: NIBIB NIH HHS grantid: R21 EB026175 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c5570-feffb0a04ded24f2cac195b726cc799e0ca42e2d2f71b115e0945fea433607b03 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Aug 21 18:03:26 EDT 2025 Fri Jul 11 04:37:41 EDT 2025 Fri Jul 25 06:42:42 EDT 2025 Mon Jul 21 05:50:53 EDT 2025 Tue Jul 01 00:44:46 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Jan 22 16:35:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | bioink porous hydrogel tissue engineering 3D bioprinting gelatin methacryloyl (GelMA) aqueous two-phase emulsion |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5570-feffb0a04ded24f2cac195b726cc799e0ca42e2d2f71b115e0945fea433607b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0045-0808 |
PMID | 30345555 |
PQID | 2153584298 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6402588 proquest_miscellaneous_2155149204 proquest_journals_2153584298 pubmed_primary_30345555 crossref_primary_10_1002_adma_201805460 crossref_citationtrail_10_1002_adma_201805460 wiley_primary_10_1002_adma_201805460_ADMA201805460 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Dec |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-Dec |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2018; 29 2015; 14 2012 2014 2013 2003; 6 10 9 36 2009; 21 2017; 69 2017; 45 2015; 10 2016 2016; 11 12 2017; 29 2009 2018 2015; 8 9 6 2015 2016; 3 37 1996; 680 2001; 22 2005; 26 2011; 7 2018; 7 2016; 5 2009; 30 2014 2012; 35 64 2015 2016 2017; 73 34 5 2015 2017; 219 2003; 24 1986 2008; 89 2016; 40 2016 2017; 9 50 2018; 30 2016 2002 2017; 6 295 114 2018; 10 2010 2006 2006; 16 41 18 2016; 9 2014; 200 e_1_2_4_21_1 e_1_2_4_23_1 e_1_2_4_25_1 e_1_2_4_27_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_35_2 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_18_1 e_1_2_4_18_2 e_1_2_4_20_2 e_1_2_4_20_1 e_1_2_4_20_3 e_1_2_4_24_1 e_1_2_4_26_2 e_1_2_4_26_1 e_1_2_4_28_2 e_1_2_4_26_3 e_1_2_4_28_1 Albertsson P.‐A. (e_1_2_4_22_1) 1986 e_1_2_4_2_2 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_13_1 e_1_2_4_34_3 e_1_2_4_34_2 e_1_2_4_15_1 e_1_2_4_15_2 e_1_2_4_34_4 e_1_2_4_15_3 e_1_2_4_17_1 e_1_2_4_19_2 e_1_2_4_19_1 e_1_2_4_19_3 |
References_xml | – volume: 200 start-page: 2 year: 2014 publication-title: J. Mol. Liq. – volume: 35 64 start-page: 8916 18 year: 2014 2012 publication-title: Biomaterials Adv. Drug Delivery Rev. – volume: 9 start-page: 797 year: 2016 publication-title: Materials – volume: 89 start-page: 338 year: 2008 publication-title: Biopolymers – volume: 11 12 start-page: 1775 2130 year: 2016 2016 publication-title: Nat. Protoc. Small – volume: 22 start-page: 511 year: 2001 publication-title: Biomaterials – volume: 680 start-page: 3 year: 1996 publication-title: J. Chromatogr. B: Biomed. Sci. Appl. – volume: 24 start-page: 4337 year: 2003 publication-title: Biomaterials – volume: 69 start-page: 1185 year: 2017 publication-title: JOM – volume: 30 start-page: 1800242 year: 2018 publication-title: Adv. Mater. – volume: 30 start-page: 196 year: 2009 publication-title: Biomaterials – volume: 200 start-page: 47 year: 2014 publication-title: J. Mol. Liq. – volume: 219 start-page: 119 year: 2015 2017 publication-title: J. Controlled Release – volume: 26 start-page: 5983 year: 2005 publication-title: Biomaterials – volume: 8 9 6 start-page: 736 4730 486 year: 2009 2018 2015 publication-title: Nat. Mater. Chem. Sci. Chem. Sci. – volume: 7 start-page: 975 year: 2011 publication-title: Acta Biomater. – volume: 5 start-page: 1724 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 9 50 start-page: 38 183 year: 2016 2017 publication-title: Cell. Mol. Bioeng. J. Ind. Eng. Chem. – volume: 29 start-page: 1604630 year: 2017 publication-title: Adv. Mater. – volume: 10 start-page: 1568 year: 2015 publication-title: Biotechnol. J. – volume: 6 start-page: 1601451 year: 2017 publication-title: Adv. Healthcare Mater. – year: 1986 – volume: 29 start-page: 1606061 year: 2017 publication-title: Adv. Mater. – volume: 10 start-page: 024102 year: 2018 publication-title: Biofabrication – volume: 6 10 9 36 start-page: 362 514 5313 5732 year: 2012 2014 2013 2003 publication-title: ACS Nano Small Acta Biomater. Macromolecules – volume: 21 start-page: 3307 year: 2009 publication-title: Adv. Mater. – volume: 45 start-page: 148 year: 2017 publication-title: Ann. Biomed. Eng. – volume: 7 start-page: 1800160 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 73 34 5 start-page: 254 394 2093 year: 2015 2016 2017 publication-title: Biomaterials Trends Biotechnol. Biomater. Sci. – volume: 16 41 18 start-page: 371 4197 501 year: 2010 2006 2006 publication-title: Tissue Eng., Part B J. Mater. Sci. Adv. Mater. – volume: 40 start-page: 103 year: 2016 publication-title: Curr. Opin. Biotechnol. – volume: 3 37 start-page: 2040 1369 year: 2015 2016 publication-title: J. Mater. Chem. C Macromol. Rapid Commun. – volume: 14 start-page: 1269 year: 2015 publication-title: Nat. Mater. – volume: 6 295 114 start-page: 29977 1009 885 year: 2016 2002 2017 publication-title: Sci. Rep. Science Proc. Natl. Acad. Sci. USA – volume: 29 start-page: 543 year: 2018 publication-title: J. Biomater. Sci. Polym. Ed. – ident: e_1_2_4_35_2 doi: 10.1016/j.addr.2012.09.010 – ident: e_1_2_4_19_3 doi: 10.1002/adma.200501423 – ident: e_1_2_4_27_1 doi: 10.3390/ma9100797 – ident: e_1_2_4_12_1 doi: 10.1016/j.copbio.2016.03.014 – ident: e_1_2_4_10_1 doi: 10.1016/j.biomaterials.2005.03.016 – ident: e_1_2_4_9_1 doi: 10.1016/S0142-9612(00)00201-5 – ident: e_1_2_4_28_1 doi: 10.1007/s12195-015-0423-6 – ident: e_1_2_4_13_1 doi: 10.1002/adma.201604630 – ident: e_1_2_4_32_1 doi: 10.1088/1758-5090/aa9d44 – ident: e_1_2_4_15_3 doi: 10.1073/pnas.1607350114 – ident: e_1_2_4_28_2 doi: 10.1016/j.jiec.2017.02.012 – ident: e_1_2_4_24_1 doi: 10.1016/j.actbio.2010.10.026 – ident: e_1_2_4_4_1 doi: 10.1002/adma.201606061 – ident: e_1_2_4_1_1 doi: 10.1038/nprot.2016.123 – ident: e_1_2_4_20_2 doi: 10.1039/C8SC01130C – ident: e_1_2_4_35_1 doi: 10.1016/j.biomaterials.2014.07.013 – ident: e_1_2_4_2_2 doi: 10.1002/9783527689934 – ident: e_1_2_4_18_2 doi: 10.1002/marc.201600236 – ident: e_1_2_4_11_1 doi: 10.1080/09205063.2018.1426425 – ident: e_1_2_4_6_1 doi: 10.1002/adma.200802106 – ident: e_1_2_4_19_2 doi: 10.1007/s10853-006-7023-8 – ident: e_1_2_4_25_1 doi: 10.1007/s11837-016-1969-z – ident: e_1_2_4_20_3 doi: 10.1039/C4SC02638A – ident: e_1_2_4_34_1 doi: 10.1021/nn203711s – ident: e_1_2_4_26_3 doi: 10.1039/C7BM00110J – ident: e_1_2_4_34_4 doi: 10.1021/ma034366i – ident: e_1_2_4_21_1 doi: 10.1002/adhm.201600022 – ident: e_1_2_4_16_1 doi: 10.1002/adhm.201800160 – ident: e_1_2_4_7_1 doi: 10.1002/bip.20871 – ident: e_1_2_4_2_1 doi: 10.1016/j.jconrel.2015.08.049 – ident: e_1_2_4_23_1 doi: 10.1016/0378-4347(96)00042-4 – ident: e_1_2_4_26_1 doi: 10.1016/j.biomaterials.2015.08.045 – ident: e_1_2_4_15_1 doi: 10.1038/srep29977 – ident: e_1_2_4_1_2 doi: 10.1002/smll.201501798 – ident: e_1_2_4_33_1 doi: 10.1002/adma.201800242 – ident: e_1_2_4_19_1 doi: 10.1089/ten.teb.2009.0639 – ident: e_1_2_4_34_2 doi: 10.1002/smll.201302182 – ident: e_1_2_4_5_1 doi: 10.1016/S0142-9612(03)00340-5 – ident: e_1_2_4_17_1 doi: 10.1038/nmat4407 – ident: e_1_2_4_30_1 doi: 10.1016/j.molliq.2013.12.035 – ident: e_1_2_4_26_2 doi: 10.1016/j.tibtech.2016.01.002 – ident: e_1_2_4_3_1 doi: 10.1007/s10439-016-1612-8 – ident: e_1_2_4_15_2 doi: 10.1126/science.1069210 – volume-title: Partitioning in Aqueous Two‐Phase Systems: An Overview year: 1986 ident: e_1_2_4_22_1 – ident: e_1_2_4_18_1 doi: 10.1039/C4TC02215G – ident: e_1_2_4_29_1 doi: 10.1016/j.molliq.2014.03.016 – ident: e_1_2_4_34_3 doi: 10.1016/j.actbio.2012.10.011 – ident: e_1_2_4_31_1 doi: 10.1002/adhm.201601451 – ident: e_1_2_4_8_1 doi: 10.1016/j.biomaterials.2008.09.041 – ident: e_1_2_4_20_1 doi: 10.1038/nmat2515 – ident: e_1_2_4_14_1 doi: 10.1002/biot.201400635 |
SSID | ssj0009606 |
Score | 2.6632335 |
Snippet | 3D bioprinting technology provides programmable and customizable platforms to engineer cell‐laden constructs mimicking human tissues for a wide range of... 3D bioprinting technology provides programmable and customizable platforms to engineer cell-laden constructs mimicking human tissues for a wide range of... The three-dimensional (3D) bioprinting technology provides programmable and customizable platforms to engineer cell-laden constructs mimicing human tissues for... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1805460 |
SubjectTerms | 3D bioprinting aqueous two‐phase emulsion Bioengineering bioink Biomedical materials Construction engineering Construction standards Endothelial cells Engineers Ethylene oxide Extrusion Fibroblasts Gelatin gelatin methacryloyl (GelMA) Gelation Human tissues Hydrogels Materials science porous hydrogel Spreading Three dimensional printing Tissue engineering |
Title | Aqueous Two‐Phase Emulsion Bioink‐Enabled 3D Bioprinting of Porous Hydrogels |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201805460 https://www.ncbi.nlm.nih.gov/pubmed/30345555 https://www.proquest.com/docview/2153584298 https://www.proquest.com/docview/2155149204 https://pubmed.ncbi.nlm.nih.gov/PMC6402588 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hnuDA-xEoKEhInNw6jp3Ex4VutUIqWqFW6i3yk1YtCdqHEJz4CfxGfgkzyW66S4WQIKfED_mRmcw3zvgzwKvMRFdJJRgP2jGJCsS0VZwJR3R2iJOsp_3OR--LyYl8d6pON3bx9_wQw4IbaUb3vSYFN3a-f0UaanzHG5RVCDoKctopYItQ0Ycr_iiC5x3ZXq6YLmS1Zm3kYn-7-rZVugY1r0dMbiLZzhQd3gGzHkQfgXKxt1zYPfftN37H_xnlXbi9wqnpqBese3AjNPfh1gZ74QOYjrD77XKeHn9pf37_MT1Dg5iOPy0vaQEufXPeopuL6eNud5ZP8wNKo3VEirRO25hO2xlVn3z1s_Yj2uiHcHI4Pn47YasDGpgj5i4WQ4yWGy598EJG4YzLtLKlKJwrtQ7cGSmC8CKWmUXoGdCXVDEYmecFLy3PH8FO0zbhCaQZ-U2mctoHxBTc29LHvIreFFUprcoSYOsXVLsVezkdonFZ97zLoqaZqoeZSuD1UP5zz9vxx5K76_ddr_R3XiMQyhGaCV0l8HLIRs2j3ymmocmlMog2teAygce9eAxNITCQCq8Eyi3BGQoQq_d2TnN-1rF7F-jRqwrbFZ1c_KX39ejgaDQ8Pf2XSs_gJt33MTq7sLOYLcNzRFoL-6LTpl-mXCKd |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAOvB-BAkECcUrrOM7rwGFht9rSbrVCW6m3EL9oRUnQPlSVEz-Bv8Jf4SfwS5jJq10qhITUA7nFdmLHnrG_mYw_Azz3c6sSEXKPmVR5AhXIS2XIPK6Izg5xktS033m0Gw33xNv9cH8Fvrd7YWp-iM7hRppRzdek4OSQ3jhlDc11RRzkJ4g6ItbEVW6bk2O02mavtvo4xC843xxM3gy95mABTxHjlGeNtZLlTGijubBc5cpPQxnzSKk4TQ1TueCGa25jXyJkMmgDhdbkIggiFksW4HsvwWU6Rpzo-vvvThmryCCo6P2C0EsjkbQ8kYxvLLd3eR08B27Px2iexc7V4rd5A3603VbHvHxcX8zluvryG6Pkf9WvN-F6A8XdXq07t2DFFLfh2hmCxjsw7mF_lYuZOzkuf379Nj7ANd8dfFockY_RfX1YoiWP6YNqA5p2gz6lkauUgsnd0rrjckqPD0_0tPyAMOQu7F3IJ92D1aIszANwfTIN80Sl2iBsYlrG2gaJ1XmUxEKGvgNeKxGZagja6ZyQo6ymluYZjUzWjYwDL7vyn2tqkj-WXGsFLGumqFmGWC9A9MnTxIFnXTZOLvTHKC-oc6kMinjKmXDgfi2PXVWIfUSIlwPxkqR2BYi4fDmnODyoCMwjgUg7wXp5JYh_aX3W64963d3Df3noKVwZTkY72c7W7vYjuErpdUjSGqzOpwvzGIHlXD6pVNmF9xct478AT6uB2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiF64P0IFAgSiFNax3FeBw4Lu6stpdUKtVJvIX7RqiWp9qGqnPgJ_BT-Cn-BX8JMXu1SISSkHsgt9iR27Bn7G2f8GeCFn1uViJB7zKTKE2hAXipD5nFFdHaIk6Sm_c5b29FoV7zbC_eW4Hu7F6bmh-gW3MgyqvGaDPxY2_Uz0tBcV7xBfoKgI2JNWOWmOT1Bp236eqOPPfyS8-Fg5-3Ia84V8BQRTnnWWCtZzoQ2mgvLVa78NJQxj5SK09QwlQtuuOY29iUiJoMuUGhNLoIgYrFkAb73ClzFUlM6LKL_4YywivyBit0vCL00EklLE8n4-mJ9F6fBC9j2YojmeehczX3Dm_CjbbU65OVwbT6Ta-rLb4SS_1Oz3oIbDRB3e7Xl3IYlU9yBlXP0jHdh3MPmKudTd-ek_Pn123gfZ3x38Hl-RCuM7puDEv14TB9U28-0G_QpjRZKKZTcLa07Lif0-OhUT8pPCELuwe6lfNJ9WC7KwjwE1yfHME9Uqg2CJqZlrG2QWJ1HSSxk6DvgtQqRqYaenU4JOcpqYmmeUc9kXc848KqTP66JSf4oudrqV9YMUNMMkV6A2JOniQPPu2wcWuh_UV5Q45IMwumUM-HAg1odu6IQ-YgQLwfiBUXtBIi2fDGnONiv6MsjgTg7wXJ5pYd_qX3W62_1urtH__LQM7g27g-z9xvbm4_hOiXX8UirsDybzM0TRJUz-bQyZBc-XraK_wI504CH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aqueous+Two%E2%80%90Phase+Emulsion+Bioink%E2%80%90Enabled+3D+Bioprinting+of+Porous+Hydrogels&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Guo%E2%80%90Liang+Ying&rft.au=Jiang%2C+Nan&rft.au=Maharjan%2C+Sushila&rft.au=Yi%E2%80%90Xia+Yin&rft.date=2018-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=50&rft_id=info:doi/10.1002%2Fadma.201805460&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |