A synergy-based hand control is encoded in human motor cortical areas

How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what exte...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 5
Main Authors Leo, Andrea, Handjaras, Giacomo, Bianchi, Matteo, Marino, Hamal, Gabiccini, Marco, Guidi, Andrea, Scilingo, Enzo Pasquale, Pietrini, Pietro, Bicchi, Antonio, Santello, Marco, Ricciardi, Emiliano
Format Journal Article
LanguageEnglish
Published England eLife Science Publications, Ltd 15.02.2016
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text
ISSN2050-084X
2050-084X
DOI10.7554/eLife.13420

Cover

Loading…
Abstract How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. The human hand can perform an enormous range of movements with great dexterity. Some common everyday actions, such as grasping a coffee cup, involve the coordinated movement of all four fingers and thumb. Others, such as typing, rely on the ability of individual fingers to move relatively independently of one another. This flexibility is possible in part because of the complex anatomy of the hand, with its 27 bones and their connecting joints and muscles. But with this complexity comes a huge number of possibilities. Any movement-related task – such as picking up a cup – can be achieved via many different combinations of muscle contractions and joint positions. So how does the brain decide which muscles and joints to use? One theory is that the brain simplifies this problem by encoding particularly useful patterns of joint movements as distinct units or “synergies”. A given task can then be performed by selecting from a small number of synergies, avoiding the need to choose between huge numbers of options every time movement is required. Leo et al. now provide the first direct evidence for the encoding of synergies by the human brain. Volunteers lying inside a brain scanner reached towards virtual objects – from tennis rackets to toothpicks – while activity was recorded from the area of the brain that controls hand movements. As predicted, the scans showed specific and reproducible patterns of activity. Analysing these patterns revealed that each corresponded to a particular combination of joint positions. These activity patterns, or synergies, could even be ‘decoded’ to work out which type of movement a volunteer had just performed. Future experiments should examine how the brain combines synergies with sensory feedback to allow movements to be adjusted as they occur. Such findings could help to develop brain-computer interfaces and systems for controlling the movement of artificial limbs.
AbstractList How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses.DOI: http://dx.doi.org/10.7554/eLife.13420.001
How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses.
How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: eLife digest The human hand can perform an enormous range of movements with great dexterity. Some common everyday actions, such as grasping a coffee cup, involve the coordinated movement of all four fingers and thumb. Others, such as typing, rely on the ability of individual fingers to move relatively independently of one another. This flexibility is possible in part because of the complex anatomy of the hand, with its 27 bones and their connecting joints and muscles. But with this complexity comes a huge number of possibilities. Any movement-related task -- such as picking up a cup -- can be achieved via many different combinations of muscle contractions and joint positions. So how does the brain decide which muscles and joints to use? One theory is that the brain simplifies this problem by encoding particularly useful patterns of joint movements as distinct units or "synergies". A given task can then be performed by selecting from a small number of synergies, avoiding the need to choose between huge numbers of options every time movement is required. Leo et al. now provide the first direct evidence for the encoding of synergies by the human brain. Volunteers lying inside a brain scanner reached towards virtual objects -- from tennis rackets to toothpicks -- while activity was recorded from the area of the brain that controls hand movements. As predicted, the scans showed specific and reproducible patterns of activity. Analysing these patterns revealed that each corresponded to a particular combination of joint positions. These activity patterns, or synergies, could even be 'decoded' to work out which type of movement a volunteer had just performed. Future experiments should examine how the brain combines synergies with sensory feedback to allow movements to be adjusted as they occur. Such findings could help to develop brain-computer interfaces and systems for controlling the movement of artificial limbs. DOI:
How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. The human hand can perform an enormous range of movements with great dexterity. Some common everyday actions, such as grasping a coffee cup, involve the coordinated movement of all four fingers and thumb. Others, such as typing, rely on the ability of individual fingers to move relatively independently of one another. This flexibility is possible in part because of the complex anatomy of the hand, with its 27 bones and their connecting joints and muscles. But with this complexity comes a huge number of possibilities. Any movement-related task – such as picking up a cup – can be achieved via many different combinations of muscle contractions and joint positions. So how does the brain decide which muscles and joints to use? One theory is that the brain simplifies this problem by encoding particularly useful patterns of joint movements as distinct units or “synergies”. A given task can then be performed by selecting from a small number of synergies, avoiding the need to choose between huge numbers of options every time movement is required. Leo et al. now provide the first direct evidence for the encoding of synergies by the human brain. Volunteers lying inside a brain scanner reached towards virtual objects – from tennis rackets to toothpicks – while activity was recorded from the area of the brain that controls hand movements. As predicted, the scans showed specific and reproducible patterns of activity. Analysing these patterns revealed that each corresponded to a particular combination of joint positions. These activity patterns, or synergies, could even be ‘decoded’ to work out which type of movement a volunteer had just performed. Future experiments should examine how the brain combines synergies with sensory feedback to allow movements to be adjusted as they occur. Such findings could help to develop brain-computer interfaces and systems for controlling the movement of artificial limbs.
How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: http://dx.doi.org/10.7554/eLife.13420.001 The human hand can perform an enormous range of movements with great dexterity. Some common everyday actions, such as grasping a coffee cup, involve the coordinated movement of all four fingers and thumb. Others, such as typing, rely on the ability of individual fingers to move relatively independently of one another. This flexibility is possible in part because of the complex anatomy of the hand, with its 27 bones and their connecting joints and muscles. But with this complexity comes a huge number of possibilities. Any movement-related task – such as picking up a cup – can be achieved via many different combinations of muscle contractions and joint positions. So how does the brain decide which muscles and joints to use? One theory is that the brain simplifies this problem by encoding particularly useful patterns of joint movements as distinct units or “synergies”. A given task can then be performed by selecting from a small number of synergies, avoiding the need to choose between huge numbers of options every time movement is required. Leo et al. now provide the first direct evidence for the encoding of synergies by the human brain. Volunteers lying inside a brain scanner reached towards virtual objects – from tennis rackets to toothpicks – while activity was recorded from the area of the brain that controls hand movements. As predicted, the scans showed specific and reproducible patterns of activity. Analysing these patterns revealed that each corresponded to a particular combination of joint positions. These activity patterns, or synergies, could even be ‘decoded’ to work out which type of movement a volunteer had just performed. Future experiments should examine how the brain combines synergies with sensory feedback to allow movements to be adjusted as they occur. Such findings could help to develop brain-computer interfaces and systems for controlling the movement of artificial limbs. DOI: http://dx.doi.org/10.7554/eLife.13420.002
Audience Academic
Author Santello, Marco
Pietrini, Pietro
Handjaras, Giacomo
Guidi, Andrea
Marino, Hamal
Scilingo, Enzo Pasquale
Gabiccini, Marco
Bicchi, Antonio
Bianchi, Matteo
Ricciardi, Emiliano
Leo, Andrea
Author_xml – sequence: 1
  givenname: Andrea
  surname: Leo
  fullname: Leo, Andrea
  organization: Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy, Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
– sequence: 2
  givenname: Giacomo
  surname: Handjaras
  fullname: Handjaras, Giacomo
  organization: Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy
– sequence: 3
  givenname: Matteo
  surname: Bianchi
  fullname: Bianchi, Matteo
  organization: Research Center 'E. Piaggio', University of Pisa, Pisa, Italy, Advanced Robotics Department, Istituto Italiano di Tecnologia, Genova, Italy
– sequence: 4
  givenname: Hamal
  surname: Marino
  fullname: Marino, Hamal
  organization: Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
– sequence: 5
  givenname: Marco
  surname: Gabiccini
  fullname: Gabiccini, Marco
  organization: Research Center 'E. Piaggio', University of Pisa, Pisa, Italy, Advanced Robotics Department, Istituto Italiano di Tecnologia, Genova, Italy, Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
– sequence: 6
  givenname: Andrea
  surname: Guidi
  fullname: Guidi, Andrea
  organization: Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
– sequence: 7
  givenname: Enzo Pasquale
  surname: Scilingo
  fullname: Scilingo, Enzo Pasquale
  organization: Research Center 'E. Piaggio', University of Pisa, Pisa, Italy, Department of Information Engineering, University of Pisa, Pisa, Italy
– sequence: 8
  givenname: Pietro
  surname: Pietrini
  fullname: Pietrini, Pietro
  organization: Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy, Research Center 'E. Piaggio', University of Pisa, Pisa, Italy, Clinical Psychology Branch, Pisa University Hospital, Pisa, Italy, IMT School for Advanced Studies Lucca, Lucca, Italy
– sequence: 9
  givenname: Antonio
  surname: Bicchi
  fullname: Bicchi, Antonio
  organization: Research Center 'E. Piaggio', University of Pisa, Pisa, Italy, Advanced Robotics Department, Istituto Italiano di Tecnologia, Genova, Italy
– sequence: 10
  givenname: Marco
  surname: Santello
  fullname: Santello, Marco
  organization: School of Biological and Health Systems Engineering, Arizona State University, Tempe, United States
– sequence: 11
  givenname: Emiliano
  surname: Ricciardi
  fullname: Ricciardi, Emiliano
  organization: Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy, Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26880543$$D View this record in MEDLINE/PubMed
BookMark eNptkttr2zAUxs3oWLuuT3sfhr1sjGSSrZtfBqF0WyAw2AX2Jo6l40TFljrJHst_PyVpt6bUerA5-p3P5_I9L0588FgULymZS87Ze1y5Due0ZhV5UpxVhJMZUeznyb3v0-IipWuSH8mUos2z4rQSShHO6rPialGmrce43s5aSGjLDXhbmuDHGPrSpRK9CTbHnS830wC-HMIYYibi6Az0JUSE9KJ42kGf8OL2fV78-Hj1_fLzbPXl0_JysZoZziWZtZ1EayQQytu2lphLEtAY0YKgDShiG9Eoq3J1BFqBysiOt0p2AruKNKKtz4vlQdcGuNY30Q0QtzqA0_tAiGsNu7p61KS13NqmIcgaVlGh0FYdA2hRCctRZq0PB62bqR1yWZhbhv5I9PjGu41eh9-aSSVYLbLAm1uBGH5NmEY9uGSw78FjmJKmUpKqqqUgGX39AL0OU_R5VJo2vOaSUVH_p9aQG3C-C_m_ZieqF0zmFedOVKbmj1D5WBxcXhx2LsePEt4eJeyWi3_GNUwp6eW3r8fsq_tD-TeNO8NkgB4AE0NKETtt3Aij2xkGXK8p0Ttf6r0v9d6XOefdg5w72cfovw4S4SE
CitedBy_id crossref_primary_10_1038_s41598_021_97876_2
crossref_primary_10_1073_pnas_2017789117
crossref_primary_10_1038_s41598_022_20866_5
crossref_primary_10_3389_fbioe_2020_620805
crossref_primary_10_2478_hukin_2021_0002
crossref_primary_10_1093_cercor_bhz159
crossref_primary_10_1093_gigascience_giab043
crossref_primary_10_3390_app13095728
crossref_primary_10_1515_revneuro_2017_0058
crossref_primary_10_3389_fnins_2018_00208
crossref_primary_10_1111_ejn_14342
crossref_primary_10_3390_s22197417
crossref_primary_10_1007_s10548_022_00893_1
crossref_primary_10_3389_fnint_2024_1324581
crossref_primary_10_1016_j_cortex_2017_05_018
crossref_primary_10_1038_s41598_023_47620_9
crossref_primary_10_1016_j_cpr_2024_102511
crossref_primary_10_1523_ENEURO_0047_24_2024
crossref_primary_10_3389_fnbeh_2018_00212
crossref_primary_10_1016_j_bea_2025_100152
crossref_primary_10_1016_j_compbiomed_2024_109166
crossref_primary_10_1155_2019_1328453
crossref_primary_10_3389_fnhum_2022_841312
crossref_primary_10_3389_fpsyg_2016_00866
crossref_primary_10_1038_s41598_017_13482_1
crossref_primary_10_1038_s41467_019_13599_z
crossref_primary_10_1007_s00221_022_06359_x
crossref_primary_10_1038_s41598_018_26780_z
crossref_primary_10_1016_j_neuroimage_2021_118839
crossref_primary_10_1016_j_cnp_2020_04_001
crossref_primary_10_1016_j_tics_2021_05_007
crossref_primary_10_1007_s10055_024_01055_3
crossref_primary_10_3389_fnbot_2017_00041
crossref_primary_10_3389_fncom_2018_00020
crossref_primary_10_1038_s41598_019_42888_2
crossref_primary_10_1016_j_neuron_2021_10_002
crossref_primary_10_1162_imag_a_00178
crossref_primary_10_1152_jn_00485_2021
crossref_primary_10_1152_jn_00514_2019
crossref_primary_10_1093_cercor_bhz139
crossref_primary_10_1038_s41598_017_09770_5
crossref_primary_10_1152_jn_00667_2017
crossref_primary_10_3389_fonc_2016_00214
crossref_primary_10_1186_s12984_019_0590_0
crossref_primary_10_1109_ACCESS_2019_2895566
crossref_primary_10_1038_s41598_024_68386_8
crossref_primary_10_1080_00222895_2023_2280263
crossref_primary_10_1038_s41467_020_14517_4
crossref_primary_10_1016_j_neuroimage_2020_117249
crossref_primary_10_7717_peerj_6078
crossref_primary_10_3390_s22145349
crossref_primary_10_1371_journal_pcbi_1012455
crossref_primary_10_1016_j_tics_2022_09_010
crossref_primary_10_1152_jn_00537_2020
crossref_primary_10_1109_TSMC_2024_3478113
crossref_primary_10_3389_fnins_2018_00110
crossref_primary_10_1146_annurev_neuro_070918_050216
crossref_primary_10_1109_LRA_2019_2950816
crossref_primary_10_1186_s12984_017_0305_3
crossref_primary_10_1093_texcom_tgaa009
crossref_primary_10_1126_scirobotics_abb0467
crossref_primary_10_1016_j_cobeha_2017_12_020
crossref_primary_10_1007_s00221_024_06987_5
crossref_primary_10_1093_cercor_bhz284
crossref_primary_10_1016_j_neuroimage_2017_06_080
crossref_primary_10_3389_fnhum_2021_662006
crossref_primary_10_3389_fspor_2020_596063
crossref_primary_10_1016_j_neuroimage_2016_05_027
crossref_primary_10_1109_TNSRE_2024_3523943
crossref_primary_10_1152_jn_00630_2019
crossref_primary_10_1038_s41598_018_35018_x
crossref_primary_10_1049_el_2016_3678
crossref_primary_10_1038_s41598_017_17314_0
crossref_primary_10_3389_fnhum_2019_00032
crossref_primary_10_1016_j_cortex_2017_12_017
Cites_doi 10.1109/ROBOT.2006.1642128
10.1152/physrev.1983.63.1.206
10.1371/journal.pone.0069328
10.1016/j.cub.2010.09.045
10.1006/cbmr.1996.0014
10.1016/j.neuroimage.2008.06.018
10.1093/cercor/bhk033
10.1093/brain/60.4.389
10.1615/CritRevBiomedEng.v30.i456.80
10.1152/jn.00679.2006
10.1023/B:Mach.0000035475.85309.1b
10.1016/S0896-6273(02)00741-9
10.1080/14640749208401329
10.7554/eLife.00425
10.1038/nn1309
10.3389/fnhum.2014.01050
10.1186/1743-0003-7-21
10.1016/j.brainresrev.2007.08.004
10.1038/nrn1744
10.1523/JNEUROSCI.5547-11.2012
10.1038/nn963
10.1038/nn.4038
10.1109/IROS.2013.6696890
10.1016/S1053-8119(09)70884-5
10.1016/0006-8993(85)91154-0
10.1016/j.neuroimage.2014.07.002
10.1093/cercor/6.2.226
10.1016/j.neuroimage.2010.07.073
10.1523/JNEUROSCI.4512-07.2008
10.1016/j.humov.2007.04.002
10.1007/978-3-642-21729-6_135
10.1016/j.neuroimage.2014.07.049
10.1016/j.neuroimage.2014.05.064
10.1016/0006-8993(80)91139-7
10.1016/S0896-6273(02)00698-0
10.1152/jn.2001.85.6.2613
10.1111/j.2517-6161.1995.tb02031.x
10.3389/fncom.2013.00023
10.1371/journal.pone.0087178
10.3389/fneur.2014.00070
10.1152/jn.01265.2003
10.1016/j.neuroimage.2011.06.084
10.1073/pnas.0910114106
10.1523/JNEUROSCI.22-12-05074.2002
10.1016/j.neuron.2012.10.014
10.3389/neuro.06.004.2008
10.1016/j.tics.2015.10.008
10.1016/j.neuron.2008.10.043
10.3389/fncom.2013.00042
10.1016/0028-3932(71)90067-4
10.1016/j.neuron.2012.10.018
10.3390/s130912431
10.1023/A:1008812426305
10.1016/j.plrev.2014.11.002
10.1038/nn1010
10.1123/mcj.14.3.294
10.1109/TNSRE.2013.2282898
10.1523/JNEUROSCI.2438-11.2012
10.1152/jn.1991.65.6.1381
10.1523/JNEUROSCI.22-04-01426.2002
10.1523/JNEUROSCI.0080-11.2011
10.1016/S1050-6411(00)00027-4
10.1523/JNEUROSCI.1358-14.2015
10.1126/science.7754376
10.1126/science.1152876
10.1523/JNEUROSCI.17-06-02227.1997
10.1152/jn.00481.2013
10.1016/S0896-6273(03)00669-X
10.1523/JNEUROSCI.05-07-01688.1985
10.1523/JNEUROSCI.18-23-10105.1998
10.1006/nimg.2001.0776
10.1152/jn.2001.86.5.2125
10.1007/978-3-319-03017-3_3
10.1146/annurev-neuro-062012-170325
10.1162/neco.1997.9.6.1291
10.1302/0301-620X.38B4.902
10.1152/jn.1989.61.3.534
10.1523/JNEUROSCI.3809-13.2013
10.1038/nature06996
10.1001/archneurpsyc.1951.02320090038004
10.1126/science.aaa5417
10.1523/JNEUROSCI.4904-04.2005
10.1007/s00221-003-1591-5
10.1016/j.neuron.2006.09.019
10.1523/JNEUROSCI.3594-14.2015
10.1113/jphysiol.2006.126698
10.1523/JNEUROSCI.2558-10.2010
10.1152/jn.2000.83.1.528
10.1007/s00221-008-1355-3
10.1016/j.tics.2013.06.007
10.1371/journal.pone.0109943
10.1109/10.204774
10.1016/j.neuron.2006.09.038
10.1073/pnas.0511139103
10.1002/hbm.22881
10.1523/JNEUROSCI.2500-14.2014
10.1523/JNEUROSCI.2747-15.2015
10.3758/BF03330618
10.1007/s00422-012-0532-4
10.1007/s10548-013-0322-x
10.1123/mcj.11.3.276
10.1007/s00221-012-3344-9
ContentType Journal Article
Copyright COPYRIGHT 2016 eLife Science Publications, Ltd.
2016, Leo et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2016, Leo et al 2016 Leo et al
Copyright_xml – notice: COPYRIGHT 2016 eLife Science Publications, Ltd.
– notice: 2016, Leo et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2016, Leo et al 2016 Leo et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.13420
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


CrossRef



MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_0bd5dd990e4942168ed2f4aabe86d5e7
PMC4786436
A473424948
26880543
10_7554_eLife_13420
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: ERC-291166 The Hand Embodied
– fundername: ;
  grantid: ERC-291166 SoftHands
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5570-bf7edc7a015bb37e0006a9c6ba619a80d9698d82680ab6e8c7f5b87f6ef2096b3
IEDL.DBID 7X7
ISSN 2050-084X
IngestDate Wed Aug 27 01:30:11 EDT 2025
Thu Aug 21 18:20:06 EDT 2025
Fri Sep 05 13:01:08 EDT 2025
Fri Jul 25 12:05:37 EDT 2025
Tue Jun 17 22:05:02 EDT 2025
Tue Jun 10 21:02:43 EDT 2025
Fri Jun 27 05:49:53 EDT 2025
Thu Apr 03 07:02:22 EDT 2025
Tue Jul 01 02:27:22 EDT 2025
Thu Apr 24 23:08:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords fMRI
motor cortex
hand control
neuroscience
encoding
synergies
human
decoding
Language English
License http://creativecommons.org/licenses/by/4.0
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5570-bf7edc7a015bb37e0006a9c6ba619a80d9698d82680ab6e8c7f5b87f6ef2096b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1953574163?pq-origsite=%requestingapplication%
PMID 26880543
PQID 1953574163
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_0bd5dd990e4942168ed2f4aabe86d5e7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4786436
proquest_miscellaneous_1770223760
proquest_journals_1953574163
gale_infotracmisc_A473424948
gale_infotracacademiconefile_A473424948
gale_incontextgauss_ISR_A473424948
pubmed_primary_26880543
crossref_citationtrail_10_7554_eLife_13420
crossref_primary_10_7554_eLife_13420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-15
PublicationDateYYYYMMDD 2016-02-15
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2016
Publisher eLife Science Publications, Ltd
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Science Publications, Ltd
– name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Hermens (bib51) 1999; 8
Graziano (bib44) 2016; 20
Todorov (bib104) 2004; 7
Benjamini (bib5) 1995; 57
Riehle (bib83) 1989; 61
Tessitore (bib100) 2013; 225
Fonov (bib31) 2009; 47
Saleh (bib85) 2012; 32
Penfield (bib78) 1937; 60
Penfield (bib80) 1951; 66
Santello (bib88) 2002; 22
Soechting (bib98) 1997; 4
Culham (bib18) 2003; 153
Ganesh (bib37) 2007; 97
Schaffelhofer (bib90) 2015; 35
Napier (bib74) 1956; 38-B
Pistohl (bib82) 2012; 59
Vereijken (bib107) 1992; 45
Ehrsson (bib25) 2001; 85
Mitchell (bib71) 2008; 320
Andersson (bib4) 2007
Gustus (bib46) 2012; 106
Gutteling (bib47) 2015; 35
Phinyomark (bib81) 2010; 1
d'Avella (bib20) 2013; 7
Schieber (bib92) 2001; 86
Naselaris (bib75) 2011; 56
Aflalo (bib1) 2015; 348
Bleichner (bib10) 2014; 27
Chowdhury (bib15) 2013; 13
Huth (bib53) 2012; 76
Velliste (bib106) 2008; 453
Grafton (bib42) 1996; 6
Formisano (bib32) 2003; 40
Zecca (bib111) 2002; 30
Goodhill (bib41) 1997; 9
Devereux (bib22) 2013; 33
Kwan (bib66) 1985; 343
Bernstein (bib6) 1967
Weiss (bib108) 2004; 92
Muceli (bib73) 2014; 22
Flint (bib30) 2014; 101
Santello (bib87) 1998; 18
Yarrow (bib110) 2014; 9
Penfield (bib79) 1950
Bilenko (bib7) 2004
Gallivan (bib34) 2013; 2
Sereno (bib96) 1995; 268
King (bib58) 2014; 102
Stillfried (bib99) 2014; 95
Schwartz (bib94) 2006; 52
Klaes (bib60) 2015; 35
Ehrsson (bib24) 2000; 83
Aflalo (bib2) 2006; 103
Hermens (bib50) 2000; 10
Mollazadeh (bib72) 2014; 112
Brown (bib11) 2014; 34
Kaas (bib57) 1983; 63
Schwartz (bib95) 2007; 579
Kruskal (bib65) 1978
Haxby (bib49) 2014; 37
Kirsch (bib59) 2014; 5
Feix (bib28) 2009
Zhang (bib113) 1997; 17
Hudgins (bib52) 1993; 40
Graziano (bib43) 2002; 34
Tkach (bib102) 2010; 7
Todorov (bib103) 2002; 5
Connolly (bib16) 2012; 32
Cheung (bib13) 2005; 25
Latash (bib67) 2007; 11
Ehrsson (bib26) 2002; 22
Castiello (bib12) 2005; 6
Gallivan (bib35) 2011; 31
Oldfield (bib76) 1971; 9
Gentner (bib39) 2006; 52
Cox (bib17) 1996; 29
Klein Breteler (bib61) 2007; 17
Kriegeskorte (bib64) 2008; 60
Santello (bib86) 2013; 7
Turvey (bib105) 2007; 26
Gentner (bib40) 2010; 20
Siero (bib97) 2014; 101
Ahsan (bib3) 2011; 35
Gazzoni (bib38) 2014; 9
Grefkes (bib45) 2002; 35
Ganesh (bib36) 2008; 42
Santello (bib89) 2014; 8
Bizzi (bib9) 2008; 57
Iwamura (bib56) 1980; 197
Latash (bib68) 2010; 14
Saleh (bib84) 2010; 30
Schreiber (bib93) 2013; 8
Gabiccini (bib33) 2013
Ingram (bib55) 2008; 188
Mathiesen (bib69) 2010
Edelman (bib23) 1998; 26
Indovina (bib54) 2001; 13
d'Avella (bib21) 2003; 6
Kriegeskorte (bib62) 2013; 17
Kriegeskorte (bib63) 2008; 2
Flash (bib29) 1985; 5
Mitchell (bib70) 2004; 57
Handjaras (bib48) 2015; 36
Overduin (bib77) 2012; 76
Cheung (bib14) 2009; 106
Bitzer (bib8) 2006; 1-10
Schieber (bib91) 1991; 65
Zecca (bib112) 2002; 30
Thakur (bib101) 2008; 28
Ejaz (bib27) 2015; 18
D'Ausilio (bib19) 2015; 12
Woolsey (bib109) 1952; 30
19104670 - Front Syst Neurosci. 2008 Nov 24;2:4
8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73
5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
4020415 - J Neurosci. 1985 Jul;5(7):1688-703
8670653 - Cereb Cortex. 1996 Mar-Apr;6(2):226-37
12961051 - Exp Brain Res. 2003 Nov;153(2):180-9
23741616 - Elife. 2013;2:e00425
10634893 - J Neurophysiol. 2000 Jan;83(1):528-36
12062029 - Neuron. 2002 May 30;34(5):841-51
23259944 - Neuron. 2012 Dec 20;76(6):1071-7
21763434 - Neuroimage. 2012 Jan 2;59(1):248-60
25609623 - J Neurosci. 2015 Jan 21;35(3):1068-81
3929999 - Brain Res. 1985 Sep 16;343(1):24-35
19109916 - Neuron. 2008 Dec 26;60(6):1126-41
21159978 - J Neurosci. 2010 Dec 15;30(50):17079-90
17015237 - Neuron. 2006 Oct 5;52(1):205-20
25904798 - J Neurosci. 2015 Apr 22;35(16):6472-80
26586832 - J Neurosci. 2015 Nov 18;35(46):15466-76
11387405 - J Neurophysiol. 2001 Jun;85(6):2613-23
12983675 - Res Publ Assoc Res Nerv Ment Dis. 1952;30:238-64
16100518 - Nat Rev Neurosci. 2005 Sep;6(9):726-36
17715460 - Motor Control. 2007 Jul;11(3):276-308
11698506 - J Neurophysiol. 2001 Nov;86(5):2125-43
25465480 - Phys Life Rev. 2015 Mar;12:91-103
16000633 - J Neurosci. 2005 Jul 6;25(27):6419-34
13376678 - J Bone Joint Surg Br. 1956 Nov;38-B(4):902-13
20702893 - Motor Control. 2010 Jul;14(3):294-322
19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8
12404008 - Nat Neurosci. 2002 Nov;5(11):1226-35
24904516 - Front Neurol. 2014 May 19;5:70
9046450 - J Comput Neurosci. 1997 Jan;4(1):29-46
20691790 - Neuroimage. 2011 May 15;56(2):400-10
17005612 - J Neurophysiol. 2007 Jan;97(1):912-20
22279207 - J Neurosci. 2012 Jan 25;32(4):1220-32
23259955 - Neuron. 2012 Dec 20;76(6):1210-24
25999506 - Science. 2015 May 22;348(6237):906-10
14973321 - J Neurophysiol. 2004 Jul;92(1):523-35
26030847 - Nat Neurosci. 2015 Jul;18(7):1034-40
16473936 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2909-14
11850469 - J Neurosci. 2002 Feb 15;22(4):1426-35
18634889 - Neuroimage. 2008 Oct 1;42(4):1463-72
23876494 - Trends Cogn Sci. 2013 Aug;17(8):401-12
12123617 - Neuron. 2002 Jul 3;35(1):173-84
26138610 - Hum Brain Mapp. 2015 Oct;36(10):3832-44
12739757 - Crit Rev Biomed Eng. 2002;30(4-6):459-85
7754376 - Science. 1995 May 12;268(5212):889-93
17604860 - Hum Mov Sci. 2007 Aug;26(4):657-97
14622588 - Neuron. 2003 Nov 13;40(4):859-69
11352608 - Neuroimage. 2001 Jun;13(6 Pt 1):1027-34
9045746 - J Neurosci. 1997 Mar 15;17(6):2227-46
16699078 - Cereb Cortex. 2007 Apr;17(4):803-15
23861966 - PLoS One. 2013;8(7):e69328
24990564 - J Neurophysiol. 2014 Oct 15;112(8):1857-70
12563264 - Nat Neurosci. 2003 Mar;6(3):300-8
17255162 - J Physiol. 2007 Mar 15;579(Pt 3):581-601
22357845 - J Neurosci. 2012 Feb 22;32(8):2608-18
18511683 - Science. 2008 May 30;320(5880):1191-5
26628112 - Trends Cogn Sci. 2016 Feb;20(2):121-32
7407570 - Brain Res. 1980 Sep 22;197(2):516-20
1410559 - Q J Exp Psychol A. 1992 Aug;45(2):323-44
23579545 - Front Comput Neurosci. 2013 Apr 08;7:23
25026157 - Neuroimage. 2014 Nov 1;101:177-84
23132432 - Biol Cybern. 2012 Dec;106(11-12):741-55
24927986 - Neuroimage. 2014 Nov 15;102 Pt 2:923-37
20951047 - Curr Biol. 2010 Oct 26;20(20):1869-74
15332089 - Nat Neurosci. 2004 Sep;7(9):907-15
17114055 - Neuron. 2006 Nov 22;52(4):731-42
18029291 - Brain Res Rev. 2008 Jan;57(1):125-33
12077202 - J Neurosci. 2002 Jun 15;22(12):5074-80
18369608 - Exp Brain Res. 2008 Jun;188(2):223-36
6401864 - Physiol Rev. 1983 Jan;63(1):206-31
24285896 - J Neurosci. 2013 Nov 27;33(48):18906-16
24122368 - Brain Topogr. 2014 Mar;27(2):248-57
23229775 - Exp Brain Res. 2013 Mar;225(1):11-36
18256247 - J Neurosci. 2008 Feb 6;28(6):1271-81
24505279 - PLoS One. 2014;9(2):e87178
11018445 - J Electromyogr Kinesiol. 2000 Oct;10(5):361-74
14867993 - AMA Arch Neurol Psychiatry. 1951 Sep;66(3):289-317
24132017 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):623-33
25297087 - J Neurosci. 2014 Oct 8;34(41):13574-85
1875247 - J Neurophysiol. 1991 Jun;65(6):1381-91
9822764 - J Neurosci. 1998 Dec 1;18(23):10105-15
25289669 - PLoS One. 2014;9(10):e109943
25002277 - Annu Rev Neurosci. 2014;37:435-56
23626534 - Front Comput Neurosci. 2013 Apr 19;7:42
8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94
24048337 - Sensors (Basel). 2013;13(9):12431-66
2709098 - J Neurophysiol. 1989 Mar;61(3):534-49
21715625 - J Neurosci. 2011 Jun 29;31(26):9599-610
18509337 - Nature. 2008 Jun 19;453(7198):1098-101
20492713 - J Neuroeng Rehabil. 2010;7:21
25094020 - Neuroimage. 2014 Nov 1;101:695-703
25610391 - Front Hum Neurosci. 2015 Jan 06;8:1050
References_xml – volume: 1-10
  start-page: 2819
  year: 2006
  ident: bib8
  article-title: Learning EMG control of a robotic hand: towards active prostheses
  publication-title: 2006 Ieee International Conference on Robotics and Automation (Icra)
  doi: 10.1109/ROBOT.2006.1642128
– volume: 63
  start-page: 206
  year: 1983
  ident: bib57
  article-title: What, if anything, is SI? organization of first somatosensory area of cortex
  publication-title: Physiological Reviews
  doi: 10.1152/physrev.1983.63.1.206
– volume: 8
  start-page: e69328
  year: 2013
  ident: bib93
  article-title: The statistical analysis of multi-voxel patterns in functional imaging
  publication-title: PloS One
  doi: 10.1371/journal.pone.0069328
– volume: 20
  start-page: 1869
  year: 2010
  ident: bib40
  article-title: Encoding of motor skill in the corticomuscular system of musicians
  publication-title: Current Biology
  doi: 10.1016/j.cub.2010.09.045
– volume: 29
  start-page: 162
  year: 1996
  ident: bib17
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Computers and Biomedical Research, an International Journal
  doi: 10.1006/cbmr.1996.0014
– volume: 42
  start-page: 1463
  year: 2008
  ident: bib36
  article-title: Sparse linear regression for reconstructing muscle activity from human cortical fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.06.018
– volume: 17
  start-page: 803
  year: 2007
  ident: bib61
  article-title: Timing of muscle activation in a hand movement sequence
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhk033
– volume: 60
  start-page: 389
  year: 1937
  ident: bib78
  article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation
  publication-title: Brain
  doi: 10.1093/brain/60.4.389
– volume-title: The Co-Ordination and Regulation of Movements
  year: 1967
  ident: bib6
– volume: 30
  start-page: 459
  year: 2002
  ident: bib111
  article-title: Control of multifunctional prosthetic hands by processing the electromyographic signal
  publication-title: Critical Reviews? in Biomedical Engineering
  doi: 10.1615/CritRevBiomedEng.v30.i456.80
– volume: 97
  start-page: 912
  year: 2007
  ident: bib37
  article-title: Accurate Real-Time Feedback of Surface EMG During fMRI
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00679.2006
– volume: 57
  start-page: 145
  year: 2004
  ident: bib70
  article-title: Learning to decode cognitive states from brain images
  publication-title: Machine Learning
  doi: 10.1023/B:Mach.0000035475.85309.1b
– volume: 35
  start-page: 173
  year: 2002
  ident: bib45
  article-title: Crossmodal processing of object features in human anterior intraparietal cortex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00741-9
– volume: 45
  start-page: 323
  year: 1992
  ident: bib107
  article-title: A dynamical systems approach to skill acquisition
  publication-title: The Quarterly Journal of Experimental Psychology Section A
  doi: 10.1080/14640749208401329
– volume: 2
  start-page: e00425
  year: 2013
  ident: bib34
  article-title: Decoding the neural mechanisms of human tool use
  publication-title: eLife
  doi: 10.7554/eLife.00425
– volume: 7
  start-page: 907
  year: 2004
  ident: bib104
  article-title: Optimality principles in sensorimotor control
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1309
– volume: 8
  start-page: 1050
  year: 2014
  ident: bib89
  article-title: Are movement disorders and sensorimotor injuries pathologic synergies? when normal multi-joint movement synergies become pathologic
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2014.01050
– volume: 7
  year: 2010
  ident: bib102
  article-title: Study of stability of time-domain features for electromyographic pattern recognition
  publication-title: Journal of Neuroengineering and Rehabilitation
  doi: 10.1186/1743-0003-7-21
– volume: 57
  start-page: 125
  year: 2008
  ident: bib9
  article-title: Combining modules for movement
  publication-title: Brain Research Reviews
  doi: 10.1016/j.brainresrev.2007.08.004
– volume: 6
  start-page: 726
  year: 2005
  ident: bib12
  article-title: The neuroscience of grasping
  publication-title: Nature Reviews. Neuroscience
  doi: 10.1038/nrn1744
– volume: 32
  start-page: 2608
  year: 2012
  ident: bib16
  article-title: The representation of biological classes in the human brain
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5547-11.2012
– volume: 5
  start-page: 1226
  year: 2002
  ident: bib103
  article-title: Optimal feedback control as a theory of motor coordination
  publication-title: Nature Neuroscience
  doi: 10.1038/nn963
– volume: 18
  start-page: 1034
  year: 2015
  ident: bib27
  article-title: Hand use predicts the structure of representations in sensorimotor cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4038
– start-page: 3738
  year: 2013
  ident: bib33
  article-title: A data-driven kinematic model of the human hand with soft-tissue artifact compensation mechanism for grasp synergy analysis
  publication-title: 2013 Ieee/Rsj International Conference on Intelligent Robots and Systems (Iros)
  doi: 10.1109/IROS.2013.6696890
– volume: 47
  start-page: S102
  year: 2009
  ident: bib31
  article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(09)70884-5
– volume: 343
  start-page: 24
  year: 1985
  ident: bib66
  article-title: Properties of visual cue responses in primate precentral cortex
  publication-title: Brain Research
  doi: 10.1016/0006-8993(85)91154-0
– volume: 101
  start-page: 177
  year: 2014
  ident: bib97
  article-title: BOLD matches neuronal activity at the mm scale: a combined 7T fMRI and ECoG study in human sensorimotor cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.002
– volume: 6
  start-page: 226
  year: 1996
  ident: bib42
  article-title: Functional anatomy of pointing and grasping in humans
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/6.2.226
– volume: 56
  start-page: 400
  year: 2011
  ident: bib75
  article-title: Encoding and decoding in fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.073
– volume: 28
  start-page: 1271
  year: 2008
  ident: bib101
  article-title: Multidigit movement synergies of the human hand in an unconstrained haptic exploration task
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4512-07.2008
– volume: 26
  start-page: 657
  year: 2007
  ident: bib105
  article-title: Action and perception at the level of synergies
  publication-title: Human Movement Science
  doi: 10.1016/j.humov.2007.04.002
– volume: 35
  start-page: 536
  year: 2011
  ident: bib3
  article-title: Neural Network Classifier for Hand Motion Detection from EMG Signal
  publication-title: IFMBE Proceedings
  doi: 10.1007/978-3-642-21729-6_135
– volume: 101
  start-page: 695
  year: 2014
  ident: bib30
  article-title: Extracting kinetic information from human motor cortical signals
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.049
– start-page: 2
  volume-title: Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation
  year: 2009
  ident: bib28
– volume: 102
  start-page: 923
  year: 2014
  ident: bib58
  article-title: The handyman's brain: a neuroimaging meta-analysis describing the similarities and differences between grip type and pattern in humans
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.05.064
– volume: 197
  start-page: 516
  year: 1980
  ident: bib56
  article-title: Overlapping representation of fingers in the somatosensory cortex (area 2) of the conscious monkey
  publication-title: Brain Research
  doi: 10.1016/0006-8993(80)91139-7
– volume-title: The Cerebral Cortex of Man; a Clinical Study of Localization of Function
  year: 1950
  ident: bib79
– volume: 1
  start-page: 71
  year: 2010
  ident: bib81
  article-title: A novel feature extraction for robust EMG pattern recognition
  publication-title: Journal of Computing
– volume: 34
  start-page: 841
  year: 2002
  ident: bib43
  article-title: Complex movements evoked by microstimulation of precentral cortex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00698-0
– volume: 85
  start-page: 2613
  year: 2001
  ident: bib25
  article-title: Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.2001.85.6.2613
– volume: 57
  start-page: 289
  year: 1995
  ident: bib5
  article-title: Controlling the false discovery rate - a practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society Series B-Methodological
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 7
  start-page: 23
  year: 2013
  ident: bib86
  article-title: Neural bases of hand synergies
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2013.00023
– volume: 9
  start-page: e87178
  year: 2014
  ident: bib110
  article-title: Detecting and quantifying topography in neural maps
  publication-title: PloS One
  doi: 10.1371/journal.pone.0087178
– volume: 5
  start-page: 70
  year: 2014
  ident: bib59
  article-title: Primary motor cortex neurons during individuated finger and wrist movements: correlation of spike firing rates with the motion of individual digits versus their principal components
  publication-title: Frontiers in Neurology
  doi: 10.3389/fneur.2014.00070
– volume: 92
  start-page: 523
  year: 2004
  ident: bib108
  article-title: Muscular and postural synergies of the human hand
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.01265.2003
– volume: 59
  start-page: 248
  year: 2012
  ident: bib82
  article-title: Decoding natural grasp types from human ECoG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.084
– volume: 106
  start-page: 19563
  year: 2009
  ident: bib14
  article-title: Stability of muscle synergies for voluntary actions after cortical stroke in humans
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0910114106
– volume: 22
  start-page: 5074
  year: 2002
  ident: bib26
  article-title: Brain regions controlling nonsynergistic versus synergistic movement of the digits: a functional magnetic resonance imaging study
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.22-12-05074.2002
– volume: 76
  start-page: 1210
  year: 2012
  ident: bib53
  article-title: A continuous semantic space describes the representation of thousands of object and action categories across the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.10.014
– volume: 2
  year: 2008
  ident: bib63
  article-title: Representational similarity analysis – connecting the branches of systems neuroscience
  publication-title: Frontiers in Systems Neuroscience
  doi: 10.3389/neuro.06.004.2008
– volume: 20
  year: 2016
  ident: bib44
  article-title: Ethological action maps: a paradigm shift for the motor cortex
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2015.10.008
– volume: 60
  start-page: 1126
  year: 2008
  ident: bib64
  article-title: Matching categorical object representations in inferior temporal cortex of man and monkey
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.10.043
– volume: 7
  start-page: 42
  year: 2013
  ident: bib20
  article-title: Control of reaching movements by muscle synergy combinations
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2013.00042
– year: 2007
  ident: bib4
  article-title: Non-linear optimisation. FMRIB technical report TR07JA1
  publication-title: Practice 2007a Jun
– volume: 9
  start-page: 97
  year: 1971
  ident: bib76
  article-title: The assessment and analysis of handedness: the edinburgh inventory
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(71)90067-4
– volume: 30
  start-page: 238
  year: 1952
  ident: bib109
  article-title: Patterns of localization in precentral and "supplementary" motor areas and their relation to the concept of a premotor area
  publication-title: Research Publications - Association for Research in Nervous and Mental Disease
– volume: 76
  start-page: 1071
  year: 2012
  ident: bib77
  article-title: Microstimulation activates a handful of muscle synergies
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.10.018
– volume: 13
  start-page: 12431
  year: 2013
  ident: bib15
  article-title: Surface electromyography signal processing and classification techniques
  publication-title: Sensors
  doi: 10.3390/s130912431
– volume: 4
  start-page: 29
  year: 1997
  ident: bib98
  article-title: Flexibility and repeatability of finger movements during typing: analysis of multiple degrees of freedom
  publication-title: Journal of Computational Neuroscience
  doi: 10.1023/A:1008812426305
– volume: 12
  start-page: 91
  year: 2015
  ident: bib19
  article-title: Grasping synergies: a motor-control approach to the mirror neuron mechanism
  publication-title: Physics of Life Reviews
  doi: 10.1016/j.plrev.2014.11.002
– start-page: 11
  year: 2004
  ident: bib7
  article-title: Integrating constraints and metric learning in semi-supervised clustering
  publication-title: In Proceedings of the Twenty-First International Conference on Machine Learning (ACM)
– volume: 6
  start-page: 300
  year: 2003
  ident: bib21
  article-title: Combinations of muscle synergies in the construction of a natural motor behavior
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1010
– volume: 8
  start-page: 13
  year: 1999
  ident: bib51
  article-title: European recommendations for surface electromyography
  publication-title: Roessingh Research and Development
– volume: 14
  start-page: 294
  year: 2010
  ident: bib68
  article-title: Motor synergies and the equilibrium-point hypothesis
  publication-title: Motor Control
  doi: 10.1123/mcj.14.3.294
– volume: 22
  start-page: 623
  year: 2014
  ident: bib73
  article-title: Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2013.2282898
– volume: 32
  start-page: 1220
  year: 2012
  ident: bib85
  article-title: Encoding of coordinated reach and grasp trajectories in primary motor cortex
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2438-11.2012
– volume: 65
  start-page: 1381
  year: 1991
  ident: bib91
  article-title: Individuated finger movements of rhesus monkeys: a means of quantifying the independence of the digits
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1991.65.6.1381
– volume: 22
  start-page: 1426
  year: 2002
  ident: bib88
  article-title: Patterns of hand motion during grasping and the influence of sensory guidance
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.22-04-01426.2002
– volume: 31
  start-page: 9599
  year: 2011
  ident: bib35
  article-title: Decoding action intentions from preparatory brain activity in human parieto-frontal networks
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0080-11.2011
– volume: 10
  start-page: 361
  year: 2000
  ident: bib50
  article-title: Development of recommendations for SEMG sensors and sensor placement procedures
  publication-title: Journal of Electromyography and Kinesiology
  doi: 10.1016/S1050-6411(00)00027-4
– volume: 35
  start-page: 6472
  year: 2015
  ident: bib47
  article-title: Action preparation shapes processing in early visual cortex
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1358-14.2015
– volume: 268
  start-page: 889
  year: 1995
  ident: bib96
  article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging
  publication-title: Science
  doi: 10.1126/science.7754376
– volume: 320
  start-page: 1191
  year: 2008
  ident: bib71
  article-title: Predicting human brain activity associated with the meanings of nouns
  publication-title: Science
  doi: 10.1126/science.1152876
– volume: 17
  start-page: 2227
  year: 1997
  ident: bib113
  article-title: Dynamics of single neuron activity in monkey primary motor cortex related to sensorimotor transformation
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.17-06-02227.1997
– volume: 112
  start-page: 1857
  year: 2014
  ident: bib72
  article-title: Principal components of hand kinematics and neurophysiological signals in motor cortex during reach to grasp movements
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00481.2013
– volume: 40
  start-page: 859
  year: 2003
  ident: bib32
  article-title: Mirror-symmetric tonotopic maps in human primary auditory cortex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00669-X
– volume: 5
  start-page: 1688
  year: 1985
  ident: bib29
  article-title: The coordination of arm movements: an experimentally confirmed mathematical model
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.05-07-01688.1985
– volume: 18
  start-page: 10105
  year: 1998
  ident: bib87
  article-title: Postural hand synergies for tool use
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.18-23-10105.1998
– volume: 13
  start-page: 1027
  year: 2001
  ident: bib54
  article-title: On somatotopic representation centers for finger movements in human primary motor cortex and supplementary motor area
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0776
– volume: 86
  start-page: 2125
  year: 2001
  ident: bib92
  article-title: Constraints on somatotopic organization in the primary motor cortex
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.2001.86.5.2125
– volume: 95
  start-page: 49
  year: 2014
  ident: bib99
  article-title: MRI-based skeletal hand movement model
  publication-title: Human Hand as an Inspiration for Robot Hand Development
  doi: 10.1007/978-3-319-03017-3_3
– volume: 37
  start-page: 435
  year: 2014
  ident: bib49
  article-title: Decoding neural representational spaces using multivariate pattern analysis
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev-neuro-062012-170325
– volume: 9
  start-page: 1291
  year: 1997
  ident: bib41
  article-title: A unifying objective function for topographic mappings
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.6.1291
– volume: 38-B
  start-page: 902
  year: 1956
  ident: bib74
  article-title: The prehensile movements of the human hand
  publication-title: The Journal of Bone and Joint Surgery. British Volume
  doi: 10.1302/0301-620X.38B4.902
– volume: 61
  start-page: 534
  year: 1989
  ident: bib83
  article-title: Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1989.61.3.534
– volume: 33
  start-page: 18906
  year: 2013
  ident: bib22
  article-title: Representational similarity analysis reveals commonalities and differences in the semantic processing of words and objects
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3809-13.2013
– volume: 453
  start-page: 1098
  year: 2008
  ident: bib106
  article-title: Cortical control of a prosthetic arm for self-feeding
  publication-title: Nature
  doi: 10.1038/nature06996
– volume: 66
  start-page: 289
  year: 1951
  ident: bib80
  article-title: The supplementary motor area of the cerebral cortex
  publication-title: A.M.A. Archives of Neurology & Psychiatry
  doi: 10.1001/archneurpsyc.1951.02320090038004
– volume: 348
  start-page: 906
  year: 2015
  ident: bib1
  article-title: Neurophysiology. decoding motor imagery from the posterior parietal cortex of a tetraplegic human
  publication-title: Science
  doi: 10.1126/science.aaa5417
– volume: 25
  start-page: 6419
  year: 2005
  ident: bib13
  article-title: Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4904-04.2005
– volume: 153
  start-page: 180
  year: 2003
  ident: bib18
  article-title: Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-003-1591-5
– volume: 52
  start-page: 205
  year: 2006
  ident: bib94
  article-title: Brain-controlled interfaces: movement restoration with neural prosthetics
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.09.019
– volume: 35
  start-page: 1068
  year: 2015
  ident: bib90
  article-title: Decoding a wide range of hand configurations from macaque motor, premotor, and parietal cortices
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3594-14.2015
– volume: 579
  start-page: 581
  year: 2007
  ident: bib95
  article-title: Useful signals from motor cortex
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2006.126698
– volume: 30
  start-page: 17079
  year: 2010
  ident: bib84
  article-title: Encoding of coordinated grasp trajectories in primary motor cortex
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2558-10.2010
– volume-title: Sage University Papers Series Quantitative Applications in the Social Sciences No 07-011
  year: 1978
  ident: bib65
– volume: 83
  start-page: 528
  year: 2000
  ident: bib24
  article-title: Cortical activity in precision- versus power-grip tasks: an fMRI study
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.2000.83.1.528
– volume: 188
  start-page: 223
  year: 2008
  ident: bib55
  article-title: The statistics of natural hand movements
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-008-1355-3
– volume: 17
  start-page: 401
  year: 2013
  ident: bib62
  article-title: Representational geometry: integrating cognition, computation, and the brain
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2013.06.007
– volume: 9
  year: 2014
  ident: bib38
  article-title: Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography
  publication-title: PloS One
  doi: 10.1371/journal.pone.0109943
– volume: 40
  start-page: 82
  year: 1993
  ident: bib52
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Transactions on Bio-Medical Engineering
  doi: 10.1109/10.204774
– volume: 52
  start-page: 731
  year: 2006
  ident: bib39
  article-title: Modular organization of finger movements by the human central nervous system
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.09.038
– volume: 103
  start-page: 2909
  year: 2006
  ident: bib2
  article-title: Partial tuning of motor cortex neurons to final posture in a free-moving paradigm
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0511139103
– volume: 30
  start-page: 459
  year: 2002
  ident: bib112
  article-title: Control of multifunctional prosthetic hands by processing the electromyographic signal
  publication-title: Critical Reviews? in Biomedical Engineering
  doi: 10.1615/CritRevBiomedEng.v30.i456.80
– volume: 36
  year: 2015
  ident: bib48
  article-title: A topographical organization for action representation in the human brain
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.22881
– volume: 34
  start-page: 13574
  year: 2014
  ident: bib11
  article-title: Motor cortex is functionally organized as a set of spatially distinct representations for complex movements
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2500-14.2014
– volume: 35
  start-page: 15466
  year: 2015
  ident: bib60
  article-title: Hand shape representations in the human posterior parietal cortex
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2747-15.2015
– year: 2010
  ident: bib69
  article-title: Prediction of grasping force based on features of surface and intramuscular EMG
– volume: 26
  start-page: 309
  year: 1998
  ident: bib23
  article-title: Toward direct visualization of the internal shape representation space by fMRI
  publication-title: Psychobiology
  doi: 10.3758/BF03330618
– volume: 106
  start-page: 741
  year: 2012
  ident: bib46
  article-title: Human hand modelling: kinematics, dynamics, applications
  publication-title: Biological Cybernetics
  doi: 10.1007/s00422-012-0532-4
– volume: 27
  start-page: 248
  year: 2014
  ident: bib10
  article-title: Give me a sign: decoding complex coordinated hand movements using high-field fMRI
  publication-title: Brain Topography
  doi: 10.1007/s10548-013-0322-x
– volume: 11
  start-page: 276
  year: 2007
  ident: bib67
  article-title: Toward a new theory of motor synergies
  publication-title: Motor Control
  doi: 10.1123/mcj.11.3.276
– volume: 225
  start-page: 11
  year: 2013
  ident: bib100
  article-title: Hierarchical and multiple hand action representation using temporal postural synergies
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-012-3344-9
– reference: 24990564 - J Neurophysiol. 2014 Oct 15;112(8):1857-70
– reference: 23626534 - Front Comput Neurosci. 2013 Apr 19;7:42
– reference: 12563264 - Nat Neurosci. 2003 Mar;6(3):300-8
– reference: 25465480 - Phys Life Rev. 2015 Mar;12:91-103
– reference: 26628112 - Trends Cogn Sci. 2016 Feb;20(2):121-32
– reference: 11698506 - J Neurophysiol. 2001 Nov;86(5):2125-43
– reference: 11850469 - J Neurosci. 2002 Feb 15;22(4):1426-35
– reference: 11018445 - J Electromyogr Kinesiol. 2000 Oct;10(5):361-74
– reference: 9045746 - J Neurosci. 1997 Mar 15;17(6):2227-46
– reference: 14867993 - AMA Arch Neurol Psychiatry. 1951 Sep;66(3):289-317
– reference: 23861966 - PLoS One. 2013;8(7):e69328
– reference: 26586832 - J Neurosci. 2015 Nov 18;35(46):15466-76
– reference: 24285896 - J Neurosci. 2013 Nov 27;33(48):18906-16
– reference: 25610391 - Front Hum Neurosci. 2015 Jan 06;8:1050
– reference: 16473936 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2909-14
– reference: 10634893 - J Neurophysiol. 2000 Jan;83(1):528-36
– reference: 19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8
– reference: 4020415 - J Neurosci. 1985 Jul;5(7):1688-703
– reference: 17255162 - J Physiol. 2007 Mar 15;579(Pt 3):581-601
– reference: 17114055 - Neuron. 2006 Nov 22;52(4):731-42
– reference: 24132017 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):623-33
– reference: 18029291 - Brain Res Rev. 2008 Jan;57(1):125-33
– reference: 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73
– reference: 24122368 - Brain Topogr. 2014 Mar;27(2):248-57
– reference: 18369608 - Exp Brain Res. 2008 Jun;188(2):223-36
– reference: 26138610 - Hum Brain Mapp. 2015 Oct;36(10):3832-44
– reference: 21763434 - Neuroimage. 2012 Jan 2;59(1):248-60
– reference: 20702893 - Motor Control. 2010 Jul;14(3):294-322
– reference: 12123617 - Neuron. 2002 Jul 3;35(1):173-84
– reference: 12404008 - Nat Neurosci. 2002 Nov;5(11):1226-35
– reference: 11352608 - Neuroimage. 2001 Jun;13(6 Pt 1):1027-34
– reference: 14973321 - J Neurophysiol. 2004 Jul;92(1):523-35
– reference: 24048337 - Sensors (Basel). 2013;13(9):12431-66
– reference: 23229775 - Exp Brain Res. 2013 Mar;225(1):11-36
– reference: 3929999 - Brain Res. 1985 Sep 16;343(1):24-35
– reference: 23579545 - Front Comput Neurosci. 2013 Apr 08;7:23
– reference: 24927986 - Neuroimage. 2014 Nov 15;102 Pt 2:923-37
– reference: 25289669 - PLoS One. 2014;9(10):e109943
– reference: 24904516 - Front Neurol. 2014 May 19;5:70
– reference: 18509337 - Nature. 2008 Jun 19;453(7198):1098-101
– reference: 18256247 - J Neurosci. 2008 Feb 6;28(6):1271-81
– reference: 22357845 - J Neurosci. 2012 Feb 22;32(8):2608-18
– reference: 20691790 - Neuroimage. 2011 May 15;56(2):400-10
– reference: 14622588 - Neuron. 2003 Nov 13;40(4):859-69
– reference: 16699078 - Cereb Cortex. 2007 Apr;17(4):803-15
– reference: 7407570 - Brain Res. 1980 Sep 22;197(2):516-20
– reference: 8670653 - Cereb Cortex. 1996 Mar-Apr;6(2):226-37
– reference: 18634889 - Neuroimage. 2008 Oct 1;42(4):1463-72
– reference: 24505279 - PLoS One. 2014;9(2):e87178
– reference: 23741616 - Elife. 2013;2:e00425
– reference: 12739757 - Crit Rev Biomed Eng. 2002;30(4-6):459-85
– reference: 17715460 - Motor Control. 2007 Jul;11(3):276-308
– reference: 7754376 - Science. 1995 May 12;268(5212):889-93
– reference: 18511683 - Science. 2008 May 30;320(5880):1191-5
– reference: 25026157 - Neuroimage. 2014 Nov 1;101:177-84
– reference: 6401864 - Physiol Rev. 1983 Jan;63(1):206-31
– reference: 20951047 - Curr Biol. 2010 Oct 26;20(20):1869-74
– reference: 22279207 - J Neurosci. 2012 Jan 25;32(4):1220-32
– reference: 9046450 - J Comput Neurosci. 1997 Jan;4(1):29-46
– reference: 23259944 - Neuron. 2012 Dec 20;76(6):1071-7
– reference: 2709098 - J Neurophysiol. 1989 Mar;61(3):534-49
– reference: 16100518 - Nat Rev Neurosci. 2005 Sep;6(9):726-36
– reference: 25297087 - J Neurosci. 2014 Oct 8;34(41):13574-85
– reference: 23876494 - Trends Cogn Sci. 2013 Aug;17(8):401-12
– reference: 1410559 - Q J Exp Psychol A. 1992 Aug;45(2):323-44
– reference: 12077202 - J Neurosci. 2002 Jun 15;22(12):5074-80
– reference: 9822764 - J Neurosci. 1998 Dec 1;18(23):10105-15
– reference: 19109916 - Neuron. 2008 Dec 26;60(6):1126-41
– reference: 23132432 - Biol Cybern. 2012 Dec;106(11-12):741-55
– reference: 17015237 - Neuron. 2006 Oct 5;52(1):205-20
– reference: 11387405 - J Neurophysiol. 2001 Jun;85(6):2613-23
– reference: 25002277 - Annu Rev Neurosci. 2014;37:435-56
– reference: 23259955 - Neuron. 2012 Dec 20;76(6):1210-24
– reference: 16000633 - J Neurosci. 2005 Jul 6;25(27):6419-34
– reference: 17604860 - Hum Mov Sci. 2007 Aug;26(4):657-97
– reference: 13376678 - J Bone Joint Surg Br. 1956 Nov;38-B(4):902-13
– reference: 25609623 - J Neurosci. 2015 Jan 21;35(3):1068-81
– reference: 25094020 - Neuroimage. 2014 Nov 1;101:695-703
– reference: 26030847 - Nat Neurosci. 2015 Jul;18(7):1034-40
– reference: 8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94
– reference: 17005612 - J Neurophysiol. 2007 Jan;97(1):912-20
– reference: 25904798 - J Neurosci. 2015 Apr 22;35(16):6472-80
– reference: 19104670 - Front Syst Neurosci. 2008 Nov 24;2:4
– reference: 21715625 - J Neurosci. 2011 Jun 29;31(26):9599-610
– reference: 12961051 - Exp Brain Res. 2003 Nov;153(2):180-9
– reference: 12062029 - Neuron. 2002 May 30;34(5):841-51
– reference: 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
– reference: 25999506 - Science. 2015 May 22;348(6237):906-10
– reference: 21159978 - J Neurosci. 2010 Dec 15;30(50):17079-90
– reference: 20492713 - J Neuroeng Rehabil. 2010;7:21
– reference: 15332089 - Nat Neurosci. 2004 Sep;7(9):907-15
– reference: 12983675 - Res Publ Assoc Res Nerv Ment Dis. 1952;30:238-64
– reference: 1875247 - J Neurophysiol. 1991 Jun;65(6):1381-91
SSID ssj0000748819
Score 2.4281218
Snippet How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional...
How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Biomechanical Phenomena
Brain mapping
Brain research
Cortex (motor)
decoding
Electromyography
encoding
fMRI
Functional magnetic resonance imaging
Hand
Hand - physiology
hand control
Humans
Interfaces
Kinematics
Locomotion
Magnetic Resonance Imaging
Models, Neurological
Motor cortex
Motor Cortex - physiology
Motor task performance
Muscles
Neural circuitry
Neuroimaging
Neuroscience
Physiological aspects
Posture
Principal components analysis
Prosthetics
synergies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhUMiltE3auk2DGgKFghvbqy8fNyEhLUkPbQO5CY0ltQvFW9bZQ_59Z2RnsWkgl16lMZbeSJqRPfOGsSOFXpsAJ3IQRuZoIVzuJGWjeVPpBmQ0KT366qu6uBZfbuTNqNQXxYT19MA9cMcFeOk9nplB1KIqlQm-isI5CEZ5GVIeeVEXo8tUOoM1Lsyy7hPyNJrM43C5iOFTORNU2XtkghJT_7_n8cggTYMlR9bn_Bl7OriNfN4P9znbCu0L9qQvJHm3y87mvLtLWXw5mSXP6Xs4H8LQ-aLjRFfpsX3R8lSVj6OGliuUWKVv2dxRbPoeuz4_-3F6kQ8FEvKGmLNyiBrHpR2adICZDmR7XN0ocHgtcqbwtaoNgq5M4UAF0-goweioQkTMFMxesu122YbXjNeuQEfIRxdnhYhlACEhAt71IhSVq1TGPt5jZpuBPZyKWPy2eIsggG0C2CaAM3a0Ef7Tk2Y8LHZC4G9EiOk6NaD-7aB_-5j-M3ZIqrPEZdFSsMxPt-46-_n7NzsXGl9D_DcZ-zAIxSWOunFD7gHOneivJpL7E0ncbM20-36F2GGzd5b-RMrk2Wbs_aabnqQAtjYs1yijNXpLFIGUsVf9gtrMG_Vj0HPGp_VkqU2Amfa0i1-JClxogy6levM_kHzLdtAbTCHppdxn27erdXiHHtctHKTN9RdZKyoJ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA_HieCL-G31lCgHgtC17earT7LKHad4PqgL9xaSJrlbOFptb8H9751Js8tVD1-bCU1nJp3ftJPfEHIoALUxa1humeI5RAiTG46n0ZyqZGN5UPF49OlXcbJkn8_42R7ZNuNMChxuTO2wn9Syv5z9_rV5Dxse8OtMQjR857-sgp-Vc1ZB7n4LQpLALOw04fz4Spbgp2U9ns_7e84kIkXi_n9fz9fi07R28lowOr5H7iYUSRej2e-TPd8-ILfHvpKbh-RoQYdNPNSXY5RyFD-P01SVTlcDRfZKB9dXLY1N-igYrOtBoo-ftqnBUvVHZHl89OPjSZ76JeQNEmnlNkhYlzQQ4a2dS4-hyNSNsAayJKMKV4tagQ2EKowVXjUycKtkED5UkMnY-WOy33atf0pobQrARS6YMC9YKL1l3AYLqV-wRWUqkZG3W53pJpGJY0-LSw1JBSpYRwXrqOCMHO6Ef44cGjeLfUDl70SQ-Dpe6PpznfaRLqzjzkEI9axmVSmUd1VgxlivhONeZuQ1mk4jtUWLtTPnZj0M-tP3b3rBJNwG6XAy8iYJhQ5W3Zh0FAGeHdmwJpIHE0nYe810eOsheuu6Gn9M8gh0M_JqN4wzsZ6t9d0aZKQE8IQFSRl5MjrU7rnBPgqANMyWE1ebKGY60q4uIjM4kwoQpnj2_2U9J3cA9sXa85IfkP2rfu1fALS6si_jtvkDFtQjEQ
  priority: 102
  providerName: Scholars Portal
Title A synergy-based hand control is encoded in human motor cortical areas
URI https://www.ncbi.nlm.nih.gov/pubmed/26880543
https://www.proquest.com/docview/1953574163
https://www.proquest.com/docview/1770223760
https://pubmed.ncbi.nlm.nih.gov/PMC4786436
https://doaj.org/article/0bd5dd990e4942168ed2f4aabe86d5e7
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0RfCl-N1oPVYpCEJsLrdfeZKrXKlii1QL97bsZnfrgSTtpffQ_96Zzd55QfElD9kJ2cx-_GYnM78h5FCA1casYblliueAECY3HLPRnCplbXlQMT367FycXrIvcz5PDrcuhVWu98S4Ubu2Rh_5Ef7u4dF8-Hh9k2PVKPy7mkpo3Ce7kboM5rOcy42PBeBRAeL1aXkSgPPIf10E_2E8YVjfewuIIl__37vyFiwNQya3MOjkEdlLxiOd9qP9mNzzzRPyoC8nefeUzKa0u4u5fDmCk6PoFacpGJ0uOoqklQ7uLxoaa_NRGKd2CRLL6NGmBiPUn5HLk9mPT6d5KpOQ18ifldsgoV_SALBbO5EeEchUtbAGDkdGFa4SlQLVC1UYK7yqZeBWySB8KOEAYyfPyU7TNn6f0MoUYA65YMKkYGHsLeM2WDjxBVuUphQZeb_Wma4ThziWsvil4SyBCtZRwToqOCOHG-Hrnjrj32LHqPyNCPJdxxvt8kqn5aML67hzgJyeVawcC-VdGZgx1ivhuJcZeYtDp5HRosGQmSuz6jr9-fuFnjIJr0EWnIy8S0KhhV7XJmUgwLcjCdZA8mAgCUuuHjavZ4hOS77TfyZoRt5smvFJDGNrfLsCGSnBZsI4pIy86CfU5rthfBTYz_C0HEy1gWKGLc3iZyQEZ1KBYSle_r9br8hDsPZiyPmYH5Cd2-XKvwaL6taO4rIZkd3j2fm3i1H0S8D1jKnfKjskCA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwQviDuBAQYNISGFpaljuw8IddCpZV2FxibtzdixPSqhZDSrUP8Uv5FznLQ0AvG21_gkcY6P_X12zoWQXQ6sjRnNYsNkFgNC6FhnGI1mZSpyk3kZwqOPpnx0yj6dZWdb5NcqFgbdKldrYliobZnjGfke_u7JAn14f_EjxqpR-Hd1VUKjNotDt_wJW7bq3fgjjO-rND0YnnwYxU1VgTjHdFOx8cLZXGjAQWN6wuGCrfs5Nxr2Elomts_7EnrKZaINdzIXPjNSeO58Cnzf9OC518g2w4jWDtneH04_H69PdQCQJWBsHQgoAKr33GTm3dtuj2FF8Q3oCxUC_saBDSBsO2luoN7BbXKroat0UNvXHbLlirvkel3AcnmPDAe0WobowRjh0FI8h6eN-zudVRTTZFq4PitoqAZIwTLKOUjMwxk61egTf5-cXokKH5BOURbuEaF9nQABs177XsJ81xmWGW9gj-lNkuqUR-TNSmcqb7KWY_GM7wp2L6hgFRSsgoIjsrsWvqiTdfxbbB-VvxbBDNvhQjk_V82EVYmxmbWA1Y71Wdrl0tnUM62Nk9xmTkTkJQ6dwhwaBTrpnOtFVanxl2M1YAJeg3l3IvK6EfIl9DrXTcwDfDum3WpJ7rQkYZLn7eaVhahmkanUnykRkRfrZrwTHecKVy5ARghgaej5FJGHtUGtvxvGRwJjh7tFy9Raimm3FLNvIQU5ExKoLH_8_249JzdGJ0cTNRlPD5-Qm8A1g8N7N9shncv5wj0FPndpnjWTiJKvVz1vfwOSi18a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxDeBAQYNISGFpqljOw8IFbZqZWNCwKS-GTu2RyWUjGYV6r_GX8edk5RGIN72Gl_a5Hzn38_OfRCyy4G1MaNZbJjMYkAIHesMs9GsTEVhMi9DevSHY35wwt7PstkW-dXlwmBYZbcmhoXaVgWekQ_wc08W6MPAt2ERH_cmb85-xNhBCr-0du00GhM5dKufsH2rX0_3YK6fp-lk_8u7g7jtMBAXWHoqNl44WwgNmGjMSDhcvHVecKNhX6FlYnOeS3hqLhNtuJOF8JmRwnPnU-D-ZgS_e4lcFiNgVeBLYibW5zsAzRLQtkkJFADaA3c09-7VcMSwt_gGCIZeAX8jwgYk9sM1N_BvcoNcb4krHTeWdpNsufIWudK0slzdJvtjWq9CHmGMwGgpnsjTNhCezmuKBTMtXJ-XNPQFpGAj1QIkFuE0nWqMjr9DTi5EgXfJdlmV7j6huU6Ailmv_ShhfugMy4w3sNv0Jkl1yiPystOZKtr65dhG47uCfQwqWAUFq6DgiOyuhc-ash3_FnuLyl-LYK3tcKFanKrWdVVibGYtoLZjOUuHXDqbeqa1cZLbzImIPMOpU1hNo0S7PNXLulbTz5_UmAn4G6zAE5EXrZCv4KkL3WY_wLtjAa6e5E5PEty96A93FqLa5aZWf5wjIk_Xw3gnhtCVrlqCjBDA1zAGKiL3GoNavzfMjwTuDneLnqn1FNMfKeffQjFyJiSQWv7g_4_1hFwFb1VH0-PDh-QakM4Q-T7Mdsj2-WLpHgGxOzePgwdR8vWiXfY3w4dh4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+synergy-based+hand+control+is+encoded+in+human+motor+cortical+areas&rft.jtitle=eLife&rft.au=Leo%2C+Andrea&rft.au=Handjaras+Giacomo&rft.au=Bianchi+Matteo&rft.au=Marino+Hamal&rft.date=2016-02-15&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=5&rft_id=info:doi/10.7554%2FeLife.13420&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon