Aqueous Two‐Phase Emulsion Bioink‐Enabled 3D Bioprinting of Porous Hydrogels

3D bioprinting technology provides programmable and customizable platforms to engineer cell‐laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gel...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 50; pp. e1805460 - n/a
Main Authors Ying, Guo‐Liang, Jiang, Nan, Maharjan, Sushila, Yin, Yi‐Xia, Chai, Rong‐Rong, Cao, Xia, Yang, Jing‐Zhou, Miri, Amir K., Hassan, Shabir, Zhang, Yu Shrike
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 3D bioprinting technology provides programmable and customizable platforms to engineer cell‐laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, a cell‐benign approach is reported to directly bioprint porous‐structured hydrogel constructs by using an aqueous two‐phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell‐laden hydrogel constructs by extrusion bioprinting or digital micromirror device‐based stereolithographic bioprinting. The porous structure of the 3D‐bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cell types (human hepatocellular carcinoma cells, human umbilical vein endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D‐bioprinted porous hydrogel patterns show enhanced cell viability, spreading, and proliferation compared to the standard (i.e., nonporous) hydrogel constructs. The 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous‐structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, drug development, and personalized therapeutics. An aqueous two‐phase emulsion bioink is developed to create bioprinted porous‐structured hydrogel constructs. Interconnected micropores within the bioprinted hydrogel constructs enhance the growth, spreading, and proliferation of encapsulated living cells.
AbstractList 3D bioprinting technology provides programmable and customizable platforms to engineer cell‐laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, a cell‐benign approach is reported to directly bioprint porous‐structured hydrogel constructs by using an aqueous two‐phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell‐laden hydrogel constructs by extrusion bioprinting or digital micromirror device‐based stereolithographic bioprinting. The porous structure of the 3D‐bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cell types (human hepatocellular carcinoma cells, human umbilical vein endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D‐bioprinted porous hydrogel patterns show enhanced cell viability, spreading, and proliferation compared to the standard (i.e., nonporous) hydrogel constructs. The 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous‐structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, drug development, and personalized therapeutics.
3D bioprinting technology provides programmable and customizable platforms to engineer cell‐laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, a cell‐benign approach is reported to directly bioprint porous‐structured hydrogel constructs by using an aqueous two‐phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell‐laden hydrogel constructs by extrusion bioprinting or digital micromirror device‐based stereolithographic bioprinting. The porous structure of the 3D‐bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cell types (human hepatocellular carcinoma cells, human umbilical vein endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D‐bioprinted porous hydrogel patterns show enhanced cell viability, spreading, and proliferation compared to the standard (i.e., nonporous) hydrogel constructs. The 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous‐structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, drug development, and personalized therapeutics. An aqueous two‐phase emulsion bioink is developed to create bioprinted porous‐structured hydrogel constructs. Interconnected micropores within the bioprinted hydrogel constructs enhance the growth, spreading, and proliferation of encapsulated living cells.
3D bioprinting technology provides programmable and customizable platforms to engineer cell-laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, a cell-benign approach is reported to directly bioprint porous-structured hydrogel constructs by using an aqueous two-phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell-laden hydrogel constructs by extrusion bioprinting or digital micromirror device-based stereolithographic bioprinting. The porous structure of the 3D-bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cell types (human hepatocellular carcinoma cells, human umbilical vein endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D-bioprinted porous hydrogel patterns show enhanced cell viability, spreading, and proliferation compared to the standard (i.e., nonporous) hydrogel constructs. The 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous-structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, drug development, and personalized therapeutics.3D bioprinting technology provides programmable and customizable platforms to engineer cell-laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, a cell-benign approach is reported to directly bioprint porous-structured hydrogel constructs by using an aqueous two-phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell-laden hydrogel constructs by extrusion bioprinting or digital micromirror device-based stereolithographic bioprinting. The porous structure of the 3D-bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cell types (human hepatocellular carcinoma cells, human umbilical vein endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D-bioprinted porous hydrogel patterns show enhanced cell viability, spreading, and proliferation compared to the standard (i.e., nonporous) hydrogel constructs. The 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous-structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, drug development, and personalized therapeutics.
The three-dimensional (3D) bioprinting technology provides programmable and customizable platforms to engineer cell-laden constructs mimicing human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, we report a novel cell-benign approach to directly bioprint porous-structured hydrogel constructs by using an aqueous two-phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell-laden hydrogel constructs by extrusion bioprinting or digital micromirror device-based stereolithographic bioprinting. Porous structure of the 3D-bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cells (human hepatocellular carcinoma cells, human umbilical endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D-bioprinted porous cell-laden hydrogel patterns showed enhanced cell viability, spreading, and proliferation compared to the standard (i.e. non-porous) hydrogel constructs. The new 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous-structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, and personalized therapeutics.
Author Maharjan, Sushila
Miri, Amir K.
Chai, Rong‐Rong
Yang, Jing‐Zhou
Jiang, Nan
Hassan, Shabir
Cao, Xia
Ying, Guo‐Liang
Yin, Yi‐Xia
Zhang, Yu Shrike
Author_xml – sequence: 1
  givenname: Guo‐Liang
  surname: Ying
  fullname: Ying, Guo‐Liang
  organization: Wuhan Institute of Technology
– sequence: 2
  givenname: Nan
  surname: Jiang
  fullname: Jiang, Nan
  organization: Harvard University
– sequence: 3
  givenname: Sushila
  surname: Maharjan
  fullname: Maharjan, Sushila
  organization: Research Institute for Bioscience and Biotechnology
– sequence: 4
  givenname: Yi‐Xia
  surname: Yin
  fullname: Yin, Yi‐Xia
  organization: Wuhan University of Technology
– sequence: 5
  givenname: Rong‐Rong
  surname: Chai
  fullname: Chai, Rong‐Rong
  organization: Harvard Medical School
– sequence: 6
  givenname: Xia
  surname: Cao
  fullname: Cao, Xia
  organization: Harvard Medical School
– sequence: 7
  givenname: Jing‐Zhou
  surname: Yang
  fullname: Yang, Jing‐Zhou
  organization: National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing
– sequence: 8
  givenname: Amir K.
  surname: Miri
  fullname: Miri, Amir K.
  organization: Harvard Medical School
– sequence: 9
  givenname: Shabir
  surname: Hassan
  fullname: Hassan, Shabir
  organization: Harvard Medical School
– sequence: 10
  givenname: Yu Shrike
  orcidid: 0000-0002-0045-0808
  surname: Zhang
  fullname: Zhang, Yu Shrike
  email: yszhang@research.bwh.harvard.edu
  organization: Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30345555$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFu1DAUtFAR3RauHFEkLlyyPDt2El-Qtu22RSpiD-VsOY6zdXHsYidUe-MT-MZ-SR1t2dJKCF8sPc-M580coD3nnUboLYY5BiAfZdvLOQFcA6MlvEAzzAjOKXC2h2bAC5bzktb76CDGawDgJZSv0H4BBWXpzNBq8WPUfozZ5a2_-_V7dSWjzpb9aKPxLjsy3rjvab50srG6zYqTaXYTjBuMW2e-y1Y-TPTzTRv8Wtv4Gr3spI36zcN9iL6dLi-Pz_OLr2efjxcXuWKsgrzTXdeABNrqltCOKKkwZ01FSqUqzjUoSYkmLekq3GDMNHDKOi1pUZRQNVAcok9b3Zux6XWrtBuCtCJZ62XYCC-NePrizJVY-5-ipEBYXSeBDw8CwacM4iB6E5W2VropEEEwY5hyAjRB3z-DXvsxuLTehCpYTQmfBN_97Whn5U_YCTDfAlTwMQbd7SAYxNSmmNoUuzYTgT4jKDPIITWTNjL23zS-pd0aqzf_-UQsTr4sHrn3qai2PA
CitedBy_id crossref_primary_10_1002_adfm_202102685
crossref_primary_10_1002_adhm_202102810
crossref_primary_10_1111_aor_14232
crossref_primary_10_1016_j_ijbiomac_2024_135999
crossref_primary_10_1073_pnas_2112704118
crossref_primary_10_1039_D1LC00967B
crossref_primary_10_1021_acsbiomaterials_0c01158
crossref_primary_10_1002_smll_202107128
crossref_primary_10_1021_acsami_0c01264
crossref_primary_10_1007_s42242_024_00273_7
crossref_primary_10_1002_adfm_202400431
crossref_primary_10_1002_adma_202412127
crossref_primary_10_1016_j_carbpol_2022_119161
crossref_primary_10_3390_ma13173834
crossref_primary_10_1039_D4BM01206B
crossref_primary_10_1002_adma_201903975
crossref_primary_10_3390_mi13071038
crossref_primary_10_1007_s42242_018_0028_8
crossref_primary_10_1007_s13770_021_00376_7
crossref_primary_10_1021_acsami_4c22450
crossref_primary_10_1111_cpr_13453
crossref_primary_10_1007_s43152_023_00050_1
crossref_primary_10_1089_ten_tea_2022_0180
crossref_primary_10_1088_1758_5090_ac5936
crossref_primary_10_1002_adfm_202009574
crossref_primary_10_1039_D0MH01293A
crossref_primary_10_1088_1758_5090_ab9906
crossref_primary_10_1021_acs_biomac_2c01250
crossref_primary_10_1021_acsami_9b09782
crossref_primary_10_1002_adma_201902516
crossref_primary_10_1002_adma_202108931
crossref_primary_10_1002_EXP_20230141
crossref_primary_10_1016_j_memsci_2020_118732
crossref_primary_10_1021_acs_biomac_0c01671
crossref_primary_10_1002_adma_201906423
crossref_primary_10_1021_acsbiomaterials_4c00465
crossref_primary_10_1088_1758_5090_aba411
crossref_primary_10_1039_D0TB02553D
crossref_primary_10_1039_D4MH00924J
crossref_primary_10_1038_s41427_022_00385_5
crossref_primary_10_1002_adfm_202000086
crossref_primary_10_1002_adhm_202200027
crossref_primary_10_1021_acs_chemrev_9b00812
crossref_primary_10_1088_1748_605X_ad2556
crossref_primary_10_3233_BME_230068
crossref_primary_10_1002_adma_202107038
crossref_primary_10_1002_admt_202400060
crossref_primary_10_1002_adma_202416260
crossref_primary_10_1039_D1BM00695A
crossref_primary_10_1088_1758_5090_ac8fb8
crossref_primary_10_1002_marc_202100895
crossref_primary_10_1021_acsnano_4c05380
crossref_primary_10_1016_j_cej_2021_128723
crossref_primary_10_1016_j_ijbiomac_2022_08_171
crossref_primary_10_1039_D1TB02628C
crossref_primary_10_1002_mabi_202200357
crossref_primary_10_1016_j_bioactmat_2020_06_001
crossref_primary_10_3390_biomedicines11061742
crossref_primary_10_1021_acsami_0c16714
crossref_primary_10_1021_acs_chemrev_0c00077
crossref_primary_10_1002_admt_201800632
crossref_primary_10_1016_j_mser_2022_100672
crossref_primary_10_1002_adhm_202203148
crossref_primary_10_1039_D2TB00576J
crossref_primary_10_1089_ten_tea_2023_0149
crossref_primary_10_1002_asia_202001331
crossref_primary_10_1016_j_bprint_2019_e00071
crossref_primary_10_1002_admt_202400157
crossref_primary_10_1126_sciadv_adg3478
crossref_primary_10_1093_rb_rbab026
crossref_primary_10_1021_acs_langmuir_4c04604
crossref_primary_10_1002_admt_201800741
crossref_primary_10_1088_1758_5090_ac49d5
crossref_primary_10_1088_1758_5090_ab39c5
crossref_primary_10_1002_adhm_202403583
crossref_primary_10_1007_s00113_019_0636_6
crossref_primary_10_34133_bmr_0146
crossref_primary_10_1002_adfm_202000187
crossref_primary_10_1002_advs_202102627
crossref_primary_10_1002_mba2_51
crossref_primary_10_1089_ten_tea_2020_0350
crossref_primary_10_1002_adfm_202004307
crossref_primary_10_1002_adfm_202315035
crossref_primary_10_1038_s41467_021_26791_x
crossref_primary_10_1002_advs_202100201
crossref_primary_10_1039_D4MH00431K
crossref_primary_10_1002_adhm_202302170
crossref_primary_10_1002_adma_202409362
crossref_primary_10_1007_s10853_021_06829_7
crossref_primary_10_1002_adma_202210748
crossref_primary_10_1002_smll_202311092
crossref_primary_10_1063_5_0018548
crossref_primary_10_1002_adfm_201902990
crossref_primary_10_1002_admi_202101071
crossref_primary_10_1016_j_cej_2023_145433
crossref_primary_10_1002_smll_202501594
crossref_primary_10_1007_s42242_024_00317_y
crossref_primary_10_1021_acsomega_3c01265
crossref_primary_10_1016_j_seppur_2022_120472
crossref_primary_10_1002_mabi_202000179
crossref_primary_10_3390_gels7040199
crossref_primary_10_1021_acs_biomac_3c00057
crossref_primary_10_1021_acs_langmuir_3c02579
crossref_primary_10_1002_adhm_202000156
crossref_primary_10_1002_adfm_202007475
crossref_primary_10_1039_D1TC02117F
crossref_primary_10_1002_adfm_202310369
crossref_primary_10_1002_chem_202101472
crossref_primary_10_1016_j_bioactmat_2021_03_023
crossref_primary_10_1002_adfm_202316222
crossref_primary_10_1016_j_apsusc_2023_158578
crossref_primary_10_1063_5_0185484
crossref_primary_10_3389_fbioe_2022_953031
crossref_primary_10_3390_polym12092156
crossref_primary_10_1002_adma_202410452
crossref_primary_10_1002_adfm_202402341
crossref_primary_10_1002_mabi_202300289
crossref_primary_10_1038_s44222_024_00268_0
crossref_primary_10_1007_s42242_022_00207_1
crossref_primary_10_3390_molecules27217444
crossref_primary_10_1002_advs_202309932
crossref_primary_10_1557_s43578_021_00182_w
crossref_primary_10_1002_marc_202300508
crossref_primary_10_1039_D4BM01192A
crossref_primary_10_1038_s41467_023_38394_9
crossref_primary_10_1002_anbr_202100073
crossref_primary_10_1021_acs_biomac_1c01105
crossref_primary_10_3390_polym11020341
crossref_primary_10_1002_adfm_202210521
crossref_primary_10_1016_j_matt_2020_10_022
crossref_primary_10_1007_s42242_023_00236_4
crossref_primary_10_1016_j_cej_2022_138982
crossref_primary_10_1016_j_compositesa_2024_108492
crossref_primary_10_1021_acsnano_0c08510
crossref_primary_10_1002_smll_201901920
crossref_primary_10_1002_adfm_202417704
crossref_primary_10_1007_s42242_024_00281_7
crossref_primary_10_1038_s41467_022_31002_2
crossref_primary_10_1016_j_matt_2021_07_006
crossref_primary_10_1016_j_eng_2020_06_031
crossref_primary_10_1021_acs_chemmater_0c03556
crossref_primary_10_1002_adfm_202005929
crossref_primary_10_1021_acsbiomaterials_2c01164
crossref_primary_10_1073_pnas_2206762120
crossref_primary_10_1002_adbi_202200264
crossref_primary_10_1002_adma_202105386
crossref_primary_10_1038_s41467_022_30997_y
crossref_primary_10_1042_EBC20200098
crossref_primary_10_1021_acsbiomaterials_1c00544
crossref_primary_10_1039_D3BM00159H
crossref_primary_10_1002_btm2_10330
crossref_primary_10_1039_D1BM01673C
crossref_primary_10_1002_adfm_202415799
crossref_primary_10_1002_adma_201907491
crossref_primary_10_1016_j_smaim_2022_01_007
crossref_primary_10_1002_adfm_202003740
crossref_primary_10_1002_adfm_202303368
crossref_primary_10_1016_j_mtcomm_2022_104071
crossref_primary_10_1002_pssr_202200199
crossref_primary_10_1002_adhm_202203243
crossref_primary_10_1016_j_matdes_2021_110079
crossref_primary_10_1007_s42247_024_00678_1
crossref_primary_10_1002_adhm_202101659
crossref_primary_10_1007_s40883_022_00250_5
crossref_primary_10_1002_admt_202201763
crossref_primary_10_1038_s43586_021_00073_8
crossref_primary_10_1016_j_apmt_2019_05_014
crossref_primary_10_1016_j_chempr_2019_07_016
crossref_primary_10_1002_adma_202102661
crossref_primary_10_1016_j_mtbio_2020_100074
crossref_primary_10_1038_s41578_020_0204_2
crossref_primary_10_1021_acsabm_0c00933
crossref_primary_10_1002_adma_202008670
crossref_primary_10_1002_smll_202200180
crossref_primary_10_1021_acsami_3c19556
crossref_primary_10_1002_smll_201904290
crossref_primary_10_1021_acs_biomac_3c00909
crossref_primary_10_1039_D0MH00813C
crossref_primary_10_1002_adbi_201900238
crossref_primary_10_3390_bioengineering10121418
crossref_primary_10_1002_smll_202106357
crossref_primary_10_1021_acs_biomac_4c00671
crossref_primary_10_1039_D2BM01499H
crossref_primary_10_1021_acs_biomac_3c01318
crossref_primary_10_1039_D3CP00921A
crossref_primary_10_1002_adhm_202000543
crossref_primary_10_1021_acsami_1c10311
crossref_primary_10_1002_adfm_202211897
crossref_primary_10_1002_adfm_202214129
crossref_primary_10_1016_j_cej_2020_125563
crossref_primary_10_1007_s42242_020_00062_y
crossref_primary_10_1016_j_pmatsci_2023_101072
crossref_primary_10_1007_s42242_020_00121_4
crossref_primary_10_1016_j_mser_2022_100702
crossref_primary_10_1038_s44222_024_00251_9
crossref_primary_10_1063_5_0062823
crossref_primary_10_1098_rsta_2020_0344
crossref_primary_10_1002_adma_201902042
crossref_primary_10_1002_admt_202201102
crossref_primary_10_1002_adhm_202200965
crossref_primary_10_1002_cjoc_202300253
crossref_primary_10_1021_acs_chemrev_9b00834
crossref_primary_10_1002_smll_202208089
crossref_primary_10_1016_j_biomaterials_2019_119632
crossref_primary_10_1177_08853282211018567
crossref_primary_10_3389_fbioe_2022_821852
crossref_primary_10_1088_1758_5090_ac6bbe
crossref_primary_10_1007_s42242_022_00208_0
crossref_primary_10_3390_jfb16030100
crossref_primary_10_1038_s41467_024_46774_y
crossref_primary_10_1038_s43586_023_00231_0
crossref_primary_10_1002_advs_202204609
crossref_primary_10_1016_j_mfglet_2023_08_015
crossref_primary_10_1021_acsbiomaterials_3c01132
crossref_primary_10_1021_acsbiomaterials_2c01127
crossref_primary_10_1039_D0NJ02629H
crossref_primary_10_1039_C9CS00466A
crossref_primary_10_1002_adhm_202100408
crossref_primary_10_3390_polym14194233
crossref_primary_10_1016_j_matdes_2023_111729
crossref_primary_10_1021_acs_macromol_3c00557
crossref_primary_10_1021_acsami_2c00761
crossref_primary_10_1126_sciadv_adl6343
crossref_primary_10_1002_adhm_202300395
crossref_primary_10_1021_acsami_4c08693
crossref_primary_10_1088_1748_605X_adc059
crossref_primary_10_1002_adma_202107759
crossref_primary_10_1002_adma_201904209
Cites_doi 10.1016/j.addr.2012.09.010
10.1002/adma.200501423
10.3390/ma9100797
10.1016/j.copbio.2016.03.014
10.1016/j.biomaterials.2005.03.016
10.1016/S0142-9612(00)00201-5
10.1007/s12195-015-0423-6
10.1002/adma.201604630
10.1088/1758-5090/aa9d44
10.1073/pnas.1607350114
10.1016/j.jiec.2017.02.012
10.1016/j.actbio.2010.10.026
10.1002/adma.201606061
10.1038/nprot.2016.123
10.1039/C8SC01130C
10.1016/j.biomaterials.2014.07.013
10.1002/9783527689934
10.1002/marc.201600236
10.1080/09205063.2018.1426425
10.1002/adma.200802106
10.1007/s10853-006-7023-8
10.1007/s11837-016-1969-z
10.1039/C4SC02638A
10.1021/nn203711s
10.1039/C7BM00110J
10.1021/ma034366i
10.1002/adhm.201600022
10.1002/adhm.201800160
10.1002/bip.20871
10.1016/j.jconrel.2015.08.049
10.1016/0378-4347(96)00042-4
10.1016/j.biomaterials.2015.08.045
10.1038/srep29977
10.1002/smll.201501798
10.1002/adma.201800242
10.1089/ten.teb.2009.0639
10.1002/smll.201302182
10.1016/S0142-9612(03)00340-5
10.1038/nmat4407
10.1016/j.molliq.2013.12.035
10.1016/j.tibtech.2016.01.002
10.1007/s10439-016-1612-8
10.1126/science.1069210
10.1039/C4TC02215G
10.1016/j.molliq.2014.03.016
10.1016/j.actbio.2012.10.011
10.1002/adhm.201601451
10.1016/j.biomaterials.2008.09.041
10.1038/nmat2515
10.1002/biot.201400635
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1002/adma.201805460
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID PMC6402588
30345555
10_1002_adma_201805460
ADMA201805460
Genre article
Journal Article
GrantInformation_xml – fundername: New England Anti‐Vivisection Society (NEAVS)
– fundername: Natural and Science Foundation of Hubei Province
  funderid: 2014CFB778
– fundername: National Institutes of Health
  funderid: K99CA201603; R21EB025270; R21EB026175
– fundername: National Institutes of Health
  grantid: K99CA201603
– fundername: Natural and Science Foundation of Hubei Province
  grantid: 2014CFB778
– fundername: New England Anti-Vivisection Society (NEAVS)
– fundername: NIBIB NIH HHS
  grantid: R21 EB025270
– fundername: National Institutes of Health
  grantid: R21EB026175
– fundername: NCI NIH HHS
  grantid: K99 CA201603
– fundername: National Institutes of Health
  grantid: R21EB025270
– fundername: NIBIB NIH HHS
  grantid: R21 EB026175
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c5570-feffb0a04ded24f2cac195b726cc799e0ca42e2d2f71b115e0945fea433607b03
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Aug 21 18:03:26 EDT 2025
Fri Jul 11 04:37:41 EDT 2025
Fri Jul 25 06:42:42 EDT 2025
Mon Jul 21 05:50:53 EDT 2025
Tue Jul 01 00:44:46 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Jan 22 16:35:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords bioink
porous hydrogel
tissue engineering
3D bioprinting
gelatin methacryloyl (GelMA)
aqueous two-phase emulsion
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5570-feffb0a04ded24f2cac195b726cc799e0ca42e2d2f71b115e0945fea433607b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0045-0808
PMID 30345555
PQID 2153584298
PQPubID 2045203
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6402588
proquest_miscellaneous_2155149204
proquest_journals_2153584298
pubmed_primary_30345555
crossref_primary_10_1002_adma_201805460
crossref_citationtrail_10_1002_adma_201805460
wiley_primary_10_1002_adma_201805460_ADMA201805460
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Dec
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2018; 29
2015; 14
2012 2014 2013 2003; 6 10 9 36
2009; 21
2017; 69
2017; 45
2015; 10
2016 2016; 11 12
2017; 29
2009 2018 2015; 8 9 6
2015 2016; 3 37
1996; 680
2001; 22
2005; 26
2011; 7
2018; 7
2016; 5
2009; 30
2014 2012; 35 64
2015 2016 2017; 73 34 5
2015 2017; 219
2003; 24
1986
2008; 89
2016; 40
2016 2017; 9 50
2018; 30
2016 2002 2017; 6 295 114
2018; 10
2010 2006 2006; 16 41 18
2016; 9
2014; 200
e_1_2_4_21_1
e_1_2_4_23_1
e_1_2_4_25_1
e_1_2_4_27_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_35_2
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_18_2
e_1_2_4_20_2
e_1_2_4_20_1
e_1_2_4_20_3
e_1_2_4_24_1
e_1_2_4_26_2
e_1_2_4_26_1
e_1_2_4_28_2
e_1_2_4_26_3
e_1_2_4_28_1
Albertsson P.‐A. (e_1_2_4_22_1) 1986
e_1_2_4_2_2
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_13_1
e_1_2_4_34_3
e_1_2_4_34_2
e_1_2_4_15_1
e_1_2_4_15_2
e_1_2_4_34_4
e_1_2_4_15_3
e_1_2_4_17_1
e_1_2_4_19_2
e_1_2_4_19_1
e_1_2_4_19_3
References_xml – volume: 200
  start-page: 2
  year: 2014
  publication-title: J. Mol. Liq.
– volume: 35 64
  start-page: 8916 18
  year: 2014 2012
  publication-title: Biomaterials Adv. Drug Delivery Rev.
– volume: 9
  start-page: 797
  year: 2016
  publication-title: Materials
– volume: 89
  start-page: 338
  year: 2008
  publication-title: Biopolymers
– volume: 11 12
  start-page: 1775 2130
  year: 2016 2016
  publication-title: Nat. Protoc. Small
– volume: 22
  start-page: 511
  year: 2001
  publication-title: Biomaterials
– volume: 680
  start-page: 3
  year: 1996
  publication-title: J. Chromatogr. B: Biomed. Sci. Appl.
– volume: 24
  start-page: 4337
  year: 2003
  publication-title: Biomaterials
– volume: 69
  start-page: 1185
  year: 2017
  publication-title: JOM
– volume: 30
  start-page: 1800242
  year: 2018
  publication-title: Adv. Mater.
– volume: 30
  start-page: 196
  year: 2009
  publication-title: Biomaterials
– volume: 200
  start-page: 47
  year: 2014
  publication-title: J. Mol. Liq.
– volume: 219
  start-page: 119
  year: 2015 2017
  publication-title: J. Controlled Release
– volume: 26
  start-page: 5983
  year: 2005
  publication-title: Biomaterials
– volume: 8 9 6
  start-page: 736 4730 486
  year: 2009 2018 2015
  publication-title: Nat. Mater. Chem. Sci. Chem. Sci.
– volume: 7
  start-page: 975
  year: 2011
  publication-title: Acta Biomater.
– volume: 5
  start-page: 1724
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 9 50
  start-page: 38 183
  year: 2016 2017
  publication-title: Cell. Mol. Bioeng. J. Ind. Eng. Chem.
– volume: 29
  start-page: 1604630
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1568
  year: 2015
  publication-title: Biotechnol. J.
– volume: 6
  start-page: 1601451
  year: 2017
  publication-title: Adv. Healthcare Mater.
– year: 1986
– volume: 29
  start-page: 1606061
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  start-page: 024102
  year: 2018
  publication-title: Biofabrication
– volume: 6 10 9 36
  start-page: 362 514 5313 5732
  year: 2012 2014 2013 2003
  publication-title: ACS Nano Small Acta Biomater. Macromolecules
– volume: 21
  start-page: 3307
  year: 2009
  publication-title: Adv. Mater.
– volume: 45
  start-page: 148
  year: 2017
  publication-title: Ann. Biomed. Eng.
– volume: 7
  start-page: 1800160
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 73 34 5
  start-page: 254 394 2093
  year: 2015 2016 2017
  publication-title: Biomaterials Trends Biotechnol. Biomater. Sci.
– volume: 16 41 18
  start-page: 371 4197 501
  year: 2010 2006 2006
  publication-title: Tissue Eng., Part B J. Mater. Sci. Adv. Mater.
– volume: 40
  start-page: 103
  year: 2016
  publication-title: Curr. Opin. Biotechnol.
– volume: 3 37
  start-page: 2040 1369
  year: 2015 2016
  publication-title: J. Mater. Chem. C Macromol. Rapid Commun.
– volume: 14
  start-page: 1269
  year: 2015
  publication-title: Nat. Mater.
– volume: 6 295 114
  start-page: 29977 1009 885
  year: 2016 2002 2017
  publication-title: Sci. Rep. Science Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 543
  year: 2018
  publication-title: J. Biomater. Sci. Polym. Ed.
– ident: e_1_2_4_35_2
  doi: 10.1016/j.addr.2012.09.010
– ident: e_1_2_4_19_3
  doi: 10.1002/adma.200501423
– ident: e_1_2_4_27_1
  doi: 10.3390/ma9100797
– ident: e_1_2_4_12_1
  doi: 10.1016/j.copbio.2016.03.014
– ident: e_1_2_4_10_1
  doi: 10.1016/j.biomaterials.2005.03.016
– ident: e_1_2_4_9_1
  doi: 10.1016/S0142-9612(00)00201-5
– ident: e_1_2_4_28_1
  doi: 10.1007/s12195-015-0423-6
– ident: e_1_2_4_13_1
  doi: 10.1002/adma.201604630
– ident: e_1_2_4_32_1
  doi: 10.1088/1758-5090/aa9d44
– ident: e_1_2_4_15_3
  doi: 10.1073/pnas.1607350114
– ident: e_1_2_4_28_2
  doi: 10.1016/j.jiec.2017.02.012
– ident: e_1_2_4_24_1
  doi: 10.1016/j.actbio.2010.10.026
– ident: e_1_2_4_4_1
  doi: 10.1002/adma.201606061
– ident: e_1_2_4_1_1
  doi: 10.1038/nprot.2016.123
– ident: e_1_2_4_20_2
  doi: 10.1039/C8SC01130C
– ident: e_1_2_4_35_1
  doi: 10.1016/j.biomaterials.2014.07.013
– ident: e_1_2_4_2_2
  doi: 10.1002/9783527689934
– ident: e_1_2_4_18_2
  doi: 10.1002/marc.201600236
– ident: e_1_2_4_11_1
  doi: 10.1080/09205063.2018.1426425
– ident: e_1_2_4_6_1
  doi: 10.1002/adma.200802106
– ident: e_1_2_4_19_2
  doi: 10.1007/s10853-006-7023-8
– ident: e_1_2_4_25_1
  doi: 10.1007/s11837-016-1969-z
– ident: e_1_2_4_20_3
  doi: 10.1039/C4SC02638A
– ident: e_1_2_4_34_1
  doi: 10.1021/nn203711s
– ident: e_1_2_4_26_3
  doi: 10.1039/C7BM00110J
– ident: e_1_2_4_34_4
  doi: 10.1021/ma034366i
– ident: e_1_2_4_21_1
  doi: 10.1002/adhm.201600022
– ident: e_1_2_4_16_1
  doi: 10.1002/adhm.201800160
– ident: e_1_2_4_7_1
  doi: 10.1002/bip.20871
– ident: e_1_2_4_2_1
  doi: 10.1016/j.jconrel.2015.08.049
– ident: e_1_2_4_23_1
  doi: 10.1016/0378-4347(96)00042-4
– ident: e_1_2_4_26_1
  doi: 10.1016/j.biomaterials.2015.08.045
– ident: e_1_2_4_15_1
  doi: 10.1038/srep29977
– ident: e_1_2_4_1_2
  doi: 10.1002/smll.201501798
– ident: e_1_2_4_33_1
  doi: 10.1002/adma.201800242
– ident: e_1_2_4_19_1
  doi: 10.1089/ten.teb.2009.0639
– ident: e_1_2_4_34_2
  doi: 10.1002/smll.201302182
– ident: e_1_2_4_5_1
  doi: 10.1016/S0142-9612(03)00340-5
– ident: e_1_2_4_17_1
  doi: 10.1038/nmat4407
– ident: e_1_2_4_30_1
  doi: 10.1016/j.molliq.2013.12.035
– ident: e_1_2_4_26_2
  doi: 10.1016/j.tibtech.2016.01.002
– ident: e_1_2_4_3_1
  doi: 10.1007/s10439-016-1612-8
– ident: e_1_2_4_15_2
  doi: 10.1126/science.1069210
– volume-title: Partitioning in Aqueous Two‐Phase Systems: An Overview
  year: 1986
  ident: e_1_2_4_22_1
– ident: e_1_2_4_18_1
  doi: 10.1039/C4TC02215G
– ident: e_1_2_4_29_1
  doi: 10.1016/j.molliq.2014.03.016
– ident: e_1_2_4_34_3
  doi: 10.1016/j.actbio.2012.10.011
– ident: e_1_2_4_31_1
  doi: 10.1002/adhm.201601451
– ident: e_1_2_4_8_1
  doi: 10.1016/j.biomaterials.2008.09.041
– ident: e_1_2_4_20_1
  doi: 10.1038/nmat2515
– ident: e_1_2_4_14_1
  doi: 10.1002/biot.201400635
SSID ssj0009606
Score 2.6632335
Snippet 3D bioprinting technology provides programmable and customizable platforms to engineer cell‐laden constructs mimicking human tissues for a wide range of...
3D bioprinting technology provides programmable and customizable platforms to engineer cell-laden constructs mimicking human tissues for a wide range of...
The three-dimensional (3D) bioprinting technology provides programmable and customizable platforms to engineer cell-laden constructs mimicing human tissues for...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1805460
SubjectTerms 3D bioprinting
aqueous two‐phase emulsion
Bioengineering
bioink
Biomedical materials
Construction engineering
Construction standards
Endothelial cells
Engineers
Ethylene oxide
Extrusion
Fibroblasts
Gelatin
gelatin methacryloyl (GelMA)
Gelation
Human tissues
Hydrogels
Materials science
porous hydrogel
Spreading
Three dimensional printing
Tissue engineering
Title Aqueous Two‐Phase Emulsion Bioink‐Enabled 3D Bioprinting of Porous Hydrogels
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201805460
https://www.ncbi.nlm.nih.gov/pubmed/30345555
https://www.proquest.com/docview/2153584298
https://www.proquest.com/docview/2155149204
https://pubmed.ncbi.nlm.nih.gov/PMC6402588
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hnuDA-xEoKEhInNw6jp3Ex4VutUIqWqFW6i3yk1YtCdqHEJz4CfxGfgkzyW66S4WQIKfED_mRmcw3zvgzwKvMRFdJJRgP2jGJCsS0VZwJR3R2iJOsp_3OR--LyYl8d6pON3bx9_wQw4IbaUb3vSYFN3a-f0UaanzHG5RVCDoKctopYItQ0Ycr_iiC5x3ZXq6YLmS1Zm3kYn-7-rZVugY1r0dMbiLZzhQd3gGzHkQfgXKxt1zYPfftN37H_xnlXbi9wqnpqBese3AjNPfh1gZ74QOYjrD77XKeHn9pf37_MT1Dg5iOPy0vaQEufXPeopuL6eNud5ZP8wNKo3VEirRO25hO2xlVn3z1s_Yj2uiHcHI4Pn47YasDGpgj5i4WQ4yWGy598EJG4YzLtLKlKJwrtQ7cGSmC8CKWmUXoGdCXVDEYmecFLy3PH8FO0zbhCaQZ-U2mctoHxBTc29LHvIreFFUprcoSYOsXVLsVezkdonFZ97zLoqaZqoeZSuD1UP5zz9vxx5K76_ddr_R3XiMQyhGaCV0l8HLIRs2j3ymmocmlMog2teAygce9eAxNITCQCq8Eyi3BGQoQq_d2TnN-1rF7F-jRqwrbFZ1c_KX39ejgaDQ8Pf2XSs_gJt33MTq7sLOYLcNzRFoL-6LTpl-mXCKd
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAOvB-BAkECcUrrOM7rwGFht9rSbrVCW6m3EL9oRUnQPlSVEz-Bv8Jf4SfwS5jJq10qhITUA7nFdmLHnrG_mYw_Azz3c6sSEXKPmVR5AhXIS2XIPK6Izg5xktS033m0Gw33xNv9cH8Fvrd7YWp-iM7hRppRzdek4OSQ3jhlDc11RRzkJ4g6ItbEVW6bk2O02mavtvo4xC843xxM3gy95mABTxHjlGeNtZLlTGijubBc5cpPQxnzSKk4TQ1TueCGa25jXyJkMmgDhdbkIggiFksW4HsvwWU6Rpzo-vvvThmryCCo6P2C0EsjkbQ8kYxvLLd3eR08B27Px2iexc7V4rd5A3603VbHvHxcX8zluvryG6Pkf9WvN-F6A8XdXq07t2DFFLfh2hmCxjsw7mF_lYuZOzkuf379Nj7ANd8dfFockY_RfX1YoiWP6YNqA5p2gz6lkauUgsnd0rrjckqPD0_0tPyAMOQu7F3IJ92D1aIszANwfTIN80Sl2iBsYlrG2gaJ1XmUxEKGvgNeKxGZagja6ZyQo6ymluYZjUzWjYwDL7vyn2tqkj-WXGsFLGumqFmGWC9A9MnTxIFnXTZOLvTHKC-oc6kMinjKmXDgfi2PXVWIfUSIlwPxkqR2BYi4fDmnODyoCMwjgUg7wXp5JYh_aX3W64963d3Df3noKVwZTkY72c7W7vYjuErpdUjSGqzOpwvzGIHlXD6pVNmF9xct478AT6uB2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiF64P0IFAgSiFNax3FeBw4Lu6stpdUKtVJvIX7RqiWp9qGqnPgJ_BT-Cn-BX8JMXu1SISSkHsgt9iR27Bn7G2f8GeCFn1uViJB7zKTKE2hAXipD5nFFdHaIk6Sm_c5b29FoV7zbC_eW4Hu7F6bmh-gW3MgyqvGaDPxY2_Uz0tBcV7xBfoKgI2JNWOWmOT1Bp236eqOPPfyS8-Fg5-3Ia84V8BQRTnnWWCtZzoQ2mgvLVa78NJQxj5SK09QwlQtuuOY29iUiJoMuUGhNLoIgYrFkAb73ClzFUlM6LKL_4YywivyBit0vCL00EklLE8n4-mJ9F6fBC9j2YojmeehczX3Dm_CjbbU65OVwbT6Ta-rLb4SS_1Oz3oIbDRB3e7Xl3IYlU9yBlXP0jHdh3MPmKudTd-ek_Pn123gfZ3x38Hl-RCuM7puDEv14TB9U28-0G_QpjRZKKZTcLa07Lif0-OhUT8pPCELuwe6lfNJ9WC7KwjwE1yfHME9Uqg2CJqZlrG2QWJ1HSSxk6DvgtQqRqYaenU4JOcpqYmmeUc9kXc848KqTP66JSf4oudrqV9YMUNMMkV6A2JOniQPPu2wcWuh_UV5Q45IMwumUM-HAg1odu6IQ-YgQLwfiBUXtBIi2fDGnONiv6MsjgTg7wXJ5pYd_qX3W62_1urtH__LQM7g27g-z9xvbm4_hOiXX8UirsDybzM0TRJUz-bQyZBc-XraK_wI504CH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aqueous+Two%E2%80%90Phase+Emulsion+Bioink%E2%80%90Enabled+3D+Bioprinting+of+Porous+Hydrogels&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Guo%E2%80%90Liang+Ying&rft.au=Jiang%2C+Nan&rft.au=Maharjan%2C+Sushila&rft.au=Yi%E2%80%90Xia+Yin&rft.date=2018-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=50&rft_id=info:doi/10.1002%2Fadma.201805460&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon