Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine

Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a...

Full description

Saved in:
Bibliographic Details
Published inPharmacology & therapeutics (Oxford) Vol. 146; pp. 104 - 119
Main Authors Fan, Jianglin, Kitajima, Shuji, Watanabe, Teruo, Xu, Jie, Zhang, Jifeng, Liu, Enqi, Chen, Y. Eugene
Format Journal Article
LanguageEnglish
Published England 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits.
AbstractList Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits.
Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits.Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits.
Author Fan, Jianglin
Xu, Jie
Liu, Enqi
Zhang, Jifeng
Kitajima, Shuji
Watanabe, Teruo
Chen, Y. Eugene
AuthorAffiliation 3 Center for Advanced Models for Translational Sciences and Therapeutics University of Michigan Medical Center, Ann Arbor, MI, USA
2 Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
4 Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi’an Jiaotong University School of Medicine, Xi’an, China
1 Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Shimokato 1110, Chuo-City 409-3898, Japan
AuthorAffiliation_xml – name: 3 Center for Advanced Models for Translational Sciences and Therapeutics University of Michigan Medical Center, Ann Arbor, MI, USA
– name: 2 Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
– name: 1 Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Shimokato 1110, Chuo-City 409-3898, Japan
– name: 4 Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi’an Jiaotong University School of Medicine, Xi’an, China
Author_xml – sequence: 1
  givenname: Jianglin
  surname: Fan
  fullname: Fan, Jianglin
– sequence: 2
  givenname: Shuji
  surname: Kitajima
  fullname: Kitajima, Shuji
– sequence: 3
  givenname: Teruo
  surname: Watanabe
  fullname: Watanabe, Teruo
– sequence: 4
  givenname: Jie
  surname: Xu
  fullname: Xu, Jie
– sequence: 5
  givenname: Jifeng
  surname: Zhang
  fullname: Zhang, Jifeng
– sequence: 6
  givenname: Enqi
  surname: Liu
  fullname: Liu, Enqi
– sequence: 7
  givenname: Y. Eugene
  surname: Chen
  fullname: Chen, Y. Eugene
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25277507$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFu1TAQtFARfS38AvKRS8I6ceyYAxKqKCBVQkIgcbMcx2n85NjBdiq9v8evLa9w4uKVdsczuzMX6MwHbxDCBGoChL3d1-us4pJnE1XdAKE1iBpAPEM70nNRFczPM7Qrpa140_Xn6CKlPQBQCs0LdN50Decd8B2K39Qw2IyXMBqX8BQiLqw45W084DDheVuUx-qoFJJ2x9emd_g6hgWvpR3W-ZBscOHWauXwYvSsvE1LwjngHJVPTmUb_P1stNp68xI9n5RL5tVjvUQ_rj9-v_pc3Xz99OXqw02lu47lyjDRj_2kFGV0Yrw0Bz6YhhsDI2d6akRLlGh4uUqxgbIOYByHaSAjbU3Hob1E7x94120o2tr4so-Ta7SLigcZlJX_Tryd5W24k7QFKnpaCN48EsTwazMpy8UmbZxT3oQtScIYEaKlwAv09d9aJ5E_RhdA_wDQxcEUzXSCEJDHTOVePmUqj5lKELJk-nTH6au2-d7UsrV1_yf4DVmfshg
CitedBy_id crossref_primary_10_1016_j_pbiomolbio_2016_05_007
crossref_primary_10_1111_sji_12560
crossref_primary_10_1016_j_cvex_2023_11_003
crossref_primary_10_1038_s41598_019_43902_3
crossref_primary_10_1039_D4LC00868E
crossref_primary_10_1186_s13287_021_02490_8
crossref_primary_10_1016_j_pbiomolbio_2016_05_001
crossref_primary_10_3390_jcdd9080258
crossref_primary_10_1016_j_nutres_2017_04_012
crossref_primary_10_1371_journal_pone_0215604
crossref_primary_10_1016_j_cbi_2019_01_004
crossref_primary_10_1093_pnasnexus_pgac306
crossref_primary_10_1186_s12944_020_01256_0
crossref_primary_10_1016_j_vph_2021_106878
crossref_primary_10_3389_fcvm_2023_1130304
crossref_primary_10_1016_j_bbrc_2018_02_035
crossref_primary_10_1002_mnfr_202100371
crossref_primary_10_1038_srep26942
crossref_primary_10_3390_app10238681
crossref_primary_10_3390_biomedicines11020384
crossref_primary_10_1016_j_abb_2020_108460
crossref_primary_10_1186_s40064_015_1054_z
crossref_primary_10_3390_app10207369
crossref_primary_10_3390_cells12202466
crossref_primary_10_1161_CIRCRESAHA_120_317705
crossref_primary_10_1016_j_ebiom_2018_09_020
crossref_primary_10_1038_s41598_020_66780_6
crossref_primary_10_1016_j_gene_2015_03_038
crossref_primary_10_1371_journal_pone_0264215
crossref_primary_10_3390_md19070374
crossref_primary_10_1080_19475411_2024_2395270
crossref_primary_10_1080_09168451_2019_1677143
crossref_primary_10_48130_animadv_0025_0003
crossref_primary_10_1371_journal_pone_0202748
crossref_primary_10_3390_molecules24112049
crossref_primary_10_7555_JBR_33_20180097
crossref_primary_10_1038_s12276_018_0094_1
crossref_primary_10_3389_fendo_2022_834207
crossref_primary_10_1007_s00395_020_00829_5
crossref_primary_10_3348_jksr_2023_0106
crossref_primary_10_3390_ijms18081706
crossref_primary_10_3390_ijms231911174
crossref_primary_10_1007_s10787_025_01694_1
crossref_primary_10_1038_s41598_018_24813_1
crossref_primary_10_1016_j_atherosclerosis_2015_12_002
crossref_primary_10_1016_j_talanta_2024_126954
crossref_primary_10_1186_s12944_019_1013_8
crossref_primary_10_3389_fimmu_2018_00429
crossref_primary_10_1293_tox_34_183S
crossref_primary_10_14258_jcprm_2020047767
crossref_primary_10_1002_advs_202304294
crossref_primary_10_1172_jci_insight_165713
crossref_primary_10_5551_jat_63793
crossref_primary_10_1111_bph_13932
crossref_primary_10_1007_s10557_016_6644_7
crossref_primary_10_1016_j_ajpath_2018_08_007
crossref_primary_10_1016_j_phymed_2015_10_014
crossref_primary_10_3390_ijms23052542
crossref_primary_10_1161_ATVBAHA_120_314368
crossref_primary_10_3389_fcell_2021_643697
crossref_primary_10_1038_s41598_024_67635_0
crossref_primary_10_1002_iid3_339
crossref_primary_10_18632_aging_101541
crossref_primary_10_1097_FJC_0000000000001044
crossref_primary_10_1111_liv_15830
crossref_primary_10_3892_mmr_2018_9258
crossref_primary_10_1089_cell_2021_0090
crossref_primary_10_1160_th15_07_0614
crossref_primary_10_1002_trc2_12241
crossref_primary_10_1016_j_jep_2016_04_027
crossref_primary_10_1017_S0967199419000200
crossref_primary_10_1038_s41401_019_0315_8
crossref_primary_10_1186_s42826_022_00128_1
crossref_primary_10_1016_j_ejphar_2017_05_010
crossref_primary_10_1002_mrd_22739
crossref_primary_10_1186_s13018_019_1217_7
crossref_primary_10_5551_jat_RV17018
crossref_primary_10_3354_dao03477
crossref_primary_10_1007_s10557_021_07175_1
crossref_primary_10_1161_ATVBAHA_125_322661
crossref_primary_10_3390_hearts5040031
crossref_primary_10_1161_ATVBAHA_122_317898
crossref_primary_10_1002_cyto_a_22849
crossref_primary_10_3233_MNM_180229
crossref_primary_10_1002_biof_1700
crossref_primary_10_3390_ani9070463
crossref_primary_10_5551_jat_RV17038_1
crossref_primary_10_1016_j_ymthe_2020_11_023
crossref_primary_10_3389_fmed_2019_00039
crossref_primary_10_1016_j_lfs_2020_117349
crossref_primary_10_1155_2023_8339591
crossref_primary_10_18632_aging_102778
crossref_primary_10_3390_ani14121727
crossref_primary_10_3389_fgene_2021_614379
crossref_primary_10_1007_s12010_018_2776_5
crossref_primary_10_3390_metabo11040249
crossref_primary_10_3390_ijms24043819
crossref_primary_10_5551_jat_RV17038_2
crossref_primary_10_1016_j_ajpath_2023_06_003
crossref_primary_10_1159_000498897
crossref_primary_10_1167_tvst_12_2_26
crossref_primary_10_55230_mabjournal_v52i1_2535
crossref_primary_10_1016_j_atherosclerosis_2024_117565
crossref_primary_10_1002_advs_202203597
crossref_primary_10_1111_bph_15484
crossref_primary_10_1016_j_lfs_2023_121823
crossref_primary_10_1016_j_retram_2020_07_001
crossref_primary_10_3389_fmed_2020_566250
crossref_primary_10_1007_s12012_018_9465_z
crossref_primary_10_1097_FJC_0000000000000544
crossref_primary_10_3390_app10238508
crossref_primary_10_1007_s11655_018_3014_2
crossref_primary_10_1371_journal_pone_0187564
crossref_primary_10_3389_fnimg_2022_965529
crossref_primary_10_3389_fcvm_2020_591583
crossref_primary_10_1016_j_jfda_2016_02_004
crossref_primary_10_1161_ATVBAHA_117_309114
crossref_primary_10_1111_pin_13202
crossref_primary_10_3390_ijms19102882
crossref_primary_10_1111_ejn_14265
crossref_primary_10_1590_1414_431x20209557
crossref_primary_10_3389_fmed_2020_00467
crossref_primary_10_1053_j_gastro_2016_08_051
crossref_primary_10_1161_CIRCRESAHA_120_315937
crossref_primary_10_3945_ajcn_116_146753
crossref_primary_10_3390_nu11040894
crossref_primary_10_7555_JBR_34_20190133
crossref_primary_10_1007_s00705_019_04226_9
crossref_primary_10_1016_j_athplu_2021_08_008
crossref_primary_10_1139_apnm_2017_0876
crossref_primary_10_1186_s12944_021_01605_7
crossref_primary_10_1016_j_mrgentox_2021_503324
crossref_primary_10_1177_0192623320957637
crossref_primary_10_1111_iep_12167
crossref_primary_10_31083_j_fbl2804070
crossref_primary_10_5115_acb_23_196
crossref_primary_10_1093_ajcn_nqaa322
crossref_primary_10_1016_j_jbiotec_2017_05_002
crossref_primary_10_1016_j_biomaterials_2018_09_036
crossref_primary_10_3390_ijms17020169
crossref_primary_10_3390_ijms23084172
crossref_primary_10_1111_jcmm_15087
crossref_primary_10_1002_advs_202307627
crossref_primary_10_1080_09553002_2020_1820606
crossref_primary_10_3389_fcvm_2024_1424064
crossref_primary_10_1016_j_ygeno_2021_05_031
crossref_primary_10_1111_andr_13398
crossref_primary_10_3389_fcvm_2023_1116861
crossref_primary_10_3390_ijms19113512
crossref_primary_10_3390_nu11020370
crossref_primary_10_3389_fcvm_2022_839720
crossref_primary_10_3389_fgene_2021_642444
crossref_primary_10_1186_s12944_017_0563_x
crossref_primary_10_3892_mmr_2021_12511
crossref_primary_10_33647_2074_5982_15_4_12_33
crossref_primary_10_1042_CS20210862
crossref_primary_10_1139_cjpp_2023_0206
crossref_primary_10_1161_ATVBAHA_117_309139
crossref_primary_10_1177_2156587215627552
crossref_primary_10_1002_ame2_12556
crossref_primary_10_1038_s41598_017_02080_w
crossref_primary_10_1038_s41598_024_56562_9
crossref_primary_10_1177_0192623317700519
crossref_primary_10_1242_dmm_052015
crossref_primary_10_1007_s12011_015_0367_7
crossref_primary_10_1093_jhered_esw010
crossref_primary_10_1038_s41598_018_19774_4
crossref_primary_10_1186_s12986_015_0024_3
crossref_primary_10_1161_ATV_0000000000000062
crossref_primary_10_1590_1678_4324_2019180403
crossref_primary_10_1093_database_bay075
crossref_primary_10_1161_ATVBAHA_114_304833
crossref_primary_10_3389_fcell_2022_1097137
crossref_primary_10_1186_s12967_018_1587_3
crossref_primary_10_1016_j_bbadis_2019_05_015
crossref_primary_10_1038_s41598_022_06762_y
crossref_primary_10_1155_2017_3824276
crossref_primary_10_1016_j_ejphar_2022_174890
crossref_primary_10_3389_fcvm_2023_1134097
crossref_primary_10_1038_s41598_023_42763_1
crossref_primary_10_1007_s10439_015_1456_7
crossref_primary_10_1016_j_freeradbiomed_2015_06_019
crossref_primary_10_1096_fj_202002118RR
crossref_primary_10_1177_1074248418775377
crossref_primary_10_3390_genes12060890
crossref_primary_10_1161_RES_0000000000000169
crossref_primary_10_3390_app10217416
crossref_primary_10_2174_1570161119666210820115150
crossref_primary_10_3390_ijms232112964
crossref_primary_10_4103_0366_6999_222322
crossref_primary_10_1089_jmf_2019_0017
crossref_primary_10_1007_s00259_018_4176_z
crossref_primary_10_1016_j_biopha_2021_111900
crossref_primary_10_1186_s41747_025_00558_1
crossref_primary_10_3390_ijms232314762
crossref_primary_10_1016_j_dci_2018_10_003
crossref_primary_10_1016_j_jacbts_2021_06_006
crossref_primary_10_3349_ymj_2016_57_5_1095
crossref_primary_10_1177_0023677219855102
crossref_primary_10_1155_2022_9810097
crossref_primary_10_1089_jmf_2023_0153
crossref_primary_10_1538_expanim_20_0112
crossref_primary_10_1016_j_bone_2021_116076
crossref_primary_10_1038_s41598_022_12756_7
crossref_primary_10_3390_pharmaceutics13020130
crossref_primary_10_3390_cells12151936
crossref_primary_10_7759_cureus_67067
crossref_primary_10_1111_jcmm_17188
crossref_primary_10_1038_s41598_018_20885_1
crossref_primary_10_1038_s42255_024_00984_2
crossref_primary_10_1073_pnas_2205475119
crossref_primary_10_1111_vcp_12676
crossref_primary_10_3390_ani11051220
crossref_primary_10_1371_journal_pone_0201618
crossref_primary_10_1016_j_giant_2023_100206
crossref_primary_10_1111_jpn_13742
crossref_primary_10_2478_aoas_2020_0091
crossref_primary_10_3390_ani10091540
crossref_primary_10_1089_cell_2015_0044
crossref_primary_10_1177_02601060241298740
crossref_primary_10_1186_s12872_020_01703_x
crossref_primary_10_1161_CIRCINTERVENTIONS_121_010764
crossref_primary_10_3390_nu12051405
crossref_primary_10_1016_j_bbadis_2015_12_006
crossref_primary_10_2491_jjsth_33_437
crossref_primary_10_1096_fba_2020_00135
crossref_primary_10_1016_j_lssr_2023_03_008
crossref_primary_10_1016_j_numecd_2021_03_023
crossref_primary_10_1093_toxsci_kfae022
crossref_primary_10_1016_j_exer_2022_109215
crossref_primary_10_1007_s12265_023_10399_1
crossref_primary_10_1016_j_bbadis_2017_12_040
crossref_primary_10_1155_2019_4521786
crossref_primary_10_1186_s12944_018_0726_4
crossref_primary_10_1007_s13273_024_00426_w
crossref_primary_10_1017_erm_2016_5
crossref_primary_10_1186_s12906_020_03012_4
crossref_primary_10_1016_j_atherosclerosis_2022_03_032
crossref_primary_10_1038_srep25161
crossref_primary_10_1371_journal_pone_0180772
crossref_primary_10_1007_s11883_017_0692_8
Cites_doi 10.1126/science.1990440
10.1093/jmcb/mjt047
10.1016/j.atherosclerosis.2004.10.044
10.1007/s11248-010-9467-5
10.1016/S0002-9440(10)64366-0
10.1038/labinvest.3700346
10.1016/j.atherosclerosis.2006.02.036
10.1016/S0021-9150(74)80002-X
10.1074/jbc.273.2.1247
10.1016/0021-9150(93)90080-E
10.1038/nature10146
10.1016/S0022-2275(20)38386-3
10.1006/jmcc.2002.2025
10.1161/CIRCULATIONAHA.109.872796
10.1161/01.ATV.11.3.745
10.1038/cr.2013.85
10.1016/j.atherosclerosis.2009.03.024
10.1038/315680a0
10.1161/01.CIR.100.11.1215
10.1016/S0024-3205(01)01479-5
10.1016/S0022-2275(20)37649-5
10.1111/j.1439-0531.1985.tb00423.x
10.1016/S0022-2275(20)38428-5
10.1194/jlr.R400003-JLR200
10.1172/JCI114558
10.1126/science.1178817
10.1111/j.1476-5381.1989.tb12635.x
10.1161/ATVBAHA.111.237693
10.1073/pnas.84.16.5928
10.1016/j.thromres.2013.09.007
10.1126/science.1178811
10.1124/jpet.107.135822
10.1016/S0022-2275(20)38819-2
10.1016/j.cell.2013.04.025
10.1161/01.CIR.94.4.713
10.1161/01.ATV.16.12.1424
10.1056/NEJM198308043090507
10.1161/01.ATV.0000075947.28567.50
10.1074/jbc.M105456200
10.1016/S0163-7258(03)00069-X
10.1161/01.ATV.21.1.88
10.1093/ajcn/23.8.1105
10.1073/pnas.93.21.11448
10.1038/oby.2009.176
10.1016/j.bbrc.2011.03.069
10.1006/bbrc.1999.0242
10.1073/pnas.1211446109
10.1038/ng.343
10.1073/pnas.88.12.5252
10.1016/S0344-0338(11)80575-3
10.1016/S0021-9258(18)35775-2
10.1016/j.ddmod.2009.02.001
10.1016/j.atherosclerosissup.2004.08.020
10.1681/ASN.2006010075
10.1016/S0022-2275(20)35730-8
10.1161/ATVBAHA.110.215756
10.1016/j.atherosclerosis.2013.08.030
10.1161/CIRCULATIONAHA.105.596031
10.1007/s11248-012-9599-x
10.1161/01.ATV.19.12.2952
10.1016/j.cardiores.2004.10.022
10.1038/nbt0402-366
10.1038/nbt.2527
10.1016/0021-9150(80)90234-8
10.5551/jat1994.7.26
10.1161/01.ATV.15.11.1889
10.1016/0021-9150(70)90085-7
10.1172/JCI1599
10.1084/jem.89.6.611
10.1046/j.1440-1827.1999.00923.x
10.1155/2011/406473
10.1172/JCI7956
10.1016/j.atherosclerosis.2006.08.056
10.1073/pnas.91.18.8724
10.1126/science.1231143
10.1016/S0022-2275(20)41963-7
10.1172/JCI119029
10.1016/j.jcpa.2009.08.159
10.1074/jbc.272.36.22685
10.1016/j.cell.2011.04.005
10.1161/01.ATV.9.6.824
10.1161/ATVBAHA.112.300445
10.1074/jbc.M205814200
10.1126/science.3010466
10.1073/pnas.92.18.8483
10.5551/jat.21600
10.1038/nprot.2014.009
10.1111/j.1538-7836.2010.04086.x
10.1097/MOL.0b013e3283189c18
10.1016/j.atherosclerosissup.2004.08.007
10.2741/A192
10.1371/journal.pone.0021045
10.1186/1476-511X-12-166
10.2353/ajpath.2008.070604
10.1161/CIRCHEARTFAILURE.108.802298
10.1161/ATVBAHA.109.190264
10.1016/S0022-2275(20)34757-X
ContentType Journal Article
Copyright Copyright © 2014 Elsevier Inc. All rights reserved.
2014 Elsevier Inc. All rights reserved. 2014
Copyright_xml – notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: 2014 Elsevier Inc. All rights reserved. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.pharmthera.2014.09.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1879-016X
EndPage 119
ExternalDocumentID PMC4304984
25277507
10_1016_j_pharmthera_2014_09_009
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL068878
– fundername: NHLBI NIH HHS
  grantid: HL105114
– fundername: NINDS NIH HHS
  grantid: NS066652
– fundername: NINDS NIH HHS
  grantid: R01 NS066652
– fundername: NHLBI NIH HHS
  grantid: HL088391
– fundername: NHLBI NIH HHS
  grantid: R01 HL088391
– fundername: NHLBI NIH HHS
  grantid: R01 HL117491
– fundername: NHLBI NIH HHS
  grantid: R01 HL089544
– fundername: NHLBI NIH HHS
  grantid: HL068878
– fundername: NHLBI NIH HHS
  grantid: R01 HL105114
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABMAC
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFO
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SPT
SSH
SSP
SSZ
T5K
TEORI
WUQ
Y6R
ZGI
ZXP
~G-
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c556t-e698d8faa464f67c55b7be27ee0d76cf2931a927000a6b46500ddbfb1d43e5703
ISSN 0163-7258
1879-016X
IngestDate Thu Aug 21 18:15:57 EDT 2025
Fri Jul 11 07:34:50 EDT 2025
Thu Apr 03 06:59:33 EDT 2025
Tue Jul 01 03:07:35 EDT 2025
Thu Apr 24 23:12:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Experimental animal models
Hypercholesterolemia
Transgenic rabbits
Translational medicine
Atherosclerosis
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c556t-e698d8faa464f67c55b7be27ee0d76cf2931a927000a6b46500ddbfb1d43e5703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://doi.org/10.1016/j.pharmthera.2014.09.009
PMID 25277507
PQID 1661993407
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4304984
proquest_miscellaneous_1661993407
pubmed_primary_25277507
crossref_primary_10_1016_j_pharmthera_2014_09_009
crossref_citationtrail_10_1016_j_pharmthera_2014_09_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Pharmacology & therapeutics (Oxford)
PublicationTitleAlternate Pharmacol Ther
PublicationYear 2015
References Kato (10.1016/j.pharmthera.2014.09.009_bb0255) 1991; 187
Aikawa (10.1016/j.pharmthera.2014.09.009_bb0005) 1999; 100
Rosenfeld (10.1016/j.pharmthera.2014.09.009_bb0425) 1992; 140
Moscou (10.1016/j.pharmthera.2014.09.009_bb0375) 2009; 326
Rouy (10.1016/j.pharmthera.2014.09.009_bb0430) 1998; 273
Libby (10.1016/j.pharmthera.2014.09.009_bb0330) 2011; 473
Koike (10.1016/j.pharmthera.2014.09.009_bb0295) 2005; 65
Liang (10.1016/j.pharmthera.2014.09.009_bb0325) 2006; 113
Chiesa (10.1016/j.pharmthera.2014.09.009_bb0070) 1992; 267
Fan (10.1016/j.pharmthera.2014.09.009_bb0175) 2003; 99
Li (10.1016/j.pharmthera.2014.09.009_bb0320) 1996; 37
Liu (10.1016/j.pharmthera.2014.09.009_bb0335) 2007; 18
Fan (10.1016/j.pharmthera.2014.09.009_bb0160) 1994; 91
Poorman (10.1016/j.pharmthera.2014.09.009_bb0415) 1993; 34
Yla-Herttuala (10.1016/j.pharmthera.2014.09.009_bb0575) 1991; 88
Bocan (10.1016/j.pharmthera.2014.09.009_bb0025) 1993; 102
Fan (10.1016/j.pharmthera.2014.09.009_bb0140) 1995; 15
Nordestgaard (10.1016/j.pharmthera.2014.09.009_bb0395) 1988; 29
Peng (10.1016/j.pharmthera.2014.09.009_bb0405) 2012; 62
Tanaka (10.1016/j.pharmthera.2014.09.009_bb0490) 2008; 325
Shiomi (10.1016/j.pharmthera.2014.09.009_bb0450) 2003; 23
Takahashi (10.1016/j.pharmthera.2014.09.009_bb0480) 2011; 407
Niimi (10.1016/j.pharmthera.2014.09.009_bb0390) 2013; 12
Zhang (10.1016/j.pharmthera.2014.09.009_bb0585) 2010; 142
Daugherty (10.1016/j.pharmthera.2014.09.009_bb0090) 1989; 98
Watanabe (10.1016/j.pharmthera.2014.09.009_bb0540) 1980; 36
Badimon (10.1016/j.pharmthera.2014.09.009_bb0015) 1989; 60
Hoeg (10.1016/j.pharmthera.2014.09.009_bb0215) 1996; 93
Li (10.1016/j.pharmthera.2014.09.009_bb0315) 2014; 21
Roberts (10.1016/j.pharmthera.2014.09.009_bb0420) 1974; 19
King (10.1016/j.pharmthera.2014.09.009_bb0260) 2010; 18
Kita (10.1016/j.pharmthera.2014.09.009_bb0265) 1987; 84
Suzuki (10.1016/j.pharmthera.2014.09.009_bb0475) 2009; 2
Duranthon (10.1016/j.pharmthera.2014.09.009_bb0105) 2012; 21
Yang (10.1016/j.pharmthera.2014.09.009_bb0570) 2014; 6
Kobayashi (10.1016/j.pharmthera.2014.09.009_bb0280) 2011; 2011
Hirata (10.1016/j.pharmthera.2014.09.009_bb0205) 1988; 38
Bosze (10.1016/j.pharmthera.2014.09.009_bb0035) 2012; 21
Shiomi (10.1016/j.pharmthera.2014.09.009_bb0455) 2013; 231
Flisikowska (10.1016/j.pharmthera.2014.09.009_bb0180) 2011; 6
Badimon (10.1016/j.pharmthera.2014.09.009_bb0010) 1990; 85
Ichikawa (10.1016/j.pharmthera.2014.09.009_bb0235) 2002; 160
Wang (10.1016/j.pharmthera.2014.09.009_bb0515) 2013; 153
Hansson (10.1016/j.pharmthera.2014.09.009_bb0200) 1991; 11
Huang (10.1016/j.pharmthera.2014.09.009_bb0225) 1997; 272
Ignatowski (10.1016/j.pharmthera.2014.09.009_bb0240) 1908; 16
Fan (10.1016/j.pharmthera.2014.09.009_bb0155) 2001; 276
Ichikawa (10.1016/j.pharmthera.2014.09.009_bb0230) 2005; 179
Kritchevsky (10.1016/j.pharmthera.2014.09.009_bb0305) 1970; 23
Watanabe (10.1016/j.pharmthera.2014.09.009_bb0535) 1985; 53
Yamamoto (10.1016/j.pharmthera.2014.09.009_bb0550) 1986; 232
Taylor (10.1016/j.pharmthera.2014.09.009_bb0495) 1997; 2
Mahley (10.1016/j.pharmthera.2014.09.009_bb0340) 1980; 21
Moore (10.1016/j.pharmthera.2014.09.009_bb0370) 2011; 145
Chen (10.1016/j.pharmthera.2014.09.009_bb0060) 2013; 132
Goldstein (10.1016/j.pharmthera.2014.09.009_bb0190) 1983; 309
Getz (10.1016/j.pharmthera.2014.09.009_bb0185) 2012; 32
Mussolino (10.1016/j.pharmthera.2014.09.009_bb0380) 2013; 31
Fan (10.1016/j.pharmthera.2014.09.009_bb0130) 1999; 49
Brem (10.1016/j.pharmthera.2014.09.009_bb0040) 1985; 20
Koike (10.1016/j.pharmthera.2014.09.009_bb0290) 2009; 120
Li (10.1016/j.pharmthera.2014.09.009_bb0310) 1993; 143
Fan (10.1016/j.pharmthera.2014.09.009_bb0125) 1999; 255
Kitajima (10.1016/j.pharmthera.2014.09.009_bb0270) 2007; 193
Cong (10.1016/j.pharmthera.2014.09.009_bb0075) 2013; 339
Hoeg (10.1016/j.pharmthera.2014.09.009_bb0210) 1998; 98
Vesselinovitch (10.1016/j.pharmthera.2014.09.009_bb0510) 1988; 112
Shiomi (10.1016/j.pharmthera.2014.09.009_bb0440) 2008; 19
Brown (10.1016/j.pharmthera.2014.09.009_bb0045) 2004; 5
Corti (10.1016/j.pharmthera.2014.09.009_bb0080) 2007; 190
Carlson (10.1016/j.pharmthera.2014.09.009_bb0055) 2012; 109
Matsuda (10.1016/j.pharmthera.2014.09.009_bb0360) 2011; 9
Marian (10.1016/j.pharmthera.2014.09.009_bb0345) 1999; 104
Kitajima (10.1016/j.pharmthera.2014.09.009_bb0275) 2005; 85
Wang (10.1016/j.pharmthera.2014.09.009_bb0525) 2013
Duverger (10.1016/j.pharmthera.2014.09.009_bb0110) 1996; 94
Fan (10.1016/j.pharmthera.2014.09.009_bb0150) 2001; 21
Moghadasian (10.1016/j.pharmthera.2014.09.009_bb0365) 2002; 70
Mates (10.1016/j.pharmthera.2014.09.009_bb0355) 2009; 41
Fan (10.1016/j.pharmthera.2014.09.009_bb0170) 2000; 7
Masson (10.1016/j.pharmthera.2014.09.009_bb0350) 2011; 31
Pogwizd (10.1016/j.pharmthera.2014.09.009_bb0410) 2008; 5
Shen (10.1016/j.pharmthera.2014.09.009_bb0435) 1996; 98
Fan (10.1016/j.pharmthera.2014.09.009_bb0135) 1998; 101
Names (10.1016/j.pharmthera.2014.09.009_bb0385) 2004; 5
Song (10.1016/j.pharmthera.2014.09.009_bb0460) 2013; 23
Ding (10.1016/j.pharmthera.2014.09.009_bb0095) 2011; 20
Yu (10.1016/j.pharmthera.2014.09.009_bb0580) 2008; 23
Boch (10.1016/j.pharmthera.2014.09.009_bb0030) 2009; 326
Warren (10.1016/j.pharmthera.2014.09.009_bb0530) 1991; 32
Steinberg (10.1016/j.pharmthera.2014.09.009_bb0465) 2004; 45
Besterman (10.1016/j.pharmthera.2014.09.009_bb0020) 1970; 12
Wang (10.1016/j.pharmthera.2014.09.009_bb0520) 2013; 33
Tall (10.1016/j.pharmthera.2014.09.009_bb0485) 1986; 27
Endo (10.1016/j.pharmthera.2014.09.009_bb0120) 1980; 52
Territo (10.1016/j.pharmthera.2014.09.009_bb0505) 1989; 9
Shiomi (10.1016/j.pharmthera.2014.09.009_bb0445) 2009; 207
Yang (10.1016/j.pharmthera.2014.09.009_bb0565) 2013
Duverger (10.1016/j.pharmthera.2014.09.009_bb0115) 1996; 16
Ivics (10.1016/j.pharmthera.2014.09.009_bb0245) 2014; 9
James (10.1016/j.pharmthera.2014.09.009_bb0250) 2002; 34
Duff (10.1016/j.pharmthera.2014.09.009_bb0100) 1949; 89
Brunner (10.1016/j.pharmthera.2014.09.009_bb0050) 2008; 118
Yamada (10.1016/j.pharmthera.2014.09.009_bb0545) 2008; 172
Sun (10.1016/j.pharmthera.2014.09.009_bb0470) 2002; 277
Cybulsky (10.1016/j.pharmthera.2014.09.009_bb0085) 1991; 251
Koike (10.1016/j.pharmthera.2014.09.009_bb0285) 2009; 29
Overturf (10.1016/j.pharmthera.2014.09.009_bb0400) 1989; 30
Hammer (10.1016/j.pharmthera.2014.09.009_bb0195) 1985; 315
Huang (10.1016/j.pharmthera.2014.09.009_bb0220) 1999; 19
Yamanaka (10.1016/j.pharmthera.2014.09.009_bb0555) 1995; 92
Chesne (10.1016/j.pharmthera.2014.09.009_bb0065) 2002; 20
References_xml – volume: 251
  start-page: 788
  year: 1991
  ident: 10.1016/j.pharmthera.2014.09.009_bb0085
  article-title: Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis
  publication-title: Science
  doi: 10.1126/science.1990440
– volume: 6
  start-page: 97
  year: 2014
  ident: 10.1016/j.pharmthera.2014.09.009_bb0570
  article-title: Effective gene targeting in rabbits using RNA-guided Cas9 nucleases
  publication-title: J Mol Cell Biol
  doi: 10.1093/jmcb/mjt047
– volume: 179
  start-page: 87
  year: 2005
  ident: 10.1016/j.pharmthera.2014.09.009_bb0230
  article-title: Macrophage-derived lipoprotein lipase increases aortic atherosclerosis in cholesterol-fed Tg rabbits
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2004.10.044
– volume: 20
  start-page: 867
  year: 2011
  ident: 10.1016/j.pharmthera.2014.09.009_bb0095
  article-title: Hypertriglyceridemia and delayed clearance of fat load in transgenic rabbits expressing human apolipoprotein CIII
  publication-title: Transgenic Res
  doi: 10.1007/s11248-010-9467-5
– volume: 160
  start-page: 227
  year: 2002
  ident: 10.1016/j.pharmthera.2014.09.009_bb0235
  article-title: Lipoprotein(a) promotes smooth muscle cell proliferation and dedifferentiation in atherosclerotic lesions of human apo(a) transgenic rabbits
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)64366-0
– volume: 85
  start-page: 1517
  year: 2005
  ident: 10.1016/j.pharmthera.2014.09.009_bb0275
  article-title: Transgenic rabbits with increased VEGF expression develop hemangiomas in the liver: a new model for Kasabach–Merritt syndrome
  publication-title: Lab Invest
  doi: 10.1038/labinvest.3700346
– volume: 53
  start-page: 80
  year: 1985
  ident: 10.1016/j.pharmthera.2014.09.009_bb0535
  article-title: Role of macrophages in atherosclerosis. Sequential observations of cholesterol-induced rabbit aortic lesion by the immunoperoxidase technique using monoclonal antimacrophage antibody
  publication-title: Lab Invest
– volume: 190
  start-page: 106
  year: 2007
  ident: 10.1016/j.pharmthera.2014.09.009_bb0080
  article-title: Fenofibrate induces plaque regression in hypercholesterolemic atherosclerotic rabbits: in vivo demonstration by high-resolution MRI
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2006.02.036
– volume: 19
  start-page: 369
  year: 1974
  ident: 10.1016/j.pharmthera.2014.09.009_bb0420
  article-title: Plasma cholesterol concentration in normal and cholesterol-fed rabbits
  publication-title: Atherosclerosis
  doi: 10.1016/S0021-9150(74)80002-X
– volume: 273
  start-page: 1247
  year: 1998
  ident: 10.1016/j.pharmthera.2014.09.009_bb0430
  article-title: Apolipoprotein(a) yeast artificial chromosome transgenic rabbits. Lipoprotein(a) assembly with human and rabbit apolipoprotein B
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.2.1247
– volume: 102
  start-page: 9
  year: 1993
  ident: 10.1016/j.pharmthera.2014.09.009_bb0025
  article-title: The relationship between the degree of dietary-induced hypercholesterolemia in the rabbit and atherosclerotic lesion formation
  publication-title: Atherosclerosis
  doi: 10.1016/0021-9150(93)90080-E
– volume: 473
  start-page: 317
  year: 2011
  ident: 10.1016/j.pharmthera.2014.09.009_bb0330
  article-title: Progress and challenges in translating the biology of atherosclerosis
  publication-title: Nature
  doi: 10.1038/nature10146
– volume: 30
  start-page: 263
  year: 1989
  ident: 10.1016/j.pharmthera.2014.09.009_bb0400
  article-title: Development and partial metabolic characterization of a dietary cholesterol-resistant colony of rabbits
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)38386-3
– volume: 34
  start-page: 873
  year: 2002
  ident: 10.1016/j.pharmthera.2014.09.009_bb0250
  article-title: Transgenic rabbits expressing mutant essential light chain do not develop hypertrophic cardiomyopathy
  publication-title: J Mol Cell Cardiol
  doi: 10.1006/jmcc.2002.2025
– volume: 120
  start-page: 2088
  year: 2009
  ident: 10.1016/j.pharmthera.2014.09.009_bb0290
  article-title: Human C-reactive protein does not promote atherosclerosis in transgenic rabbits
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.872796
– volume: 11
  start-page: 745
  year: 1991
  ident: 10.1016/j.pharmthera.2014.09.009_bb0200
  article-title: Immunohistochemical detection of macrophages and T lymphocytes in atherosclerotic lesions of cholesterol-fed rabbits
  publication-title: Arterioscler Thromb
  doi: 10.1161/01.ATV.11.3.745
– volume: 23
  start-page: 1059
  year: 2013
  ident: 10.1016/j.pharmthera.2014.09.009_bb0460
  article-title: Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs
  publication-title: Cell Res
  doi: 10.1038/cr.2013.85
– volume: 207
  start-page: 1
  year: 2009
  ident: 10.1016/j.pharmthera.2014.09.009_bb0445
  article-title: The Watanabe heritable hyperlipidemic (WHHL) rabbit, its characteristics and history of development: a tribute to the late Dr. Yoshio Watanabe
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2009.03.024
– volume: 62
  start-page: 472
  year: 2012
  ident: 10.1016/j.pharmthera.2014.09.009_bb0405
  article-title: Transgenic rabbit models for studying human cardiovascular diseases
  publication-title: Comp Med
– volume: 315
  start-page: 680
  year: 1985
  ident: 10.1016/j.pharmthera.2014.09.009_bb0195
  article-title: Production of transgenic rabbits, sheep and pigs by microinjection
  publication-title: Nature
  doi: 10.1038/315680a0
– volume: 100
  start-page: 1215
  year: 1999
  ident: 10.1016/j.pharmthera.2014.09.009_bb0005
  article-title: Dietary lipid lowering reduces tissue factor expression in rabbit atheroma
  publication-title: Circulation
  doi: 10.1161/01.CIR.100.11.1215
– volume: 70
  start-page: 855
  year: 2002
  ident: 10.1016/j.pharmthera.2014.09.009_bb0365
  article-title: Experimental atherosclerosis: a historical overview
  publication-title: Life Sci
  doi: 10.1016/S0024-3205(01)01479-5
– volume: 37
  start-page: 210
  year: 1996
  ident: 10.1016/j.pharmthera.2014.09.009_bb0320
  article-title: Method to measure apolipoprotein B-48 and B-100 secretion rates in an individual mouse: evidence for a very rapid turnover of VLDL and preferential removal of B-48- relative to B-100-containing lipoproteins
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)37649-5
– volume: 20
  start-page: 251
  year: 1985
  ident: 10.1016/j.pharmthera.2014.09.009_bb0040
  article-title: Production of transgenic mice, rabbits, and pigs by microinjection into pronuclei
  publication-title: Zychthygience
  doi: 10.1111/j.1439-0531.1985.tb00423.x
– volume: 29
  start-page: 1491
  year: 1988
  ident: 10.1016/j.pharmthera.2014.09.009_bb0395
  article-title: Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)38428-5
– volume: 45
  start-page: 1583
  year: 2004
  ident: 10.1016/j.pharmthera.2014.09.009_bb0465
  article-title: Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part I
  publication-title: J Lipid Res
  doi: 10.1194/jlr.R400003-JLR200
– volume: 85
  start-page: 1234
  year: 1990
  ident: 10.1016/j.pharmthera.2014.09.009_bb0010
  article-title: Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit
  publication-title: J Clin Invest
  doi: 10.1172/JCI114558
– volume: 326
  start-page: 1501
  year: 2009
  ident: 10.1016/j.pharmthera.2014.09.009_bb0375
  article-title: A simple cipher governs DNA recognition by TAL effectors
  publication-title: Science
  doi: 10.1126/science.1178817
– volume: 98
  start-page: 612
  year: 1989
  ident: 10.1016/j.pharmthera.2014.09.009_bb0090
  article-title: Probucol attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.1989.tb12635.x
– volume: 32
  start-page: 1104
  year: 2012
  ident: 10.1016/j.pharmthera.2014.09.009_bb0185
  article-title: Animal models of atherosclerosis
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.111.237693
– volume: 84
  start-page: 5928
  year: 1987
  ident: 10.1016/j.pharmthera.2014.09.009_bb0265
  article-title: Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.84.16.5928
– volume: 132
  start-page: 565
  year: 2013
  ident: 10.1016/j.pharmthera.2014.09.009_bb0060
  article-title: Probucol and cilostazol exert a combinatorial anti-atherogenic effect in cholesterol-fed rabbits
  publication-title: Thromb Res
  doi: 10.1016/j.thromres.2013.09.007
– volume: 326
  start-page: 1509
  year: 2009
  ident: 10.1016/j.pharmthera.2014.09.009_bb0030
  article-title: Breaking the code of DNA binding specificity of TAL-type III effectors
  publication-title: Science
  doi: 10.1126/science.1178811
– volume: 38
  start-page: 559
  year: 1988
  ident: 10.1016/j.pharmthera.2014.09.009_bb0205
  article-title: Regression of atherosclerosis in normotensive and hypertensive rabbits. A quantitative analysis of cholesterol-induced aortic and coronary lesions with an image-processing system
  publication-title: Acta Pathol Jpn
– volume: 325
  start-page: 655
  year: 2008
  ident: 10.1016/j.pharmthera.2014.09.009_bb0490
  article-title: NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a high-fat diet
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.107.135822
– volume: 27
  start-page: 361
  year: 1986
  ident: 10.1016/j.pharmthera.2014.09.009_bb0485
  article-title: Plasma cholesteryl ester transfer protein
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)38819-2
– volume: 153
  start-page: 910
  year: 2013
  ident: 10.1016/j.pharmthera.2014.09.009_bb0515
  article-title: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.025
– volume: 94
  start-page: 713
  year: 1996
  ident: 10.1016/j.pharmthera.2014.09.009_bb0110
  article-title: Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits
  publication-title: Circulation
  doi: 10.1161/01.CIR.94.4.713
– volume: 16
  start-page: 1424
  year: 1996
  ident: 10.1016/j.pharmthera.2014.09.009_bb0115
  article-title: Transgenic rabbits expressing human apolipoprotein A-I in the liver
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.16.12.1424
– volume: 309
  start-page: 288
  year: 1983
  ident: 10.1016/j.pharmthera.2014.09.009_bb0190
  article-title: Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia
  publication-title: N Engl J Med
  doi: 10.1056/NEJM198308043090507
– volume: 23
  start-page: 1239
  year: 2003
  ident: 10.1016/j.pharmthera.2014.09.009_bb0450
  article-title: Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbits)
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000075947.28567.50
– volume: 276
  start-page: 40071
  year: 2001
  ident: 10.1016/j.pharmthera.2014.09.009_bb0155
  article-title: Overexpression of lipoprotein lipase in transgenic rabbits inhibits diet-induced hypercholesterolemia and atherosclerosis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M105456200
– year: 2013
  ident: 10.1016/j.pharmthera.2014.09.009_bb0565
  article-title: Effective gene targeting in rabbits using RNA-guided Cas9 nucleases
  publication-title: J Vis Exp
– volume: 99
  start-page: 261
  year: 2003
  ident: 10.1016/j.pharmthera.2014.09.009_bb0175
  article-title: Transgenic rabbits as therapeutic protein bioreactors and human disease models
  publication-title: Pharmacol Ther
  doi: 10.1016/S0163-7258(03)00069-X
– volume: 21
  start-page: 88
  year: 2001
  ident: 10.1016/j.pharmthera.2014.09.009_bb0150
  article-title: Transgenic rabbits expressing human apolipoprotein(a) develop more extensive atherosclerotic lesions in response to a cholesterol-rich diet
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.21.1.88
– volume: 23
  start-page: 1105
  year: 1970
  ident: 10.1016/j.pharmthera.2014.09.009_bb0305
  article-title: Role of cholesterol vehicle in experimental atherosclerosis
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/23.8.1105
– volume: 93
  start-page: 11448
  year: 1996
  ident: 10.1016/j.pharmthera.2014.09.009_bb0215
  article-title: Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.21.11448
– volume: 18
  start-page: 35
  year: 2010
  ident: 10.1016/j.pharmthera.2014.09.009_bb0260
  article-title: A murine model of obesity with accelerated atherosclerosis
  publication-title: Obesity (Silver Spring)
  doi: 10.1038/oby.2009.176
– volume: 407
  start-page: 656
  year: 2011
  ident: 10.1016/j.pharmthera.2014.09.009_bb0480
  article-title: Species differences of macrophage very low-density-lipoprotein (VLDL) receptor protein expression
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2011.03.069
– volume: 255
  start-page: 639
  year: 1999
  ident: 10.1016/j.pharmthera.2014.09.009_bb0125
  article-title: Assembly of lipoprotein (a) in transgenic rabbits expressing human apolipoprotein (a)
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1999.0242
– volume: 109
  start-page: 17382
  year: 2012
  ident: 10.1016/j.pharmthera.2014.09.009_bb0055
  article-title: Efficient TALEN-mediated gene knockout in livestock
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1211446109
– volume: 41
  start-page: 753
  year: 2009
  ident: 10.1016/j.pharmthera.2014.09.009_bb0355
  article-title: Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates
  publication-title: Nat Genet
  doi: 10.1038/ng.343
– volume: 88
  start-page: 5252
  year: 1991
  ident: 10.1016/j.pharmthera.2014.09.009_bb0575
  article-title: Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.88.12.5252
– volume: 187
  start-page: 797
  year: 1991
  ident: 10.1016/j.pharmthera.2014.09.009_bb0255
  article-title: Experimental cerebral atherosclerosis in the rabbit. Scanning electron microscopic study of the initial lesion site
  publication-title: Pathol Res Pract
  doi: 10.1016/S0344-0338(11)80575-3
– volume: 267
  start-page: 24369
  year: 1992
  ident: 10.1016/j.pharmthera.2014.09.009_bb0070
  article-title: Reconstitution of lipoprotein(a) by infusion of human low density lipoprotein into transgenic mice expressing human apolipoprotein(a)
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)35775-2
– volume: 5
  start-page: 185
  year: 2008
  ident: 10.1016/j.pharmthera.2014.09.009_bb0410
  article-title: Rabbit models of heart disease
  publication-title: Drug Discovery Today, Disease Models
  doi: 10.1016/j.ddmod.2009.02.001
– volume: 23
  start-page: 1503
  year: 2008
  ident: 10.1016/j.pharmthera.2014.09.009_bb0580
  article-title: Temporal and quantitative analysis of expression of metalloproteinases (MMPs) and their endogenous inhibitors in atherosclerotic lesions
  publication-title: Histol Histopathol
– volume: 5
  start-page: 21
  year: 2004
  ident: 10.1016/j.pharmthera.2014.09.009_bb0385
  article-title: Three obstacles which confronted the development of compactin
  publication-title: Atheroscler Suppl
  doi: 10.1016/j.atherosclerosissup.2004.08.020
– volume: 18
  start-page: 2094
  year: 2007
  ident: 10.1016/j.pharmthera.2014.09.009_bb0335
  article-title: Increased expression of vascular endothelial growth factor in kidney leads to progressive impairment of glomerular functions
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2006010075
– volume: 140
  start-page: 291
  year: 1992
  ident: 10.1016/j.pharmthera.2014.09.009_bb0425
  article-title: Macrophage colony-stimulating factor mRNA and protein in atherosclerotic lesions of rabbits and humans
  publication-title: Am J Pathol
– volume: 34
  start-page: 1675
  year: 1993
  ident: 10.1016/j.pharmthera.2014.09.009_bb0415
  article-title: Bile acid excretion and cholesterol 7 alpha-hydroxylase expression in hypercholesterolemia-resistant rabbits
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)35730-8
– volume: 31
  start-page: 766
  year: 2011
  ident: 10.1016/j.pharmthera.2014.09.009_bb0350
  article-title: Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.110.215756
– volume: 231
  start-page: 39
  year: 2013
  ident: 10.1016/j.pharmthera.2014.09.009_bb0455
  article-title: Contribution of the WHHL rabbit, an animal model of familial hypercholesterolemia, to elucidation of the anti-atherosclerotic effects of statins
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2013.08.030
– volume: 113
  start-page: 1993
  year: 2006
  ident: 10.1016/j.pharmthera.2014.09.009_bb0325
  article-title: Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rabbits
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.596031
– volume: 21
  start-page: 699
  year: 2012
  ident: 10.1016/j.pharmthera.2014.09.009_bb0105
  article-title: On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools
  publication-title: Transgenic Res
  doi: 10.1007/s11248-012-9599-x
– volume: 19
  start-page: 2952
  year: 1999
  ident: 10.1016/j.pharmthera.2014.09.009_bb0220
  article-title: Overexpression of apolipoprotein E3 in transgenic rabbits causes combined hyperlipidemia by stimulating hepatic VLDL production and impairing VLDL lipolysis
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.19.12.2952
– volume: 65
  start-page: 524
  year: 2005
  ident: 10.1016/j.pharmthera.2014.09.009_bb0295
  article-title: Enhanced aortic atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits expressing lipoprotein lipase
  publication-title: Cardiovasc Res
  doi: 10.1016/j.cardiores.2004.10.022
– volume: 20
  start-page: 366
  year: 2002
  ident: 10.1016/j.pharmthera.2014.09.009_bb0065
  article-title: Cloned rabbits produced by nuclear transfer from adult somatic cells
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0402-366
– volume: 31
  start-page: 208
  year: 2013
  ident: 10.1016/j.pharmthera.2014.09.009_bb0380
  article-title: RNA guides genome engineering
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2527
– volume: 36
  start-page: 261
  year: 1980
  ident: 10.1016/j.pharmthera.2014.09.009_bb0540
  article-title: Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit)
  publication-title: Atherosclerosis
  doi: 10.1016/0021-9150(80)90234-8
– volume: 7
  start-page: 26
  year: 2000
  ident: 10.1016/j.pharmthera.2014.09.009_bb0170
  article-title: Cholesterol-fed and transgenic rabbit models for the study of atherosclerosis
  publication-title: J Atheroscler Thromb
  doi: 10.5551/jat1994.7.26
– volume: 15
  start-page: 1889
  year: 1995
  ident: 10.1016/j.pharmthera.2014.09.009_bb0140
  article-title: Overexpression of human apolipoprotein B-100 in transgenic rabbits results in increased levels of LDL and decreased levels of HDL
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.15.11.1889
– volume: 12
  start-page: 75
  year: 1970
  ident: 10.1016/j.pharmthera.2014.09.009_bb0020
  article-title: Experimental coronary atherosclerosis in rabbits
  publication-title: Atherosclerosis
  doi: 10.1016/0021-9150(70)90085-7
– volume: 101
  start-page: 2151
  year: 1998
  ident: 10.1016/j.pharmthera.2014.09.009_bb0135
  article-title: Increased expression of apolioprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma
  publication-title: J Clin Invest
  doi: 10.1172/JCI1599
– volume: 89
  start-page: 611
  year: 1949
  ident: 10.1016/j.pharmthera.2014.09.009_bb0100
  article-title: The effect of alloxan diabetes on experimental cholesterol atherosclerosis in the rabbit
  publication-title: J Exp Med
  doi: 10.1084/jem.89.6.611
– volume: 49
  start-page: 583
  year: 1999
  ident: 10.1016/j.pharmthera.2014.09.009_bb0130
  article-title: Transgenic rabbit models for biomedical research: current status, basic methods and future perspectives
  publication-title: Pathol Int
  doi: 10.1046/j.1440-1827.1999.00923.x
– volume: 2011
  start-page: 406473
  year: 2011
  ident: 10.1016/j.pharmthera.2014.09.009_bb0280
  article-title: Roles of the WHHL rabbit in translational research on hypercholesterolemia and cardiovascular diseases
  publication-title: J Biomed Biotechnol
  doi: 10.1155/2011/406473
– volume: 104
  start-page: 1683
  year: 1999
  ident: 10.1016/j.pharmthera.2014.09.009_bb0345
  article-title: A transgenic rabbit model for human hypertrophic cardiomyopathy
  publication-title: J Clin Invest
  doi: 10.1172/JCI7956
– volume: 193
  start-page: 269
  year: 2007
  ident: 10.1016/j.pharmthera.2014.09.009_bb0270
  article-title: Lp(a) enhances coronary atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2006.08.056
– volume: 21
  start-page: 902
  year: 2012
  ident: 10.1016/j.pharmthera.2014.09.009_bb0035
  article-title: Creation and characterization of second generation transgenic rabbit models
  publication-title: Transgenic Res
– volume: 91
  start-page: 8724
  year: 1994
  ident: 10.1016/j.pharmthera.2014.09.009_bb0160
  article-title: Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.91.18.8724
– volume: 118
  start-page: 2246
  year: 2008
  ident: 10.1016/j.pharmthera.2014.09.009_bb0050
  article-title: Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome
  publication-title: J Clin Invest
– volume: 339
  start-page: 819
  year: 2013
  ident: 10.1016/j.pharmthera.2014.09.009_bb0075
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 98
  start-page: I-464
  year: 1998
  ident: 10.1016/j.pharmthera.2014.09.009_bb0210
  article-title: Lecithin:cholesterol acyl transferase requires functional LDL receptors to prevent atherosclerosis
  publication-title: Circulation
– volume: 32
  start-page: 1333
  year: 1991
  ident: 10.1016/j.pharmthera.2014.09.009_bb0530
  article-title: Rabbit hepatic lipase cDNA sequence: low activity is associated with low messenger RNA levels
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)41963-7
– volume: 98
  start-page: 2201
  year: 1996
  ident: 10.1016/j.pharmthera.2014.09.009_bb0435
  article-title: Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development
  publication-title: J Clin Invest
  doi: 10.1172/JCI119029
– volume: 52
  start-page: 1033
  year: 1980
  ident: 10.1016/j.pharmthera.2014.09.009_bb0120
  article-title: Regulation of cholesterol synthesis, as focused on the regulation of HMG-CoA reductase
  publication-title: Seikagaku
– volume: 142
  start-page: 122
  year: 2010
  ident: 10.1016/j.pharmthera.2014.09.009_bb0585
  article-title: A practical method for quantifying atherosclerotic lesions in rabbits
  publication-title: J Comp Pathol
  doi: 10.1016/j.jcpa.2009.08.159
– volume: 272
  start-page: 22685
  year: 1997
  ident: 10.1016/j.pharmthera.2014.09.009_bb0225
  article-title: Apolipoprotein E2 transgenic rabbits
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.36.22685
– volume: 145
  start-page: 341
  year: 2011
  ident: 10.1016/j.pharmthera.2014.09.009_bb0370
  article-title: Macrophages in the pathogenesis of atherosclerosis
  publication-title: Cell
  doi: 10.1016/j.cell.2011.04.005
– volume: 9
  start-page: 824
  year: 1989
  ident: 10.1016/j.pharmthera.2014.09.009_bb0505
  article-title: Beta-very low density lipoprotein pretreatment of endothelial monolayers increases monocyte adhesion
  publication-title: Arteriosclerosis
  doi: 10.1161/01.ATV.9.6.824
– volume: 33
  start-page: 224
  year: 2013
  ident: 10.1016/j.pharmthera.2014.09.009_bb0520
  article-title: Human apolipoprotein AII protects against diet-induced atherosclerosis in transgenic rabbits
  publication-title: Arterioscler Thromb Vas Biol
  doi: 10.1161/ATVBAHA.112.300445
– volume: 277
  start-page: 47486
  year: 2002
  ident: 10.1016/j.pharmthera.2014.09.009_bb0470
  article-title: Lipoprotein(a) enhances advanced atherosclerosis and vascular calcification in WHHL transgenic rabbits expressing human apolipoprotein(a)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M205814200
– volume: 232
  start-page: 1230
  year: 1986
  ident: 10.1016/j.pharmthera.2014.09.009_bb0550
  article-title: Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit
  publication-title: Science
  doi: 10.1126/science.3010466
– volume: 92
  start-page: 8483
  year: 1995
  ident: 10.1016/j.pharmthera.2014.09.009_bb0555
  article-title: Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.92.18.8483
– volume: 21
  start-page: 648
  year: 2014
  ident: 10.1016/j.pharmthera.2014.09.009_bb0315
  article-title: Probucol suppresses macrophage infiltration and MMP expression in atherosclerotic plaques of WHHL rabbits
  publication-title: J Atheroscl Thromb
  doi: 10.5551/jat.21600
– volume: 16
  start-page: 154
  year: 1908
  ident: 10.1016/j.pharmthera.2014.09.009_bb0240
  article-title: Influence of animal food on the organism of rabbits
  publication-title: St Peterberg Izviest Imp Voyenno-Med Akad
– volume: 60
  start-page: 455
  year: 1989
  ident: 10.1016/j.pharmthera.2014.09.009_bb0015
  article-title: High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits
  publication-title: Lab Invest
– volume: 9
  start-page: 794
  year: 2014
  ident: 10.1016/j.pharmthera.2014.09.009_bb0245
  article-title: Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2014.009
– volume: 9
  start-page: 201
  year: 2011
  ident: 10.1016/j.pharmthera.2014.09.009_bb0360
  article-title: Human C-reactive protein enhances thrombus formation after neointimal balloon injury in transgenic rabbits
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2010.04086.x
– volume: 19
  start-page: 631
  year: 2008
  ident: 10.1016/j.pharmthera.2014.09.009_bb0440
  article-title: Unstable coronary plaques and cardiac events in myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits: questions and quandaries
  publication-title: Curr Opin Lipidol
  doi: 10.1097/MOL.0b013e3283189c18
– volume: 5
  start-page: 13
  year: 2004
  ident: 10.1016/j.pharmthera.2014.09.009_bb0045
  article-title: A tribute to Akira Endo, discoverer of a “Penicillin” for cholesterol
  publication-title: Atheroscler Suppl
  doi: 10.1016/j.atherosclerosissup.2004.08.007
– volume: 2
  start-page: 298
  year: 1997
  ident: 10.1016/j.pharmthera.2014.09.009_bb0495
  article-title: Transgenic rabbit models for the study of atherosclerosis
  publication-title: Front Biosci
  doi: 10.2741/A192
– volume: 6
  start-page: e21045
  year: 2011
  ident: 10.1016/j.pharmthera.2014.09.009_bb0180
  article-title: Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021045
– volume: 12
  start-page: 166
  year: 2013
  ident: 10.1016/j.pharmthera.2014.09.009_bb0390
  article-title: Probucol inhibits the initiation of atherosclerosis in cholesterol-fed rabbits
  publication-title: Lipids Health Dis
  doi: 10.1186/1476-511X-12-166
– volume: 143
  start-page: 1551
  year: 1993
  ident: 10.1016/j.pharmthera.2014.09.009_bb0310
  article-title: Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma
  publication-title: Am J Pathol
– volume: 172
  start-page: 1419
  year: 2008
  ident: 10.1016/j.pharmthera.2014.09.009_bb0545
  article-title: Matrix metalloproteinase 12 accelerates the initiation of atherosclerosis and stimulates the progression of fatty streaks to fibrous plaques in transgenic rabbits
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2008.070604
– volume: 112
  start-page: 1011
  year: 1988
  ident: 10.1016/j.pharmthera.2014.09.009_bb0510
  article-title: Animal models and the study of atherosclerosis
  publication-title: Arch Pathol Lab Med
– volume: 2
  start-page: 334
  year: 2009
  ident: 10.1016/j.pharmthera.2014.09.009_bb0475
  article-title: Effects of cardiac myosin isoform variation on myofilament function and crossbridge kinetics in transgenic rabbits
  publication-title: Circ Heart Fail
  doi: 10.1161/CIRCHEARTFAILURE.108.802298
– volume: 29
  start-page: 2047
  year: 2009
  ident: 10.1016/j.pharmthera.2014.09.009_bb0285
  article-title: Expression of human apoAII in transgenic rabbits leads to dyslipidemia: a new model for combined hyperlipidemia
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.109.190264
– volume: 21
  start-page: 970
  year: 1980
  ident: 10.1016/j.pharmthera.2014.09.009_bb0340
  article-title: Cholesteryl ester synthesis in macrophages: stimulation by beta-very low density lipoproteins from cholesterol-fed animals of several species
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)34757-X
– start-page: 1
  year: 2013
  ident: 10.1016/j.pharmthera.2014.09.009_bb0525
  article-title: Expression systems and species used for transgenic animal bioreactors
  publication-title: Biomed Res Internat
SSID ssj0004402
Score 2.571048
SecondaryResourceType review_article
Snippet Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 104
SubjectTerms Animals
Animals, Genetically Modified
Atherosclerosis - metabolism
Disease Models, Animal
Humans
Lipid Metabolism
Rabbits
Translational Medical Research
Title Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine
URI https://www.ncbi.nlm.nih.gov/pubmed/25277507
https://www.proquest.com/docview/1661993407
https://pubmed.ncbi.nlm.nih.gov/PMC4304984
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELa26aWXqu9u01auVOUUVgYMht6qqFEUKVXUbqS9IRtMw2p3WS1waA_5Hf25HT94ZXNIc0ErwF7M9zGMh88zCH0mIvfiXHpOTiR1KA-kwxnj8FwFOfdDP-e6FsHF9_Dsip4vgsVk8negWmpqMUv_3Lmu5CGowj7AVa2S_Q9ku05hB_wGfGELCMP2Xhj_4EIUtalmU3WCwarNE23q72kXr6ygKWwLrYDTa0pULeJSBzY6-7eWah1wUa112odavcZWbbBw9BHeerOXfd5rI7wZrObS0VyzHHEQbTg18dZzIOWvVTFQANR8Way1I_vzulkWfZwfnFcuTGpguWvK9sCiMf3IYdjCDVqlcx_JDH2HeSZv-0wa6xsxJd7SpQ1bi2qrE9uXs2vs657dNyGI5Wyrxq3HqlR7JoUtGTWBu7xdaz54gcfAX2L9m7DTJ15enFD1_TGij9BjOEu73rObXjxEqVazdoOwGjGjHLz7IlTaafuPYx9ob2JzW587cHjmz9BTO1PBXw3tnqOJ3LxARxby38d4PsD6GB_hIRleop3hJjbcxEADDNeKNTdxmWPNTXyLm1-wYibeZybumYnrEo-YiVtmvkJXp9_mJ2eOre_hpEEQ1o4M4yiLcs5pSPOQwU7BhPSYlCRjYQpGxHd5rJQRhIeCwlyCZJnIhZtRX6rMca_RwabcyLcIM85SIjmluevTLIq5y7IYbE1KAi-Ns2CKWHvHk9Qmv1c1WFZJq3JcJj1siYItIXECsE2R27XcmgQw92jzqQU1AWutPsHxjSybKnHBHYYZASVsit4YkLteW3bAtY7g705QmeDHRzbFtc4Ib8n67sEtD9GT_iF9jw7qXSM_gLddi4-a-P8AadjeSg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rabbit+models+for+the+study+of+human+atherosclerosis%3A+from+pathophysiological+mechanisms+to+translational+medicine&rft.jtitle=Pharmacology+%26+therapeutics+%28Oxford%29&rft.au=Fan%2C+Jianglin&rft.au=Kitajima%2C+Shuji&rft.au=Watanabe%2C+Teruo&rft.au=Xu%2C+Jie&rft.date=2015-02-01&rft.issn=0163-7258&rft.eissn=1879-016X&rft.spage=104&rft.epage=119&rft_id=info:doi/10.1016%2Fj.pharmthera.2014.09.009&rft_id=info%3Apmid%2F25277507&rft.externalDocID=PMC4304984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-7258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-7258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-7258&client=summon