BOLD correlates of EEG topography reveal rapid resting-state network dynamics
Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable glo...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 52; no. 4; pp. 1162 - 1170 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2010
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2010.02.052 |
Cover
Loading…
Abstract | Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states (so-called microstates), but they remain quasi-stationary for only about 100ms. In order to test the relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated across all subjects. The convolution of the time course of these maps with the hemodynamic response function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective interoceptive–autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests. |
---|---|
AbstractList | Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10 s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states (so-called microstates), but they remain quasi-stationary for only about 100 ms. In order to test the relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated across all subjects. The convolution of the time course of these maps with the hemodynamic response function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective interoceptive-autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests. Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states (so-called microstates), but they remain quasi-stationary for only about 100ms. In order to test the relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated across all subjects. The convolution of the time course of these maps with the hemodynamic response function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective interoceptive–autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests. Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states (so-called microstates), but they remain quasi-stationary for only about 100 ms. In order to test the relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated across all subjects. The convolution of the time course of these maps with the hemodynamic response function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective interoceptive-autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests.Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states (so-called microstates), but they remain quasi-stationary for only about 100 ms. In order to test the relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated across all subjects. The convolution of the time course of these maps with the hemodynamic response function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective interoceptive-autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests. Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states (so-called microstates), but they remain quasi-stationary for only about 100 ms. In order to test the relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated across all subjects. The convolution of the time course of these maps with the hemodynamic response function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective interoceptive-autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests. |
Author | Michel, Christoph M. Britz, Juliane Van De Ville, Dimitri |
Author_xml | – sequence: 1 givenname: Juliane surname: Britz fullname: Britz, Juliane email: Juliane.Britz@unige.ch organization: Department of Fundamental Neuroscience, University of Geneva, Switzerland – sequence: 2 givenname: Dimitri surname: Van De Ville fullname: Van De Ville, Dimitri organization: Department of Radiology and Medical Informatics, University of Geneva, Switzerland – sequence: 3 givenname: Christoph M. surname: Michel fullname: Michel, Christoph M. organization: Department of Fundamental Neuroscience, University of Geneva, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20188188$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9vGyEQxVGVKv-ar1Ct1ENP6wILu3Cp2iRuWslVLu0Zseysi7MGF3YT-dtnLCeq5EstIcGMfvOA9y7ISYgBCCkYnTHK6k-rWYApRb-2S5hxim3KZ1TyN-ScUS1LLRt-sjvLqlSM6TNykfOKUqqZUKfkDEeUwnVOfl7fL24LF1OCwY6Qi9gX8_ldMcZNXCa7-bMtEjyCHQosfIdFHn1YlnlEuggwPsX0UHTbYNfe5XfkbW-HDFcv-yX5_W3-6-Z7ubi_-3HzdVE6Keux7FtWS65to5Xu6gqsVF1TtW3ftrQSQBvK2652TV3pXrQMrAIN2IHW9VDzvrokH_e6mxT_Tvgks_bZwTDYAHHKppFCobjQ_yeF0ugErZH8cECu4pQCfsMwSWsluBAUqfcv1NSuoTObhCGkrXl1FIHPe8ClmHOC3jiPXvkYxmT9YBg1uwjNyvyLcDdNDeUGI0QBdSDwescRo9f7UUDvHz0kk52H4KDzCdxouuiPEflyIOIGH7yzwwNsj5N4BtJt0mA |
CitedBy_id | crossref_primary_10_1002_hbm_25430 crossref_primary_10_1016_j_neuroimage_2017_11_062 crossref_primary_10_1016_j_schres_2013_12_008 crossref_primary_10_1016_j_neuroimage_2015_06_035 crossref_primary_10_3389_fnins_2023_1174399 crossref_primary_10_3389_fpsyt_2019_00548 crossref_primary_10_1002_brb3_583 crossref_primary_10_1007_s10548_022_00929_6 crossref_primary_10_3389_fnins_2019_00542 crossref_primary_10_1007_s10548_020_00802_4 crossref_primary_10_1109_OJEMB_2024_3399469 crossref_primary_10_3389_fnhum_2016_00372 crossref_primary_10_1109_TCSS_2021_3135425 crossref_primary_10_1007_s10548_023_00958_9 crossref_primary_10_1038_s41598_020_79812_y crossref_primary_10_1371_journal_pone_0022912 crossref_primary_10_1016_j_bbr_2024_115319 crossref_primary_10_1016_j_neuroimage_2021_117861 crossref_primary_10_1016_j_clinph_2021_12_002 crossref_primary_10_3389_fneur_2014_00218 crossref_primary_10_1002_hbm_25426 crossref_primary_10_1097_j_pain_0000000000002281 crossref_primary_10_1093_cercor_bhab404 crossref_primary_10_1007_s10548_024_01099_3 crossref_primary_10_1016_j_nicl_2018_05_028 crossref_primary_10_3389_fnins_2021_636424 crossref_primary_10_3390_bios15030180 crossref_primary_10_1088_1741_2552_acaccb crossref_primary_10_3389_fnhum_2016_00369 crossref_primary_10_1016_j_neuroimage_2014_12_033 crossref_primary_10_1159_000363342 crossref_primary_10_1162_jocn_a_02022 crossref_primary_10_1111_cns_14896 crossref_primary_10_3389_fnins_2020_00323 crossref_primary_10_1016_j_bpsc_2021_11_006 crossref_primary_10_1007_s10548_023_01001_7 crossref_primary_10_1016_j_neuroimage_2017_09_010 crossref_primary_10_1111_cns_70220 crossref_primary_10_1142_S0219635212500203 crossref_primary_10_1016_j_bbr_2019_111964 crossref_primary_10_1109_JBHI_2022_3232811 crossref_primary_10_3389_fnhum_2022_857768 crossref_primary_10_1007_s00702_016_1548_z crossref_primary_10_1007_s11357_024_01181_5 crossref_primary_10_1109_TNSRE_2024_3438674 crossref_primary_10_3389_fnins_2023_1188695 crossref_primary_10_1007_s10548_020_00780_7 crossref_primary_10_1007_s10548_024_01066_y crossref_primary_10_1016_j_clinph_2020_10_006 crossref_primary_10_3389_fnhum_2014_00195 crossref_primary_10_5498_wjp_v14_i1_128 crossref_primary_10_1007_s11571_024_10095_z crossref_primary_10_1177_15500594251317751 crossref_primary_10_1016_j_neuroimage_2023_120372 crossref_primary_10_31083_j_jin2102052 crossref_primary_10_1016_j_neuroimage_2023_120371 crossref_primary_10_1109_THMS_2023_3235003 crossref_primary_10_1016_j_nicl_2016_08_008 crossref_primary_10_1007_s41252_023_00374_x crossref_primary_10_3389_fnins_2019_00443 crossref_primary_10_1016_j_nicl_2020_102488 crossref_primary_10_1038_ncomms8751 crossref_primary_10_1088_1741_2552_ad95be crossref_primary_10_3389_fnins_2019_00563 crossref_primary_10_1371_journal_pone_0032508 crossref_primary_10_1109_TAFFC_2024_3399729 crossref_primary_10_1007_s11571_020_09643_0 crossref_primary_10_1016_j_neuroimage_2017_09_020 crossref_primary_10_1111_epi_13308 crossref_primary_10_1038_s41467_022_34410_6 crossref_primary_10_1002_hbm_22058 crossref_primary_10_1002_hbm_26536 crossref_primary_10_1016_j_jpsychires_2025_01_005 crossref_primary_10_1089_brain_2020_0848 crossref_primary_10_1109_JBHI_2022_3164907 crossref_primary_10_1016_j_neuroimage_2012_01_042 crossref_primary_10_1016_j_neuroscience_2013_02_032 crossref_primary_10_1109_TNSRE_2022_3156546 crossref_primary_10_7717_peerj_17623 crossref_primary_10_1093_braincomms_fcae054 crossref_primary_10_1016_j_compbiomed_2024_108332 crossref_primary_10_1177_17562864241227293 crossref_primary_10_1371_journal_pone_0251842 crossref_primary_10_1016_j_clinph_2016_01_025 crossref_primary_10_1016_j_neuroimage_2017_12_074 crossref_primary_10_1177_15500594231204174 crossref_primary_10_1002_hbm_26525 crossref_primary_10_3390_brainsci13091288 crossref_primary_10_1007_s00332_019_09552_5 crossref_primary_10_1016_j_jad_2020_03_175 crossref_primary_10_1016_j_brainresbull_2025_111223 crossref_primary_10_1109_ACCESS_2022_3185257 crossref_primary_10_1213_ANE_0000000000001353 crossref_primary_10_1093_scan_nsae012 crossref_primary_10_1186_s12888_023_05347_x crossref_primary_10_1016_j_neuroimage_2017_11_026 crossref_primary_10_1080_26941899_2024_2426785 crossref_primary_10_1016_j_neuroimage_2012_07_031 crossref_primary_10_1016_j_ynirp_2022_100089 crossref_primary_10_3389_fnagi_2024_1486481 crossref_primary_10_1016_j_pnpbp_2022_110514 crossref_primary_10_1038_s41467_018_03462_y crossref_primary_10_3389_fnhum_2020_576114 crossref_primary_10_1016_j_neuroscience_2023_01_021 crossref_primary_10_1002_hbm_24418 crossref_primary_10_1063_5_0203249 crossref_primary_10_1016_j_neuroimage_2018_04_061 crossref_primary_10_1177_17562864241276202 crossref_primary_10_1016_j_psychres_2020_112938 crossref_primary_10_1002_hbm_21265 crossref_primary_10_1093_cercor_bhs352 crossref_primary_10_3389_fnins_2021_715512 crossref_primary_10_1007_s10548_023_00939_y crossref_primary_10_1089_brain_2014_0280 crossref_primary_10_1038_s41598_022_07403_0 crossref_primary_10_1109_ACCESS_2024_3354711 crossref_primary_10_1177_15500594221084994 crossref_primary_10_1007_s10548_023_00949_w crossref_primary_10_3389_fnins_2024_1492529 crossref_primary_10_1016_j_neuroscience_2017_02_053 crossref_primary_10_1016_j_neuroimage_2013_03_036 crossref_primary_10_1016_j_neuroimage_2014_11_001 crossref_primary_10_1016_j_jpsychires_2024_06_034 crossref_primary_10_1002_hbm_23676 crossref_primary_10_1002_hbm_24529 crossref_primary_10_3389_fnins_2023_1257511 crossref_primary_10_3389_fnhum_2020_00182 crossref_primary_10_3390_brainsci7060058 crossref_primary_10_3390_jpm11111216 crossref_primary_10_1016_j_jad_2024_12_095 crossref_primary_10_3389_fnins_2021_697909 crossref_primary_10_1016_j_neuroimage_2022_119188 crossref_primary_10_3389_fnins_2025_1492225 crossref_primary_10_1002_cne_23368 crossref_primary_10_1007_s10548_020_00805_1 crossref_primary_10_1016_j_neunet_2022_11_024 crossref_primary_10_3389_fnins_2021_715861 crossref_primary_10_1007_s10548_022_00905_0 crossref_primary_10_1016_j_cortex_2016_07_006 crossref_primary_10_3390_brainsci13010005 crossref_primary_10_1080_17470919_2022_2083228 crossref_primary_10_1016_j_neuroimage_2014_04_002 crossref_primary_10_1007_s10548_017_0570_2 crossref_primary_10_1016_j_neuroimage_2012_02_031 crossref_primary_10_1016_j_bpsc_2019_04_004 crossref_primary_10_1007_s11571_013_9274_9 crossref_primary_10_1016_j_bbih_2022_100523 crossref_primary_10_1371_journal_pone_0028630 crossref_primary_10_3389_fnint_2023_1234471 crossref_primary_10_1016_j_neulet_2024_137986 crossref_primary_10_1016_j_neuron_2011_03_018 crossref_primary_10_1007_s11571_012_9196_y crossref_primary_10_3389_fnins_2019_00415 crossref_primary_10_1016_j_neucli_2022_102839 crossref_primary_10_1038_s41467_020_16914_1 crossref_primary_10_1007_s10548_023_01004_4 crossref_primary_10_1016_j_neuroimage_2020_116786 crossref_primary_10_1017_S0140525X13001489 crossref_primary_10_1111_j_1528_1167_2012_03587_x crossref_primary_10_1007_s11571_021_09726_6 crossref_primary_10_1088_1741_2552_ada4de crossref_primary_10_3389_fnhum_2020_00288 crossref_primary_10_1016_j_neuroimage_2019_01_067 crossref_primary_10_1002_hbm_24429 crossref_primary_10_1016_j_neuroimage_2015_06_001 crossref_primary_10_1111_desc_13231 crossref_primary_10_3389_fpsyt_2019_00582 crossref_primary_10_1007_s00406_023_01642_6 crossref_primary_10_1089_brain_2014_0230 crossref_primary_10_1186_s10194_023_01551_y crossref_primary_10_1063_5_0247498 crossref_primary_10_3389_fpsyt_2019_00826 crossref_primary_10_3390_brainsci10100668 crossref_primary_10_3389_fnhum_2021_655576 crossref_primary_10_1016_j_cortex_2021_02_014 crossref_primary_10_1016_j_neuroimage_2017_07_001 crossref_primary_10_1017_S0033291724001132 crossref_primary_10_1093_brain_awz132 crossref_primary_10_3389_fnins_2022_1032696 crossref_primary_10_1109_JSTSP_2016_2600023 crossref_primary_10_7759_cureus_64961 crossref_primary_10_1016_j_neuroimage_2014_10_014 crossref_primary_10_1007_s00213_022_06149_x crossref_primary_10_3389_fninf_2017_00074 crossref_primary_10_1016_j_neuroimage_2017_08_058 crossref_primary_10_1038_s41598_020_74790_7 crossref_primary_10_1109_TBME_2021_3087177 crossref_primary_10_3389_fnins_2018_00714 crossref_primary_10_3389_fnins_2021_755721 crossref_primary_10_1186_s40708_022_00179_z crossref_primary_10_3389_fnbeh_2020_554147 crossref_primary_10_1007_s10548_016_0520_4 crossref_primary_10_1186_s12888_020_02743_5 crossref_primary_10_1098_rsta_2011_0080 crossref_primary_10_3389_fnhum_2018_00029 crossref_primary_10_1103_PhysRevE_99_012421 crossref_primary_10_1016_j_neubiorev_2012_08_002 crossref_primary_10_1109_RBME_2011_2170675 crossref_primary_10_1073_pnas_2414636122 crossref_primary_10_1089_brain_2016_0476 crossref_primary_10_1093_cercor_bhac229 crossref_primary_10_1016_j_neuroimage_2016_10_002 crossref_primary_10_1002_hbm_23637 crossref_primary_10_1016_j_cnp_2017_05_002 crossref_primary_10_1016_j_seizure_2018_07_007 crossref_primary_10_1134_S0362119713010106 crossref_primary_10_1016_j_seizure_2021_03_020 crossref_primary_10_1038_s41598_019_49636_6 crossref_primary_10_1016_j_bpsc_2017_04_008 crossref_primary_10_1016_j_yebeh_2025_110365 crossref_primary_10_1007_s10548_023_00993_6 crossref_primary_10_1016_j_jpsychires_2023_07_020 crossref_primary_10_3389_fncom_2019_00091 crossref_primary_10_3389_fnins_2015_00438 crossref_primary_10_1089_brain_2014_0250 crossref_primary_10_1007_s10548_023_00971_y crossref_primary_10_3389_fneur_2024_1452243 crossref_primary_10_3390_brainsci11010056 crossref_primary_10_1038_s41398_020_01185_7 crossref_primary_10_1016_j_bbr_2024_114959 crossref_primary_10_1155_2011_813870 crossref_primary_10_3389_fnsys_2022_786200 crossref_primary_10_3389_fnins_2023_1159019 crossref_primary_10_3389_fpsyg_2018_01346 crossref_primary_10_11604_pamj_2024_48_24_40977 crossref_primary_10_52547_shefa_9_1_14 crossref_primary_10_3389_fnbeh_2014_00163 crossref_primary_10_1523_ENEURO_0345_22_2022 crossref_primary_10_1007_s10548_021_00835_3 crossref_primary_10_1016_j_cortex_2016_06_004 crossref_primary_10_26599_BSA_2020_9050019 crossref_primary_10_3389_fpsyt_2022_988939 crossref_primary_10_1016_j_mri_2016_10_015 crossref_primary_10_1016_j_bpsgos_2024_100371 crossref_primary_10_1016_j_neuroimage_2015_12_034 crossref_primary_10_1016_j_schres_2023_11_014 crossref_primary_10_1162_netn_a_00411 crossref_primary_10_1186_s10194_022_01414_y crossref_primary_10_1016_j_biopsycho_2022_108319 crossref_primary_10_1016_j_bpsc_2019_07_006 crossref_primary_10_1111_head_14622 crossref_primary_10_1016_j_schres_2012_07_016 crossref_primary_10_1109_JBHI_2020_3008052 crossref_primary_10_3389_fpsyt_2021_775156 crossref_primary_10_1002_hbm_25834 crossref_primary_10_1016_j_neuroimage_2011_12_039 crossref_primary_10_1002_hbm_21117 crossref_primary_10_1016_j_jad_2023_11_018 crossref_primary_10_1007_s10548_014_0409_z crossref_primary_10_1016_j_neuroimage_2020_117393 crossref_primary_10_1371_journal_pone_0277382 crossref_primary_10_1016_j_neuroimage_2019_03_029 crossref_primary_10_1038_s41593_020_0639_1 crossref_primary_10_1002_brb3_1630 crossref_primary_10_1007_s10548_013_0319_5 crossref_primary_10_1186_s13408_020_00100_0 crossref_primary_10_1016_j_heares_2018_12_001 crossref_primary_10_3346_jkms_2017_32_7_1160 crossref_primary_10_1007_s10548_023_01010_6 crossref_primary_10_1016_j_neuroimage_2020_117266 crossref_primary_10_3389_fnagi_2020_587396 crossref_primary_10_1016_j_neuroimage_2014_10_055 crossref_primary_10_1007_s10548_014_0387_1 crossref_primary_10_1093_braincomms_fcae150 crossref_primary_10_1016_j_sleep_2025_01_027 crossref_primary_10_3390_su13126822 crossref_primary_10_3389_fncom_2016_00046 crossref_primary_10_1162_netn_a_00114 crossref_primary_10_3390_brainsci13121706 crossref_primary_10_3389_fncom_2018_00070 crossref_primary_10_1007_s10548_016_0522_2 crossref_primary_10_1007_s10548_014_0399_x crossref_primary_10_31083_j_jin2309176 crossref_primary_10_1016_j_ijpsycho_2023_02_002 crossref_primary_10_1016_j_neuroimage_2021_118763 crossref_primary_10_1089_brain_2012_0135 crossref_primary_10_1016_j_neuroimage_2020_117372 crossref_primary_10_3389_fnhum_2019_00056 crossref_primary_10_1016_j_biopsycho_2025_109008 crossref_primary_10_1080_27706710_2024_2388106 crossref_primary_10_3389_fnhum_2019_00173 crossref_primary_10_1002_hbm_22865 crossref_primary_10_1016_j_neuropsychologia_2023_108519 crossref_primary_10_1109_TNSRE_2024_3418846 crossref_primary_10_1016_j_pneurobio_2016_11_002 crossref_primary_10_1093_braincomms_fcad270 crossref_primary_10_1007_s10548_013_0276_z crossref_primary_10_1038_s42003_021_02494_3 crossref_primary_10_1109_TAFFC_2021_3139104 crossref_primary_10_3389_fpsyt_2020_600606 crossref_primary_10_1016_j_pscychresns_2023_111594 crossref_primary_10_1371_journal_pone_0114163 crossref_primary_10_1177_1073858417728032 crossref_primary_10_1016_j_neuroimage_2017_09_065 crossref_primary_10_1093_cercor_bhs416 crossref_primary_10_1016_j_bpsc_2024_11_012 crossref_primary_10_1017_dsj_2020_28 crossref_primary_10_1007_s10548_023_01011_5 crossref_primary_10_1016_j_schres_2017_06_044 crossref_primary_10_3389_fnhum_2024_1372985 crossref_primary_10_1016_j_neuroimage_2021_117760 crossref_primary_10_1088_1741_2552_ab9ada crossref_primary_10_1016_j_aap_2024_107769 crossref_primary_10_1016_j_neuroimage_2021_118850 crossref_primary_10_1155_2018_9270685 crossref_primary_10_1007_s10548_024_01077_9 crossref_primary_10_3390_brainsci12121731 crossref_primary_10_1089_brain_2014_0336 crossref_primary_10_3346_jkms_2017_32_3_514 crossref_primary_10_1038_s41598_020_72590_7 crossref_primary_10_3389_fnins_2023_1145065 crossref_primary_10_3389_fpsyg_2023_1109949 crossref_primary_10_1016_j_neuroimage_2016_07_050 crossref_primary_10_1162_neco_a_01229 crossref_primary_10_1016_j_neuroimage_2010_05_033 crossref_primary_10_1016_j_neuroimage_2018_01_041 crossref_primary_10_1016_j_neuroimage_2010_05_034 crossref_primary_10_1038_s42003_024_06876_1 crossref_primary_10_1088_1741_2552_ac975b crossref_primary_10_1162_jocn_a_01636 crossref_primary_10_1002_hbm_24949 crossref_primary_10_3389_fnins_2022_848737 crossref_primary_10_3389_fpsyt_2021_653642 crossref_primary_10_3389_fnins_2023_1254423 crossref_primary_10_1038_s41386_020_00800_x crossref_primary_10_1038_s41598_020_79423_7 crossref_primary_10_1093_cercor_bhad143 crossref_primary_10_1007_s11571_023_10016_6 crossref_primary_10_3389_fpsyt_2021_638722 crossref_primary_10_1038_s41598_020_69999_5 crossref_primary_10_1109_JSEN_2022_3146576 crossref_primary_10_1007_s12311_023_01534_4 crossref_primary_10_1016_j_nicl_2019_102132 crossref_primary_10_1523_JNEUROSCI_5669_11_2012 crossref_primary_10_1002_dneu_22570 crossref_primary_10_2147_NDT_S456486 crossref_primary_10_1007_s10548_015_0460_4 crossref_primary_10_1016_j_neuroimage_2015_03_062 crossref_primary_10_1016_j_neuroimage_2013_05_114 crossref_primary_10_1016_j_heares_2013_07_010 crossref_primary_10_1089_brain_2015_0368 crossref_primary_10_1007_s10548_020_00777_2 crossref_primary_10_3389_fnhum_2017_00342 crossref_primary_10_3389_fnhum_2021_728405 crossref_primary_10_1142_S0129065720500057 crossref_primary_10_1016_j_neubiorev_2019_01_014 crossref_primary_10_1007_s10339_017_0812_y crossref_primary_10_3389_fpsyt_2024_1513793 crossref_primary_10_3389_fnhum_2022_977776 crossref_primary_10_1371_journal_pone_0307378 crossref_primary_10_3390_bioengineering10030281 crossref_primary_10_1016_j_nicl_2023_103407 crossref_primary_10_3390_e21100961 crossref_primary_10_1007_s12311_024_01770_2 crossref_primary_10_3389_fpsyg_2019_02968 crossref_primary_10_1007_s10548_011_0189_7 crossref_primary_10_4103_indianjpsychiatry_indianjpsychiatry_930_23 crossref_primary_10_25259_IJPP_44_2022 crossref_primary_10_3389_fneur_2021_753113 crossref_primary_10_1093_sleep_zsae053 crossref_primary_10_1016_j_clinph_2021_08_015 crossref_primary_10_1088_1741_2552_ac5266 crossref_primary_10_1016_j_celrep_2023_112369 crossref_primary_10_1007_s10548_012_0235_0 crossref_primary_10_1016_j_schres_2017_08_003 crossref_primary_10_3389_fnhum_2014_00897 crossref_primary_10_1103_PhysRevE_97_050201 crossref_primary_10_1162_netn_a_00147 crossref_primary_10_1016_j_neuroimage_2022_119669 crossref_primary_10_1177_17562864241307846 crossref_primary_10_1089_brain_2018_0647 crossref_primary_10_1016_j_compbiomed_2022_105287 crossref_primary_10_1007_s10548_022_00923_y crossref_primary_10_1007_s11682_018_9886_0 crossref_primary_10_3389_fpsyt_2021_761203 crossref_primary_10_1109_TNSRE_2023_3283708 crossref_primary_10_1016_j_brainres_2023_148729 crossref_primary_10_1186_s12868_024_00854_3 crossref_primary_10_1007_s10548_024_01037_3 crossref_primary_10_1016_j_ijpsycho_2021_09_001 crossref_primary_10_1093_brain_awr156 crossref_primary_10_3390_brainsci14101013 crossref_primary_10_1016_j_jadr_2025_100891 crossref_primary_10_3389_fnsys_2021_751226 crossref_primary_10_1016_j_clinph_2015_03_007 crossref_primary_10_1093_cercor_bhac082 crossref_primary_10_1177_15500594221098286 crossref_primary_10_1016_j_neuroimage_2012_12_055 crossref_primary_10_1016_j_nicl_2019_102046 crossref_primary_10_3389_fnins_2024_1321001 crossref_primary_10_7554_eLife_01867 crossref_primary_10_1109_TNSRE_2023_3324343 crossref_primary_10_1016_j_biopsycho_2022_108283 crossref_primary_10_1162_netn_a_00135 crossref_primary_10_1016_j_neuropsychologia_2021_108014 crossref_primary_10_1016_j_nicl_2022_103135 crossref_primary_10_1089_brain_2015_0359 crossref_primary_10_1007_s10548_022_00934_9 crossref_primary_10_1007_s10548_017_0565_z crossref_primary_10_1016_j_pscychresns_2023_111686 crossref_primary_10_1016_j_neuroimage_2021_118148 crossref_primary_10_1038_s41386_020_0749_1 crossref_primary_10_3389_fnins_2018_00460 crossref_primary_10_1016_j_dcn_2022_101134 crossref_primary_10_1016_j_neuroimage_2016_12_057 crossref_primary_10_1002_hbm_21513 crossref_primary_10_3389_fnins_2022_878203 crossref_primary_10_1007_s10548_022_00911_2 crossref_primary_10_1089_brain_2014_0300 crossref_primary_10_3389_fnbeh_2018_00122 crossref_primary_10_1038_s41598_024_83542_w crossref_primary_10_1007_s10548_023_00952_1 crossref_primary_10_1016_j_neuroimage_2022_119720 crossref_primary_10_1016_j_neuroimage_2018_07_046 crossref_primary_10_1016_j_infbeh_2022_101785 crossref_primary_10_1016_j_neuroimage_2022_118878 crossref_primary_10_1016_j_bandc_2010_11_015 crossref_primary_10_1038_s41598_024_67902_0 crossref_primary_10_1016_j_brainresbull_2024_111107 crossref_primary_10_1016_j_nicl_2018_08_031 crossref_primary_10_1016_j_jneumeth_2024_110115 crossref_primary_10_3389_fnhum_2017_00022 crossref_primary_10_3390_e22121380 crossref_primary_10_3389_fnhum_2021_636504 crossref_primary_10_1089_brain_2011_0018 crossref_primary_10_3389_fpsyt_2022_898716 crossref_primary_10_1038_s41598_024_76046_0 crossref_primary_10_1038_s41531_023_00498_w crossref_primary_10_1111_jsr_13889 crossref_primary_10_11604_pamj_2024_49_76_44648 crossref_primary_10_1007_s10548_018_0689_9 crossref_primary_10_1016_j_neuroimage_2016_03_014 crossref_primary_10_3389_fphy_2020_00082 crossref_primary_10_1002_brb3_70216 crossref_primary_10_1016_j_brainresbull_2024_111112 crossref_primary_10_1002_brb3_70335 crossref_primary_10_1007_s10548_011_0187_9 crossref_primary_10_1371_journal_pone_0039731 crossref_primary_10_1371_journal_pcbi_1007566 crossref_primary_10_1016_j_celrep_2023_112053 crossref_primary_10_1016_j_neurobiolaging_2023_06_008 crossref_primary_10_1016_j_neuroimage_2010_06_002 crossref_primary_10_1016_j_dcn_2018_04_011 crossref_primary_10_1002_mds_28741 crossref_primary_10_1093_braincomms_fcac255 crossref_primary_10_1016_j_neuroimage_2019_116454 crossref_primary_10_1038_s41398_020_01160_2 crossref_primary_10_1186_s12888_024_06334_6 crossref_primary_10_1371_journal_pone_0112147 crossref_primary_10_1007_s10548_023_00999_0 crossref_primary_10_1093_cercor_bhad480 crossref_primary_10_1016_j_neuroimage_2013_07_019 crossref_primary_10_1016_j_neuroimage_2016_05_058 crossref_primary_10_3389_fpsyg_2015_01354 crossref_primary_10_1038_s41598_020_58787_w crossref_primary_10_1109_TSIPN_2017_2774504 crossref_primary_10_1038_srep39156 crossref_primary_10_1073_pnas_1501242112 crossref_primary_10_1371_journal_pone_0135261 crossref_primary_10_1016_j_neuroimage_2022_119619 crossref_primary_10_1016_j_bandc_2021_105696 crossref_primary_10_1016_j_bbr_2022_114203 crossref_primary_10_1016_j_biopsycho_2022_108348 crossref_primary_10_1038_s41598_017_14879_8 crossref_primary_10_2139_ssrn_4061516 crossref_primary_10_1016_j_jpsychires_2013_09_009 crossref_primary_10_1073_pnas_1007841107 crossref_primary_10_1097_WNP_0b013e3182a73dd5 crossref_primary_10_3389_fnins_2023_1123466 crossref_primary_10_1038_s41531_023_00508_x crossref_primary_10_3389_fpsyt_2022_853602 crossref_primary_10_3389_fnhum_2021_626507 crossref_primary_10_3389_fnins_2023_1247290 crossref_primary_10_3389_fpsyt_2016_00022 crossref_primary_10_1007_s10548_023_00987_4 crossref_primary_10_1016_j_neuroimage_2018_09_082 crossref_primary_10_3389_fnsys_2014_00234 crossref_primary_10_1109_TMI_2024_3453377 crossref_primary_10_1016_j_psychres_2021_113866 crossref_primary_10_1111_epi_17893 crossref_primary_10_1007_s10548_023_01030_2 crossref_primary_10_1111_epi_17897 crossref_primary_10_1016_j_clinph_2010_10_042 crossref_primary_10_1162_imag_a_00272 crossref_primary_10_3389_fpsyt_2020_537981 crossref_primary_10_3390_biomedicines10102428 crossref_primary_10_1093_brain_awz069 crossref_primary_10_1016_j_scog_2015_04_005 crossref_primary_10_3389_fpsyt_2022_1008007 crossref_primary_10_1088_1741_2552_ac4595 crossref_primary_10_3389_fnhum_2021_795237 crossref_primary_10_1002_jnr_24690 crossref_primary_10_3390_brainsci14020113 crossref_primary_10_1016_j_neuroimage_2022_119006 crossref_primary_10_1016_j_clinph_2013_01_005 crossref_primary_10_3390_brainsci13040554 crossref_primary_10_1002_hbm_26480 crossref_primary_10_1093_schbul_sbs009 crossref_primary_10_1093_scan_nsaa008 crossref_primary_10_1016_j_neuroimage_2013_05_079 crossref_primary_10_1016_j_bbr_2021_113135 crossref_primary_10_1088_1741_2552_ab0169 crossref_primary_10_1007_s10548_024_01073_z crossref_primary_10_1016_j_neuroimage_2012_02_012 crossref_primary_10_3389_fnins_2021_687053 crossref_primary_10_3389_fnhum_2024_1434110 crossref_primary_10_1016_j_jad_2024_09_040 crossref_primary_10_1038_s41598_017_13482_1 crossref_primary_10_1016_j_neuroimage_2017_05_067 crossref_primary_10_3389_fnhum_2021_684470 crossref_primary_10_1002_hbm_26471 crossref_primary_10_1093_cercor_bht120 crossref_primary_10_1007_s10548_023_01005_3 crossref_primary_10_1097_PSY_0000000000000490 crossref_primary_10_1017_thg_2012_20 crossref_primary_10_3389_fpsyt_2022_891719 crossref_primary_10_1007_s00787_022_02068_6 crossref_primary_10_1027_0269_8803_a000153 crossref_primary_10_1088_1741_2552_ab234b crossref_primary_10_3389_fpsyg_2014_00493 crossref_primary_10_3389_fpsyg_2022_765602 crossref_primary_10_1162_imag_a_00109 crossref_primary_10_3389_fnins_2019_01251 crossref_primary_10_3389_fpsyt_2018_00395 crossref_primary_10_1038_s41398_020_00963_7 crossref_primary_10_3389_fpsyt_2023_1082481 crossref_primary_10_1016_j_clinph_2020_05_025 crossref_primary_10_3389_fpsyg_2024_1300416 crossref_primary_10_1016_j_seizure_2024_12_004 crossref_primary_10_1007_s10548_023_00978_5 crossref_primary_10_1016_j_schres_2025_03_003 crossref_primary_10_1016_j_ijpsycho_2025_112516 crossref_primary_10_1111_psyp_14581 crossref_primary_10_1016_j_neuroimage_2020_116998 crossref_primary_10_1016_j_jneumeth_2019_108317 crossref_primary_10_1016_j_neuroimage_2020_116631 crossref_primary_10_1007_s10548_017_0572_0 crossref_primary_10_1038_ncomms10340 crossref_primary_10_1088_1741_2552_acc2e9 crossref_primary_10_1016_j_neuroimage_2015_08_023 crossref_primary_10_1038_s41598_021_95749_2 crossref_primary_10_1089_brain_2017_0543 crossref_primary_10_1016_j_neuroimage_2025_121159 crossref_primary_10_1038_s41537_023_00419_z crossref_primary_10_1016_j_neuroimage_2025_121152 crossref_primary_10_1016_j_nlm_2021_107424 crossref_primary_10_1007_s10548_016_0539_6 crossref_primary_10_1136_gpsych_2023_101171 crossref_primary_10_1080_21678421_2022_2152696 crossref_primary_10_1097_j_pain_0000000000003546 crossref_primary_10_1093_cercor_bhs047 crossref_primary_10_1007_s10548_021_00861_1 crossref_primary_10_3390_brainsci14050487 crossref_primary_10_1016_j_neuroimage_2013_04_010 crossref_primary_10_31887_DCNS_2013_15_3_cmulert crossref_primary_10_1007_s10339_014_0637_x crossref_primary_10_3389_fnins_2019_01430 crossref_primary_10_1016_j_clinph_2011_12_019 crossref_primary_10_1016_j_neuroimage_2017_03_026 crossref_primary_10_3389_fnagi_2021_714220 crossref_primary_10_1073_pnas_1911240117 crossref_primary_10_3389_fpsyt_2022_907802 crossref_primary_10_1016_j_tics_2024_03_004 crossref_primary_10_1038_s41598_018_23590_1 crossref_primary_10_1111_ejn_16247 crossref_primary_10_1111_psyp_14762 crossref_primary_10_1186_s13408_020_00086_9 crossref_primary_10_3389_fnhum_2024_1387471 crossref_primary_10_1016_j_pnpbp_2018_08_015 crossref_primary_10_1093_braincomms_fcaa104 crossref_primary_10_1016_j_neuroimage_2012_03_024 crossref_primary_10_1007_s10548_023_01019_x crossref_primary_10_1016_j_nicl_2018_04_014 crossref_primary_10_1155_2012_385626 crossref_primary_10_1016_j_neubiorev_2014_12_010 crossref_primary_10_3389_fnins_2020_00191 crossref_primary_10_1038_s41598_018_19698_z crossref_primary_10_1007_s00521_018_3879_1 crossref_primary_10_3389_fnins_2021_689791 crossref_primary_10_1002_hbm_26552 crossref_primary_10_1080_10255842_2025_2476185 crossref_primary_10_1002_hbm_26793 crossref_primary_10_1016_j_neuroimage_2012_12_073 crossref_primary_10_1371_journal_pcbi_1008929 crossref_primary_10_1093_cercor_bhae043 crossref_primary_10_1016_j_clinph_2024_02_027 crossref_primary_10_3389_fneur_2014_00093 crossref_primary_10_1016_j_nicl_2018_10_015 crossref_primary_10_1192_j_eurpsy_2023_2414 crossref_primary_10_1007_s10548_018_0685_0 crossref_primary_10_1016_j_clinph_2025_03_002 crossref_primary_10_3389_fnins_2019_01448 crossref_primary_10_3389_fnrgo_2025_1472693 crossref_primary_10_3389_fnsys_2022_934266 crossref_primary_10_1016_j_nicl_2020_102336 crossref_primary_10_3390_brainsci12111497 crossref_primary_10_1016_j_neuroimage_2025_121090 crossref_primary_10_1109_TBME_2023_3240593 crossref_primary_10_1016_j_bbr_2025_115463 crossref_primary_10_21307_ane_2018_010 crossref_primary_10_1016_j_jpsychires_2024_04_051 crossref_primary_10_1016_j_neuroimage_2022_119461 crossref_primary_10_1146_annurev_bioeng_062117_120853 crossref_primary_10_1038_s41598_021_81655_0 crossref_primary_10_3389_fneur_2021_710952 crossref_primary_10_3390_ijerph20021402 crossref_primary_10_1016_j_schres_2014_05_036 crossref_primary_10_1007_s00429_019_02019_z crossref_primary_10_1146_annurev_neuro_100220_093239 crossref_primary_10_1016_j_bandc_2019_103619 crossref_primary_10_1038_s41598_025_93385_8 crossref_primary_10_1103_PhysRevE_98_042413 crossref_primary_10_3389_fnins_2023_986368 crossref_primary_10_1016_j_yebeh_2024_109729 crossref_primary_10_1016_j_cortex_2024_05_019 crossref_primary_10_1007_s00213_014_3844_3 crossref_primary_10_1089_brain_2011_0063 crossref_primary_10_3389_fnagi_2022_914920 crossref_primary_10_1016_j_bbr_2016_08_020 crossref_primary_10_1371_journal_pone_0087507 crossref_primary_10_1016_j_bspc_2020_102316 crossref_primary_10_1016_j_neuroimage_2012_05_060 crossref_primary_10_3389_fnhum_2021_636252 crossref_primary_10_1093_cercor_bht068 crossref_primary_10_1016_j_brs_2022_01_007 crossref_primary_10_1109_ACCESS_2021_3060112 crossref_primary_10_1111_ejn_16159 crossref_primary_10_1007_s12144_023_04858_w crossref_primary_10_1162_NECO_a_00747 crossref_primary_10_1016_j_clinph_2010_11_003 crossref_primary_10_3389_fnhum_2017_00534 crossref_primary_10_3389_fnins_2023_1306120 crossref_primary_10_1007_s10548_023_01009_z crossref_primary_10_31083_j_jin2004100 crossref_primary_10_1016_j_neuroimage_2017_10_048 crossref_primary_10_1109_ACCESS_2020_3037658 crossref_primary_10_1016_j_conb_2023_102818 crossref_primary_10_1016_j_neuroimage_2024_120910 |
Cites_doi | 10.1016/j.neuroimage.2004.11.048 10.1038/nrn755 10.1007/BF01128876 10.1006/nimg.2000.0599 10.1016/0165-0173(94)00016-I 10.1016/S1364-6613(00)01464-9 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 10.1016/j.neuroimage.2009.01.070 10.1016/0167-8760(93)90041-M 10.1038/nature05758 10.1152/jn.00263.2005 10.1073/pnas.0800005105 10.1073/pnas.1831638100 10.1016/j.neuroimage.2009.01.001 10.1002/hbm.10022 10.1152/jn.2001.86.1.1 10.1523/JNEUROSCI.2699-08.2008 10.1002/hbm.20705 10.1002/hbm.20581 10.1126/science.1128115 10.1016/S1053-8119(03)00169-1 10.1007/s10548-007-0024-3 10.1002/mrm.1910340409 10.1093/cercor/bhi025 10.1016/0013-4694(93)90016-O 10.1006/nimg.2002.1070 10.1006/nimg.1998.0361 10.1098/rstb.2005.1634 10.1126/science.1131295 10.1073/pnas.0601417103 10.1109/10.391164 10.1016/j.neuron.2009.03.024 10.1016/0013-4694(80)90419-8 10.1093/cercor/bhn055 10.1016/0301-0082(84)90003-0 10.1073/pnas.0604187103 10.1016/S0167-8760(97)00098-6 10.1093/cercor/13.4.422 10.1016/S0010-0277(00)00123-2 10.1016/j.tins.2008.09.012 10.1007/s10548-009-0080-y 10.1002/hbm.1048 10.1038/35084005 10.1016/j.neuroimage.2006.01.012 10.1016/S1364-6613(00)01819-2 10.1007/s10548-008-0054-5 10.1038/nn.2177 10.1007/s10339-006-0035-0 10.1098/rstb.2005.1649 10.1097/00001756-200212200-00022 10.1002/(SICI)1097-0193(1998)6:5/6<368::AID-HBM7>3.0.CO;2-E 10.4249/scholarpedia.7632 10.1073/pnas.0704380104 10.1073/pnas.0504136102 10.1111/j.1528-1167.2008.01509.x 10.1371/journal.pbio.0060159 10.1016/j.neuroimage.2007.02.041 10.1016/j.ijpsycho.2005.12.015 10.1073/pnas.0700668104 10.1162/neco.1995.7.6.1129 10.1198/106186005X59243 10.1126/science.1099745 10.1073/pnas.1332574100 10.1016/j.ijpsycho.2005.12.008 10.1523/JNEUROSCI.5587-06.2007 10.1093/cercor/bhn056 10.1126/science.3059497 10.1196/annals.1417.015 10.1016/j.clinph.2008.07.284 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. Copyright 2010 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Oct 1, 2010 |
Copyright_xml | – notice: 2010 Elsevier Inc. – notice: Copyright 2010 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Oct 1, 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2010.02.052 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 1170 |
ExternalDocumentID | 3244893381 20188188 10_1016_j_neuroimage_2010_02_052 S105381191000220X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 .1- .FO 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AFRHN AGHFR AGQPQ AGRNS AIGII AJUYK AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 GBLVA HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP Z5R ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c556t-fb16529a7989d63ea58d73bbfbb034e0702bd6c7639f4b1ea8e9ebd6ebcfe62f3 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Jul 10 21:51:51 EDT 2025 Fri Jul 11 09:02:36 EDT 2025 Wed Aug 13 11:22:48 EDT 2025 Mon Jul 21 05:59:10 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 Tue Jul 01 02:14:36 EDT 2025 Fri Feb 23 02:20:30 EST 2024 Tue Aug 26 16:36:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | fMRI Rapid dynamics Resting state Default-mode network EEG ICA EEG microstates GLM EEG topography Resting-state networks |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright 2010 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-fb16529a7989d63ea58d73bbfbb034e0702bd6c7639f4b1ea8e9ebd6ebcfe62f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 20188188 |
PQID | 1506842440 |
PQPubID | 2031077 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_754879849 proquest_miscellaneous_748981806 proquest_journals_1506842440 pubmed_primary_20188188 crossref_citationtrail_10_1016_j_neuroimage_2010_02_052 crossref_primary_10_1016_j_neuroimage_2010_02_052 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_02_052 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_02_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-10-01 |
PublicationDateYYYYMMDD | 2010-10-01 |
PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2010 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Fox, Corbetta, Snyder, Vincent, Raichle (bib25) 2006; 103 Fransson, Skiöld, Horsch, Nordell, Blennow, Lagercrantz, Aden (bib26) 2007; 104 Calhoun, Kiehl, Pearlson (bib15) 2008; 29 Changeux, Michel (bib17) 2004 McKeown, Sejnowski (bib51) 1998; 6 Mohr, Michel, Lantz, Ortigue, Viaud-Delmon, Landis (bib52) 2005; 15 Maldjian, Laurienti, Kraft, Burdette (bib48) 2003; 19 Hampson, Peterson, Skudlarski, Gatenby, Gore (bib32) 2002; 15 Taylor, Seminowicz, Davis (bib66) 2009; 30 Jann, Dierks, Boesch, Kottlow, Strik, Koenig (bib33) 2009; 45 Schroeder, Lakatos (bib58) 2009; 22 Britz, Landis, Michel (bib12) 2009; 19 Patel, Van De Ville, DuBois Bowman (bib56) 2006; 31 Schroeder, Lakatos (bib59) 2009; 32 Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib24) 2005; 102 Lehmann, Skrandies (bib41) 1980; 48 Steriade (bib63) 2001; 86 Laufs, Krakow, Sterzer, Eger, Beyerle, Salek-Haddadi, Kleinschmidt (bib39) 2003; 100 Fuster (bib27) 2006; 60 Fingelkurts, Fingelkurts (bib23) 2006; 7 Pascual-Marqui, Michel, Lehmann (bib55) 1995; 42 Allen, Polizzi, Krakow, Fish, Lemieux (bib1) 1998; 8 Corbetta, Shulman (bib18) 2002; 3 Boly, Phillips, Tshibanda, Vanhaudenhuyse, Schabus, Dang-Vu, Moonen, Hustinx, Maquet, Laureys (bib9) 2008; 1129 Mantini, Perrucci, Del Gratta, Romani, Corbetta (bib49) 2007; 104 Raichle, Snyder (bib57) 2007; 37 Tyvaert, LeVan, Grova, Dubeau, Gotman (bib68) 2008; 119 Lehmann, Strik, Henggeler, Koenig, Koukkou (bib43) 1998; 29 Gotman (bib29) 2008; 49 Buzsaki, Draguhn (bib13) 2004; 304 Seeley, Crawford, Zhou, Miller, Greicius (bib61) 2009; 62 Wackermann, Lehmann, Michel, Strik (bib71) 1993; 14 Llinas (bib46) 1988; 242 Strik, Lehmann (bib64) 1993; 87 Allen, Josephs, Turner (bib2) 2000; 12 Lehmann (bib40) 1990; 3 Lehmann, Skrandies (bib42) 1984; 23 Mason, Norton, Van Horn, Wegner, Grafton, Macrae (bib50) 2007; 315 Leopold, Murayama, Logothetis (bib45) 2003; 13 Taylor, Seminowicz, Davis (bib65) 2009; 9999 Vulliemoz, Thornton, Rodionov, Carmichael, Guye, Lhatoo, McEvoy, Spinelli, Michel, Duncan, Lemieux (bib70) 2009; 46 Bollimunta, Chen, Schroeder, Ding (bib8) 2008; 28 Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (bib31) 2008; 6 Beckmann, DeLuca, Devlin, Smith (bib5) 2005; 360 Bell, Sejnowski (bib6) 1995; 7 Dehaene, Sergent, Changeux (bib22) 2003; 100 Murray, Brunet, Michel (bib53) 2008; 20 Baars (bib4) 2002; 6 Sridharan, Levitin, Menon (bib62) 2008; 105 Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bib19) 2006; 103 Dehaene, Naccache (bib21) 2001; 79 Lancaster, Woldorff, Parsons, Liotti, Freitas, Rainey, Kochunov, Nickerson, Mikiten, Fox (bib38) 2000; 10 Lakatos, Shah, Knuth, Ulbert, Karmos, Schroeder (bib37) 2005; 94 Lehmann, Pascual-Marqui, Michel (bib44) 2009; 4 Vincent, Patel, Fox, Snyder, Baker, Van Essen, Zempel, Snyder, Corbetta, Raichle (bib69) 2007; 447 D'Argembeau, Collette, Van der Linden, Laureys, Del Fiore, Degueldre, Luxen, Salmon (bib20) 2005; 25 Goldman, Stern, Engel, Cohen (bib28) 2002; 13 Biswal, Yetkin, Haughton, Hyde (bib7) 1995; 34 Katayama, Gianotti, Isotani, Faber, Sasada, Kinoshita, Lehmann (bib34) 2007; 20 Seeley, Menon, Schatzberg, Keller, Glover, Kenna, Reiss, Greicius (bib60) 2007; 27 Koenig, Prichep, Lehmann, Sosa, Braeker, Kleinlogel, Isenhart, John (bib35) 2002; 16 Nir, Mukamel, Dinstein, Privman, Harel, Fisch, Gelbard-Sagiv, Kipervasser, Andelman, Neufeld, Kramer, Arieli, Fried, Malach (bib54) 2008; 11 Tibshirani, Walther (bib67) 2005; 14 Young, McNaughton (bib72) 2009; 19 Baars (bib3) 1997 Grossberg (bib30) 2000; 4 Koenig, Studer, Hubl, Melie, Strik (bib36) 2005; 360 Logothetis, Pauls, Augath, Trinath, Oeltermann (bib47) 2001; 412 Bressler (bib10) 1995; 20 Canolty, Edwards, Dalal, Soltani, Nagarajan, Kirsch, Berger, Barbaro, Knight (bib16) 2006; 313 Bressler, Tognoli (bib11) 2006; 60 Calhoun, Adali, Pearlson, Pekar (bib14) 2001; 14 Logothetis (10.1016/j.neuroimage.2010.02.052_bib47) 2001; 412 Tibshirani (10.1016/j.neuroimage.2010.02.052_bib67) 2005; 14 Raichle (10.1016/j.neuroimage.2010.02.052_bib57) 2007; 37 Bell (10.1016/j.neuroimage.2010.02.052_bib6) 1995; 7 Fransson (10.1016/j.neuroimage.2010.02.052_bib26) 2007; 104 Gotman (10.1016/j.neuroimage.2010.02.052_bib29) 2008; 49 Lehmann (10.1016/j.neuroimage.2010.02.052_bib41) 1980; 48 Dehaene (10.1016/j.neuroimage.2010.02.052_bib22) 2003; 100 Bollimunta (10.1016/j.neuroimage.2010.02.052_bib8) 2008; 28 Taylor (10.1016/j.neuroimage.2010.02.052_bib65) 2009; 9999 Vincent (10.1016/j.neuroimage.2010.02.052_bib69) 2007; 447 Taylor (10.1016/j.neuroimage.2010.02.052_bib66) 2009; 30 Allen (10.1016/j.neuroimage.2010.02.052_bib2) 2000; 12 Lehmann (10.1016/j.neuroimage.2010.02.052_bib43) 1998; 29 Fox (10.1016/j.neuroimage.2010.02.052_bib24) 2005; 102 Grossberg (10.1016/j.neuroimage.2010.02.052_bib30) 2000; 4 Mason (10.1016/j.neuroimage.2010.02.052_bib50) 2007; 315 Koenig (10.1016/j.neuroimage.2010.02.052_bib36) 2005; 360 Lakatos (10.1016/j.neuroimage.2010.02.052_bib37) 2005; 94 Tyvaert (10.1016/j.neuroimage.2010.02.052_bib68) 2008; 119 Changeux (10.1016/j.neuroimage.2010.02.052_bib17) 2004 Leopold (10.1016/j.neuroimage.2010.02.052_bib45) 2003; 13 Allen (10.1016/j.neuroimage.2010.02.052_bib1) 1998; 8 Calhoun (10.1016/j.neuroimage.2010.02.052_bib15) 2008; 29 Nir (10.1016/j.neuroimage.2010.02.052_bib54) 2008; 11 Boly (10.1016/j.neuroimage.2010.02.052_bib9) 2008; 1129 Seeley (10.1016/j.neuroimage.2010.02.052_bib60) 2007; 27 Mantini (10.1016/j.neuroimage.2010.02.052_bib49) 2007; 104 Vulliemoz (10.1016/j.neuroimage.2010.02.052_bib70) 2009; 46 Wackermann (10.1016/j.neuroimage.2010.02.052_bib71) 1993; 14 Baars (10.1016/j.neuroimage.2010.02.052_bib3) 1997 Lehmann (10.1016/j.neuroimage.2010.02.052_bib40) 1990; 3 Bressler (10.1016/j.neuroimage.2010.02.052_bib10) 1995; 20 Fuster (10.1016/j.neuroimage.2010.02.052_bib27) 2006; 60 Schroeder (10.1016/j.neuroimage.2010.02.052_bib58) 2009; 22 Fox (10.1016/j.neuroimage.2010.02.052_bib25) 2006; 103 Katayama (10.1016/j.neuroimage.2010.02.052_bib34) 2007; 20 Beckmann (10.1016/j.neuroimage.2010.02.052_bib5) 2005; 360 D'Argembeau (10.1016/j.neuroimage.2010.02.052_bib20) 2005; 25 Dehaene (10.1016/j.neuroimage.2010.02.052_bib21) 2001; 79 Llinas (10.1016/j.neuroimage.2010.02.052_bib46) 1988; 242 Mohr (10.1016/j.neuroimage.2010.02.052_bib52) 2005; 15 Young (10.1016/j.neuroimage.2010.02.052_bib72) 2009; 19 Hampson (10.1016/j.neuroimage.2010.02.052_bib32) 2002; 15 Britz (10.1016/j.neuroimage.2010.02.052_bib12) 2009; 19 Lancaster (10.1016/j.neuroimage.2010.02.052_bib38) 2000; 10 Biswal (10.1016/j.neuroimage.2010.02.052_bib7) 1995; 34 Murray (10.1016/j.neuroimage.2010.02.052_bib53) 2008; 20 Calhoun (10.1016/j.neuroimage.2010.02.052_bib14) 2001; 14 Buzsaki (10.1016/j.neuroimage.2010.02.052_bib13) 2004; 304 McKeown (10.1016/j.neuroimage.2010.02.052_bib51) 1998; 6 Bressler (10.1016/j.neuroimage.2010.02.052_bib11) 2006; 60 Hagmann (10.1016/j.neuroimage.2010.02.052_bib31) 2008; 6 Steriade (10.1016/j.neuroimage.2010.02.052_bib63) 2001; 86 Sridharan (10.1016/j.neuroimage.2010.02.052_bib62) 2008; 105 Fingelkurts (10.1016/j.neuroimage.2010.02.052_bib23) 2006; 7 Patel (10.1016/j.neuroimage.2010.02.052_bib56) 2006; 31 Maldjian (10.1016/j.neuroimage.2010.02.052_bib48) 2003; 19 Canolty (10.1016/j.neuroimage.2010.02.052_bib16) 2006; 313 Goldman (10.1016/j.neuroimage.2010.02.052_bib28) 2002; 13 Baars (10.1016/j.neuroimage.2010.02.052_bib4) 2002; 6 Corbetta (10.1016/j.neuroimage.2010.02.052_bib18) 2002; 3 Lehmann (10.1016/j.neuroimage.2010.02.052_bib42) 1984; 23 Schroeder (10.1016/j.neuroimage.2010.02.052_bib59) 2009; 32 Lehmann (10.1016/j.neuroimage.2010.02.052_bib44) 2009; 4 Laufs (10.1016/j.neuroimage.2010.02.052_bib39) 2003; 100 Strik (10.1016/j.neuroimage.2010.02.052_bib64) 1993; 87 Koenig (10.1016/j.neuroimage.2010.02.052_bib35) 2002; 16 Damoiseaux (10.1016/j.neuroimage.2010.02.052_bib19) 2006; 103 Pascual-Marqui (10.1016/j.neuroimage.2010.02.052_bib55) 1995; 42 Seeley (10.1016/j.neuroimage.2010.02.052_bib61) 2009; 62 Jann (10.1016/j.neuroimage.2010.02.052_bib33) 2009; 45 20493265 - Neuroimage. 2010 Oct 1;52(4):1173-4 20493268 - Neuroimage. 2010 Oct 1;52(4):1171-2 |
References_xml | – volume: 3 start-page: 201 year: 2002 end-page: 215 ident: bib18 article-title: Control of Goal-directed and Stimulus-driven Attention in the Brain publication-title: Nat. Rev. Neurosci. – volume: 19 start-page: 1233 year: 2003 end-page: 1239 ident: bib48 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets publication-title: Neuroimage – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: bib24 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 140 year: 2001 end-page: 151 ident: bib14 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. – volume: 100 start-page: 8520 year: 2003 end-page: 8525 ident: bib22 article-title: A neuronal network model linking subjective reports and objective physiological data during conscious perception publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9999 year: 2009 ident: bib65 article-title: Two systems of resting state connectivity between the insula and cingulate cortex publication-title: Hum. Brain Mapp. – volume: 119 start-page: 2762 year: 2008 end-page: 2774 ident: bib68 article-title: Effects of fluctuating physiological rhythms during prolonged EEG–fMRI studies publication-title: Clin. Neurophysiol. – volume: 45 start-page: 903 year: 2009 end-page: 916 ident: bib33 article-title: BOLD correlates of EEG alpha phase-locking and the fMRI default mode network publication-title: Neuroimage – volume: 14 start-page: 269 year: 1993 end-page: 283 ident: bib71 article-title: Adaptive segmentation of spontaneous EEG map series into spatially defined microstates publication-title: Int. J. Psychophysiol. – volume: 315 start-page: 393 year: 2007 end-page: 395 ident: bib50 article-title: Wandering minds: the default network and stimulus-independent thought publication-title: Science – volume: 32 start-page: 9 year: 2009 end-page: 18 ident: bib59 article-title: Low-frequency neuronal oscillations as instruments of sensory selection publication-title: Trends Neurosci. – volume: 6 start-page: 47 year: 2002 end-page: 52 ident: bib4 article-title: The conscious access hypothesis: origins and recent evidence publication-title: Trends Cogn. Sci. – volume: 31 start-page: 1142 year: 2006 end-page: 1155 ident: bib56 article-title: Determining significant connectivity by 4D spatiotemporal wavelet packet resampling of functional neuroimaging data publication-title: Neuroimage – volume: 16 start-page: 41 year: 2002 end-page: 48 ident: bib35 article-title: Millisecond by millisecond, year by year: normative EEG microstates and developmental stages publication-title: Neuroimage – volume: 79 start-page: 1 year: 2001 end-page: 37 ident: bib21 article-title: Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework publication-title: Cognition – volume: 20 start-page: 7 year: 2007 end-page: 14 ident: bib34 article-title: Classes of multichannel EEG microstates in light and deep hypnotic conditions publication-title: Brain Topogr. – volume: 19 start-page: 24 year: 2009 end-page: 40 ident: bib72 article-title: Coupling of theta oscillations between anterior and posterior midline cortex and with the hippocampus in freely behaving rats publication-title: Cereb. Cortex – volume: 1129 start-page: 119 year: 2008 end-page: 129 ident: bib9 article-title: Intrinsic brain activity in altered states of consciousness publication-title: Ann. N. Y. Acad. Sci. – volume: 360 start-page: 1015 year: 2005 end-page: 1023 ident: bib36 article-title: Brain connectivity at different time-scales measured with EEG publication-title: Philos. Trans. Biol. Sci. – volume: 27 start-page: 2349 year: 2007 end-page: 2356 ident: bib60 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J. Neurosci. – volume: 22 start-page: 24 year: 2009 end-page: 26 ident: bib58 article-title: The gamma oscillation: master or slave? publication-title: Brain Topogr. – volume: 6 start-page: e159 year: 2008 ident: bib31 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. – volume: 6 start-page: 368 year: 1998 end-page: 372 ident: bib51 article-title: Independent component analysis of fMRI data: examining the assumptions publication-title: Hum. Brain Mapp. – year: 1997 ident: bib3 publication-title: In the Theater of Consciousness: The Workspace of the Mind – volume: 103 start-page: 13848 year: 2006 end-page: 13853 ident: bib19 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 120 year: 2000 end-page: 131 ident: bib38 article-title: Automated Talairach Atlas labels for functional brain mapping publication-title: Hum. Brain Mapp. – volume: 11 start-page: 1100 year: 2008 end-page: 1108 ident: bib54 article-title: Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex publication-title: Nat. Neurosci. – volume: 60 start-page: 139 year: 2006 end-page: 148 ident: bib11 article-title: Operational principles of neurocognitive networks publication-title: Int. J. Psychophysiol. – volume: 313 start-page: 1626 year: 2006 end-page: 1628 ident: bib16 article-title: High gamma power is phase-locked to theta oscillations in human neocortex publication-title: Science – volume: 20 start-page: 249 year: 2008 end-page: 264 ident: bib53 article-title: Topographic ERP analyses: a step-by-step tutorial review publication-title: Brain Topogr. – volume: 304 start-page: 1926 year: 2004 end-page: 1929 ident: bib13 article-title: Neuronal oscillations in cortical networks publication-title: Science – volume: 15 start-page: 247 year: 2002 end-page: 262 ident: bib32 article-title: Detection of functional connectivity using temporal correlations in MR images publication-title: Hum. Brain Mapp. – volume: 46 start-page: 834 year: 2009 end-page: 843 ident: bib70 article-title: The spatio-temporal mapping of epileptic networks: combination of EEG–fMRI and EEG source imaging publication-title: Neuroimage – volume: 103 start-page: 10046 year: 2006 end-page: 10051 ident: bib25 article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems publication-title: Proc. Natl. Acad. Sci. USA – volume: 94 start-page: 1904 year: 2005 end-page: 1911 ident: bib37 article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex publication-title: J. Neurophysiol. – volume: 25 start-page: 616 year: 2005 end-page: 624 ident: bib20 article-title: Self-referential reflective activity and its relationship with rest: a PET study publication-title: Neuroimage – volume: 3 start-page: 191 year: 1990 end-page: 202 ident: bib40 article-title: Past, present and future of topographic mapping publication-title: Brain Topogr. – volume: 29 start-page: 828 year: 2008 end-page: 838 ident: bib15 article-title: Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks publication-title: Hum. Brain Mapp. – volume: 60 start-page: 125 year: 2006 end-page: 132 ident: bib27 article-title: The cognit: a network model of cortical representation publication-title: Int. J. Psychophysiol. – volume: 87 start-page: 169 year: 1993 end-page: 174 ident: bib64 article-title: Data-determined window size and space-oriented segmentation of spontaneous EEG map series publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 13 start-page: 2487 year: 2002 end-page: 2492 ident: bib28 article-title: Simultaneous EEG and fMRI of the alpha rhythm publication-title: Neuroreport – volume: 242 start-page: 1654 year: 1988 end-page: 1664 ident: bib46 article-title: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function publication-title: Science – volume: 104 start-page: 13170 year: 2007 end-page: 13175 ident: bib49 article-title: Electrophysiological signatures of resting state networks in the human brain publication-title: Proc. Natl. Acad. Sci. – volume: 100 start-page: 11053 year: 2003 end-page: 11058 ident: bib39 article-title: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 229 year: 1998 end-page: 239 ident: bib1 article-title: Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction publication-title: Neuroimage – volume: 29 start-page: 1 year: 1998 end-page: 11 ident: bib43 article-title: Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts publication-title: Int. J. Psychophysiol. – volume: 49 start-page: 42 year: 2008 end-page: 51 ident: bib29 article-title: Epileptic networks studied with EEG–fMRI publication-title: Epilepsia – volume: 30 start-page: 2731 year: 2009 end-page: 2745 ident: bib66 article-title: Two systems of resting state connectivity between the insula and cingulate cortex publication-title: Hum. Brain Mapp. – volume: 14 start-page: 511 year: 2005 end-page: 528 ident: bib67 article-title: Cluster validation by prediction strength publication-title: J. Comput. Graph. Stat. – volume: 23 start-page: 227 year: 1984 end-page: 250 ident: bib42 article-title: Spatial analysis of evoked potentials in man—a review publication-title: Prog. Neurobiol. – volume: 13 start-page: 422 year: 2003 end-page: 433 ident: bib45 article-title: Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging publication-title: Cereb. Cortex – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bib7 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. – volume: 412 start-page: 150 year: 2001 end-page: 157 ident: bib47 article-title: Neurophysiological investigation of the basis of the fMRI signal publication-title: Nature – volume: 86 start-page: 1 year: 2001 end-page: 39 ident: bib63 article-title: Impact of network activities on neuronal properties in corticothalamic systems publication-title: J. Neurophysiol. – volume: 19 start-page: 55 year: 2009 end-page: 65 ident: bib12 article-title: Right parietal brain activity precedes perceptual alternation of bistable stimuli publication-title: Cereb. Cortex – volume: 48 start-page: 609 year: 1980 end-page: 621 ident: bib41 article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 105 start-page: 12569 year: 2008 end-page: 12574 ident: bib62 article-title: A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks publication-title: Proc. Natl. Acad. Sci. – volume: 42 start-page: 658 year: 1995 end-page: 665 ident: bib55 article-title: Segmentation of brain electrical activity into microstates: model estimation and validation publication-title: IEEE Trans. Biomed. Eng. – volume: 104 start-page: 15531 year: 2007 end-page: 15536 ident: bib26 article-title: Resting-state networks in the infant brain publication-title: Proc. Natl. Acad. Sci. – volume: 447 start-page: 83 year: 2007 end-page: 86 ident: bib69 article-title: Intrinsic functional architecture in the anaesthetized monkey brain publication-title: Nature – volume: 28 start-page: 9976 year: 2008 end-page: 9988 ident: bib8 article-title: Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques publication-title: J. Neurosci. – start-page: 347 year: 2004 end-page: 370 ident: bib17 article-title: Mechanisms of neural integration at the brain-scale level. The neuronal workspace and microstate models publication-title: Microcircuits: The Interface Between Neurons and Global Brain Function – volume: 20 start-page: 288 year: 1995 end-page: 304 ident: bib10 article-title: Large-scale cortical networks and cognition publication-title: Brain Res. Rev. – volume: 7 start-page: 135 year: 2006 end-page: 162 ident: bib23 article-title: Timing in cognition and EEG brain dynamics: discreteness versus continuity publication-title: Cogn. Process. – volume: 12 start-page: 230 year: 2000 end-page: 239 ident: bib2 article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI publication-title: Neuroimage – volume: 360 start-page: 1001 year: 2005 end-page: 1013 ident: bib5 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. Lond., Ser. B: Biol. Sci. – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: bib6 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. – volume: 4 start-page: 233 year: 2000 end-page: 246 ident: bib30 article-title: The complementary brain: unifying brain dynamics and modularity publication-title: Trends Cogn. Sci. – volume: 62 start-page: 42 year: 2009 end-page: 52 ident: bib61 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron – volume: 37 start-page: 1083 year: 2007 end-page: 1090 ident: bib57 article-title: A default mode of brain function: a brief history of an evolving idea publication-title: Neuroimage – volume: 4 start-page: 7632 year: 2009 ident: bib44 article-title: EEG microstates publication-title: Scholarpedia – volume: 15 start-page: 1451 year: 2005 end-page: 1458 ident: bib52 article-title: Brain state-dependent functional hemispheric specialization in men but not in women publication-title: Cereb. Cortex – volume: 25 start-page: 616 year: 2005 ident: 10.1016/j.neuroimage.2010.02.052_bib20 article-title: Self-referential reflective activity and its relationship with rest: a PET study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.11.048 – volume: 3 start-page: 201 year: 2002 ident: 10.1016/j.neuroimage.2010.02.052_bib18 article-title: Control of Goal-directed and Stimulus-driven Attention in the Brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn755 – volume: 3 start-page: 191 year: 1990 ident: 10.1016/j.neuroimage.2010.02.052_bib40 article-title: Past, present and future of topographic mapping publication-title: Brain Topogr. doi: 10.1007/BF01128876 – volume: 12 start-page: 230 year: 2000 ident: 10.1016/j.neuroimage.2010.02.052_bib2 article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI publication-title: Neuroimage doi: 10.1006/nimg.2000.0599 – volume: 20 start-page: 288 year: 1995 ident: 10.1016/j.neuroimage.2010.02.052_bib10 article-title: Large-scale cortical networks and cognition publication-title: Brain Res. Rev. doi: 10.1016/0165-0173(94)00016-I – volume: 4 start-page: 233 year: 2000 ident: 10.1016/j.neuroimage.2010.02.052_bib30 article-title: The complementary brain: unifying brain dynamics and modularity publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(00)01464-9 – volume: 10 start-page: 120 year: 2000 ident: 10.1016/j.neuroimage.2010.02.052_bib38 article-title: Automated Talairach Atlas labels for functional brain mapping publication-title: Hum. Brain Mapp. doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 – volume: 46 start-page: 834 year: 2009 ident: 10.1016/j.neuroimage.2010.02.052_bib70 article-title: The spatio-temporal mapping of epileptic networks: combination of EEG–fMRI and EEG source imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.070 – volume: 14 start-page: 269 year: 1993 ident: 10.1016/j.neuroimage.2010.02.052_bib71 article-title: Adaptive segmentation of spontaneous EEG map series into spatially defined microstates publication-title: Int. J. Psychophysiol. doi: 10.1016/0167-8760(93)90041-M – volume: 447 start-page: 83 year: 2007 ident: 10.1016/j.neuroimage.2010.02.052_bib69 article-title: Intrinsic functional architecture in the anaesthetized monkey brain publication-title: Nature doi: 10.1038/nature05758 – volume: 94 start-page: 1904 year: 2005 ident: 10.1016/j.neuroimage.2010.02.052_bib37 article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00263.2005 – volume: 105 start-page: 12569 year: 2008 ident: 10.1016/j.neuroimage.2010.02.052_bib62 article-title: A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0800005105 – volume: 100 start-page: 11053 year: 2003 ident: 10.1016/j.neuroimage.2010.02.052_bib39 article-title: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1831638100 – year: 1997 ident: 10.1016/j.neuroimage.2010.02.052_bib3 – volume: 45 start-page: 903 year: 2009 ident: 10.1016/j.neuroimage.2010.02.052_bib33 article-title: BOLD correlates of EEG alpha phase-locking and the fMRI default mode network publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.001 – volume: 15 start-page: 247 year: 2002 ident: 10.1016/j.neuroimage.2010.02.052_bib32 article-title: Detection of functional connectivity using temporal correlations in MR images publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10022 – volume: 86 start-page: 1 year: 2001 ident: 10.1016/j.neuroimage.2010.02.052_bib63 article-title: Impact of network activities on neuronal properties in corticothalamic systems publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.86.1.1 – volume: 28 start-page: 9976 year: 2008 ident: 10.1016/j.neuroimage.2010.02.052_bib8 article-title: Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2699-08.2008 – volume: 30 start-page: 2731 year: 2009 ident: 10.1016/j.neuroimage.2010.02.052_bib66 article-title: Two systems of resting state connectivity between the insula and cingulate cortex publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20705 – volume: 29 start-page: 828 year: 2008 ident: 10.1016/j.neuroimage.2010.02.052_bib15 article-title: Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20581 – volume: 313 start-page: 1626 year: 2006 ident: 10.1016/j.neuroimage.2010.02.052_bib16 article-title: High gamma power is phase-locked to theta oscillations in human neocortex publication-title: Science doi: 10.1126/science.1128115 – volume: 19 start-page: 1233 year: 2003 ident: 10.1016/j.neuroimage.2010.02.052_bib48 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00169-1 – volume: 20 start-page: 7 year: 2007 ident: 10.1016/j.neuroimage.2010.02.052_bib34 article-title: Classes of multichannel EEG microstates in light and deep hypnotic conditions publication-title: Brain Topogr. doi: 10.1007/s10548-007-0024-3 – volume: 34 start-page: 537 year: 1995 ident: 10.1016/j.neuroimage.2010.02.052_bib7 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340409 – volume: 15 start-page: 1451 year: 2005 ident: 10.1016/j.neuroimage.2010.02.052_bib52 article-title: Brain state-dependent functional hemispheric specialization in men but not in women publication-title: Cereb. Cortex doi: 10.1093/cercor/bhi025 – volume: 87 start-page: 169 year: 1993 ident: 10.1016/j.neuroimage.2010.02.052_bib64 article-title: Data-determined window size and space-oriented segmentation of spontaneous EEG map series publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(93)90016-O – volume: 16 start-page: 41 year: 2002 ident: 10.1016/j.neuroimage.2010.02.052_bib35 article-title: Millisecond by millisecond, year by year: normative EEG microstates and developmental stages publication-title: Neuroimage doi: 10.1006/nimg.2002.1070 – volume: 8 start-page: 229 year: 1998 ident: 10.1016/j.neuroimage.2010.02.052_bib1 article-title: Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction publication-title: Neuroimage doi: 10.1006/nimg.1998.0361 – volume: 360 start-page: 1001 year: 2005 ident: 10.1016/j.neuroimage.2010.02.052_bib5 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. Lond., Ser. B: Biol. Sci. doi: 10.1098/rstb.2005.1634 – volume: 315 start-page: 393 year: 2007 ident: 10.1016/j.neuroimage.2010.02.052_bib50 article-title: Wandering minds: the default network and stimulus-independent thought publication-title: Science doi: 10.1126/science.1131295 – start-page: 347 year: 2004 ident: 10.1016/j.neuroimage.2010.02.052_bib17 article-title: Mechanisms of neural integration at the brain-scale level. The neuronal workspace and microstate models – volume: 103 start-page: 13848 year: 2006 ident: 10.1016/j.neuroimage.2010.02.052_bib19 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0601417103 – volume: 42 start-page: 658 year: 1995 ident: 10.1016/j.neuroimage.2010.02.052_bib55 article-title: Segmentation of brain electrical activity into microstates: model estimation and validation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.391164 – volume: 62 start-page: 42 year: 2009 ident: 10.1016/j.neuroimage.2010.02.052_bib61 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron doi: 10.1016/j.neuron.2009.03.024 – volume: 48 start-page: 609 year: 1980 ident: 10.1016/j.neuroimage.2010.02.052_bib41 article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(80)90419-8 – volume: 19 start-page: 24 year: 2009 ident: 10.1016/j.neuroimage.2010.02.052_bib72 article-title: Coupling of theta oscillations between anterior and posterior midline cortex and with the hippocampus in freely behaving rats publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn055 – volume: 23 start-page: 227 year: 1984 ident: 10.1016/j.neuroimage.2010.02.052_bib42 article-title: Spatial analysis of evoked potentials in man—a review publication-title: Prog. Neurobiol. doi: 10.1016/0301-0082(84)90003-0 – volume: 103 start-page: 10046 year: 2006 ident: 10.1016/j.neuroimage.2010.02.052_bib25 article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0604187103 – volume: 29 start-page: 1 year: 1998 ident: 10.1016/j.neuroimage.2010.02.052_bib43 article-title: Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(97)00098-6 – volume: 13 start-page: 422 year: 2003 ident: 10.1016/j.neuroimage.2010.02.052_bib45 article-title: Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging publication-title: Cereb. Cortex doi: 10.1093/cercor/13.4.422 – volume: 79 start-page: 1 year: 2001 ident: 10.1016/j.neuroimage.2010.02.052_bib21 article-title: Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework publication-title: Cognition doi: 10.1016/S0010-0277(00)00123-2 – volume: 32 start-page: 9 year: 2009 ident: 10.1016/j.neuroimage.2010.02.052_bib59 article-title: Low-frequency neuronal oscillations as instruments of sensory selection publication-title: Trends Neurosci. doi: 10.1016/j.tins.2008.09.012 – volume: 22 start-page: 24 year: 2009 ident: 10.1016/j.neuroimage.2010.02.052_bib58 article-title: The gamma oscillation: master or slave? publication-title: Brain Topogr. doi: 10.1007/s10548-009-0080-y – volume: 14 start-page: 140 year: 2001 ident: 10.1016/j.neuroimage.2010.02.052_bib14 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1048 – volume: 412 start-page: 150 year: 2001 ident: 10.1016/j.neuroimage.2010.02.052_bib47 article-title: Neurophysiological investigation of the basis of the fMRI signal publication-title: Nature doi: 10.1038/35084005 – volume: 31 start-page: 1142 year: 2006 ident: 10.1016/j.neuroimage.2010.02.052_bib56 article-title: Determining significant connectivity by 4D spatiotemporal wavelet packet resampling of functional neuroimaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.012 – volume: 6 start-page: 47 year: 2002 ident: 10.1016/j.neuroimage.2010.02.052_bib4 article-title: The conscious access hypothesis: origins and recent evidence publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(00)01819-2 – volume: 9999 year: 2009 ident: 10.1016/j.neuroimage.2010.02.052_bib65 article-title: Two systems of resting state connectivity between the insula and cingulate cortex publication-title: Hum. Brain Mapp. – volume: 20 start-page: 249 year: 2008 ident: 10.1016/j.neuroimage.2010.02.052_bib53 article-title: Topographic ERP analyses: a step-by-step tutorial review publication-title: Brain Topogr. doi: 10.1007/s10548-008-0054-5 – volume: 11 start-page: 1100 year: 2008 ident: 10.1016/j.neuroimage.2010.02.052_bib54 article-title: Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.2177 – volume: 7 start-page: 135 year: 2006 ident: 10.1016/j.neuroimage.2010.02.052_bib23 article-title: Timing in cognition and EEG brain dynamics: discreteness versus continuity publication-title: Cogn. Process. doi: 10.1007/s10339-006-0035-0 – volume: 360 start-page: 1015 year: 2005 ident: 10.1016/j.neuroimage.2010.02.052_bib36 article-title: Brain connectivity at different time-scales measured with EEG publication-title: Philos. Trans. Biol. Sci. doi: 10.1098/rstb.2005.1649 – volume: 13 start-page: 2487 year: 2002 ident: 10.1016/j.neuroimage.2010.02.052_bib28 article-title: Simultaneous EEG and fMRI of the alpha rhythm publication-title: Neuroreport doi: 10.1097/00001756-200212200-00022 – volume: 6 start-page: 368 year: 1998 ident: 10.1016/j.neuroimage.2010.02.052_bib51 article-title: Independent component analysis of fMRI data: examining the assumptions publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1998)6:5/6<368::AID-HBM7>3.0.CO;2-E – volume: 4 start-page: 7632 year: 2009 ident: 10.1016/j.neuroimage.2010.02.052_bib44 article-title: EEG microstates publication-title: Scholarpedia doi: 10.4249/scholarpedia.7632 – volume: 104 start-page: 15531 year: 2007 ident: 10.1016/j.neuroimage.2010.02.052_bib26 article-title: Resting-state networks in the infant brain publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0704380104 – volume: 102 start-page: 9673 year: 2005 ident: 10.1016/j.neuroimage.2010.02.052_bib24 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0504136102 – volume: 49 start-page: 42 year: 2008 ident: 10.1016/j.neuroimage.2010.02.052_bib29 article-title: Epileptic networks studied with EEG–fMRI publication-title: Epilepsia doi: 10.1111/j.1528-1167.2008.01509.x – volume: 6 start-page: e159 year: 2008 ident: 10.1016/j.neuroimage.2010.02.052_bib31 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060159 – volume: 37 start-page: 1083 year: 2007 ident: 10.1016/j.neuroimage.2010.02.052_bib57 article-title: A default mode of brain function: a brief history of an evolving idea publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.041 – volume: 60 start-page: 125 year: 2006 ident: 10.1016/j.neuroimage.2010.02.052_bib27 article-title: The cognit: a network model of cortical representation publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2005.12.015 – volume: 104 start-page: 13170 year: 2007 ident: 10.1016/j.neuroimage.2010.02.052_bib49 article-title: Electrophysiological signatures of resting state networks in the human brain publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0700668104 – volume: 7 start-page: 1129 year: 1995 ident: 10.1016/j.neuroimage.2010.02.052_bib6 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – volume: 14 start-page: 511 year: 2005 ident: 10.1016/j.neuroimage.2010.02.052_bib67 article-title: Cluster validation by prediction strength publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186005X59243 – volume: 304 start-page: 1926 year: 2004 ident: 10.1016/j.neuroimage.2010.02.052_bib13 article-title: Neuronal oscillations in cortical networks publication-title: Science doi: 10.1126/science.1099745 – volume: 100 start-page: 8520 year: 2003 ident: 10.1016/j.neuroimage.2010.02.052_bib22 article-title: A neuronal network model linking subjective reports and objective physiological data during conscious perception publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1332574100 – volume: 60 start-page: 139 year: 2006 ident: 10.1016/j.neuroimage.2010.02.052_bib11 article-title: Operational principles of neurocognitive networks publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2005.12.008 – volume: 27 start-page: 2349 year: 2007 ident: 10.1016/j.neuroimage.2010.02.052_bib60 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5587-06.2007 – volume: 19 start-page: 55 year: 2009 ident: 10.1016/j.neuroimage.2010.02.052_bib12 article-title: Right parietal brain activity precedes perceptual alternation of bistable stimuli publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn056 – volume: 242 start-page: 1654 year: 1988 ident: 10.1016/j.neuroimage.2010.02.052_bib46 article-title: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function publication-title: Science doi: 10.1126/science.3059497 – volume: 1129 start-page: 119 year: 2008 ident: 10.1016/j.neuroimage.2010.02.052_bib9 article-title: Intrinsic brain activity in altered states of consciousness publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1417.015 – volume: 119 start-page: 2762 year: 2008 ident: 10.1016/j.neuroimage.2010.02.052_bib68 article-title: Effects of fluctuating physiological rhythms during prolonged EEG–fMRI studies publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2008.07.284 – reference: 20493268 - Neuroimage. 2010 Oct 1;52(4):1171-2 – reference: 20493265 - Neuroimage. 2010 Oct 1;52(4):1173-4 |
SSID | ssj0009148 |
Score | 2.5603714 |
Snippet | Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1162 |
SubjectTerms | Action Potentials - physiology Adult Biological Clocks - physiology Brain Brain - physiology Cognition & reasoning Default-mode network EEG EEG microstates EEG topography Electroencephalography - methods Female fMRI GLM Humans ICA Magnetic Resonance Imaging - methods Male Medical research Nerve Net - physiology Rapid dynamics Rest - physiology Resting state Resting-state networks |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagSIgF8aa85IHVkDhxEosB8SggxGMBqZsVx7ZUVJJC2__PXeK0E1WHDEl8SXTOnc_2d98Rcg4jrtaFNix0QrDYaAt-MLIszQNnTepkYGu2z7fk6TN-7ou-X3Abe1hl6xNrR22qAtfIL5EJL8OsrOB69MOwahTurvoSGqtkDanLENKV9tM56W4YN6lwImIZNPBIngbfVfNFDr7Baj3Ai18Egv83PP0XftbD0MMW2fTxI71pOnybrNhyh6y_-h3yXfJ6-_5yTwusuTHEMJJWjvZ6j3RSjTw5NUXSJngEnAwMxdIcMHqxOrGIlg0onJqmTv14j3w-9D7unpgvmcAKIZIJczpMBJd5KjNpksjmIjNppLXTOohiC_bNtUkKcCrSxTq0eWalhStWF84m3EX7pFNWpT0klDucquUyQiBbKJ2EuSQ3cIg8DrlzXZK2mlKF5xPHshZD1QLHvtRcxwp1rAKuQMddEs4kRw2nxhIysu0M1eaMgpdT4PiXkL2ayfq4ookXlpQ-afteefseq_nf2CV0dhssE7db8tJW07FCXh_MpE8WNMH5osxi2SUHzV81Uwh8QQbS2dHi1x-TjRrPUMMLT0hn8ju1pxAmTfRZbQt_xNkSRA priority: 102 providerName: ProQuest |
Title | BOLD correlates of EEG topography reveal rapid resting-state network dynamics |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191000220X https://dx.doi.org/10.1016/j.neuroimage.2010.02.052 https://www.ncbi.nlm.nih.gov/pubmed/20188188 https://www.proquest.com/docview/1506842440 https://www.proquest.com/docview/748981806 https://www.proquest.com/docview/754879849 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSIgLYqcslQ9cQxMnTmJxglIoW0EsUm9WHNtSEaQVLVe-nXHiFHEAVeKQRFkmsiaexcqbNwCHGHGlzKXyAsOYFymp0Q-G2ksy32iVGO7rku2zF3efo6s-689Bu66FsbBK5_srn156a3el5bTZGg0GrUfMDDDc4HqjJHHx-_OwSEMe49RePLm87va-uXeDqKqIY6FnBRygp4J5lbSRgzc0Xofzokc-o79Fqd-y0DIana_CiksjyUk10jWY08U6LN26H-UbcHt6d3NGctt649Vmk2RoSKdzQSbDkeOoJpa7CV-BJwNFbIcODGJeWV9EigobTlTVrn68Cc_nnad213OdE7ycsXjiGRnEjPIs4SlXcagzlqoklNJI6YeRRjOnUsU5-hZuIhnoLNVc4xUtc6NjasItWCiGhd4BQo1dsWU8tHi2gBuOS0qqcGNZFFBjGpDUmhK5oxW33S1eRY0fexHfOhZWx8KnAnXcgGAqOaqoNWaQ4fXHEHXpKDo7gf5_BtnjqeyPKTaj9H797YUz87Gw9IypLRX0G0Cmt9FA7V-XrNDDj7Gw9D62oD7-4xG7bORpxBuwXc2qqUJwBClKp7v_GvweLJeohxKEuA8Lk_cPfYDJ1EQ2Yf7oM8B90k-aaDjth5v7pjMgPJ52evcPX5ZNJCo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anQRcEN-UDfABjobYiZNYE0KMdXSsLQht0m5eHNtS0ZYU2gntn9rfuOfEaU-betmhh7R5TvVsv4_4934P4D16XK1LbShzQtDEaIt2MLY0KyJnTeZkZBu2z0k6PE5-nIiTDbjqamE8rLKziY2hNnXp35F_8kx4ua_Kir7M_lLfNcqfrnYtNNplcWgv_2PKNv98sIfz-4Hz_cHRtyENXQVoKUS6oE6zVHBZZDKXJo1tIXKTxVo7raM4sbgFuDZpiftOukQzW-RWWvzG6tLZlLsYx70Hm0mMqUwPNncHk1-_VzS_LGmL70RMc8ZkwA61iLKGoXJ6jnYiQMr4x0jwmxziTQFv4_j2H8OjELGSr-0SewIbtnoK98fhTP4ZjHd_jvZI6bt8nPnAldSODAbfyaKeBTps4mmicAi8mBrim4Ggv6RNKROpWhg6MZdVcT4t58_h-E7U-QJ6VV3ZV0C488lhIWMPnWPSScxeucGPKBLGnetD1mlKlYHB3DfSOFMdVO2PWulYeR2riCvUcR_YUnLWsnisISO7yVBdlSraVYWuZg3ZnaVsiGTaCGVN6e1u7lWwKHO1Wv99IMuf0Rb4A56isvXFXHkmIV-7n95yi89QZZ7IPrxsV9VSIfgPcpTOX9_--HfwYHg0HqnRweRwCx42aIoG3LgNvcW_C_sGg7SFfht2BoHTu96M1wpcUrU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH_ahjTtgvgaFAb4AMew2ImTWAghoC0b-4DDJvVm4tiWirak0E5o_xp_He8lTnva1MsOPaTNc6pnvw_Hv_d7AG8w4hpTGRtxL2WUWuPQDyYuysvYO5t7FbuW7fM0OzhPv03kZAP-9bUwBKvsfWLrqG1T0TvyfWLCK6gqK973ARbxYzj-OPsdUQcpOmnt22l0S-TIXf_F7dv8w-EQ5_qtEOPR2ZeDKHQYiCops0XkDc-kUGWuCmWzxJWysHlijDcmTlKH5iCMzSq0QeVTw11ZOOXwG2cq7zLhExx3E-7lieRkY_kkXxH-8rQrw5NJVHCuAoqow5a1XJXTS_QYAVwm3sVS3BQab0p92xA4fgD3Q-7KPnWL7SFsuPoRbJ-E0_nHcPL5-_GQVdTv44JSWNZ4Nhp9ZYtmFoixGRFG4RB4MbWM2oJg5IzaoiZWd4B0Zq_r8nJazZ_A-Z0ocxe26qZ2z4AJT9vEUiUEouPKK9zHCosfWaZceD-AvNeUrgKXObXUuNA9aO2XXulYk451LDTqeAB8KTnr-DzWkFH9ZOi-XhU9rMags4bs-6VsyGm6XGVN6b1-7nXwLXO9soQBsOXP6BXoqKesXXM118QpRFX82S230F5VFakawNNuVS0Vgv-gQOni-e2Pfw3baIL6-PD06AXstLCKFuW4B1uLP1fuJWZrC_OqNQsGP-_aDv8D6IhVhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BOLD+correlates+of+EEG+topography+reveal+rapid+resting-state+network+dynamics&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Britz%2C+Juliane&rft.au=Van+De+Ville%2C+Dimitri&rft.au=Michel%2C+Christoph+M.&rft.date=2010-10-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=52&rft.issue=4&rft.spage=1162&rft.epage=1170&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.02.052&rft.externalDocID=S105381191000220X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |