BOLD correlates of EEG topography reveal rapid resting-state network dynamics

Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable glo...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 52; no. 4; pp. 1162 - 1170
Main Authors Britz, Juliane, Van De Ville, Dimitri, Michel, Christoph M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2010
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2010.02.052

Cover

Loading…
Abstract Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states (so-called microstates), but they remain quasi-stationary for only about 100ms. In order to test the relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated across all subjects. The convolution of the time course of these maps with the hemodynamic response function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective interoceptive–autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests.
AbstractList Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10 s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states (so-called microstates), but they remain quasi-stationary for only about 100 ms. In order to test the relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated across all subjects. The convolution of the time course of these maps with the hemodynamic response function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective interoceptive-autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests.
Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states (so-called microstates), but they remain quasi-stationary for only about 100ms. In order to test the relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated across all subjects. The convolution of the time course of these maps with the hemodynamic response function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective interoceptive–autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests.
Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states (so-called microstates), but they remain quasi-stationary for only about 100 ms. In order to test the relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated across all subjects. The convolution of the time course of these maps with the hemodynamic response function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective interoceptive-autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests.Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states (so-called microstates), but they remain quasi-stationary for only about 100 ms. In order to test the relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated across all subjects. The convolution of the time course of these maps with the hemodynamic response function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective interoceptive-autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests.
Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states (so-called microstates), but they remain quasi-stationary for only about 100 ms. In order to test the relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated across all subjects. The convolution of the time course of these maps with the hemodynamic response function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective interoceptive-autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests.
Author Michel, Christoph M.
Britz, Juliane
Van De Ville, Dimitri
Author_xml – sequence: 1
  givenname: Juliane
  surname: Britz
  fullname: Britz, Juliane
  email: Juliane.Britz@unige.ch
  organization: Department of Fundamental Neuroscience, University of Geneva, Switzerland
– sequence: 2
  givenname: Dimitri
  surname: Van De Ville
  fullname: Van De Ville, Dimitri
  organization: Department of Radiology and Medical Informatics, University of Geneva, Switzerland
– sequence: 3
  givenname: Christoph M.
  surname: Michel
  fullname: Michel, Christoph M.
  organization: Department of Fundamental Neuroscience, University of Geneva, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20188188$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vGyEQxVGVKv-ar1Ct1ENP6wILu3Cp2iRuWslVLu0Zseysi7MGF3YT-dtnLCeq5EstIcGMfvOA9y7ISYgBCCkYnTHK6k-rWYApRb-2S5hxim3KZ1TyN-ScUS1LLRt-sjvLqlSM6TNykfOKUqqZUKfkDEeUwnVOfl7fL24LF1OCwY6Qi9gX8_ldMcZNXCa7-bMtEjyCHQosfIdFHn1YlnlEuggwPsX0UHTbYNfe5XfkbW-HDFcv-yX5_W3-6-Z7ubi_-3HzdVE6Keux7FtWS65to5Xu6gqsVF1TtW3ftrQSQBvK2652TV3pXrQMrAIN2IHW9VDzvrokH_e6mxT_Tvgks_bZwTDYAHHKppFCobjQ_yeF0ugErZH8cECu4pQCfsMwSWsluBAUqfcv1NSuoTObhCGkrXl1FIHPe8ClmHOC3jiPXvkYxmT9YBg1uwjNyvyLcDdNDeUGI0QBdSDwescRo9f7UUDvHz0kk52H4KDzCdxouuiPEflyIOIGH7yzwwNsj5N4BtJt0mA
CitedBy_id crossref_primary_10_1002_hbm_25430
crossref_primary_10_1016_j_neuroimage_2017_11_062
crossref_primary_10_1016_j_schres_2013_12_008
crossref_primary_10_1016_j_neuroimage_2015_06_035
crossref_primary_10_3389_fnins_2023_1174399
crossref_primary_10_3389_fpsyt_2019_00548
crossref_primary_10_1002_brb3_583
crossref_primary_10_1007_s10548_022_00929_6
crossref_primary_10_3389_fnins_2019_00542
crossref_primary_10_1007_s10548_020_00802_4
crossref_primary_10_1109_OJEMB_2024_3399469
crossref_primary_10_3389_fnhum_2016_00372
crossref_primary_10_1109_TCSS_2021_3135425
crossref_primary_10_1007_s10548_023_00958_9
crossref_primary_10_1038_s41598_020_79812_y
crossref_primary_10_1371_journal_pone_0022912
crossref_primary_10_1016_j_bbr_2024_115319
crossref_primary_10_1016_j_neuroimage_2021_117861
crossref_primary_10_1016_j_clinph_2021_12_002
crossref_primary_10_3389_fneur_2014_00218
crossref_primary_10_1002_hbm_25426
crossref_primary_10_1097_j_pain_0000000000002281
crossref_primary_10_1093_cercor_bhab404
crossref_primary_10_1007_s10548_024_01099_3
crossref_primary_10_1016_j_nicl_2018_05_028
crossref_primary_10_3389_fnins_2021_636424
crossref_primary_10_3390_bios15030180
crossref_primary_10_1088_1741_2552_acaccb
crossref_primary_10_3389_fnhum_2016_00369
crossref_primary_10_1016_j_neuroimage_2014_12_033
crossref_primary_10_1159_000363342
crossref_primary_10_1162_jocn_a_02022
crossref_primary_10_1111_cns_14896
crossref_primary_10_3389_fnins_2020_00323
crossref_primary_10_1016_j_bpsc_2021_11_006
crossref_primary_10_1007_s10548_023_01001_7
crossref_primary_10_1016_j_neuroimage_2017_09_010
crossref_primary_10_1111_cns_70220
crossref_primary_10_1142_S0219635212500203
crossref_primary_10_1016_j_bbr_2019_111964
crossref_primary_10_1109_JBHI_2022_3232811
crossref_primary_10_3389_fnhum_2022_857768
crossref_primary_10_1007_s00702_016_1548_z
crossref_primary_10_1007_s11357_024_01181_5
crossref_primary_10_1109_TNSRE_2024_3438674
crossref_primary_10_3389_fnins_2023_1188695
crossref_primary_10_1007_s10548_020_00780_7
crossref_primary_10_1007_s10548_024_01066_y
crossref_primary_10_1016_j_clinph_2020_10_006
crossref_primary_10_3389_fnhum_2014_00195
crossref_primary_10_5498_wjp_v14_i1_128
crossref_primary_10_1007_s11571_024_10095_z
crossref_primary_10_1177_15500594251317751
crossref_primary_10_1016_j_neuroimage_2023_120372
crossref_primary_10_31083_j_jin2102052
crossref_primary_10_1016_j_neuroimage_2023_120371
crossref_primary_10_1109_THMS_2023_3235003
crossref_primary_10_1016_j_nicl_2016_08_008
crossref_primary_10_1007_s41252_023_00374_x
crossref_primary_10_3389_fnins_2019_00443
crossref_primary_10_1016_j_nicl_2020_102488
crossref_primary_10_1038_ncomms8751
crossref_primary_10_1088_1741_2552_ad95be
crossref_primary_10_3389_fnins_2019_00563
crossref_primary_10_1371_journal_pone_0032508
crossref_primary_10_1109_TAFFC_2024_3399729
crossref_primary_10_1007_s11571_020_09643_0
crossref_primary_10_1016_j_neuroimage_2017_09_020
crossref_primary_10_1111_epi_13308
crossref_primary_10_1038_s41467_022_34410_6
crossref_primary_10_1002_hbm_22058
crossref_primary_10_1002_hbm_26536
crossref_primary_10_1016_j_jpsychires_2025_01_005
crossref_primary_10_1089_brain_2020_0848
crossref_primary_10_1109_JBHI_2022_3164907
crossref_primary_10_1016_j_neuroimage_2012_01_042
crossref_primary_10_1016_j_neuroscience_2013_02_032
crossref_primary_10_1109_TNSRE_2022_3156546
crossref_primary_10_7717_peerj_17623
crossref_primary_10_1093_braincomms_fcae054
crossref_primary_10_1016_j_compbiomed_2024_108332
crossref_primary_10_1177_17562864241227293
crossref_primary_10_1371_journal_pone_0251842
crossref_primary_10_1016_j_clinph_2016_01_025
crossref_primary_10_1016_j_neuroimage_2017_12_074
crossref_primary_10_1177_15500594231204174
crossref_primary_10_1002_hbm_26525
crossref_primary_10_3390_brainsci13091288
crossref_primary_10_1007_s00332_019_09552_5
crossref_primary_10_1016_j_jad_2020_03_175
crossref_primary_10_1016_j_brainresbull_2025_111223
crossref_primary_10_1109_ACCESS_2022_3185257
crossref_primary_10_1213_ANE_0000000000001353
crossref_primary_10_1093_scan_nsae012
crossref_primary_10_1186_s12888_023_05347_x
crossref_primary_10_1016_j_neuroimage_2017_11_026
crossref_primary_10_1080_26941899_2024_2426785
crossref_primary_10_1016_j_neuroimage_2012_07_031
crossref_primary_10_1016_j_ynirp_2022_100089
crossref_primary_10_3389_fnagi_2024_1486481
crossref_primary_10_1016_j_pnpbp_2022_110514
crossref_primary_10_1038_s41467_018_03462_y
crossref_primary_10_3389_fnhum_2020_576114
crossref_primary_10_1016_j_neuroscience_2023_01_021
crossref_primary_10_1002_hbm_24418
crossref_primary_10_1063_5_0203249
crossref_primary_10_1016_j_neuroimage_2018_04_061
crossref_primary_10_1177_17562864241276202
crossref_primary_10_1016_j_psychres_2020_112938
crossref_primary_10_1002_hbm_21265
crossref_primary_10_1093_cercor_bhs352
crossref_primary_10_3389_fnins_2021_715512
crossref_primary_10_1007_s10548_023_00939_y
crossref_primary_10_1089_brain_2014_0280
crossref_primary_10_1038_s41598_022_07403_0
crossref_primary_10_1109_ACCESS_2024_3354711
crossref_primary_10_1177_15500594221084994
crossref_primary_10_1007_s10548_023_00949_w
crossref_primary_10_3389_fnins_2024_1492529
crossref_primary_10_1016_j_neuroscience_2017_02_053
crossref_primary_10_1016_j_neuroimage_2013_03_036
crossref_primary_10_1016_j_neuroimage_2014_11_001
crossref_primary_10_1016_j_jpsychires_2024_06_034
crossref_primary_10_1002_hbm_23676
crossref_primary_10_1002_hbm_24529
crossref_primary_10_3389_fnins_2023_1257511
crossref_primary_10_3389_fnhum_2020_00182
crossref_primary_10_3390_brainsci7060058
crossref_primary_10_3390_jpm11111216
crossref_primary_10_1016_j_jad_2024_12_095
crossref_primary_10_3389_fnins_2021_697909
crossref_primary_10_1016_j_neuroimage_2022_119188
crossref_primary_10_3389_fnins_2025_1492225
crossref_primary_10_1002_cne_23368
crossref_primary_10_1007_s10548_020_00805_1
crossref_primary_10_1016_j_neunet_2022_11_024
crossref_primary_10_3389_fnins_2021_715861
crossref_primary_10_1007_s10548_022_00905_0
crossref_primary_10_1016_j_cortex_2016_07_006
crossref_primary_10_3390_brainsci13010005
crossref_primary_10_1080_17470919_2022_2083228
crossref_primary_10_1016_j_neuroimage_2014_04_002
crossref_primary_10_1007_s10548_017_0570_2
crossref_primary_10_1016_j_neuroimage_2012_02_031
crossref_primary_10_1016_j_bpsc_2019_04_004
crossref_primary_10_1007_s11571_013_9274_9
crossref_primary_10_1016_j_bbih_2022_100523
crossref_primary_10_1371_journal_pone_0028630
crossref_primary_10_3389_fnint_2023_1234471
crossref_primary_10_1016_j_neulet_2024_137986
crossref_primary_10_1016_j_neuron_2011_03_018
crossref_primary_10_1007_s11571_012_9196_y
crossref_primary_10_3389_fnins_2019_00415
crossref_primary_10_1016_j_neucli_2022_102839
crossref_primary_10_1038_s41467_020_16914_1
crossref_primary_10_1007_s10548_023_01004_4
crossref_primary_10_1016_j_neuroimage_2020_116786
crossref_primary_10_1017_S0140525X13001489
crossref_primary_10_1111_j_1528_1167_2012_03587_x
crossref_primary_10_1007_s11571_021_09726_6
crossref_primary_10_1088_1741_2552_ada4de
crossref_primary_10_3389_fnhum_2020_00288
crossref_primary_10_1016_j_neuroimage_2019_01_067
crossref_primary_10_1002_hbm_24429
crossref_primary_10_1016_j_neuroimage_2015_06_001
crossref_primary_10_1111_desc_13231
crossref_primary_10_3389_fpsyt_2019_00582
crossref_primary_10_1007_s00406_023_01642_6
crossref_primary_10_1089_brain_2014_0230
crossref_primary_10_1186_s10194_023_01551_y
crossref_primary_10_1063_5_0247498
crossref_primary_10_3389_fpsyt_2019_00826
crossref_primary_10_3390_brainsci10100668
crossref_primary_10_3389_fnhum_2021_655576
crossref_primary_10_1016_j_cortex_2021_02_014
crossref_primary_10_1016_j_neuroimage_2017_07_001
crossref_primary_10_1017_S0033291724001132
crossref_primary_10_1093_brain_awz132
crossref_primary_10_3389_fnins_2022_1032696
crossref_primary_10_1109_JSTSP_2016_2600023
crossref_primary_10_7759_cureus_64961
crossref_primary_10_1016_j_neuroimage_2014_10_014
crossref_primary_10_1007_s00213_022_06149_x
crossref_primary_10_3389_fninf_2017_00074
crossref_primary_10_1016_j_neuroimage_2017_08_058
crossref_primary_10_1038_s41598_020_74790_7
crossref_primary_10_1109_TBME_2021_3087177
crossref_primary_10_3389_fnins_2018_00714
crossref_primary_10_3389_fnins_2021_755721
crossref_primary_10_1186_s40708_022_00179_z
crossref_primary_10_3389_fnbeh_2020_554147
crossref_primary_10_1007_s10548_016_0520_4
crossref_primary_10_1186_s12888_020_02743_5
crossref_primary_10_1098_rsta_2011_0080
crossref_primary_10_3389_fnhum_2018_00029
crossref_primary_10_1103_PhysRevE_99_012421
crossref_primary_10_1016_j_neubiorev_2012_08_002
crossref_primary_10_1109_RBME_2011_2170675
crossref_primary_10_1073_pnas_2414636122
crossref_primary_10_1089_brain_2016_0476
crossref_primary_10_1093_cercor_bhac229
crossref_primary_10_1016_j_neuroimage_2016_10_002
crossref_primary_10_1002_hbm_23637
crossref_primary_10_1016_j_cnp_2017_05_002
crossref_primary_10_1016_j_seizure_2018_07_007
crossref_primary_10_1134_S0362119713010106
crossref_primary_10_1016_j_seizure_2021_03_020
crossref_primary_10_1038_s41598_019_49636_6
crossref_primary_10_1016_j_bpsc_2017_04_008
crossref_primary_10_1016_j_yebeh_2025_110365
crossref_primary_10_1007_s10548_023_00993_6
crossref_primary_10_1016_j_jpsychires_2023_07_020
crossref_primary_10_3389_fncom_2019_00091
crossref_primary_10_3389_fnins_2015_00438
crossref_primary_10_1089_brain_2014_0250
crossref_primary_10_1007_s10548_023_00971_y
crossref_primary_10_3389_fneur_2024_1452243
crossref_primary_10_3390_brainsci11010056
crossref_primary_10_1038_s41398_020_01185_7
crossref_primary_10_1016_j_bbr_2024_114959
crossref_primary_10_1155_2011_813870
crossref_primary_10_3389_fnsys_2022_786200
crossref_primary_10_3389_fnins_2023_1159019
crossref_primary_10_3389_fpsyg_2018_01346
crossref_primary_10_11604_pamj_2024_48_24_40977
crossref_primary_10_52547_shefa_9_1_14
crossref_primary_10_3389_fnbeh_2014_00163
crossref_primary_10_1523_ENEURO_0345_22_2022
crossref_primary_10_1007_s10548_021_00835_3
crossref_primary_10_1016_j_cortex_2016_06_004
crossref_primary_10_26599_BSA_2020_9050019
crossref_primary_10_3389_fpsyt_2022_988939
crossref_primary_10_1016_j_mri_2016_10_015
crossref_primary_10_1016_j_bpsgos_2024_100371
crossref_primary_10_1016_j_neuroimage_2015_12_034
crossref_primary_10_1016_j_schres_2023_11_014
crossref_primary_10_1162_netn_a_00411
crossref_primary_10_1186_s10194_022_01414_y
crossref_primary_10_1016_j_biopsycho_2022_108319
crossref_primary_10_1016_j_bpsc_2019_07_006
crossref_primary_10_1111_head_14622
crossref_primary_10_1016_j_schres_2012_07_016
crossref_primary_10_1109_JBHI_2020_3008052
crossref_primary_10_3389_fpsyt_2021_775156
crossref_primary_10_1002_hbm_25834
crossref_primary_10_1016_j_neuroimage_2011_12_039
crossref_primary_10_1002_hbm_21117
crossref_primary_10_1016_j_jad_2023_11_018
crossref_primary_10_1007_s10548_014_0409_z
crossref_primary_10_1016_j_neuroimage_2020_117393
crossref_primary_10_1371_journal_pone_0277382
crossref_primary_10_1016_j_neuroimage_2019_03_029
crossref_primary_10_1038_s41593_020_0639_1
crossref_primary_10_1002_brb3_1630
crossref_primary_10_1007_s10548_013_0319_5
crossref_primary_10_1186_s13408_020_00100_0
crossref_primary_10_1016_j_heares_2018_12_001
crossref_primary_10_3346_jkms_2017_32_7_1160
crossref_primary_10_1007_s10548_023_01010_6
crossref_primary_10_1016_j_neuroimage_2020_117266
crossref_primary_10_3389_fnagi_2020_587396
crossref_primary_10_1016_j_neuroimage_2014_10_055
crossref_primary_10_1007_s10548_014_0387_1
crossref_primary_10_1093_braincomms_fcae150
crossref_primary_10_1016_j_sleep_2025_01_027
crossref_primary_10_3390_su13126822
crossref_primary_10_3389_fncom_2016_00046
crossref_primary_10_1162_netn_a_00114
crossref_primary_10_3390_brainsci13121706
crossref_primary_10_3389_fncom_2018_00070
crossref_primary_10_1007_s10548_016_0522_2
crossref_primary_10_1007_s10548_014_0399_x
crossref_primary_10_31083_j_jin2309176
crossref_primary_10_1016_j_ijpsycho_2023_02_002
crossref_primary_10_1016_j_neuroimage_2021_118763
crossref_primary_10_1089_brain_2012_0135
crossref_primary_10_1016_j_neuroimage_2020_117372
crossref_primary_10_3389_fnhum_2019_00056
crossref_primary_10_1016_j_biopsycho_2025_109008
crossref_primary_10_1080_27706710_2024_2388106
crossref_primary_10_3389_fnhum_2019_00173
crossref_primary_10_1002_hbm_22865
crossref_primary_10_1016_j_neuropsychologia_2023_108519
crossref_primary_10_1109_TNSRE_2024_3418846
crossref_primary_10_1016_j_pneurobio_2016_11_002
crossref_primary_10_1093_braincomms_fcad270
crossref_primary_10_1007_s10548_013_0276_z
crossref_primary_10_1038_s42003_021_02494_3
crossref_primary_10_1109_TAFFC_2021_3139104
crossref_primary_10_3389_fpsyt_2020_600606
crossref_primary_10_1016_j_pscychresns_2023_111594
crossref_primary_10_1371_journal_pone_0114163
crossref_primary_10_1177_1073858417728032
crossref_primary_10_1016_j_neuroimage_2017_09_065
crossref_primary_10_1093_cercor_bhs416
crossref_primary_10_1016_j_bpsc_2024_11_012
crossref_primary_10_1017_dsj_2020_28
crossref_primary_10_1007_s10548_023_01011_5
crossref_primary_10_1016_j_schres_2017_06_044
crossref_primary_10_3389_fnhum_2024_1372985
crossref_primary_10_1016_j_neuroimage_2021_117760
crossref_primary_10_1088_1741_2552_ab9ada
crossref_primary_10_1016_j_aap_2024_107769
crossref_primary_10_1016_j_neuroimage_2021_118850
crossref_primary_10_1155_2018_9270685
crossref_primary_10_1007_s10548_024_01077_9
crossref_primary_10_3390_brainsci12121731
crossref_primary_10_1089_brain_2014_0336
crossref_primary_10_3346_jkms_2017_32_3_514
crossref_primary_10_1038_s41598_020_72590_7
crossref_primary_10_3389_fnins_2023_1145065
crossref_primary_10_3389_fpsyg_2023_1109949
crossref_primary_10_1016_j_neuroimage_2016_07_050
crossref_primary_10_1162_neco_a_01229
crossref_primary_10_1016_j_neuroimage_2010_05_033
crossref_primary_10_1016_j_neuroimage_2018_01_041
crossref_primary_10_1016_j_neuroimage_2010_05_034
crossref_primary_10_1038_s42003_024_06876_1
crossref_primary_10_1088_1741_2552_ac975b
crossref_primary_10_1162_jocn_a_01636
crossref_primary_10_1002_hbm_24949
crossref_primary_10_3389_fnins_2022_848737
crossref_primary_10_3389_fpsyt_2021_653642
crossref_primary_10_3389_fnins_2023_1254423
crossref_primary_10_1038_s41386_020_00800_x
crossref_primary_10_1038_s41598_020_79423_7
crossref_primary_10_1093_cercor_bhad143
crossref_primary_10_1007_s11571_023_10016_6
crossref_primary_10_3389_fpsyt_2021_638722
crossref_primary_10_1038_s41598_020_69999_5
crossref_primary_10_1109_JSEN_2022_3146576
crossref_primary_10_1007_s12311_023_01534_4
crossref_primary_10_1016_j_nicl_2019_102132
crossref_primary_10_1523_JNEUROSCI_5669_11_2012
crossref_primary_10_1002_dneu_22570
crossref_primary_10_2147_NDT_S456486
crossref_primary_10_1007_s10548_015_0460_4
crossref_primary_10_1016_j_neuroimage_2015_03_062
crossref_primary_10_1016_j_neuroimage_2013_05_114
crossref_primary_10_1016_j_heares_2013_07_010
crossref_primary_10_1089_brain_2015_0368
crossref_primary_10_1007_s10548_020_00777_2
crossref_primary_10_3389_fnhum_2017_00342
crossref_primary_10_3389_fnhum_2021_728405
crossref_primary_10_1142_S0129065720500057
crossref_primary_10_1016_j_neubiorev_2019_01_014
crossref_primary_10_1007_s10339_017_0812_y
crossref_primary_10_3389_fpsyt_2024_1513793
crossref_primary_10_3389_fnhum_2022_977776
crossref_primary_10_1371_journal_pone_0307378
crossref_primary_10_3390_bioengineering10030281
crossref_primary_10_1016_j_nicl_2023_103407
crossref_primary_10_3390_e21100961
crossref_primary_10_1007_s12311_024_01770_2
crossref_primary_10_3389_fpsyg_2019_02968
crossref_primary_10_1007_s10548_011_0189_7
crossref_primary_10_4103_indianjpsychiatry_indianjpsychiatry_930_23
crossref_primary_10_25259_IJPP_44_2022
crossref_primary_10_3389_fneur_2021_753113
crossref_primary_10_1093_sleep_zsae053
crossref_primary_10_1016_j_clinph_2021_08_015
crossref_primary_10_1088_1741_2552_ac5266
crossref_primary_10_1016_j_celrep_2023_112369
crossref_primary_10_1007_s10548_012_0235_0
crossref_primary_10_1016_j_schres_2017_08_003
crossref_primary_10_3389_fnhum_2014_00897
crossref_primary_10_1103_PhysRevE_97_050201
crossref_primary_10_1162_netn_a_00147
crossref_primary_10_1016_j_neuroimage_2022_119669
crossref_primary_10_1177_17562864241307846
crossref_primary_10_1089_brain_2018_0647
crossref_primary_10_1016_j_compbiomed_2022_105287
crossref_primary_10_1007_s10548_022_00923_y
crossref_primary_10_1007_s11682_018_9886_0
crossref_primary_10_3389_fpsyt_2021_761203
crossref_primary_10_1109_TNSRE_2023_3283708
crossref_primary_10_1016_j_brainres_2023_148729
crossref_primary_10_1186_s12868_024_00854_3
crossref_primary_10_1007_s10548_024_01037_3
crossref_primary_10_1016_j_ijpsycho_2021_09_001
crossref_primary_10_1093_brain_awr156
crossref_primary_10_3390_brainsci14101013
crossref_primary_10_1016_j_jadr_2025_100891
crossref_primary_10_3389_fnsys_2021_751226
crossref_primary_10_1016_j_clinph_2015_03_007
crossref_primary_10_1093_cercor_bhac082
crossref_primary_10_1177_15500594221098286
crossref_primary_10_1016_j_neuroimage_2012_12_055
crossref_primary_10_1016_j_nicl_2019_102046
crossref_primary_10_3389_fnins_2024_1321001
crossref_primary_10_7554_eLife_01867
crossref_primary_10_1109_TNSRE_2023_3324343
crossref_primary_10_1016_j_biopsycho_2022_108283
crossref_primary_10_1162_netn_a_00135
crossref_primary_10_1016_j_neuropsychologia_2021_108014
crossref_primary_10_1016_j_nicl_2022_103135
crossref_primary_10_1089_brain_2015_0359
crossref_primary_10_1007_s10548_022_00934_9
crossref_primary_10_1007_s10548_017_0565_z
crossref_primary_10_1016_j_pscychresns_2023_111686
crossref_primary_10_1016_j_neuroimage_2021_118148
crossref_primary_10_1038_s41386_020_0749_1
crossref_primary_10_3389_fnins_2018_00460
crossref_primary_10_1016_j_dcn_2022_101134
crossref_primary_10_1016_j_neuroimage_2016_12_057
crossref_primary_10_1002_hbm_21513
crossref_primary_10_3389_fnins_2022_878203
crossref_primary_10_1007_s10548_022_00911_2
crossref_primary_10_1089_brain_2014_0300
crossref_primary_10_3389_fnbeh_2018_00122
crossref_primary_10_1038_s41598_024_83542_w
crossref_primary_10_1007_s10548_023_00952_1
crossref_primary_10_1016_j_neuroimage_2022_119720
crossref_primary_10_1016_j_neuroimage_2018_07_046
crossref_primary_10_1016_j_infbeh_2022_101785
crossref_primary_10_1016_j_neuroimage_2022_118878
crossref_primary_10_1016_j_bandc_2010_11_015
crossref_primary_10_1038_s41598_024_67902_0
crossref_primary_10_1016_j_brainresbull_2024_111107
crossref_primary_10_1016_j_nicl_2018_08_031
crossref_primary_10_1016_j_jneumeth_2024_110115
crossref_primary_10_3389_fnhum_2017_00022
crossref_primary_10_3390_e22121380
crossref_primary_10_3389_fnhum_2021_636504
crossref_primary_10_1089_brain_2011_0018
crossref_primary_10_3389_fpsyt_2022_898716
crossref_primary_10_1038_s41598_024_76046_0
crossref_primary_10_1038_s41531_023_00498_w
crossref_primary_10_1111_jsr_13889
crossref_primary_10_11604_pamj_2024_49_76_44648
crossref_primary_10_1007_s10548_018_0689_9
crossref_primary_10_1016_j_neuroimage_2016_03_014
crossref_primary_10_3389_fphy_2020_00082
crossref_primary_10_1002_brb3_70216
crossref_primary_10_1016_j_brainresbull_2024_111112
crossref_primary_10_1002_brb3_70335
crossref_primary_10_1007_s10548_011_0187_9
crossref_primary_10_1371_journal_pone_0039731
crossref_primary_10_1371_journal_pcbi_1007566
crossref_primary_10_1016_j_celrep_2023_112053
crossref_primary_10_1016_j_neurobiolaging_2023_06_008
crossref_primary_10_1016_j_neuroimage_2010_06_002
crossref_primary_10_1016_j_dcn_2018_04_011
crossref_primary_10_1002_mds_28741
crossref_primary_10_1093_braincomms_fcac255
crossref_primary_10_1016_j_neuroimage_2019_116454
crossref_primary_10_1038_s41398_020_01160_2
crossref_primary_10_1186_s12888_024_06334_6
crossref_primary_10_1371_journal_pone_0112147
crossref_primary_10_1007_s10548_023_00999_0
crossref_primary_10_1093_cercor_bhad480
crossref_primary_10_1016_j_neuroimage_2013_07_019
crossref_primary_10_1016_j_neuroimage_2016_05_058
crossref_primary_10_3389_fpsyg_2015_01354
crossref_primary_10_1038_s41598_020_58787_w
crossref_primary_10_1109_TSIPN_2017_2774504
crossref_primary_10_1038_srep39156
crossref_primary_10_1073_pnas_1501242112
crossref_primary_10_1371_journal_pone_0135261
crossref_primary_10_1016_j_neuroimage_2022_119619
crossref_primary_10_1016_j_bandc_2021_105696
crossref_primary_10_1016_j_bbr_2022_114203
crossref_primary_10_1016_j_biopsycho_2022_108348
crossref_primary_10_1038_s41598_017_14879_8
crossref_primary_10_2139_ssrn_4061516
crossref_primary_10_1016_j_jpsychires_2013_09_009
crossref_primary_10_1073_pnas_1007841107
crossref_primary_10_1097_WNP_0b013e3182a73dd5
crossref_primary_10_3389_fnins_2023_1123466
crossref_primary_10_1038_s41531_023_00508_x
crossref_primary_10_3389_fpsyt_2022_853602
crossref_primary_10_3389_fnhum_2021_626507
crossref_primary_10_3389_fnins_2023_1247290
crossref_primary_10_3389_fpsyt_2016_00022
crossref_primary_10_1007_s10548_023_00987_4
crossref_primary_10_1016_j_neuroimage_2018_09_082
crossref_primary_10_3389_fnsys_2014_00234
crossref_primary_10_1109_TMI_2024_3453377
crossref_primary_10_1016_j_psychres_2021_113866
crossref_primary_10_1111_epi_17893
crossref_primary_10_1007_s10548_023_01030_2
crossref_primary_10_1111_epi_17897
crossref_primary_10_1016_j_clinph_2010_10_042
crossref_primary_10_1162_imag_a_00272
crossref_primary_10_3389_fpsyt_2020_537981
crossref_primary_10_3390_biomedicines10102428
crossref_primary_10_1093_brain_awz069
crossref_primary_10_1016_j_scog_2015_04_005
crossref_primary_10_3389_fpsyt_2022_1008007
crossref_primary_10_1088_1741_2552_ac4595
crossref_primary_10_3389_fnhum_2021_795237
crossref_primary_10_1002_jnr_24690
crossref_primary_10_3390_brainsci14020113
crossref_primary_10_1016_j_neuroimage_2022_119006
crossref_primary_10_1016_j_clinph_2013_01_005
crossref_primary_10_3390_brainsci13040554
crossref_primary_10_1002_hbm_26480
crossref_primary_10_1093_schbul_sbs009
crossref_primary_10_1093_scan_nsaa008
crossref_primary_10_1016_j_neuroimage_2013_05_079
crossref_primary_10_1016_j_bbr_2021_113135
crossref_primary_10_1088_1741_2552_ab0169
crossref_primary_10_1007_s10548_024_01073_z
crossref_primary_10_1016_j_neuroimage_2012_02_012
crossref_primary_10_3389_fnins_2021_687053
crossref_primary_10_3389_fnhum_2024_1434110
crossref_primary_10_1016_j_jad_2024_09_040
crossref_primary_10_1038_s41598_017_13482_1
crossref_primary_10_1016_j_neuroimage_2017_05_067
crossref_primary_10_3389_fnhum_2021_684470
crossref_primary_10_1002_hbm_26471
crossref_primary_10_1093_cercor_bht120
crossref_primary_10_1007_s10548_023_01005_3
crossref_primary_10_1097_PSY_0000000000000490
crossref_primary_10_1017_thg_2012_20
crossref_primary_10_3389_fpsyt_2022_891719
crossref_primary_10_1007_s00787_022_02068_6
crossref_primary_10_1027_0269_8803_a000153
crossref_primary_10_1088_1741_2552_ab234b
crossref_primary_10_3389_fpsyg_2014_00493
crossref_primary_10_3389_fpsyg_2022_765602
crossref_primary_10_1162_imag_a_00109
crossref_primary_10_3389_fnins_2019_01251
crossref_primary_10_3389_fpsyt_2018_00395
crossref_primary_10_1038_s41398_020_00963_7
crossref_primary_10_3389_fpsyt_2023_1082481
crossref_primary_10_1016_j_clinph_2020_05_025
crossref_primary_10_3389_fpsyg_2024_1300416
crossref_primary_10_1016_j_seizure_2024_12_004
crossref_primary_10_1007_s10548_023_00978_5
crossref_primary_10_1016_j_schres_2025_03_003
crossref_primary_10_1016_j_ijpsycho_2025_112516
crossref_primary_10_1111_psyp_14581
crossref_primary_10_1016_j_neuroimage_2020_116998
crossref_primary_10_1016_j_jneumeth_2019_108317
crossref_primary_10_1016_j_neuroimage_2020_116631
crossref_primary_10_1007_s10548_017_0572_0
crossref_primary_10_1038_ncomms10340
crossref_primary_10_1088_1741_2552_acc2e9
crossref_primary_10_1016_j_neuroimage_2015_08_023
crossref_primary_10_1038_s41598_021_95749_2
crossref_primary_10_1089_brain_2017_0543
crossref_primary_10_1016_j_neuroimage_2025_121159
crossref_primary_10_1038_s41537_023_00419_z
crossref_primary_10_1016_j_neuroimage_2025_121152
crossref_primary_10_1016_j_nlm_2021_107424
crossref_primary_10_1007_s10548_016_0539_6
crossref_primary_10_1136_gpsych_2023_101171
crossref_primary_10_1080_21678421_2022_2152696
crossref_primary_10_1097_j_pain_0000000000003546
crossref_primary_10_1093_cercor_bhs047
crossref_primary_10_1007_s10548_021_00861_1
crossref_primary_10_3390_brainsci14050487
crossref_primary_10_1016_j_neuroimage_2013_04_010
crossref_primary_10_31887_DCNS_2013_15_3_cmulert
crossref_primary_10_1007_s10339_014_0637_x
crossref_primary_10_3389_fnins_2019_01430
crossref_primary_10_1016_j_clinph_2011_12_019
crossref_primary_10_1016_j_neuroimage_2017_03_026
crossref_primary_10_3389_fnagi_2021_714220
crossref_primary_10_1073_pnas_1911240117
crossref_primary_10_3389_fpsyt_2022_907802
crossref_primary_10_1016_j_tics_2024_03_004
crossref_primary_10_1038_s41598_018_23590_1
crossref_primary_10_1111_ejn_16247
crossref_primary_10_1111_psyp_14762
crossref_primary_10_1186_s13408_020_00086_9
crossref_primary_10_3389_fnhum_2024_1387471
crossref_primary_10_1016_j_pnpbp_2018_08_015
crossref_primary_10_1093_braincomms_fcaa104
crossref_primary_10_1016_j_neuroimage_2012_03_024
crossref_primary_10_1007_s10548_023_01019_x
crossref_primary_10_1016_j_nicl_2018_04_014
crossref_primary_10_1155_2012_385626
crossref_primary_10_1016_j_neubiorev_2014_12_010
crossref_primary_10_3389_fnins_2020_00191
crossref_primary_10_1038_s41598_018_19698_z
crossref_primary_10_1007_s00521_018_3879_1
crossref_primary_10_3389_fnins_2021_689791
crossref_primary_10_1002_hbm_26552
crossref_primary_10_1080_10255842_2025_2476185
crossref_primary_10_1002_hbm_26793
crossref_primary_10_1016_j_neuroimage_2012_12_073
crossref_primary_10_1371_journal_pcbi_1008929
crossref_primary_10_1093_cercor_bhae043
crossref_primary_10_1016_j_clinph_2024_02_027
crossref_primary_10_3389_fneur_2014_00093
crossref_primary_10_1016_j_nicl_2018_10_015
crossref_primary_10_1192_j_eurpsy_2023_2414
crossref_primary_10_1007_s10548_018_0685_0
crossref_primary_10_1016_j_clinph_2025_03_002
crossref_primary_10_3389_fnins_2019_01448
crossref_primary_10_3389_fnrgo_2025_1472693
crossref_primary_10_3389_fnsys_2022_934266
crossref_primary_10_1016_j_nicl_2020_102336
crossref_primary_10_3390_brainsci12111497
crossref_primary_10_1016_j_neuroimage_2025_121090
crossref_primary_10_1109_TBME_2023_3240593
crossref_primary_10_1016_j_bbr_2025_115463
crossref_primary_10_21307_ane_2018_010
crossref_primary_10_1016_j_jpsychires_2024_04_051
crossref_primary_10_1016_j_neuroimage_2022_119461
crossref_primary_10_1146_annurev_bioeng_062117_120853
crossref_primary_10_1038_s41598_021_81655_0
crossref_primary_10_3389_fneur_2021_710952
crossref_primary_10_3390_ijerph20021402
crossref_primary_10_1016_j_schres_2014_05_036
crossref_primary_10_1007_s00429_019_02019_z
crossref_primary_10_1146_annurev_neuro_100220_093239
crossref_primary_10_1016_j_bandc_2019_103619
crossref_primary_10_1038_s41598_025_93385_8
crossref_primary_10_1103_PhysRevE_98_042413
crossref_primary_10_3389_fnins_2023_986368
crossref_primary_10_1016_j_yebeh_2024_109729
crossref_primary_10_1016_j_cortex_2024_05_019
crossref_primary_10_1007_s00213_014_3844_3
crossref_primary_10_1089_brain_2011_0063
crossref_primary_10_3389_fnagi_2022_914920
crossref_primary_10_1016_j_bbr_2016_08_020
crossref_primary_10_1371_journal_pone_0087507
crossref_primary_10_1016_j_bspc_2020_102316
crossref_primary_10_1016_j_neuroimage_2012_05_060
crossref_primary_10_3389_fnhum_2021_636252
crossref_primary_10_1093_cercor_bht068
crossref_primary_10_1016_j_brs_2022_01_007
crossref_primary_10_1109_ACCESS_2021_3060112
crossref_primary_10_1111_ejn_16159
crossref_primary_10_1007_s12144_023_04858_w
crossref_primary_10_1162_NECO_a_00747
crossref_primary_10_1016_j_clinph_2010_11_003
crossref_primary_10_3389_fnhum_2017_00534
crossref_primary_10_3389_fnins_2023_1306120
crossref_primary_10_1007_s10548_023_01009_z
crossref_primary_10_31083_j_jin2004100
crossref_primary_10_1016_j_neuroimage_2017_10_048
crossref_primary_10_1109_ACCESS_2020_3037658
crossref_primary_10_1016_j_conb_2023_102818
crossref_primary_10_1016_j_neuroimage_2024_120910
Cites_doi 10.1016/j.neuroimage.2004.11.048
10.1038/nrn755
10.1007/BF01128876
10.1006/nimg.2000.0599
10.1016/0165-0173(94)00016-I
10.1016/S1364-6613(00)01464-9
10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
10.1016/j.neuroimage.2009.01.070
10.1016/0167-8760(93)90041-M
10.1038/nature05758
10.1152/jn.00263.2005
10.1073/pnas.0800005105
10.1073/pnas.1831638100
10.1016/j.neuroimage.2009.01.001
10.1002/hbm.10022
10.1152/jn.2001.86.1.1
10.1523/JNEUROSCI.2699-08.2008
10.1002/hbm.20705
10.1002/hbm.20581
10.1126/science.1128115
10.1016/S1053-8119(03)00169-1
10.1007/s10548-007-0024-3
10.1002/mrm.1910340409
10.1093/cercor/bhi025
10.1016/0013-4694(93)90016-O
10.1006/nimg.2002.1070
10.1006/nimg.1998.0361
10.1098/rstb.2005.1634
10.1126/science.1131295
10.1073/pnas.0601417103
10.1109/10.391164
10.1016/j.neuron.2009.03.024
10.1016/0013-4694(80)90419-8
10.1093/cercor/bhn055
10.1016/0301-0082(84)90003-0
10.1073/pnas.0604187103
10.1016/S0167-8760(97)00098-6
10.1093/cercor/13.4.422
10.1016/S0010-0277(00)00123-2
10.1016/j.tins.2008.09.012
10.1007/s10548-009-0080-y
10.1002/hbm.1048
10.1038/35084005
10.1016/j.neuroimage.2006.01.012
10.1016/S1364-6613(00)01819-2
10.1007/s10548-008-0054-5
10.1038/nn.2177
10.1007/s10339-006-0035-0
10.1098/rstb.2005.1649
10.1097/00001756-200212200-00022
10.1002/(SICI)1097-0193(1998)6:5/6<368::AID-HBM7>3.0.CO;2-E
10.4249/scholarpedia.7632
10.1073/pnas.0704380104
10.1073/pnas.0504136102
10.1111/j.1528-1167.2008.01509.x
10.1371/journal.pbio.0060159
10.1016/j.neuroimage.2007.02.041
10.1016/j.ijpsycho.2005.12.015
10.1073/pnas.0700668104
10.1162/neco.1995.7.6.1129
10.1198/106186005X59243
10.1126/science.1099745
10.1073/pnas.1332574100
10.1016/j.ijpsycho.2005.12.008
10.1523/JNEUROSCI.5587-06.2007
10.1093/cercor/bhn056
10.1126/science.3059497
10.1196/annals.1417.015
10.1016/j.clinph.2008.07.284
ContentType Journal Article
Copyright 2010 Elsevier Inc.
Copyright 2010 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Oct 1, 2010
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: Copyright 2010 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Oct 1, 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2010.02.052
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database


MEDLINE - Academic
ProQuest One Psychology
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1170
ExternalDocumentID 3244893381
20188188
10_1016_j_neuroimage_2010_02_052
S105381191000220X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AGRNS
AIGII
AJUYK
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
GBLVA
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
Z5R
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c556t-fb16529a7989d63ea58d73bbfbb034e0702bd6c7639f4b1ea8e9ebd6ebcfe62f3
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Thu Jul 10 21:51:51 EDT 2025
Fri Jul 11 09:02:36 EDT 2025
Wed Aug 13 11:22:48 EDT 2025
Mon Jul 21 05:59:10 EDT 2025
Thu Apr 24 23:09:55 EDT 2025
Tue Jul 01 02:14:36 EDT 2025
Fri Feb 23 02:20:30 EST 2024
Tue Aug 26 16:36:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords fMRI
Rapid dynamics
Resting state
Default-mode network
EEG
ICA
EEG microstates
GLM
EEG topography
Resting-state networks
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright 2010 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-fb16529a7989d63ea58d73bbfbb034e0702bd6c7639f4b1ea8e9ebd6ebcfe62f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 20188188
PQID 1506842440
PQPubID 2031077
PageCount 9
ParticipantIDs proquest_miscellaneous_754879849
proquest_miscellaneous_748981806
proquest_journals_1506842440
pubmed_primary_20188188
crossref_citationtrail_10_1016_j_neuroimage_2010_02_052
crossref_primary_10_1016_j_neuroimage_2010_02_052
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_02_052
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_02_052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-10-01
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2010
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Fox, Corbetta, Snyder, Vincent, Raichle (bib25) 2006; 103
Fransson, Skiöld, Horsch, Nordell, Blennow, Lagercrantz, Aden (bib26) 2007; 104
Calhoun, Kiehl, Pearlson (bib15) 2008; 29
Changeux, Michel (bib17) 2004
McKeown, Sejnowski (bib51) 1998; 6
Mohr, Michel, Lantz, Ortigue, Viaud-Delmon, Landis (bib52) 2005; 15
Maldjian, Laurienti, Kraft, Burdette (bib48) 2003; 19
Hampson, Peterson, Skudlarski, Gatenby, Gore (bib32) 2002; 15
Taylor, Seminowicz, Davis (bib66) 2009; 30
Jann, Dierks, Boesch, Kottlow, Strik, Koenig (bib33) 2009; 45
Schroeder, Lakatos (bib58) 2009; 22
Britz, Landis, Michel (bib12) 2009; 19
Patel, Van De Ville, DuBois Bowman (bib56) 2006; 31
Schroeder, Lakatos (bib59) 2009; 32
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib24) 2005; 102
Lehmann, Skrandies (bib41) 1980; 48
Steriade (bib63) 2001; 86
Laufs, Krakow, Sterzer, Eger, Beyerle, Salek-Haddadi, Kleinschmidt (bib39) 2003; 100
Fuster (bib27) 2006; 60
Fingelkurts, Fingelkurts (bib23) 2006; 7
Pascual-Marqui, Michel, Lehmann (bib55) 1995; 42
Allen, Polizzi, Krakow, Fish, Lemieux (bib1) 1998; 8
Corbetta, Shulman (bib18) 2002; 3
Boly, Phillips, Tshibanda, Vanhaudenhuyse, Schabus, Dang-Vu, Moonen, Hustinx, Maquet, Laureys (bib9) 2008; 1129
Mantini, Perrucci, Del Gratta, Romani, Corbetta (bib49) 2007; 104
Raichle, Snyder (bib57) 2007; 37
Tyvaert, LeVan, Grova, Dubeau, Gotman (bib68) 2008; 119
Lehmann, Strik, Henggeler, Koenig, Koukkou (bib43) 1998; 29
Gotman (bib29) 2008; 49
Buzsaki, Draguhn (bib13) 2004; 304
Seeley, Crawford, Zhou, Miller, Greicius (bib61) 2009; 62
Wackermann, Lehmann, Michel, Strik (bib71) 1993; 14
Llinas (bib46) 1988; 242
Strik, Lehmann (bib64) 1993; 87
Allen, Josephs, Turner (bib2) 2000; 12
Lehmann (bib40) 1990; 3
Lehmann, Skrandies (bib42) 1984; 23
Mason, Norton, Van Horn, Wegner, Grafton, Macrae (bib50) 2007; 315
Leopold, Murayama, Logothetis (bib45) 2003; 13
Taylor, Seminowicz, Davis (bib65) 2009; 9999
Vulliemoz, Thornton, Rodionov, Carmichael, Guye, Lhatoo, McEvoy, Spinelli, Michel, Duncan, Lemieux (bib70) 2009; 46
Bollimunta, Chen, Schroeder, Ding (bib8) 2008; 28
Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (bib31) 2008; 6
Beckmann, DeLuca, Devlin, Smith (bib5) 2005; 360
Bell, Sejnowski (bib6) 1995; 7
Dehaene, Sergent, Changeux (bib22) 2003; 100
Murray, Brunet, Michel (bib53) 2008; 20
Baars (bib4) 2002; 6
Sridharan, Levitin, Menon (bib62) 2008; 105
Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bib19) 2006; 103
Dehaene, Naccache (bib21) 2001; 79
Lancaster, Woldorff, Parsons, Liotti, Freitas, Rainey, Kochunov, Nickerson, Mikiten, Fox (bib38) 2000; 10
Lakatos, Shah, Knuth, Ulbert, Karmos, Schroeder (bib37) 2005; 94
Lehmann, Pascual-Marqui, Michel (bib44) 2009; 4
Vincent, Patel, Fox, Snyder, Baker, Van Essen, Zempel, Snyder, Corbetta, Raichle (bib69) 2007; 447
D'Argembeau, Collette, Van der Linden, Laureys, Del Fiore, Degueldre, Luxen, Salmon (bib20) 2005; 25
Goldman, Stern, Engel, Cohen (bib28) 2002; 13
Biswal, Yetkin, Haughton, Hyde (bib7) 1995; 34
Katayama, Gianotti, Isotani, Faber, Sasada, Kinoshita, Lehmann (bib34) 2007; 20
Seeley, Menon, Schatzberg, Keller, Glover, Kenna, Reiss, Greicius (bib60) 2007; 27
Koenig, Prichep, Lehmann, Sosa, Braeker, Kleinlogel, Isenhart, John (bib35) 2002; 16
Nir, Mukamel, Dinstein, Privman, Harel, Fisch, Gelbard-Sagiv, Kipervasser, Andelman, Neufeld, Kramer, Arieli, Fried, Malach (bib54) 2008; 11
Tibshirani, Walther (bib67) 2005; 14
Young, McNaughton (bib72) 2009; 19
Baars (bib3) 1997
Grossberg (bib30) 2000; 4
Koenig, Studer, Hubl, Melie, Strik (bib36) 2005; 360
Logothetis, Pauls, Augath, Trinath, Oeltermann (bib47) 2001; 412
Bressler (bib10) 1995; 20
Canolty, Edwards, Dalal, Soltani, Nagarajan, Kirsch, Berger, Barbaro, Knight (bib16) 2006; 313
Bressler, Tognoli (bib11) 2006; 60
Calhoun, Adali, Pearlson, Pekar (bib14) 2001; 14
Logothetis (10.1016/j.neuroimage.2010.02.052_bib47) 2001; 412
Tibshirani (10.1016/j.neuroimage.2010.02.052_bib67) 2005; 14
Raichle (10.1016/j.neuroimage.2010.02.052_bib57) 2007; 37
Bell (10.1016/j.neuroimage.2010.02.052_bib6) 1995; 7
Fransson (10.1016/j.neuroimage.2010.02.052_bib26) 2007; 104
Gotman (10.1016/j.neuroimage.2010.02.052_bib29) 2008; 49
Lehmann (10.1016/j.neuroimage.2010.02.052_bib41) 1980; 48
Dehaene (10.1016/j.neuroimage.2010.02.052_bib22) 2003; 100
Bollimunta (10.1016/j.neuroimage.2010.02.052_bib8) 2008; 28
Taylor (10.1016/j.neuroimage.2010.02.052_bib65) 2009; 9999
Vincent (10.1016/j.neuroimage.2010.02.052_bib69) 2007; 447
Taylor (10.1016/j.neuroimage.2010.02.052_bib66) 2009; 30
Allen (10.1016/j.neuroimage.2010.02.052_bib2) 2000; 12
Lehmann (10.1016/j.neuroimage.2010.02.052_bib43) 1998; 29
Fox (10.1016/j.neuroimage.2010.02.052_bib24) 2005; 102
Grossberg (10.1016/j.neuroimage.2010.02.052_bib30) 2000; 4
Mason (10.1016/j.neuroimage.2010.02.052_bib50) 2007; 315
Koenig (10.1016/j.neuroimage.2010.02.052_bib36) 2005; 360
Lakatos (10.1016/j.neuroimage.2010.02.052_bib37) 2005; 94
Tyvaert (10.1016/j.neuroimage.2010.02.052_bib68) 2008; 119
Changeux (10.1016/j.neuroimage.2010.02.052_bib17) 2004
Leopold (10.1016/j.neuroimage.2010.02.052_bib45) 2003; 13
Allen (10.1016/j.neuroimage.2010.02.052_bib1) 1998; 8
Calhoun (10.1016/j.neuroimage.2010.02.052_bib15) 2008; 29
Nir (10.1016/j.neuroimage.2010.02.052_bib54) 2008; 11
Boly (10.1016/j.neuroimage.2010.02.052_bib9) 2008; 1129
Seeley (10.1016/j.neuroimage.2010.02.052_bib60) 2007; 27
Mantini (10.1016/j.neuroimage.2010.02.052_bib49) 2007; 104
Vulliemoz (10.1016/j.neuroimage.2010.02.052_bib70) 2009; 46
Wackermann (10.1016/j.neuroimage.2010.02.052_bib71) 1993; 14
Baars (10.1016/j.neuroimage.2010.02.052_bib3) 1997
Lehmann (10.1016/j.neuroimage.2010.02.052_bib40) 1990; 3
Bressler (10.1016/j.neuroimage.2010.02.052_bib10) 1995; 20
Fuster (10.1016/j.neuroimage.2010.02.052_bib27) 2006; 60
Schroeder (10.1016/j.neuroimage.2010.02.052_bib58) 2009; 22
Fox (10.1016/j.neuroimage.2010.02.052_bib25) 2006; 103
Katayama (10.1016/j.neuroimage.2010.02.052_bib34) 2007; 20
Beckmann (10.1016/j.neuroimage.2010.02.052_bib5) 2005; 360
D'Argembeau (10.1016/j.neuroimage.2010.02.052_bib20) 2005; 25
Dehaene (10.1016/j.neuroimage.2010.02.052_bib21) 2001; 79
Llinas (10.1016/j.neuroimage.2010.02.052_bib46) 1988; 242
Mohr (10.1016/j.neuroimage.2010.02.052_bib52) 2005; 15
Young (10.1016/j.neuroimage.2010.02.052_bib72) 2009; 19
Hampson (10.1016/j.neuroimage.2010.02.052_bib32) 2002; 15
Britz (10.1016/j.neuroimage.2010.02.052_bib12) 2009; 19
Lancaster (10.1016/j.neuroimage.2010.02.052_bib38) 2000; 10
Biswal (10.1016/j.neuroimage.2010.02.052_bib7) 1995; 34
Murray (10.1016/j.neuroimage.2010.02.052_bib53) 2008; 20
Calhoun (10.1016/j.neuroimage.2010.02.052_bib14) 2001; 14
Buzsaki (10.1016/j.neuroimage.2010.02.052_bib13) 2004; 304
McKeown (10.1016/j.neuroimage.2010.02.052_bib51) 1998; 6
Bressler (10.1016/j.neuroimage.2010.02.052_bib11) 2006; 60
Hagmann (10.1016/j.neuroimage.2010.02.052_bib31) 2008; 6
Steriade (10.1016/j.neuroimage.2010.02.052_bib63) 2001; 86
Sridharan (10.1016/j.neuroimage.2010.02.052_bib62) 2008; 105
Fingelkurts (10.1016/j.neuroimage.2010.02.052_bib23) 2006; 7
Patel (10.1016/j.neuroimage.2010.02.052_bib56) 2006; 31
Maldjian (10.1016/j.neuroimage.2010.02.052_bib48) 2003; 19
Canolty (10.1016/j.neuroimage.2010.02.052_bib16) 2006; 313
Goldman (10.1016/j.neuroimage.2010.02.052_bib28) 2002; 13
Baars (10.1016/j.neuroimage.2010.02.052_bib4) 2002; 6
Corbetta (10.1016/j.neuroimage.2010.02.052_bib18) 2002; 3
Lehmann (10.1016/j.neuroimage.2010.02.052_bib42) 1984; 23
Schroeder (10.1016/j.neuroimage.2010.02.052_bib59) 2009; 32
Lehmann (10.1016/j.neuroimage.2010.02.052_bib44) 2009; 4
Laufs (10.1016/j.neuroimage.2010.02.052_bib39) 2003; 100
Strik (10.1016/j.neuroimage.2010.02.052_bib64) 1993; 87
Koenig (10.1016/j.neuroimage.2010.02.052_bib35) 2002; 16
Damoiseaux (10.1016/j.neuroimage.2010.02.052_bib19) 2006; 103
Pascual-Marqui (10.1016/j.neuroimage.2010.02.052_bib55) 1995; 42
Seeley (10.1016/j.neuroimage.2010.02.052_bib61) 2009; 62
Jann (10.1016/j.neuroimage.2010.02.052_bib33) 2009; 45
20493265 - Neuroimage. 2010 Oct 1;52(4):1173-4
20493268 - Neuroimage. 2010 Oct 1;52(4):1171-2
References_xml – volume: 3
  start-page: 201
  year: 2002
  end-page: 215
  ident: bib18
  article-title: Control of Goal-directed and Stimulus-driven Attention in the Brain
  publication-title: Nat. Rev. Neurosci.
– volume: 19
  start-page: 1233
  year: 2003
  end-page: 1239
  ident: bib48
  article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets
  publication-title: Neuroimage
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bib24
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 140
  year: 2001
  end-page: 151
  ident: bib14
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
– volume: 100
  start-page: 8520
  year: 2003
  end-page: 8525
  ident: bib22
  article-title: A neuronal network model linking subjective reports and objective physiological data during conscious perception
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 9999
  year: 2009
  ident: bib65
  article-title: Two systems of resting state connectivity between the insula and cingulate cortex
  publication-title: Hum. Brain Mapp.
– volume: 119
  start-page: 2762
  year: 2008
  end-page: 2774
  ident: bib68
  article-title: Effects of fluctuating physiological rhythms during prolonged EEG–fMRI studies
  publication-title: Clin. Neurophysiol.
– volume: 45
  start-page: 903
  year: 2009
  end-page: 916
  ident: bib33
  article-title: BOLD correlates of EEG alpha phase-locking and the fMRI default mode network
  publication-title: Neuroimage
– volume: 14
  start-page: 269
  year: 1993
  end-page: 283
  ident: bib71
  article-title: Adaptive segmentation of spontaneous EEG map series into spatially defined microstates
  publication-title: Int. J. Psychophysiol.
– volume: 315
  start-page: 393
  year: 2007
  end-page: 395
  ident: bib50
  article-title: Wandering minds: the default network and stimulus-independent thought
  publication-title: Science
– volume: 32
  start-page: 9
  year: 2009
  end-page: 18
  ident: bib59
  article-title: Low-frequency neuronal oscillations as instruments of sensory selection
  publication-title: Trends Neurosci.
– volume: 6
  start-page: 47
  year: 2002
  end-page: 52
  ident: bib4
  article-title: The conscious access hypothesis: origins and recent evidence
  publication-title: Trends Cogn. Sci.
– volume: 31
  start-page: 1142
  year: 2006
  end-page: 1155
  ident: bib56
  article-title: Determining significant connectivity by 4D spatiotemporal wavelet packet resampling of functional neuroimaging data
  publication-title: Neuroimage
– volume: 16
  start-page: 41
  year: 2002
  end-page: 48
  ident: bib35
  article-title: Millisecond by millisecond, year by year: normative EEG microstates and developmental stages
  publication-title: Neuroimage
– volume: 79
  start-page: 1
  year: 2001
  end-page: 37
  ident: bib21
  article-title: Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework
  publication-title: Cognition
– volume: 20
  start-page: 7
  year: 2007
  end-page: 14
  ident: bib34
  article-title: Classes of multichannel EEG microstates in light and deep hypnotic conditions
  publication-title: Brain Topogr.
– volume: 19
  start-page: 24
  year: 2009
  end-page: 40
  ident: bib72
  article-title: Coupling of theta oscillations between anterior and posterior midline cortex and with the hippocampus in freely behaving rats
  publication-title: Cereb. Cortex
– volume: 1129
  start-page: 119
  year: 2008
  end-page: 129
  ident: bib9
  article-title: Intrinsic brain activity in altered states of consciousness
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 360
  start-page: 1015
  year: 2005
  end-page: 1023
  ident: bib36
  article-title: Brain connectivity at different time-scales measured with EEG
  publication-title: Philos. Trans. Biol. Sci.
– volume: 27
  start-page: 2349
  year: 2007
  end-page: 2356
  ident: bib60
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J. Neurosci.
– volume: 22
  start-page: 24
  year: 2009
  end-page: 26
  ident: bib58
  article-title: The gamma oscillation: master or slave?
  publication-title: Brain Topogr.
– volume: 6
  start-page: e159
  year: 2008
  ident: bib31
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
– volume: 6
  start-page: 368
  year: 1998
  end-page: 372
  ident: bib51
  article-title: Independent component analysis of fMRI data: examining the assumptions
  publication-title: Hum. Brain Mapp.
– year: 1997
  ident: bib3
  publication-title: In the Theater of Consciousness: The Workspace of the Mind
– volume: 103
  start-page: 13848
  year: 2006
  end-page: 13853
  ident: bib19
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 120
  year: 2000
  end-page: 131
  ident: bib38
  article-title: Automated Talairach Atlas labels for functional brain mapping
  publication-title: Hum. Brain Mapp.
– volume: 11
  start-page: 1100
  year: 2008
  end-page: 1108
  ident: bib54
  article-title: Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex
  publication-title: Nat. Neurosci.
– volume: 60
  start-page: 139
  year: 2006
  end-page: 148
  ident: bib11
  article-title: Operational principles of neurocognitive networks
  publication-title: Int. J. Psychophysiol.
– volume: 313
  start-page: 1626
  year: 2006
  end-page: 1628
  ident: bib16
  article-title: High gamma power is phase-locked to theta oscillations in human neocortex
  publication-title: Science
– volume: 20
  start-page: 249
  year: 2008
  end-page: 264
  ident: bib53
  article-title: Topographic ERP analyses: a step-by-step tutorial review
  publication-title: Brain Topogr.
– volume: 304
  start-page: 1926
  year: 2004
  end-page: 1929
  ident: bib13
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
– volume: 15
  start-page: 247
  year: 2002
  end-page: 262
  ident: bib32
  article-title: Detection of functional connectivity using temporal correlations in MR images
  publication-title: Hum. Brain Mapp.
– volume: 46
  start-page: 834
  year: 2009
  end-page: 843
  ident: bib70
  article-title: The spatio-temporal mapping of epileptic networks: combination of EEG–fMRI and EEG source imaging
  publication-title: Neuroimage
– volume: 103
  start-page: 10046
  year: 2006
  end-page: 10051
  ident: bib25
  article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 94
  start-page: 1904
  year: 2005
  end-page: 1911
  ident: bib37
  article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex
  publication-title: J. Neurophysiol.
– volume: 25
  start-page: 616
  year: 2005
  end-page: 624
  ident: bib20
  article-title: Self-referential reflective activity and its relationship with rest: a PET study
  publication-title: Neuroimage
– volume: 3
  start-page: 191
  year: 1990
  end-page: 202
  ident: bib40
  article-title: Past, present and future of topographic mapping
  publication-title: Brain Topogr.
– volume: 29
  start-page: 828
  year: 2008
  end-page: 838
  ident: bib15
  article-title: Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks
  publication-title: Hum. Brain Mapp.
– volume: 60
  start-page: 125
  year: 2006
  end-page: 132
  ident: bib27
  article-title: The cognit: a network model of cortical representation
  publication-title: Int. J. Psychophysiol.
– volume: 87
  start-page: 169
  year: 1993
  end-page: 174
  ident: bib64
  article-title: Data-determined window size and space-oriented segmentation of spontaneous EEG map series
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 13
  start-page: 2487
  year: 2002
  end-page: 2492
  ident: bib28
  article-title: Simultaneous EEG and fMRI of the alpha rhythm
  publication-title: Neuroreport
– volume: 242
  start-page: 1654
  year: 1988
  end-page: 1664
  ident: bib46
  article-title: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function
  publication-title: Science
– volume: 104
  start-page: 13170
  year: 2007
  end-page: 13175
  ident: bib49
  article-title: Electrophysiological signatures of resting state networks in the human brain
  publication-title: Proc. Natl. Acad. Sci.
– volume: 100
  start-page: 11053
  year: 2003
  end-page: 11058
  ident: bib39
  article-title: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 229
  year: 1998
  end-page: 239
  ident: bib1
  article-title: Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction
  publication-title: Neuroimage
– volume: 29
  start-page: 1
  year: 1998
  end-page: 11
  ident: bib43
  article-title: Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts
  publication-title: Int. J. Psychophysiol.
– volume: 49
  start-page: 42
  year: 2008
  end-page: 51
  ident: bib29
  article-title: Epileptic networks studied with EEG–fMRI
  publication-title: Epilepsia
– volume: 30
  start-page: 2731
  year: 2009
  end-page: 2745
  ident: bib66
  article-title: Two systems of resting state connectivity between the insula and cingulate cortex
  publication-title: Hum. Brain Mapp.
– volume: 14
  start-page: 511
  year: 2005
  end-page: 528
  ident: bib67
  article-title: Cluster validation by prediction strength
  publication-title: J. Comput. Graph. Stat.
– volume: 23
  start-page: 227
  year: 1984
  end-page: 250
  ident: bib42
  article-title: Spatial analysis of evoked potentials in man—a review
  publication-title: Prog. Neurobiol.
– volume: 13
  start-page: 422
  year: 2003
  end-page: 433
  ident: bib45
  article-title: Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging
  publication-title: Cereb. Cortex
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib7
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
– volume: 412
  start-page: 150
  year: 2001
  end-page: 157
  ident: bib47
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
– volume: 86
  start-page: 1
  year: 2001
  end-page: 39
  ident: bib63
  article-title: Impact of network activities on neuronal properties in corticothalamic systems
  publication-title: J. Neurophysiol.
– volume: 19
  start-page: 55
  year: 2009
  end-page: 65
  ident: bib12
  article-title: Right parietal brain activity precedes perceptual alternation of bistable stimuli
  publication-title: Cereb. Cortex
– volume: 48
  start-page: 609
  year: 1980
  end-page: 621
  ident: bib41
  article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 105
  start-page: 12569
  year: 2008
  end-page: 12574
  ident: bib62
  article-title: A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 42
  start-page: 658
  year: 1995
  end-page: 665
  ident: bib55
  article-title: Segmentation of brain electrical activity into microstates: model estimation and validation
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 104
  start-page: 15531
  year: 2007
  end-page: 15536
  ident: bib26
  article-title: Resting-state networks in the infant brain
  publication-title: Proc. Natl. Acad. Sci.
– volume: 447
  start-page: 83
  year: 2007
  end-page: 86
  ident: bib69
  article-title: Intrinsic functional architecture in the anaesthetized monkey brain
  publication-title: Nature
– volume: 28
  start-page: 9976
  year: 2008
  end-page: 9988
  ident: bib8
  article-title: Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques
  publication-title: J. Neurosci.
– start-page: 347
  year: 2004
  end-page: 370
  ident: bib17
  article-title: Mechanisms of neural integration at the brain-scale level. The neuronal workspace and microstate models
  publication-title: Microcircuits: The Interface Between Neurons and Global Brain Function
– volume: 20
  start-page: 288
  year: 1995
  end-page: 304
  ident: bib10
  article-title: Large-scale cortical networks and cognition
  publication-title: Brain Res. Rev.
– volume: 7
  start-page: 135
  year: 2006
  end-page: 162
  ident: bib23
  article-title: Timing in cognition and EEG brain dynamics: discreteness versus continuity
  publication-title: Cogn. Process.
– volume: 12
  start-page: 230
  year: 2000
  end-page: 239
  ident: bib2
  article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI
  publication-title: Neuroimage
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: bib5
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond., Ser. B: Biol. Sci.
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: bib6
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
– volume: 4
  start-page: 233
  year: 2000
  end-page: 246
  ident: bib30
  article-title: The complementary brain: unifying brain dynamics and modularity
  publication-title: Trends Cogn. Sci.
– volume: 62
  start-page: 42
  year: 2009
  end-page: 52
  ident: bib61
  article-title: Neurodegenerative diseases target large-scale human brain networks
  publication-title: Neuron
– volume: 37
  start-page: 1083
  year: 2007
  end-page: 1090
  ident: bib57
  article-title: A default mode of brain function: a brief history of an evolving idea
  publication-title: Neuroimage
– volume: 4
  start-page: 7632
  year: 2009
  ident: bib44
  article-title: EEG microstates
  publication-title: Scholarpedia
– volume: 15
  start-page: 1451
  year: 2005
  end-page: 1458
  ident: bib52
  article-title: Brain state-dependent functional hemispheric specialization in men but not in women
  publication-title: Cereb. Cortex
– volume: 25
  start-page: 616
  year: 2005
  ident: 10.1016/j.neuroimage.2010.02.052_bib20
  article-title: Self-referential reflective activity and its relationship with rest: a PET study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.11.048
– volume: 3
  start-page: 201
  year: 2002
  ident: 10.1016/j.neuroimage.2010.02.052_bib18
  article-title: Control of Goal-directed and Stimulus-driven Attention in the Brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn755
– volume: 3
  start-page: 191
  year: 1990
  ident: 10.1016/j.neuroimage.2010.02.052_bib40
  article-title: Past, present and future of topographic mapping
  publication-title: Brain Topogr.
  doi: 10.1007/BF01128876
– volume: 12
  start-page: 230
  year: 2000
  ident: 10.1016/j.neuroimage.2010.02.052_bib2
  article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0599
– volume: 20
  start-page: 288
  year: 1995
  ident: 10.1016/j.neuroimage.2010.02.052_bib10
  article-title: Large-scale cortical networks and cognition
  publication-title: Brain Res. Rev.
  doi: 10.1016/0165-0173(94)00016-I
– volume: 4
  start-page: 233
  year: 2000
  ident: 10.1016/j.neuroimage.2010.02.052_bib30
  article-title: The complementary brain: unifying brain dynamics and modularity
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(00)01464-9
– volume: 10
  start-page: 120
  year: 2000
  ident: 10.1016/j.neuroimage.2010.02.052_bib38
  article-title: Automated Talairach Atlas labels for functional brain mapping
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
– volume: 46
  start-page: 834
  year: 2009
  ident: 10.1016/j.neuroimage.2010.02.052_bib70
  article-title: The spatio-temporal mapping of epileptic networks: combination of EEG–fMRI and EEG source imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.070
– volume: 14
  start-page: 269
  year: 1993
  ident: 10.1016/j.neuroimage.2010.02.052_bib71
  article-title: Adaptive segmentation of spontaneous EEG map series into spatially defined microstates
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/0167-8760(93)90041-M
– volume: 447
  start-page: 83
  year: 2007
  ident: 10.1016/j.neuroimage.2010.02.052_bib69
  article-title: Intrinsic functional architecture in the anaesthetized monkey brain
  publication-title: Nature
  doi: 10.1038/nature05758
– volume: 94
  start-page: 1904
  year: 2005
  ident: 10.1016/j.neuroimage.2010.02.052_bib37
  article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00263.2005
– volume: 105
  start-page: 12569
  year: 2008
  ident: 10.1016/j.neuroimage.2010.02.052_bib62
  article-title: A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0800005105
– volume: 100
  start-page: 11053
  year: 2003
  ident: 10.1016/j.neuroimage.2010.02.052_bib39
  article-title: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1831638100
– year: 1997
  ident: 10.1016/j.neuroimage.2010.02.052_bib3
– volume: 45
  start-page: 903
  year: 2009
  ident: 10.1016/j.neuroimage.2010.02.052_bib33
  article-title: BOLD correlates of EEG alpha phase-locking and the fMRI default mode network
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.001
– volume: 15
  start-page: 247
  year: 2002
  ident: 10.1016/j.neuroimage.2010.02.052_bib32
  article-title: Detection of functional connectivity using temporal correlations in MR images
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10022
– volume: 86
  start-page: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2010.02.052_bib63
  article-title: Impact of network activities on neuronal properties in corticothalamic systems
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2001.86.1.1
– volume: 28
  start-page: 9976
  year: 2008
  ident: 10.1016/j.neuroimage.2010.02.052_bib8
  article-title: Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2699-08.2008
– volume: 30
  start-page: 2731
  year: 2009
  ident: 10.1016/j.neuroimage.2010.02.052_bib66
  article-title: Two systems of resting state connectivity between the insula and cingulate cortex
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20705
– volume: 29
  start-page: 828
  year: 2008
  ident: 10.1016/j.neuroimage.2010.02.052_bib15
  article-title: Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20581
– volume: 313
  start-page: 1626
  year: 2006
  ident: 10.1016/j.neuroimage.2010.02.052_bib16
  article-title: High gamma power is phase-locked to theta oscillations in human neocortex
  publication-title: Science
  doi: 10.1126/science.1128115
– volume: 19
  start-page: 1233
  year: 2003
  ident: 10.1016/j.neuroimage.2010.02.052_bib48
  article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00169-1
– volume: 20
  start-page: 7
  year: 2007
  ident: 10.1016/j.neuroimage.2010.02.052_bib34
  article-title: Classes of multichannel EEG microstates in light and deep hypnotic conditions
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-007-0024-3
– volume: 34
  start-page: 537
  year: 1995
  ident: 10.1016/j.neuroimage.2010.02.052_bib7
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– volume: 15
  start-page: 1451
  year: 2005
  ident: 10.1016/j.neuroimage.2010.02.052_bib52
  article-title: Brain state-dependent functional hemispheric specialization in men but not in women
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhi025
– volume: 87
  start-page: 169
  year: 1993
  ident: 10.1016/j.neuroimage.2010.02.052_bib64
  article-title: Data-determined window size and space-oriented segmentation of spontaneous EEG map series
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(93)90016-O
– volume: 16
  start-page: 41
  year: 2002
  ident: 10.1016/j.neuroimage.2010.02.052_bib35
  article-title: Millisecond by millisecond, year by year: normative EEG microstates and developmental stages
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1070
– volume: 8
  start-page: 229
  year: 1998
  ident: 10.1016/j.neuroimage.2010.02.052_bib1
  article-title: Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0361
– volume: 360
  start-page: 1001
  year: 2005
  ident: 10.1016/j.neuroimage.2010.02.052_bib5
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond., Ser. B: Biol. Sci.
  doi: 10.1098/rstb.2005.1634
– volume: 315
  start-page: 393
  year: 2007
  ident: 10.1016/j.neuroimage.2010.02.052_bib50
  article-title: Wandering minds: the default network and stimulus-independent thought
  publication-title: Science
  doi: 10.1126/science.1131295
– start-page: 347
  year: 2004
  ident: 10.1016/j.neuroimage.2010.02.052_bib17
  article-title: Mechanisms of neural integration at the brain-scale level. The neuronal workspace and microstate models
– volume: 103
  start-page: 13848
  year: 2006
  ident: 10.1016/j.neuroimage.2010.02.052_bib19
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0601417103
– volume: 42
  start-page: 658
  year: 1995
  ident: 10.1016/j.neuroimage.2010.02.052_bib55
  article-title: Segmentation of brain electrical activity into microstates: model estimation and validation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.391164
– volume: 62
  start-page: 42
  year: 2009
  ident: 10.1016/j.neuroimage.2010.02.052_bib61
  article-title: Neurodegenerative diseases target large-scale human brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.024
– volume: 48
  start-page: 609
  year: 1980
  ident: 10.1016/j.neuroimage.2010.02.052_bib41
  article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(80)90419-8
– volume: 19
  start-page: 24
  year: 2009
  ident: 10.1016/j.neuroimage.2010.02.052_bib72
  article-title: Coupling of theta oscillations between anterior and posterior midline cortex and with the hippocampus in freely behaving rats
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn055
– volume: 23
  start-page: 227
  year: 1984
  ident: 10.1016/j.neuroimage.2010.02.052_bib42
  article-title: Spatial analysis of evoked potentials in man—a review
  publication-title: Prog. Neurobiol.
  doi: 10.1016/0301-0082(84)90003-0
– volume: 103
  start-page: 10046
  year: 2006
  ident: 10.1016/j.neuroimage.2010.02.052_bib25
  article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0604187103
– volume: 29
  start-page: 1
  year: 1998
  ident: 10.1016/j.neuroimage.2010.02.052_bib43
  article-title: Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/S0167-8760(97)00098-6
– volume: 13
  start-page: 422
  year: 2003
  ident: 10.1016/j.neuroimage.2010.02.052_bib45
  article-title: Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/13.4.422
– volume: 79
  start-page: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2010.02.052_bib21
  article-title: Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework
  publication-title: Cognition
  doi: 10.1016/S0010-0277(00)00123-2
– volume: 32
  start-page: 9
  year: 2009
  ident: 10.1016/j.neuroimage.2010.02.052_bib59
  article-title: Low-frequency neuronal oscillations as instruments of sensory selection
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2008.09.012
– volume: 22
  start-page: 24
  year: 2009
  ident: 10.1016/j.neuroimage.2010.02.052_bib58
  article-title: The gamma oscillation: master or slave?
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-009-0080-y
– volume: 14
  start-page: 140
  year: 2001
  ident: 10.1016/j.neuroimage.2010.02.052_bib14
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1048
– volume: 412
  start-page: 150
  year: 2001
  ident: 10.1016/j.neuroimage.2010.02.052_bib47
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
  doi: 10.1038/35084005
– volume: 31
  start-page: 1142
  year: 2006
  ident: 10.1016/j.neuroimage.2010.02.052_bib56
  article-title: Determining significant connectivity by 4D spatiotemporal wavelet packet resampling of functional neuroimaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.012
– volume: 6
  start-page: 47
  year: 2002
  ident: 10.1016/j.neuroimage.2010.02.052_bib4
  article-title: The conscious access hypothesis: origins and recent evidence
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(00)01819-2
– volume: 9999
  year: 2009
  ident: 10.1016/j.neuroimage.2010.02.052_bib65
  article-title: Two systems of resting state connectivity between the insula and cingulate cortex
  publication-title: Hum. Brain Mapp.
– volume: 20
  start-page: 249
  year: 2008
  ident: 10.1016/j.neuroimage.2010.02.052_bib53
  article-title: Topographic ERP analyses: a step-by-step tutorial review
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-008-0054-5
– volume: 11
  start-page: 1100
  year: 2008
  ident: 10.1016/j.neuroimage.2010.02.052_bib54
  article-title: Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2177
– volume: 7
  start-page: 135
  year: 2006
  ident: 10.1016/j.neuroimage.2010.02.052_bib23
  article-title: Timing in cognition and EEG brain dynamics: discreteness versus continuity
  publication-title: Cogn. Process.
  doi: 10.1007/s10339-006-0035-0
– volume: 360
  start-page: 1015
  year: 2005
  ident: 10.1016/j.neuroimage.2010.02.052_bib36
  article-title: Brain connectivity at different time-scales measured with EEG
  publication-title: Philos. Trans. Biol. Sci.
  doi: 10.1098/rstb.2005.1649
– volume: 13
  start-page: 2487
  year: 2002
  ident: 10.1016/j.neuroimage.2010.02.052_bib28
  article-title: Simultaneous EEG and fMRI of the alpha rhythm
  publication-title: Neuroreport
  doi: 10.1097/00001756-200212200-00022
– volume: 6
  start-page: 368
  year: 1998
  ident: 10.1016/j.neuroimage.2010.02.052_bib51
  article-title: Independent component analysis of fMRI data: examining the assumptions
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1998)6:5/6<368::AID-HBM7>3.0.CO;2-E
– volume: 4
  start-page: 7632
  year: 2009
  ident: 10.1016/j.neuroimage.2010.02.052_bib44
  article-title: EEG microstates
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.7632
– volume: 104
  start-page: 15531
  year: 2007
  ident: 10.1016/j.neuroimage.2010.02.052_bib26
  article-title: Resting-state networks in the infant brain
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0704380104
– volume: 102
  start-page: 9673
  year: 2005
  ident: 10.1016/j.neuroimage.2010.02.052_bib24
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0504136102
– volume: 49
  start-page: 42
  year: 2008
  ident: 10.1016/j.neuroimage.2010.02.052_bib29
  article-title: Epileptic networks studied with EEG–fMRI
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2008.01509.x
– volume: 6
  start-page: e159
  year: 2008
  ident: 10.1016/j.neuroimage.2010.02.052_bib31
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060159
– volume: 37
  start-page: 1083
  year: 2007
  ident: 10.1016/j.neuroimage.2010.02.052_bib57
  article-title: A default mode of brain function: a brief history of an evolving idea
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.041
– volume: 60
  start-page: 125
  year: 2006
  ident: 10.1016/j.neuroimage.2010.02.052_bib27
  article-title: The cognit: a network model of cortical representation
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2005.12.015
– volume: 104
  start-page: 13170
  year: 2007
  ident: 10.1016/j.neuroimage.2010.02.052_bib49
  article-title: Electrophysiological signatures of resting state networks in the human brain
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0700668104
– volume: 7
  start-page: 1129
  year: 1995
  ident: 10.1016/j.neuroimage.2010.02.052_bib6
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– volume: 14
  start-page: 511
  year: 2005
  ident: 10.1016/j.neuroimage.2010.02.052_bib67
  article-title: Cluster validation by prediction strength
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186005X59243
– volume: 304
  start-page: 1926
  year: 2004
  ident: 10.1016/j.neuroimage.2010.02.052_bib13
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
  doi: 10.1126/science.1099745
– volume: 100
  start-page: 8520
  year: 2003
  ident: 10.1016/j.neuroimage.2010.02.052_bib22
  article-title: A neuronal network model linking subjective reports and objective physiological data during conscious perception
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1332574100
– volume: 60
  start-page: 139
  year: 2006
  ident: 10.1016/j.neuroimage.2010.02.052_bib11
  article-title: Operational principles of neurocognitive networks
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2005.12.008
– volume: 27
  start-page: 2349
  year: 2007
  ident: 10.1016/j.neuroimage.2010.02.052_bib60
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5587-06.2007
– volume: 19
  start-page: 55
  year: 2009
  ident: 10.1016/j.neuroimage.2010.02.052_bib12
  article-title: Right parietal brain activity precedes perceptual alternation of bistable stimuli
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn056
– volume: 242
  start-page: 1654
  year: 1988
  ident: 10.1016/j.neuroimage.2010.02.052_bib46
  article-title: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function
  publication-title: Science
  doi: 10.1126/science.3059497
– volume: 1129
  start-page: 119
  year: 2008
  ident: 10.1016/j.neuroimage.2010.02.052_bib9
  article-title: Intrinsic brain activity in altered states of consciousness
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1417.015
– volume: 119
  start-page: 2762
  year: 2008
  ident: 10.1016/j.neuroimage.2010.02.052_bib68
  article-title: Effects of fluctuating physiological rhythms during prolonged EEG–fMRI studies
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2008.07.284
– reference: 20493268 - Neuroimage. 2010 Oct 1;52(4):1171-2
– reference: 20493265 - Neuroimage. 2010 Oct 1;52(4):1173-4
SSID ssj0009148
Score 2.5603714
Snippet Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1162
SubjectTerms Action Potentials - physiology
Adult
Biological Clocks - physiology
Brain
Brain - physiology
Cognition & reasoning
Default-mode network
EEG
EEG microstates
EEG topography
Electroencephalography - methods
Female
fMRI
GLM
Humans
ICA
Magnetic Resonance Imaging - methods
Male
Medical research
Nerve Net - physiology
Rapid dynamics
Rest - physiology
Resting state
Resting-state networks
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagSIgF8aa85IHVkDhxEosB8SggxGMBqZsVx7ZUVJJC2__PXeK0E1WHDEl8SXTOnc_2d98Rcg4jrtaFNix0QrDYaAt-MLIszQNnTepkYGu2z7fk6TN-7ou-X3Abe1hl6xNrR22qAtfIL5EJL8OsrOB69MOwahTurvoSGqtkDanLENKV9tM56W4YN6lwImIZNPBIngbfVfNFDr7Baj3Ai18Egv83PP0XftbD0MMW2fTxI71pOnybrNhyh6y_-h3yXfJ6-_5yTwusuTHEMJJWjvZ6j3RSjTw5NUXSJngEnAwMxdIcMHqxOrGIlg0onJqmTv14j3w-9D7unpgvmcAKIZIJczpMBJd5KjNpksjmIjNppLXTOohiC_bNtUkKcCrSxTq0eWalhStWF84m3EX7pFNWpT0klDucquUyQiBbKJ2EuSQ3cIg8DrlzXZK2mlKF5xPHshZD1QLHvtRcxwp1rAKuQMddEs4kRw2nxhIysu0M1eaMgpdT4PiXkL2ayfq4ookXlpQ-afteefseq_nf2CV0dhssE7db8tJW07FCXh_MpE8WNMH5osxi2SUHzV81Uwh8QQbS2dHi1x-TjRrPUMMLT0hn8ju1pxAmTfRZbQt_xNkSRA
  priority: 102
  providerName: ProQuest
Title BOLD correlates of EEG topography reveal rapid resting-state network dynamics
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191000220X
https://dx.doi.org/10.1016/j.neuroimage.2010.02.052
https://www.ncbi.nlm.nih.gov/pubmed/20188188
https://www.proquest.com/docview/1506842440
https://www.proquest.com/docview/748981806
https://www.proquest.com/docview/754879849
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSIgLYqcslQ9cQxMnTmJxglIoW0EsUm9WHNtSEaQVLVe-nXHiFHEAVeKQRFkmsiaexcqbNwCHGHGlzKXyAsOYFymp0Q-G2ksy32iVGO7rku2zF3efo6s-689Bu66FsbBK5_srn156a3el5bTZGg0GrUfMDDDc4HqjJHHx-_OwSEMe49RePLm87va-uXeDqKqIY6FnBRygp4J5lbSRgzc0Xofzokc-o79Fqd-y0DIana_CiksjyUk10jWY08U6LN26H-UbcHt6d3NGctt649Vmk2RoSKdzQSbDkeOoJpa7CV-BJwNFbIcODGJeWV9EigobTlTVrn68Cc_nnad213OdE7ycsXjiGRnEjPIs4SlXcagzlqoklNJI6YeRRjOnUsU5-hZuIhnoLNVc4xUtc6NjasItWCiGhd4BQo1dsWU8tHi2gBuOS0qqcGNZFFBjGpDUmhK5oxW33S1eRY0fexHfOhZWx8KnAnXcgGAqOaqoNWaQ4fXHEHXpKDo7gf5_BtnjqeyPKTaj9H797YUz87Gw9IypLRX0G0Cmt9FA7V-XrNDDj7Gw9D62oD7-4xG7bORpxBuwXc2qqUJwBClKp7v_GvweLJeohxKEuA8Lk_cPfYDJ1EQ2Yf7oM8B90k-aaDjth5v7pjMgPJ52evcPX5ZNJCo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anQRcEN-UDfABjobYiZNYE0KMdXSsLQht0m5eHNtS0ZYU2gntn9rfuOfEaU-betmhh7R5TvVsv4_4934P4D16XK1LbShzQtDEaIt2MLY0KyJnTeZkZBu2z0k6PE5-nIiTDbjqamE8rLKziY2hNnXp35F_8kx4ua_Kir7M_lLfNcqfrnYtNNplcWgv_2PKNv98sIfz-4Hz_cHRtyENXQVoKUS6oE6zVHBZZDKXJo1tIXKTxVo7raM4sbgFuDZpiftOukQzW-RWWvzG6tLZlLsYx70Hm0mMqUwPNncHk1-_VzS_LGmL70RMc8ZkwA61iLKGoXJ6jnYiQMr4x0jwmxziTQFv4_j2H8OjELGSr-0SewIbtnoK98fhTP4ZjHd_jvZI6bt8nPnAldSODAbfyaKeBTps4mmicAi8mBrim4Ggv6RNKROpWhg6MZdVcT4t58_h-E7U-QJ6VV3ZV0C488lhIWMPnWPSScxeucGPKBLGnetD1mlKlYHB3DfSOFMdVO2PWulYeR2riCvUcR_YUnLWsnisISO7yVBdlSraVYWuZg3ZnaVsiGTaCGVN6e1u7lWwKHO1Wv99IMuf0Rb4A56isvXFXHkmIV-7n95yi89QZZ7IPrxsV9VSIfgPcpTOX9_--HfwYHg0HqnRweRwCx42aIoG3LgNvcW_C_sGg7SFfht2BoHTu96M1wpcUrU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH_ahjTtgvgaFAb4AMew2ImTWAghoC0b-4DDJvVm4tiWirak0E5o_xp_He8lTnva1MsOPaTNc6pnvw_Hv_d7AG8w4hpTGRtxL2WUWuPQDyYuysvYO5t7FbuW7fM0OzhPv03kZAP-9bUwBKvsfWLrqG1T0TvyfWLCK6gqK973ARbxYzj-OPsdUQcpOmnt22l0S-TIXf_F7dv8w-EQ5_qtEOPR2ZeDKHQYiCops0XkDc-kUGWuCmWzxJWysHlijDcmTlKH5iCMzSq0QeVTw11ZOOXwG2cq7zLhExx3E-7lieRkY_kkXxH-8rQrw5NJVHCuAoqow5a1XJXTS_QYAVwm3sVS3BQab0p92xA4fgD3Q-7KPnWL7SFsuPoRbJ-E0_nHcPL5-_GQVdTv44JSWNZ4Nhp9ZYtmFoixGRFG4RB4MbWM2oJg5IzaoiZWd4B0Zq_r8nJazZ_A-Z0ocxe26qZ2z4AJT9vEUiUEouPKK9zHCosfWaZceD-AvNeUrgKXObXUuNA9aO2XXulYk451LDTqeAB8KTnr-DzWkFH9ZOi-XhU9rMags4bs-6VsyGm6XGVN6b1-7nXwLXO9soQBsOXP6BXoqKesXXM118QpRFX82S230F5VFakawNNuVS0Vgv-gQOni-e2Pfw3baIL6-PD06AXstLCKFuW4B1uLP1fuJWZrC_OqNQsGP-_aDv8D6IhVhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BOLD+correlates+of+EEG+topography+reveal+rapid+resting-state+network+dynamics&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Britz%2C+Juliane&rft.au=Van+De+Ville%2C+Dimitri&rft.au=Michel%2C+Christoph+M.&rft.date=2010-10-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=52&rft.issue=4&rft.spage=1162&rft.epage=1170&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.02.052&rft.externalDocID=S105381191000220X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon