A synergy-based hand control is encoded in human motor cortical areas
How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what exte...
Saved in:
Published in | eLife Vol. 5 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Science Publications, Ltd
15.02.2016
eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2050-084X 2050-084X |
DOI | 10.7554/eLife.13420 |
Cover
Loading…
Abstract | How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses.
The human hand can perform an enormous range of movements with great dexterity. Some common everyday actions, such as grasping a coffee cup, involve the coordinated movement of all four fingers and thumb. Others, such as typing, rely on the ability of individual fingers to move relatively independently of one another.
This flexibility is possible in part because of the complex anatomy of the hand, with its 27 bones and their connecting joints and muscles. But with this complexity comes a huge number of possibilities. Any movement-related task – such as picking up a cup – can be achieved via many different combinations of muscle contractions and joint positions. So how does the brain decide which muscles and joints to use?
One theory is that the brain simplifies this problem by encoding particularly useful patterns of joint movements as distinct units or “synergies”. A given task can then be performed by selecting from a small number of synergies, avoiding the need to choose between huge numbers of options every time movement is required.
Leo et al. now provide the first direct evidence for the encoding of synergies by the human brain. Volunteers lying inside a brain scanner reached towards virtual objects – from tennis rackets to toothpicks – while activity was recorded from the area of the brain that controls hand movements. As predicted, the scans showed specific and reproducible patterns of activity. Analysing these patterns revealed that each corresponded to a particular combination of joint positions. These activity patterns, or synergies, could even be ‘decoded’ to work out which type of movement a volunteer had just performed.
Future experiments should examine how the brain combines synergies with sensory feedback to allow movements to be adjusted as they occur. Such findings could help to develop brain-computer interfaces and systems for controlling the movement of artificial limbs. |
---|---|
AbstractList | How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses.DOI: http://dx.doi.org/10.7554/eLife.13420.001 How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: eLife digest The human hand can perform an enormous range of movements with great dexterity. Some common everyday actions, such as grasping a coffee cup, involve the coordinated movement of all four fingers and thumb. Others, such as typing, rely on the ability of individual fingers to move relatively independently of one another. This flexibility is possible in part because of the complex anatomy of the hand, with its 27 bones and their connecting joints and muscles. But with this complexity comes a huge number of possibilities. Any movement-related task -- such as picking up a cup -- can be achieved via many different combinations of muscle contractions and joint positions. So how does the brain decide which muscles and joints to use? One theory is that the brain simplifies this problem by encoding particularly useful patterns of joint movements as distinct units or "synergies". A given task can then be performed by selecting from a small number of synergies, avoiding the need to choose between huge numbers of options every time movement is required. Leo et al. now provide the first direct evidence for the encoding of synergies by the human brain. Volunteers lying inside a brain scanner reached towards virtual objects -- from tennis rackets to toothpicks -- while activity was recorded from the area of the brain that controls hand movements. As predicted, the scans showed specific and reproducible patterns of activity. Analysing these patterns revealed that each corresponded to a particular combination of joint positions. These activity patterns, or synergies, could even be 'decoded' to work out which type of movement a volunteer had just performed. Future experiments should examine how the brain combines synergies with sensory feedback to allow movements to be adjusted as they occur. Such findings could help to develop brain-computer interfaces and systems for controlling the movement of artificial limbs. DOI: How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. The human hand can perform an enormous range of movements with great dexterity. Some common everyday actions, such as grasping a coffee cup, involve the coordinated movement of all four fingers and thumb. Others, such as typing, rely on the ability of individual fingers to move relatively independently of one another. This flexibility is possible in part because of the complex anatomy of the hand, with its 27 bones and their connecting joints and muscles. But with this complexity comes a huge number of possibilities. Any movement-related task – such as picking up a cup – can be achieved via many different combinations of muscle contractions and joint positions. So how does the brain decide which muscles and joints to use? One theory is that the brain simplifies this problem by encoding particularly useful patterns of joint movements as distinct units or “synergies”. A given task can then be performed by selecting from a small number of synergies, avoiding the need to choose between huge numbers of options every time movement is required. Leo et al. now provide the first direct evidence for the encoding of synergies by the human brain. Volunteers lying inside a brain scanner reached towards virtual objects – from tennis rackets to toothpicks – while activity was recorded from the area of the brain that controls hand movements. As predicted, the scans showed specific and reproducible patterns of activity. Analysing these patterns revealed that each corresponded to a particular combination of joint positions. These activity patterns, or synergies, could even be ‘decoded’ to work out which type of movement a volunteer had just performed. Future experiments should examine how the brain combines synergies with sensory feedback to allow movements to be adjusted as they occur. Such findings could help to develop brain-computer interfaces and systems for controlling the movement of artificial limbs. How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: http://dx.doi.org/10.7554/eLife.13420.001 The human hand can perform an enormous range of movements with great dexterity. Some common everyday actions, such as grasping a coffee cup, involve the coordinated movement of all four fingers and thumb. Others, such as typing, rely on the ability of individual fingers to move relatively independently of one another. This flexibility is possible in part because of the complex anatomy of the hand, with its 27 bones and their connecting joints and muscles. But with this complexity comes a huge number of possibilities. Any movement-related task – such as picking up a cup – can be achieved via many different combinations of muscle contractions and joint positions. So how does the brain decide which muscles and joints to use? One theory is that the brain simplifies this problem by encoding particularly useful patterns of joint movements as distinct units or “synergies”. A given task can then be performed by selecting from a small number of synergies, avoiding the need to choose between huge numbers of options every time movement is required. Leo et al. now provide the first direct evidence for the encoding of synergies by the human brain. Volunteers lying inside a brain scanner reached towards virtual objects – from tennis rackets to toothpicks – while activity was recorded from the area of the brain that controls hand movements. As predicted, the scans showed specific and reproducible patterns of activity. Analysing these patterns revealed that each corresponded to a particular combination of joint positions. These activity patterns, or synergies, could even be ‘decoded’ to work out which type of movement a volunteer had just performed. Future experiments should examine how the brain combines synergies with sensory feedback to allow movements to be adjusted as they occur. Such findings could help to develop brain-computer interfaces and systems for controlling the movement of artificial limbs. DOI: http://dx.doi.org/10.7554/eLife.13420.002 |
Audience | Academic |
Author | Santello, Marco Pietrini, Pietro Handjaras, Giacomo Guidi, Andrea Marino, Hamal Scilingo, Enzo Pasquale Gabiccini, Marco Bicchi, Antonio Bianchi, Matteo Ricciardi, Emiliano Leo, Andrea |
Author_xml | – sequence: 1 givenname: Andrea surname: Leo fullname: Leo, Andrea organization: Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy, Research Center 'E. Piaggio', University of Pisa, Pisa, Italy – sequence: 2 givenname: Giacomo surname: Handjaras fullname: Handjaras, Giacomo organization: Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy – sequence: 3 givenname: Matteo surname: Bianchi fullname: Bianchi, Matteo organization: Research Center 'E. Piaggio', University of Pisa, Pisa, Italy, Advanced Robotics Department, Istituto Italiano di Tecnologia, Genova, Italy – sequence: 4 givenname: Hamal surname: Marino fullname: Marino, Hamal organization: Research Center 'E. Piaggio', University of Pisa, Pisa, Italy – sequence: 5 givenname: Marco surname: Gabiccini fullname: Gabiccini, Marco organization: Research Center 'E. Piaggio', University of Pisa, Pisa, Italy, Advanced Robotics Department, Istituto Italiano di Tecnologia, Genova, Italy, Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy – sequence: 6 givenname: Andrea surname: Guidi fullname: Guidi, Andrea organization: Research Center 'E. Piaggio', University of Pisa, Pisa, Italy – sequence: 7 givenname: Enzo Pasquale surname: Scilingo fullname: Scilingo, Enzo Pasquale organization: Research Center 'E. Piaggio', University of Pisa, Pisa, Italy, Department of Information Engineering, University of Pisa, Pisa, Italy – sequence: 8 givenname: Pietro surname: Pietrini fullname: Pietrini, Pietro organization: Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy, Research Center 'E. Piaggio', University of Pisa, Pisa, Italy, Clinical Psychology Branch, Pisa University Hospital, Pisa, Italy, IMT School for Advanced Studies Lucca, Lucca, Italy – sequence: 9 givenname: Antonio surname: Bicchi fullname: Bicchi, Antonio organization: Research Center 'E. Piaggio', University of Pisa, Pisa, Italy, Advanced Robotics Department, Istituto Italiano di Tecnologia, Genova, Italy – sequence: 10 givenname: Marco surname: Santello fullname: Santello, Marco organization: School of Biological and Health Systems Engineering, Arizona State University, Tempe, United States – sequence: 11 givenname: Emiliano surname: Ricciardi fullname: Ricciardi, Emiliano organization: Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy, Research Center 'E. Piaggio', University of Pisa, Pisa, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26880543$$D View this record in MEDLINE/PubMed |
BookMark | eNptkttr2zAUxs3oWLuuT3sfhr1sjGSSrZtfBqF0WyAw2AX2Jo6l40TFljrJHst_PyVpt6bUerA5-p3P5_I9L0588FgULymZS87Ze1y5Due0ZhV5UpxVhJMZUeznyb3v0-IipWuSH8mUos2z4rQSShHO6rPialGmrce43s5aSGjLDXhbmuDHGPrSpRK9CTbHnS830wC-HMIYYibi6Az0JUSE9KJ42kGf8OL2fV78-Hj1_fLzbPXl0_JysZoZziWZtZ1EayQQytu2lphLEtAY0YKgDShiG9Eoq3J1BFqBysiOt0p2AruKNKKtz4vlQdcGuNY30Q0QtzqA0_tAiGsNu7p61KS13NqmIcgaVlGh0FYdA2hRCctRZq0PB62bqR1yWZhbhv5I9PjGu41eh9-aSSVYLbLAm1uBGH5NmEY9uGSw78FjmJKmUpKqqqUgGX39AL0OU_R5VJo2vOaSUVH_p9aQG3C-C_m_ZieqF0zmFedOVKbmj1D5WBxcXhx2LsePEt4eJeyWi3_GNUwp6eW3r8fsq_tD-TeNO8NkgB4AE0NKETtt3Aij2xkGXK8p0Ttf6r0v9d6XOefdg5w72cfovw4S4SE |
CitedBy_id | crossref_primary_10_1038_s41598_021_97876_2 crossref_primary_10_1073_pnas_2017789117 crossref_primary_10_1038_s41598_022_20866_5 crossref_primary_10_3389_fbioe_2020_620805 crossref_primary_10_2478_hukin_2021_0002 crossref_primary_10_1093_cercor_bhz159 crossref_primary_10_1093_gigascience_giab043 crossref_primary_10_3390_app13095728 crossref_primary_10_1515_revneuro_2017_0058 crossref_primary_10_3389_fnins_2018_00208 crossref_primary_10_1111_ejn_14342 crossref_primary_10_3390_s22197417 crossref_primary_10_1007_s10548_022_00893_1 crossref_primary_10_3389_fnint_2024_1324581 crossref_primary_10_1016_j_cortex_2017_05_018 crossref_primary_10_1038_s41598_023_47620_9 crossref_primary_10_1016_j_cpr_2024_102511 crossref_primary_10_1523_ENEURO_0047_24_2024 crossref_primary_10_3389_fnbeh_2018_00212 crossref_primary_10_1016_j_bea_2025_100152 crossref_primary_10_1016_j_compbiomed_2024_109166 crossref_primary_10_1155_2019_1328453 crossref_primary_10_3389_fnhum_2022_841312 crossref_primary_10_3389_fpsyg_2016_00866 crossref_primary_10_1038_s41598_017_13482_1 crossref_primary_10_1038_s41467_019_13599_z crossref_primary_10_1007_s00221_022_06359_x crossref_primary_10_1038_s41598_018_26780_z crossref_primary_10_1016_j_neuroimage_2021_118839 crossref_primary_10_1016_j_cnp_2020_04_001 crossref_primary_10_1016_j_tics_2021_05_007 crossref_primary_10_1007_s10055_024_01055_3 crossref_primary_10_3389_fnbot_2017_00041 crossref_primary_10_3389_fncom_2018_00020 crossref_primary_10_1038_s41598_019_42888_2 crossref_primary_10_1016_j_neuron_2021_10_002 crossref_primary_10_1162_imag_a_00178 crossref_primary_10_1152_jn_00485_2021 crossref_primary_10_1152_jn_00514_2019 crossref_primary_10_1093_cercor_bhz139 crossref_primary_10_1038_s41598_017_09770_5 crossref_primary_10_1152_jn_00667_2017 crossref_primary_10_3389_fonc_2016_00214 crossref_primary_10_1186_s12984_019_0590_0 crossref_primary_10_1109_ACCESS_2019_2895566 crossref_primary_10_1038_s41598_024_68386_8 crossref_primary_10_1080_00222895_2023_2280263 crossref_primary_10_1038_s41467_020_14517_4 crossref_primary_10_1016_j_neuroimage_2020_117249 crossref_primary_10_7717_peerj_6078 crossref_primary_10_3390_s22145349 crossref_primary_10_1371_journal_pcbi_1012455 crossref_primary_10_1016_j_tics_2022_09_010 crossref_primary_10_1152_jn_00537_2020 crossref_primary_10_1109_TSMC_2024_3478113 crossref_primary_10_3389_fnins_2018_00110 crossref_primary_10_1146_annurev_neuro_070918_050216 crossref_primary_10_1109_LRA_2019_2950816 crossref_primary_10_1186_s12984_017_0305_3 crossref_primary_10_1093_texcom_tgaa009 crossref_primary_10_1126_scirobotics_abb0467 crossref_primary_10_1016_j_cobeha_2017_12_020 crossref_primary_10_1007_s00221_024_06987_5 crossref_primary_10_1093_cercor_bhz284 crossref_primary_10_1016_j_neuroimage_2017_06_080 crossref_primary_10_3389_fnhum_2021_662006 crossref_primary_10_3389_fspor_2020_596063 crossref_primary_10_1016_j_neuroimage_2016_05_027 crossref_primary_10_1109_TNSRE_2024_3523943 crossref_primary_10_1152_jn_00630_2019 crossref_primary_10_1038_s41598_018_35018_x crossref_primary_10_1049_el_2016_3678 crossref_primary_10_1038_s41598_017_17314_0 crossref_primary_10_3389_fnhum_2019_00032 crossref_primary_10_1016_j_cortex_2017_12_017 |
Cites_doi | 10.1109/ROBOT.2006.1642128 10.1152/physrev.1983.63.1.206 10.1371/journal.pone.0069328 10.1016/j.cub.2010.09.045 10.1006/cbmr.1996.0014 10.1016/j.neuroimage.2008.06.018 10.1093/cercor/bhk033 10.1093/brain/60.4.389 10.1615/CritRevBiomedEng.v30.i456.80 10.1152/jn.00679.2006 10.1023/B:Mach.0000035475.85309.1b 10.1016/S0896-6273(02)00741-9 10.1080/14640749208401329 10.7554/eLife.00425 10.1038/nn1309 10.3389/fnhum.2014.01050 10.1186/1743-0003-7-21 10.1016/j.brainresrev.2007.08.004 10.1038/nrn1744 10.1523/JNEUROSCI.5547-11.2012 10.1038/nn963 10.1038/nn.4038 10.1109/IROS.2013.6696890 10.1016/S1053-8119(09)70884-5 10.1016/0006-8993(85)91154-0 10.1016/j.neuroimage.2014.07.002 10.1093/cercor/6.2.226 10.1016/j.neuroimage.2010.07.073 10.1523/JNEUROSCI.4512-07.2008 10.1016/j.humov.2007.04.002 10.1007/978-3-642-21729-6_135 10.1016/j.neuroimage.2014.07.049 10.1016/j.neuroimage.2014.05.064 10.1016/0006-8993(80)91139-7 10.1016/S0896-6273(02)00698-0 10.1152/jn.2001.85.6.2613 10.1111/j.2517-6161.1995.tb02031.x 10.3389/fncom.2013.00023 10.1371/journal.pone.0087178 10.3389/fneur.2014.00070 10.1152/jn.01265.2003 10.1016/j.neuroimage.2011.06.084 10.1073/pnas.0910114106 10.1523/JNEUROSCI.22-12-05074.2002 10.1016/j.neuron.2012.10.014 10.3389/neuro.06.004.2008 10.1016/j.tics.2015.10.008 10.1016/j.neuron.2008.10.043 10.3389/fncom.2013.00042 10.1016/0028-3932(71)90067-4 10.1016/j.neuron.2012.10.018 10.3390/s130912431 10.1023/A:1008812426305 10.1016/j.plrev.2014.11.002 10.1038/nn1010 10.1123/mcj.14.3.294 10.1109/TNSRE.2013.2282898 10.1523/JNEUROSCI.2438-11.2012 10.1152/jn.1991.65.6.1381 10.1523/JNEUROSCI.22-04-01426.2002 10.1523/JNEUROSCI.0080-11.2011 10.1016/S1050-6411(00)00027-4 10.1523/JNEUROSCI.1358-14.2015 10.1126/science.7754376 10.1126/science.1152876 10.1523/JNEUROSCI.17-06-02227.1997 10.1152/jn.00481.2013 10.1016/S0896-6273(03)00669-X 10.1523/JNEUROSCI.05-07-01688.1985 10.1523/JNEUROSCI.18-23-10105.1998 10.1006/nimg.2001.0776 10.1152/jn.2001.86.5.2125 10.1007/978-3-319-03017-3_3 10.1146/annurev-neuro-062012-170325 10.1162/neco.1997.9.6.1291 10.1302/0301-620X.38B4.902 10.1152/jn.1989.61.3.534 10.1523/JNEUROSCI.3809-13.2013 10.1038/nature06996 10.1001/archneurpsyc.1951.02320090038004 10.1126/science.aaa5417 10.1523/JNEUROSCI.4904-04.2005 10.1007/s00221-003-1591-5 10.1016/j.neuron.2006.09.019 10.1523/JNEUROSCI.3594-14.2015 10.1113/jphysiol.2006.126698 10.1523/JNEUROSCI.2558-10.2010 10.1152/jn.2000.83.1.528 10.1007/s00221-008-1355-3 10.1016/j.tics.2013.06.007 10.1371/journal.pone.0109943 10.1109/10.204774 10.1016/j.neuron.2006.09.038 10.1073/pnas.0511139103 10.1002/hbm.22881 10.1523/JNEUROSCI.2500-14.2014 10.1523/JNEUROSCI.2747-15.2015 10.3758/BF03330618 10.1007/s00422-012-0532-4 10.1007/s10548-013-0322-x 10.1123/mcj.11.3.276 10.1007/s00221-012-3344-9 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2016 eLife Science Publications, Ltd. 2016, Leo et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2016, Leo et al 2016 Leo et al |
Copyright_xml | – notice: COPYRIGHT 2016 eLife Science Publications, Ltd. – notice: 2016, Leo et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2016, Leo et al 2016 Leo et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.13420 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_0bd5dd990e4942168ed2f4aabe86d5e7 PMC4786436 A473424948 26880543 10_7554_eLife_13420 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: ERC-291166 The Hand Embodied – fundername: ; grantid: ERC-291166 SoftHands |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c5570-bf7edc7a015bb37e0006a9c6ba619a80d9698d82680ab6e8c7f5b87f6ef2096b3 |
IEDL.DBID | 7X7 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:30:11 EDT 2025 Thu Aug 21 18:20:06 EDT 2025 Fri Sep 05 13:01:08 EDT 2025 Fri Jul 25 12:05:37 EDT 2025 Tue Jun 17 22:05:02 EDT 2025 Tue Jun 10 21:02:43 EDT 2025 Fri Jun 27 05:49:53 EDT 2025 Thu Apr 03 07:02:22 EDT 2025 Tue Jul 01 02:27:22 EDT 2025 Thu Apr 24 23:08:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | fMRI motor cortex hand control neuroscience encoding synergies human decoding |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5570-bf7edc7a015bb37e0006a9c6ba619a80d9698d82680ab6e8c7f5b87f6ef2096b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1953574163?pq-origsite=%requestingapplication% |
PMID | 26880543 |
PQID | 1953574163 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0bd5dd990e4942168ed2f4aabe86d5e7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4786436 proquest_miscellaneous_1770223760 proquest_journals_1953574163 gale_infotracmisc_A473424948 gale_infotracacademiconefile_A473424948 gale_incontextgauss_ISR_A473424948 pubmed_primary_26880543 crossref_citationtrail_10_7554_eLife_13420 crossref_primary_10_7554_eLife_13420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-15 |
PublicationDateYYYYMMDD | 2016-02-15 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2016 |
Publisher | eLife Science Publications, Ltd eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Science Publications, Ltd – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Hermens (bib51) 1999; 8 Graziano (bib44) 2016; 20 Todorov (bib104) 2004; 7 Benjamini (bib5) 1995; 57 Riehle (bib83) 1989; 61 Tessitore (bib100) 2013; 225 Fonov (bib31) 2009; 47 Saleh (bib85) 2012; 32 Penfield (bib78) 1937; 60 Penfield (bib80) 1951; 66 Santello (bib88) 2002; 22 Soechting (bib98) 1997; 4 Culham (bib18) 2003; 153 Ganesh (bib37) 2007; 97 Schaffelhofer (bib90) 2015; 35 Napier (bib74) 1956; 38-B Pistohl (bib82) 2012; 59 Vereijken (bib107) 1992; 45 Ehrsson (bib25) 2001; 85 Mitchell (bib71) 2008; 320 Andersson (bib4) 2007 Gustus (bib46) 2012; 106 Gutteling (bib47) 2015; 35 Phinyomark (bib81) 2010; 1 d'Avella (bib20) 2013; 7 Schieber (bib92) 2001; 86 Naselaris (bib75) 2011; 56 Aflalo (bib1) 2015; 348 Bleichner (bib10) 2014; 27 Chowdhury (bib15) 2013; 13 Huth (bib53) 2012; 76 Velliste (bib106) 2008; 453 Grafton (bib42) 1996; 6 Formisano (bib32) 2003; 40 Zecca (bib111) 2002; 30 Goodhill (bib41) 1997; 9 Devereux (bib22) 2013; 33 Kwan (bib66) 1985; 343 Bernstein (bib6) 1967 Weiss (bib108) 2004; 92 Muceli (bib73) 2014; 22 Flint (bib30) 2014; 101 Santello (bib87) 1998; 18 Yarrow (bib110) 2014; 9 Penfield (bib79) 1950 Bilenko (bib7) 2004 Gallivan (bib34) 2013; 2 Sereno (bib96) 1995; 268 King (bib58) 2014; 102 Stillfried (bib99) 2014; 95 Schwartz (bib94) 2006; 52 Klaes (bib60) 2015; 35 Ehrsson (bib24) 2000; 83 Aflalo (bib2) 2006; 103 Hermens (bib50) 2000; 10 Mollazadeh (bib72) 2014; 112 Brown (bib11) 2014; 34 Kaas (bib57) 1983; 63 Schwartz (bib95) 2007; 579 Kruskal (bib65) 1978 Haxby (bib49) 2014; 37 Kirsch (bib59) 2014; 5 Feix (bib28) 2009 Zhang (bib113) 1997; 17 Hudgins (bib52) 1993; 40 Graziano (bib43) 2002; 34 Tkach (bib102) 2010; 7 Todorov (bib103) 2002; 5 Connolly (bib16) 2012; 32 Cheung (bib13) 2005; 25 Latash (bib67) 2007; 11 Ehrsson (bib26) 2002; 22 Castiello (bib12) 2005; 6 Gallivan (bib35) 2011; 31 Oldfield (bib76) 1971; 9 Gentner (bib39) 2006; 52 Cox (bib17) 1996; 29 Klein Breteler (bib61) 2007; 17 Kriegeskorte (bib64) 2008; 60 Santello (bib86) 2013; 7 Turvey (bib105) 2007; 26 Gentner (bib40) 2010; 20 Siero (bib97) 2014; 101 Ahsan (bib3) 2011; 35 Gazzoni (bib38) 2014; 9 Grefkes (bib45) 2002; 35 Ganesh (bib36) 2008; 42 Santello (bib89) 2014; 8 Bizzi (bib9) 2008; 57 Iwamura (bib56) 1980; 197 Latash (bib68) 2010; 14 Saleh (bib84) 2010; 30 Schreiber (bib93) 2013; 8 Gabiccini (bib33) 2013 Ingram (bib55) 2008; 188 Mathiesen (bib69) 2010 Edelman (bib23) 1998; 26 Indovina (bib54) 2001; 13 d'Avella (bib21) 2003; 6 Kriegeskorte (bib62) 2013; 17 Kriegeskorte (bib63) 2008; 2 Flash (bib29) 1985; 5 Mitchell (bib70) 2004; 57 Handjaras (bib48) 2015; 36 Overduin (bib77) 2012; 76 Cheung (bib14) 2009; 106 Bitzer (bib8) 2006; 1-10 Schieber (bib91) 1991; 65 Zecca (bib112) 2002; 30 Thakur (bib101) 2008; 28 Ejaz (bib27) 2015; 18 D'Ausilio (bib19) 2015; 12 Woolsey (bib109) 1952; 30 19104670 - Front Syst Neurosci. 2008 Nov 24;2:4 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113 4020415 - J Neurosci. 1985 Jul;5(7):1688-703 8670653 - Cereb Cortex. 1996 Mar-Apr;6(2):226-37 12961051 - Exp Brain Res. 2003 Nov;153(2):180-9 23741616 - Elife. 2013;2:e00425 10634893 - J Neurophysiol. 2000 Jan;83(1):528-36 12062029 - Neuron. 2002 May 30;34(5):841-51 23259944 - Neuron. 2012 Dec 20;76(6):1071-7 21763434 - Neuroimage. 2012 Jan 2;59(1):248-60 25609623 - J Neurosci. 2015 Jan 21;35(3):1068-81 3929999 - Brain Res. 1985 Sep 16;343(1):24-35 19109916 - Neuron. 2008 Dec 26;60(6):1126-41 21159978 - J Neurosci. 2010 Dec 15;30(50):17079-90 17015237 - Neuron. 2006 Oct 5;52(1):205-20 25904798 - J Neurosci. 2015 Apr 22;35(16):6472-80 26586832 - J Neurosci. 2015 Nov 18;35(46):15466-76 11387405 - J Neurophysiol. 2001 Jun;85(6):2613-23 12983675 - Res Publ Assoc Res Nerv Ment Dis. 1952;30:238-64 16100518 - Nat Rev Neurosci. 2005 Sep;6(9):726-36 17715460 - Motor Control. 2007 Jul;11(3):276-308 11698506 - J Neurophysiol. 2001 Nov;86(5):2125-43 25465480 - Phys Life Rev. 2015 Mar;12:91-103 16000633 - J Neurosci. 2005 Jul 6;25(27):6419-34 13376678 - J Bone Joint Surg Br. 1956 Nov;38-B(4):902-13 20702893 - Motor Control. 2010 Jul;14(3):294-322 19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8 12404008 - Nat Neurosci. 2002 Nov;5(11):1226-35 24904516 - Front Neurol. 2014 May 19;5:70 9046450 - J Comput Neurosci. 1997 Jan;4(1):29-46 20691790 - Neuroimage. 2011 May 15;56(2):400-10 17005612 - J Neurophysiol. 2007 Jan;97(1):912-20 22279207 - J Neurosci. 2012 Jan 25;32(4):1220-32 23259955 - Neuron. 2012 Dec 20;76(6):1210-24 25999506 - Science. 2015 May 22;348(6237):906-10 14973321 - J Neurophysiol. 2004 Jul;92(1):523-35 26030847 - Nat Neurosci. 2015 Jul;18(7):1034-40 16473936 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2909-14 11850469 - J Neurosci. 2002 Feb 15;22(4):1426-35 18634889 - Neuroimage. 2008 Oct 1;42(4):1463-72 23876494 - Trends Cogn Sci. 2013 Aug;17(8):401-12 12123617 - Neuron. 2002 Jul 3;35(1):173-84 26138610 - Hum Brain Mapp. 2015 Oct;36(10):3832-44 12739757 - Crit Rev Biomed Eng. 2002;30(4-6):459-85 7754376 - Science. 1995 May 12;268(5212):889-93 17604860 - Hum Mov Sci. 2007 Aug;26(4):657-97 14622588 - Neuron. 2003 Nov 13;40(4):859-69 11352608 - Neuroimage. 2001 Jun;13(6 Pt 1):1027-34 9045746 - J Neurosci. 1997 Mar 15;17(6):2227-46 16699078 - Cereb Cortex. 2007 Apr;17(4):803-15 23861966 - PLoS One. 2013;8(7):e69328 24990564 - J Neurophysiol. 2014 Oct 15;112(8):1857-70 12563264 - Nat Neurosci. 2003 Mar;6(3):300-8 17255162 - J Physiol. 2007 Mar 15;579(Pt 3):581-601 22357845 - J Neurosci. 2012 Feb 22;32(8):2608-18 18511683 - Science. 2008 May 30;320(5880):1191-5 26628112 - Trends Cogn Sci. 2016 Feb;20(2):121-32 7407570 - Brain Res. 1980 Sep 22;197(2):516-20 1410559 - Q J Exp Psychol A. 1992 Aug;45(2):323-44 23579545 - Front Comput Neurosci. 2013 Apr 08;7:23 25026157 - Neuroimage. 2014 Nov 1;101:177-84 23132432 - Biol Cybern. 2012 Dec;106(11-12):741-55 24927986 - Neuroimage. 2014 Nov 15;102 Pt 2:923-37 20951047 - Curr Biol. 2010 Oct 26;20(20):1869-74 15332089 - Nat Neurosci. 2004 Sep;7(9):907-15 17114055 - Neuron. 2006 Nov 22;52(4):731-42 18029291 - Brain Res Rev. 2008 Jan;57(1):125-33 12077202 - J Neurosci. 2002 Jun 15;22(12):5074-80 18369608 - Exp Brain Res. 2008 Jun;188(2):223-36 6401864 - Physiol Rev. 1983 Jan;63(1):206-31 24285896 - J Neurosci. 2013 Nov 27;33(48):18906-16 24122368 - Brain Topogr. 2014 Mar;27(2):248-57 23229775 - Exp Brain Res. 2013 Mar;225(1):11-36 18256247 - J Neurosci. 2008 Feb 6;28(6):1271-81 24505279 - PLoS One. 2014;9(2):e87178 11018445 - J Electromyogr Kinesiol. 2000 Oct;10(5):361-74 14867993 - AMA Arch Neurol Psychiatry. 1951 Sep;66(3):289-317 24132017 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):623-33 25297087 - J Neurosci. 2014 Oct 8;34(41):13574-85 1875247 - J Neurophysiol. 1991 Jun;65(6):1381-91 9822764 - J Neurosci. 1998 Dec 1;18(23):10105-15 25289669 - PLoS One. 2014;9(10):e109943 25002277 - Annu Rev Neurosci. 2014;37:435-56 23626534 - Front Comput Neurosci. 2013 Apr 19;7:42 8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94 24048337 - Sensors (Basel). 2013;13(9):12431-66 2709098 - J Neurophysiol. 1989 Mar;61(3):534-49 21715625 - J Neurosci. 2011 Jun 29;31(26):9599-610 18509337 - Nature. 2008 Jun 19;453(7198):1098-101 20492713 - J Neuroeng Rehabil. 2010;7:21 25094020 - Neuroimage. 2014 Nov 1;101:695-703 25610391 - Front Hum Neurosci. 2015 Jan 06;8:1050 |
References_xml | – volume: 1-10 start-page: 2819 year: 2006 ident: bib8 article-title: Learning EMG control of a robotic hand: towards active prostheses publication-title: 2006 Ieee International Conference on Robotics and Automation (Icra) doi: 10.1109/ROBOT.2006.1642128 – volume: 63 start-page: 206 year: 1983 ident: bib57 article-title: What, if anything, is SI? organization of first somatosensory area of cortex publication-title: Physiological Reviews doi: 10.1152/physrev.1983.63.1.206 – volume: 8 start-page: e69328 year: 2013 ident: bib93 article-title: The statistical analysis of multi-voxel patterns in functional imaging publication-title: PloS One doi: 10.1371/journal.pone.0069328 – volume: 20 start-page: 1869 year: 2010 ident: bib40 article-title: Encoding of motor skill in the corticomuscular system of musicians publication-title: Current Biology doi: 10.1016/j.cub.2010.09.045 – volume: 29 start-page: 162 year: 1996 ident: bib17 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Computers and Biomedical Research, an International Journal doi: 10.1006/cbmr.1996.0014 – volume: 42 start-page: 1463 year: 2008 ident: bib36 article-title: Sparse linear regression for reconstructing muscle activity from human cortical fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.06.018 – volume: 17 start-page: 803 year: 2007 ident: bib61 article-title: Timing of muscle activation in a hand movement sequence publication-title: Cerebral Cortex doi: 10.1093/cercor/bhk033 – volume: 60 start-page: 389 year: 1937 ident: bib78 article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation publication-title: Brain doi: 10.1093/brain/60.4.389 – volume-title: The Co-Ordination and Regulation of Movements year: 1967 ident: bib6 – volume: 30 start-page: 459 year: 2002 ident: bib111 article-title: Control of multifunctional prosthetic hands by processing the electromyographic signal publication-title: Critical Reviews? in Biomedical Engineering doi: 10.1615/CritRevBiomedEng.v30.i456.80 – volume: 97 start-page: 912 year: 2007 ident: bib37 article-title: Accurate Real-Time Feedback of Surface EMG During fMRI publication-title: Journal of Neurophysiology doi: 10.1152/jn.00679.2006 – volume: 57 start-page: 145 year: 2004 ident: bib70 article-title: Learning to decode cognitive states from brain images publication-title: Machine Learning doi: 10.1023/B:Mach.0000035475.85309.1b – volume: 35 start-page: 173 year: 2002 ident: bib45 article-title: Crossmodal processing of object features in human anterior intraparietal cortex publication-title: Neuron doi: 10.1016/S0896-6273(02)00741-9 – volume: 45 start-page: 323 year: 1992 ident: bib107 article-title: A dynamical systems approach to skill acquisition publication-title: The Quarterly Journal of Experimental Psychology Section A doi: 10.1080/14640749208401329 – volume: 2 start-page: e00425 year: 2013 ident: bib34 article-title: Decoding the neural mechanisms of human tool use publication-title: eLife doi: 10.7554/eLife.00425 – volume: 7 start-page: 907 year: 2004 ident: bib104 article-title: Optimality principles in sensorimotor control publication-title: Nature Neuroscience doi: 10.1038/nn1309 – volume: 8 start-page: 1050 year: 2014 ident: bib89 article-title: Are movement disorders and sensorimotor injuries pathologic synergies? when normal multi-joint movement synergies become pathologic publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2014.01050 – volume: 7 year: 2010 ident: bib102 article-title: Study of stability of time-domain features for electromyographic pattern recognition publication-title: Journal of Neuroengineering and Rehabilitation doi: 10.1186/1743-0003-7-21 – volume: 57 start-page: 125 year: 2008 ident: bib9 article-title: Combining modules for movement publication-title: Brain Research Reviews doi: 10.1016/j.brainresrev.2007.08.004 – volume: 6 start-page: 726 year: 2005 ident: bib12 article-title: The neuroscience of grasping publication-title: Nature Reviews. Neuroscience doi: 10.1038/nrn1744 – volume: 32 start-page: 2608 year: 2012 ident: bib16 article-title: The representation of biological classes in the human brain publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.5547-11.2012 – volume: 5 start-page: 1226 year: 2002 ident: bib103 article-title: Optimal feedback control as a theory of motor coordination publication-title: Nature Neuroscience doi: 10.1038/nn963 – volume: 18 start-page: 1034 year: 2015 ident: bib27 article-title: Hand use predicts the structure of representations in sensorimotor cortex publication-title: Nature Neuroscience doi: 10.1038/nn.4038 – start-page: 3738 year: 2013 ident: bib33 article-title: A data-driven kinematic model of the human hand with soft-tissue artifact compensation mechanism for grasp synergy analysis publication-title: 2013 Ieee/Rsj International Conference on Intelligent Robots and Systems (Iros) doi: 10.1109/IROS.2013.6696890 – volume: 47 start-page: S102 year: 2009 ident: bib31 article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood publication-title: NeuroImage doi: 10.1016/S1053-8119(09)70884-5 – volume: 343 start-page: 24 year: 1985 ident: bib66 article-title: Properties of visual cue responses in primate precentral cortex publication-title: Brain Research doi: 10.1016/0006-8993(85)91154-0 – volume: 101 start-page: 177 year: 2014 ident: bib97 article-title: BOLD matches neuronal activity at the mm scale: a combined 7T fMRI and ECoG study in human sensorimotor cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.002 – volume: 6 start-page: 226 year: 1996 ident: bib42 article-title: Functional anatomy of pointing and grasping in humans publication-title: Cerebral Cortex doi: 10.1093/cercor/6.2.226 – volume: 56 start-page: 400 year: 2011 ident: bib75 article-title: Encoding and decoding in fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.073 – volume: 28 start-page: 1271 year: 2008 ident: bib101 article-title: Multidigit movement synergies of the human hand in an unconstrained haptic exploration task publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.4512-07.2008 – volume: 26 start-page: 657 year: 2007 ident: bib105 article-title: Action and perception at the level of synergies publication-title: Human Movement Science doi: 10.1016/j.humov.2007.04.002 – volume: 35 start-page: 536 year: 2011 ident: bib3 article-title: Neural Network Classifier for Hand Motion Detection from EMG Signal publication-title: IFMBE Proceedings doi: 10.1007/978-3-642-21729-6_135 – volume: 101 start-page: 695 year: 2014 ident: bib30 article-title: Extracting kinetic information from human motor cortical signals publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.049 – start-page: 2 volume-title: Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation year: 2009 ident: bib28 – volume: 102 start-page: 923 year: 2014 ident: bib58 article-title: The handyman's brain: a neuroimaging meta-analysis describing the similarities and differences between grip type and pattern in humans publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.05.064 – volume: 197 start-page: 516 year: 1980 ident: bib56 article-title: Overlapping representation of fingers in the somatosensory cortex (area 2) of the conscious monkey publication-title: Brain Research doi: 10.1016/0006-8993(80)91139-7 – volume-title: The Cerebral Cortex of Man; a Clinical Study of Localization of Function year: 1950 ident: bib79 – volume: 1 start-page: 71 year: 2010 ident: bib81 article-title: A novel feature extraction for robust EMG pattern recognition publication-title: Journal of Computing – volume: 34 start-page: 841 year: 2002 ident: bib43 article-title: Complex movements evoked by microstimulation of precentral cortex publication-title: Neuron doi: 10.1016/S0896-6273(02)00698-0 – volume: 85 start-page: 2613 year: 2001 ident: bib25 article-title: Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study publication-title: Journal of Neurophysiology doi: 10.1152/jn.2001.85.6.2613 – volume: 57 start-page: 289 year: 1995 ident: bib5 article-title: Controlling the false discovery rate - a practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society Series B-Methodological doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 7 start-page: 23 year: 2013 ident: bib86 article-title: Neural bases of hand synergies publication-title: Frontiers in Computational Neuroscience doi: 10.3389/fncom.2013.00023 – volume: 9 start-page: e87178 year: 2014 ident: bib110 article-title: Detecting and quantifying topography in neural maps publication-title: PloS One doi: 10.1371/journal.pone.0087178 – volume: 5 start-page: 70 year: 2014 ident: bib59 article-title: Primary motor cortex neurons during individuated finger and wrist movements: correlation of spike firing rates with the motion of individual digits versus their principal components publication-title: Frontiers in Neurology doi: 10.3389/fneur.2014.00070 – volume: 92 start-page: 523 year: 2004 ident: bib108 article-title: Muscular and postural synergies of the human hand publication-title: Journal of Neurophysiology doi: 10.1152/jn.01265.2003 – volume: 59 start-page: 248 year: 2012 ident: bib82 article-title: Decoding natural grasp types from human ECoG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.06.084 – volume: 106 start-page: 19563 year: 2009 ident: bib14 article-title: Stability of muscle synergies for voluntary actions after cortical stroke in humans publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0910114106 – volume: 22 start-page: 5074 year: 2002 ident: bib26 article-title: Brain regions controlling nonsynergistic versus synergistic movement of the digits: a functional magnetic resonance imaging study publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.22-12-05074.2002 – volume: 76 start-page: 1210 year: 2012 ident: bib53 article-title: A continuous semantic space describes the representation of thousands of object and action categories across the human brain publication-title: Neuron doi: 10.1016/j.neuron.2012.10.014 – volume: 2 year: 2008 ident: bib63 article-title: Representational similarity analysis – connecting the branches of systems neuroscience publication-title: Frontiers in Systems Neuroscience doi: 10.3389/neuro.06.004.2008 – volume: 20 year: 2016 ident: bib44 article-title: Ethological action maps: a paradigm shift for the motor cortex publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2015.10.008 – volume: 60 start-page: 1126 year: 2008 ident: bib64 article-title: Matching categorical object representations in inferior temporal cortex of man and monkey publication-title: Neuron doi: 10.1016/j.neuron.2008.10.043 – volume: 7 start-page: 42 year: 2013 ident: bib20 article-title: Control of reaching movements by muscle synergy combinations publication-title: Frontiers in Computational Neuroscience doi: 10.3389/fncom.2013.00042 – year: 2007 ident: bib4 article-title: Non-linear optimisation. FMRIB technical report TR07JA1 publication-title: Practice 2007a Jun – volume: 9 start-page: 97 year: 1971 ident: bib76 article-title: The assessment and analysis of handedness: the edinburgh inventory publication-title: Neuropsychologia doi: 10.1016/0028-3932(71)90067-4 – volume: 30 start-page: 238 year: 1952 ident: bib109 article-title: Patterns of localization in precentral and "supplementary" motor areas and their relation to the concept of a premotor area publication-title: Research Publications - Association for Research in Nervous and Mental Disease – volume: 76 start-page: 1071 year: 2012 ident: bib77 article-title: Microstimulation activates a handful of muscle synergies publication-title: Neuron doi: 10.1016/j.neuron.2012.10.018 – volume: 13 start-page: 12431 year: 2013 ident: bib15 article-title: Surface electromyography signal processing and classification techniques publication-title: Sensors doi: 10.3390/s130912431 – volume: 4 start-page: 29 year: 1997 ident: bib98 article-title: Flexibility and repeatability of finger movements during typing: analysis of multiple degrees of freedom publication-title: Journal of Computational Neuroscience doi: 10.1023/A:1008812426305 – volume: 12 start-page: 91 year: 2015 ident: bib19 article-title: Grasping synergies: a motor-control approach to the mirror neuron mechanism publication-title: Physics of Life Reviews doi: 10.1016/j.plrev.2014.11.002 – start-page: 11 year: 2004 ident: bib7 article-title: Integrating constraints and metric learning in semi-supervised clustering publication-title: In Proceedings of the Twenty-First International Conference on Machine Learning (ACM) – volume: 6 start-page: 300 year: 2003 ident: bib21 article-title: Combinations of muscle synergies in the construction of a natural motor behavior publication-title: Nature Neuroscience doi: 10.1038/nn1010 – volume: 8 start-page: 13 year: 1999 ident: bib51 article-title: European recommendations for surface electromyography publication-title: Roessingh Research and Development – volume: 14 start-page: 294 year: 2010 ident: bib68 article-title: Motor synergies and the equilibrium-point hypothesis publication-title: Motor Control doi: 10.1123/mcj.14.3.294 – volume: 22 start-page: 623 year: 2014 ident: bib73 article-title: Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2013.2282898 – volume: 32 start-page: 1220 year: 2012 ident: bib85 article-title: Encoding of coordinated reach and grasp trajectories in primary motor cortex publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.2438-11.2012 – volume: 65 start-page: 1381 year: 1991 ident: bib91 article-title: Individuated finger movements of rhesus monkeys: a means of quantifying the independence of the digits publication-title: Journal of Neurophysiology doi: 10.1152/jn.1991.65.6.1381 – volume: 22 start-page: 1426 year: 2002 ident: bib88 article-title: Patterns of hand motion during grasping and the influence of sensory guidance publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.22-04-01426.2002 – volume: 31 start-page: 9599 year: 2011 ident: bib35 article-title: Decoding action intentions from preparatory brain activity in human parieto-frontal networks publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.0080-11.2011 – volume: 10 start-page: 361 year: 2000 ident: bib50 article-title: Development of recommendations for SEMG sensors and sensor placement procedures publication-title: Journal of Electromyography and Kinesiology doi: 10.1016/S1050-6411(00)00027-4 – volume: 35 start-page: 6472 year: 2015 ident: bib47 article-title: Action preparation shapes processing in early visual cortex publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1358-14.2015 – volume: 268 start-page: 889 year: 1995 ident: bib96 article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging publication-title: Science doi: 10.1126/science.7754376 – volume: 320 start-page: 1191 year: 2008 ident: bib71 article-title: Predicting human brain activity associated with the meanings of nouns publication-title: Science doi: 10.1126/science.1152876 – volume: 17 start-page: 2227 year: 1997 ident: bib113 article-title: Dynamics of single neuron activity in monkey primary motor cortex related to sensorimotor transformation publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.17-06-02227.1997 – volume: 112 start-page: 1857 year: 2014 ident: bib72 article-title: Principal components of hand kinematics and neurophysiological signals in motor cortex during reach to grasp movements publication-title: Journal of Neurophysiology doi: 10.1152/jn.00481.2013 – volume: 40 start-page: 859 year: 2003 ident: bib32 article-title: Mirror-symmetric tonotopic maps in human primary auditory cortex publication-title: Neuron doi: 10.1016/S0896-6273(03)00669-X – volume: 5 start-page: 1688 year: 1985 ident: bib29 article-title: The coordination of arm movements: an experimentally confirmed mathematical model publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.05-07-01688.1985 – volume: 18 start-page: 10105 year: 1998 ident: bib87 article-title: Postural hand synergies for tool use publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.18-23-10105.1998 – volume: 13 start-page: 1027 year: 2001 ident: bib54 article-title: On somatotopic representation centers for finger movements in human primary motor cortex and supplementary motor area publication-title: NeuroImage doi: 10.1006/nimg.2001.0776 – volume: 86 start-page: 2125 year: 2001 ident: bib92 article-title: Constraints on somatotopic organization in the primary motor cortex publication-title: Journal of Neurophysiology doi: 10.1152/jn.2001.86.5.2125 – volume: 95 start-page: 49 year: 2014 ident: bib99 article-title: MRI-based skeletal hand movement model publication-title: Human Hand as an Inspiration for Robot Hand Development doi: 10.1007/978-3-319-03017-3_3 – volume: 37 start-page: 435 year: 2014 ident: bib49 article-title: Decoding neural representational spaces using multivariate pattern analysis publication-title: Annual Review of Neuroscience doi: 10.1146/annurev-neuro-062012-170325 – volume: 9 start-page: 1291 year: 1997 ident: bib41 article-title: A unifying objective function for topographic mappings publication-title: Neural Computation doi: 10.1162/neco.1997.9.6.1291 – volume: 38-B start-page: 902 year: 1956 ident: bib74 article-title: The prehensile movements of the human hand publication-title: The Journal of Bone and Joint Surgery. British Volume doi: 10.1302/0301-620X.38B4.902 – volume: 61 start-page: 534 year: 1989 ident: bib83 article-title: Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement publication-title: Journal of Neurophysiology doi: 10.1152/jn.1989.61.3.534 – volume: 33 start-page: 18906 year: 2013 ident: bib22 article-title: Representational similarity analysis reveals commonalities and differences in the semantic processing of words and objects publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.3809-13.2013 – volume: 453 start-page: 1098 year: 2008 ident: bib106 article-title: Cortical control of a prosthetic arm for self-feeding publication-title: Nature doi: 10.1038/nature06996 – volume: 66 start-page: 289 year: 1951 ident: bib80 article-title: The supplementary motor area of the cerebral cortex publication-title: A.M.A. Archives of Neurology & Psychiatry doi: 10.1001/archneurpsyc.1951.02320090038004 – volume: 348 start-page: 906 year: 2015 ident: bib1 article-title: Neurophysiology. decoding motor imagery from the posterior parietal cortex of a tetraplegic human publication-title: Science doi: 10.1126/science.aaa5417 – volume: 25 start-page: 6419 year: 2005 ident: bib13 article-title: Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.4904-04.2005 – volume: 153 start-page: 180 year: 2003 ident: bib18 article-title: Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas publication-title: Experimental Brain Research doi: 10.1007/s00221-003-1591-5 – volume: 52 start-page: 205 year: 2006 ident: bib94 article-title: Brain-controlled interfaces: movement restoration with neural prosthetics publication-title: Neuron doi: 10.1016/j.neuron.2006.09.019 – volume: 35 start-page: 1068 year: 2015 ident: bib90 article-title: Decoding a wide range of hand configurations from macaque motor, premotor, and parietal cortices publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.3594-14.2015 – volume: 579 start-page: 581 year: 2007 ident: bib95 article-title: Useful signals from motor cortex publication-title: The Journal of Physiology doi: 10.1113/jphysiol.2006.126698 – volume: 30 start-page: 17079 year: 2010 ident: bib84 article-title: Encoding of coordinated grasp trajectories in primary motor cortex publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.2558-10.2010 – volume-title: Sage University Papers Series Quantitative Applications in the Social Sciences No 07-011 year: 1978 ident: bib65 – volume: 83 start-page: 528 year: 2000 ident: bib24 article-title: Cortical activity in precision- versus power-grip tasks: an fMRI study publication-title: Journal of Neurophysiology doi: 10.1152/jn.2000.83.1.528 – volume: 188 start-page: 223 year: 2008 ident: bib55 article-title: The statistics of natural hand movements publication-title: Experimental Brain Research doi: 10.1007/s00221-008-1355-3 – volume: 17 start-page: 401 year: 2013 ident: bib62 article-title: Representational geometry: integrating cognition, computation, and the brain publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2013.06.007 – volume: 9 year: 2014 ident: bib38 article-title: Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography publication-title: PloS One doi: 10.1371/journal.pone.0109943 – volume: 40 start-page: 82 year: 1993 ident: bib52 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Transactions on Bio-Medical Engineering doi: 10.1109/10.204774 – volume: 52 start-page: 731 year: 2006 ident: bib39 article-title: Modular organization of finger movements by the human central nervous system publication-title: Neuron doi: 10.1016/j.neuron.2006.09.038 – volume: 103 start-page: 2909 year: 2006 ident: bib2 article-title: Partial tuning of motor cortex neurons to final posture in a free-moving paradigm publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0511139103 – volume: 30 start-page: 459 year: 2002 ident: bib112 article-title: Control of multifunctional prosthetic hands by processing the electromyographic signal publication-title: Critical Reviews? in Biomedical Engineering doi: 10.1615/CritRevBiomedEng.v30.i456.80 – volume: 36 year: 2015 ident: bib48 article-title: A topographical organization for action representation in the human brain publication-title: Human Brain Mapping doi: 10.1002/hbm.22881 – volume: 34 start-page: 13574 year: 2014 ident: bib11 article-title: Motor cortex is functionally organized as a set of spatially distinct representations for complex movements publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.2500-14.2014 – volume: 35 start-page: 15466 year: 2015 ident: bib60 article-title: Hand shape representations in the human posterior parietal cortex publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.2747-15.2015 – year: 2010 ident: bib69 article-title: Prediction of grasping force based on features of surface and intramuscular EMG – volume: 26 start-page: 309 year: 1998 ident: bib23 article-title: Toward direct visualization of the internal shape representation space by fMRI publication-title: Psychobiology doi: 10.3758/BF03330618 – volume: 106 start-page: 741 year: 2012 ident: bib46 article-title: Human hand modelling: kinematics, dynamics, applications publication-title: Biological Cybernetics doi: 10.1007/s00422-012-0532-4 – volume: 27 start-page: 248 year: 2014 ident: bib10 article-title: Give me a sign: decoding complex coordinated hand movements using high-field fMRI publication-title: Brain Topography doi: 10.1007/s10548-013-0322-x – volume: 11 start-page: 276 year: 2007 ident: bib67 article-title: Toward a new theory of motor synergies publication-title: Motor Control doi: 10.1123/mcj.11.3.276 – volume: 225 start-page: 11 year: 2013 ident: bib100 article-title: Hierarchical and multiple hand action representation using temporal postural synergies publication-title: Experimental Brain Research doi: 10.1007/s00221-012-3344-9 – reference: 24990564 - J Neurophysiol. 2014 Oct 15;112(8):1857-70 – reference: 23626534 - Front Comput Neurosci. 2013 Apr 19;7:42 – reference: 12563264 - Nat Neurosci. 2003 Mar;6(3):300-8 – reference: 25465480 - Phys Life Rev. 2015 Mar;12:91-103 – reference: 26628112 - Trends Cogn Sci. 2016 Feb;20(2):121-32 – reference: 11698506 - J Neurophysiol. 2001 Nov;86(5):2125-43 – reference: 11850469 - J Neurosci. 2002 Feb 15;22(4):1426-35 – reference: 11018445 - J Electromyogr Kinesiol. 2000 Oct;10(5):361-74 – reference: 9045746 - J Neurosci. 1997 Mar 15;17(6):2227-46 – reference: 14867993 - AMA Arch Neurol Psychiatry. 1951 Sep;66(3):289-317 – reference: 23861966 - PLoS One. 2013;8(7):e69328 – reference: 26586832 - J Neurosci. 2015 Nov 18;35(46):15466-76 – reference: 24285896 - J Neurosci. 2013 Nov 27;33(48):18906-16 – reference: 25610391 - Front Hum Neurosci. 2015 Jan 06;8:1050 – reference: 16473936 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2909-14 – reference: 10634893 - J Neurophysiol. 2000 Jan;83(1):528-36 – reference: 19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8 – reference: 4020415 - J Neurosci. 1985 Jul;5(7):1688-703 – reference: 17255162 - J Physiol. 2007 Mar 15;579(Pt 3):581-601 – reference: 17114055 - Neuron. 2006 Nov 22;52(4):731-42 – reference: 24132017 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):623-33 – reference: 18029291 - Brain Res Rev. 2008 Jan;57(1):125-33 – reference: 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 – reference: 24122368 - Brain Topogr. 2014 Mar;27(2):248-57 – reference: 18369608 - Exp Brain Res. 2008 Jun;188(2):223-36 – reference: 26138610 - Hum Brain Mapp. 2015 Oct;36(10):3832-44 – reference: 21763434 - Neuroimage. 2012 Jan 2;59(1):248-60 – reference: 20702893 - Motor Control. 2010 Jul;14(3):294-322 – reference: 12123617 - Neuron. 2002 Jul 3;35(1):173-84 – reference: 12404008 - Nat Neurosci. 2002 Nov;5(11):1226-35 – reference: 11352608 - Neuroimage. 2001 Jun;13(6 Pt 1):1027-34 – reference: 14973321 - J Neurophysiol. 2004 Jul;92(1):523-35 – reference: 24048337 - Sensors (Basel). 2013;13(9):12431-66 – reference: 23229775 - Exp Brain Res. 2013 Mar;225(1):11-36 – reference: 3929999 - Brain Res. 1985 Sep 16;343(1):24-35 – reference: 23579545 - Front Comput Neurosci. 2013 Apr 08;7:23 – reference: 24927986 - Neuroimage. 2014 Nov 15;102 Pt 2:923-37 – reference: 25289669 - PLoS One. 2014;9(10):e109943 – reference: 24904516 - Front Neurol. 2014 May 19;5:70 – reference: 18509337 - Nature. 2008 Jun 19;453(7198):1098-101 – reference: 18256247 - J Neurosci. 2008 Feb 6;28(6):1271-81 – reference: 22357845 - J Neurosci. 2012 Feb 22;32(8):2608-18 – reference: 20691790 - Neuroimage. 2011 May 15;56(2):400-10 – reference: 14622588 - Neuron. 2003 Nov 13;40(4):859-69 – reference: 16699078 - Cereb Cortex. 2007 Apr;17(4):803-15 – reference: 7407570 - Brain Res. 1980 Sep 22;197(2):516-20 – reference: 8670653 - Cereb Cortex. 1996 Mar-Apr;6(2):226-37 – reference: 18634889 - Neuroimage. 2008 Oct 1;42(4):1463-72 – reference: 24505279 - PLoS One. 2014;9(2):e87178 – reference: 23741616 - Elife. 2013;2:e00425 – reference: 12739757 - Crit Rev Biomed Eng. 2002;30(4-6):459-85 – reference: 17715460 - Motor Control. 2007 Jul;11(3):276-308 – reference: 7754376 - Science. 1995 May 12;268(5212):889-93 – reference: 18511683 - Science. 2008 May 30;320(5880):1191-5 – reference: 25026157 - Neuroimage. 2014 Nov 1;101:177-84 – reference: 6401864 - Physiol Rev. 1983 Jan;63(1):206-31 – reference: 20951047 - Curr Biol. 2010 Oct 26;20(20):1869-74 – reference: 22279207 - J Neurosci. 2012 Jan 25;32(4):1220-32 – reference: 9046450 - J Comput Neurosci. 1997 Jan;4(1):29-46 – reference: 23259944 - Neuron. 2012 Dec 20;76(6):1071-7 – reference: 2709098 - J Neurophysiol. 1989 Mar;61(3):534-49 – reference: 16100518 - Nat Rev Neurosci. 2005 Sep;6(9):726-36 – reference: 25297087 - J Neurosci. 2014 Oct 8;34(41):13574-85 – reference: 23876494 - Trends Cogn Sci. 2013 Aug;17(8):401-12 – reference: 1410559 - Q J Exp Psychol A. 1992 Aug;45(2):323-44 – reference: 12077202 - J Neurosci. 2002 Jun 15;22(12):5074-80 – reference: 9822764 - J Neurosci. 1998 Dec 1;18(23):10105-15 – reference: 19109916 - Neuron. 2008 Dec 26;60(6):1126-41 – reference: 23132432 - Biol Cybern. 2012 Dec;106(11-12):741-55 – reference: 17015237 - Neuron. 2006 Oct 5;52(1):205-20 – reference: 11387405 - J Neurophysiol. 2001 Jun;85(6):2613-23 – reference: 25002277 - Annu Rev Neurosci. 2014;37:435-56 – reference: 23259955 - Neuron. 2012 Dec 20;76(6):1210-24 – reference: 16000633 - J Neurosci. 2005 Jul 6;25(27):6419-34 – reference: 17604860 - Hum Mov Sci. 2007 Aug;26(4):657-97 – reference: 13376678 - J Bone Joint Surg Br. 1956 Nov;38-B(4):902-13 – reference: 25609623 - J Neurosci. 2015 Jan 21;35(3):1068-81 – reference: 25094020 - Neuroimage. 2014 Nov 1;101:695-703 – reference: 26030847 - Nat Neurosci. 2015 Jul;18(7):1034-40 – reference: 8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94 – reference: 17005612 - J Neurophysiol. 2007 Jan;97(1):912-20 – reference: 25904798 - J Neurosci. 2015 Apr 22;35(16):6472-80 – reference: 19104670 - Front Syst Neurosci. 2008 Nov 24;2:4 – reference: 21715625 - J Neurosci. 2011 Jun 29;31(26):9599-610 – reference: 12961051 - Exp Brain Res. 2003 Nov;153(2):180-9 – reference: 12062029 - Neuron. 2002 May 30;34(5):841-51 – reference: 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113 – reference: 25999506 - Science. 2015 May 22;348(6237):906-10 – reference: 21159978 - J Neurosci. 2010 Dec 15;30(50):17079-90 – reference: 20492713 - J Neuroeng Rehabil. 2010;7:21 – reference: 15332089 - Nat Neurosci. 2004 Sep;7(9):907-15 – reference: 12983675 - Res Publ Assoc Res Nerv Ment Dis. 1952;30:238-64 – reference: 1875247 - J Neurophysiol. 1991 Jun;65(6):1381-91 |
SSID | ssj0000748819 |
Score | 2.4281218 |
Snippet | How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional... How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Biomechanical Phenomena Brain mapping Brain research Cortex (motor) decoding Electromyography encoding fMRI Functional magnetic resonance imaging Hand Hand - physiology hand control Humans Interfaces Kinematics Locomotion Magnetic Resonance Imaging Models, Neurological Motor cortex Motor Cortex - physiology Motor task performance Muscles Neural circuitry Neuroimaging Neuroscience Physiological aspects Posture Principal components analysis Prosthetics synergies |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhUMiltE3auk2DGgKFghvbqy8fNyEhLUkPbQO5CY0ltQvFW9bZQ_59Z2RnsWkgl16lMZbeSJqRPfOGsSOFXpsAJ3IQRuZoIVzuJGWjeVPpBmQ0KT366qu6uBZfbuTNqNQXxYT19MA9cMcFeOk9nplB1KIqlQm-isI5CEZ5GVIeeVEXo8tUOoM1Lsyy7hPyNJrM43C5iOFTORNU2XtkghJT_7_n8cggTYMlR9bn_Bl7OriNfN4P9znbCu0L9qQvJHm3y87mvLtLWXw5mSXP6Xs4H8LQ-aLjRFfpsX3R8lSVj6OGliuUWKVv2dxRbPoeuz4_-3F6kQ8FEvKGmLNyiBrHpR2adICZDmR7XN0ocHgtcqbwtaoNgq5M4UAF0-goweioQkTMFMxesu122YbXjNeuQEfIRxdnhYhlACEhAt71IhSVq1TGPt5jZpuBPZyKWPy2eIsggG0C2CaAM3a0Ef7Tk2Y8LHZC4G9EiOk6NaD-7aB_-5j-M3ZIqrPEZdFSsMxPt-46-_n7NzsXGl9D_DcZ-zAIxSWOunFD7gHOneivJpL7E0ncbM20-36F2GGzd5b-RMrk2Wbs_aabnqQAtjYs1yijNXpLFIGUsVf9gtrMG_Vj0HPGp_VkqU2Amfa0i1-JClxogy6levM_kHzLdtAbTCHppdxn27erdXiHHtctHKTN9RdZKyoJ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA_HieCL-G31lCgHgtC17earT7LKHad4PqgL9xaSJrlbOFptb8H9751Js8tVD1-bCU1nJp3ftJPfEHIoALUxa1humeI5RAiTG46n0ZyqZGN5UPF49OlXcbJkn8_42R7ZNuNMChxuTO2wn9Syv5z9_rV5Dxse8OtMQjR857-sgp-Vc1ZB7n4LQpLALOw04fz4Spbgp2U9ns_7e84kIkXi_n9fz9fi07R28lowOr5H7iYUSRej2e-TPd8-ILfHvpKbh-RoQYdNPNSXY5RyFD-P01SVTlcDRfZKB9dXLY1N-igYrOtBoo-ftqnBUvVHZHl89OPjSZ76JeQNEmnlNkhYlzQQ4a2dS4-hyNSNsAayJKMKV4tagQ2EKowVXjUycKtkED5UkMnY-WOy33atf0pobQrARS6YMC9YKL1l3AYLqV-wRWUqkZG3W53pJpGJY0-LSw1JBSpYRwXrqOCMHO6Ef44cGjeLfUDl70SQ-Dpe6PpznfaRLqzjzkEI9axmVSmUd1VgxlivhONeZuQ1mk4jtUWLtTPnZj0M-tP3b3rBJNwG6XAy8iYJhQ5W3Zh0FAGeHdmwJpIHE0nYe810eOsheuu6Gn9M8gh0M_JqN4wzsZ6t9d0aZKQE8IQFSRl5MjrU7rnBPgqANMyWE1ebKGY60q4uIjM4kwoQpnj2_2U9J3cA9sXa85IfkP2rfu1fALS6si_jtvkDFtQjEQ priority: 102 providerName: Scholars Portal |
Title | A synergy-based hand control is encoded in human motor cortical areas |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26880543 https://www.proquest.com/docview/1953574163 https://www.proquest.com/docview/1770223760 https://pubmed.ncbi.nlm.nih.gov/PMC4786436 https://doaj.org/article/0bd5dd990e4942168ed2f4aabe86d5e7 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0RfCl-N1oPVYpCEJsLrdfeZKrXKlii1QL97bsZnfrgSTtpffQ_96Zzd55QfElD9kJ2cx-_GYnM78h5FCA1casYblliueAECY3HLPRnCplbXlQMT367FycXrIvcz5PDrcuhVWu98S4Ubu2Rh_5Ef7u4dF8-Hh9k2PVKPy7mkpo3Ce7kboM5rOcy42PBeBRAeL1aXkSgPPIf10E_2E8YVjfewuIIl__37vyFiwNQya3MOjkEdlLxiOd9qP9mNzzzRPyoC8nefeUzKa0u4u5fDmCk6PoFacpGJ0uOoqklQ7uLxoaa_NRGKd2CRLL6NGmBiPUn5HLk9mPT6d5KpOQ18ifldsgoV_SALBbO5EeEchUtbAGDkdGFa4SlQLVC1UYK7yqZeBWySB8KOEAYyfPyU7TNn6f0MoUYA65YMKkYGHsLeM2WDjxBVuUphQZeb_Wma4ThziWsvil4SyBCtZRwToqOCOHG-Hrnjrj32LHqPyNCPJdxxvt8kqn5aML67hzgJyeVawcC-VdGZgx1ivhuJcZeYtDp5HRosGQmSuz6jr9-fuFnjIJr0EWnIy8S0KhhV7XJmUgwLcjCdZA8mAgCUuuHjavZ4hOS77TfyZoRt5smvFJDGNrfLsCGSnBZsI4pIy86CfU5rthfBTYz_C0HEy1gWKGLc3iZyQEZ1KBYSle_r9br8hDsPZiyPmYH5Cd2-XKvwaL6taO4rIZkd3j2fm3i1H0S8D1jKnfKjskCA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwQviDuBAQYNISGFpaljuw8IddCpZV2FxibtzdixPSqhZDSrUP8Uv5FznLQ0AvG21_gkcY6P_X12zoWQXQ6sjRnNYsNkFgNC6FhnGI1mZSpyk3kZwqOPpnx0yj6dZWdb5NcqFgbdKldrYliobZnjGfke_u7JAn14f_EjxqpR-Hd1VUKjNotDt_wJW7bq3fgjjO-rND0YnnwYxU1VgTjHdFOx8cLZXGjAQWN6wuGCrfs5Nxr2Elomts_7EnrKZaINdzIXPjNSeO58Cnzf9OC518g2w4jWDtneH04_H69PdQCQJWBsHQgoAKr33GTm3dtuj2FF8Q3oCxUC_saBDSBsO2luoN7BbXKroat0UNvXHbLlirvkel3AcnmPDAe0WobowRjh0FI8h6eN-zudVRTTZFq4PitoqAZIwTLKOUjMwxk61egTf5-cXokKH5BOURbuEaF9nQABs177XsJ81xmWGW9gj-lNkuqUR-TNSmcqb7KWY_GM7wp2L6hgFRSsgoIjsrsWvqiTdfxbbB-VvxbBDNvhQjk_V82EVYmxmbWA1Y71Wdrl0tnUM62Nk9xmTkTkJQ6dwhwaBTrpnOtFVanxl2M1YAJeg3l3IvK6EfIl9DrXTcwDfDum3WpJ7rQkYZLn7eaVhahmkanUnykRkRfrZrwTHecKVy5ARghgaej5FJGHtUGtvxvGRwJjh7tFy9Raimm3FLNvIQU5ExKoLH_8_249JzdGJ0cTNRlPD5-Qm8A1g8N7N9shncv5wj0FPndpnjWTiJKvVz1vfwOSi18a |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxDeBAQYNISGFpqljOw8IFbZqZWNCwKS-GTu2RyWUjGYV6r_GX8edk5RGIN72Gl_a5Hzn38_OfRCyy4G1MaNZbJjMYkAIHesMs9GsTEVhMi9DevSHY35wwt7PstkW-dXlwmBYZbcmhoXaVgWekQ_wc08W6MPAt2ERH_cmb85-xNhBCr-0du00GhM5dKufsH2rX0_3YK6fp-lk_8u7g7jtMBAXWHoqNl44WwgNmGjMSDhcvHVecKNhX6FlYnOeS3hqLhNtuJOF8JmRwnPnU-D-ZgS_e4lcFiNgVeBLYibW5zsAzRLQtkkJFADaA3c09-7VcMSwt_gGCIZeAX8jwgYk9sM1N_BvcoNcb4krHTeWdpNsufIWudK0slzdJvtjWq9CHmGMwGgpnsjTNhCezmuKBTMtXJ-XNPQFpGAj1QIkFuE0nWqMjr9DTi5EgXfJdlmV7j6huU6Ailmv_ShhfugMy4w3sNv0Jkl1yiPystOZKtr65dhG47uCfQwqWAUFq6DgiOyuhc-ash3_FnuLyl-LYK3tcKFanKrWdVVibGYtoLZjOUuHXDqbeqa1cZLbzImIPMOpU1hNo0S7PNXLulbTz5_UmAn4G6zAE5EXrZCv4KkL3WY_wLtjAa6e5E5PEty96A93FqLa5aZWf5wjIk_Xw3gnhtCVrlqCjBDA1zAGKiL3GoNavzfMjwTuDneLnqn1FNMfKeffQjFyJiSQWv7g_4_1hFwFb1VH0-PDh-QakM4Q-T7Mdsj2-WLpHgGxOzePgwdR8vWiXfY3w4dh4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+synergy-based+hand+control+is+encoded+in+human+motor+cortical+areas&rft.jtitle=eLife&rft.au=Leo%2C+Andrea&rft.au=Handjaras+Giacomo&rft.au=Bianchi+Matteo&rft.au=Marino+Hamal&rft.date=2016-02-15&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=5&rft_id=info:doi/10.7554%2FeLife.13420&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |