Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine
Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a...
Saved in:
Published in | Pharmacology & therapeutics (Oxford) Vol. 146; pp. 104 - 119 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits. |
---|---|
AbstractList | Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits. Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits.Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits. |
Author | Fan, Jianglin Xu, Jie Liu, Enqi Zhang, Jifeng Kitajima, Shuji Watanabe, Teruo Chen, Y. Eugene |
AuthorAffiliation | 3 Center for Advanced Models for Translational Sciences and Therapeutics University of Michigan Medical Center, Ann Arbor, MI, USA 2 Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan 4 Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi’an Jiaotong University School of Medicine, Xi’an, China 1 Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Shimokato 1110, Chuo-City 409-3898, Japan |
AuthorAffiliation_xml | – name: 3 Center for Advanced Models for Translational Sciences and Therapeutics University of Michigan Medical Center, Ann Arbor, MI, USA – name: 2 Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan – name: 1 Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Shimokato 1110, Chuo-City 409-3898, Japan – name: 4 Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi’an Jiaotong University School of Medicine, Xi’an, China |
Author_xml | – sequence: 1 givenname: Jianglin surname: Fan fullname: Fan, Jianglin – sequence: 2 givenname: Shuji surname: Kitajima fullname: Kitajima, Shuji – sequence: 3 givenname: Teruo surname: Watanabe fullname: Watanabe, Teruo – sequence: 4 givenname: Jie surname: Xu fullname: Xu, Jie – sequence: 5 givenname: Jifeng surname: Zhang fullname: Zhang, Jifeng – sequence: 6 givenname: Enqi surname: Liu fullname: Liu, Enqi – sequence: 7 givenname: Y. Eugene surname: Chen fullname: Chen, Y. Eugene |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25277507$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcFu1TAQtFARfS38AvKRS8I6ceyYAxKqKCBVQkIgcbMcx2n85NjBdiq9v8evLa9w4uKVdsczuzMX6MwHbxDCBGoChL3d1-us4pJnE1XdAKE1iBpAPEM70nNRFczPM7Qrpa140_Xn6CKlPQBQCs0LdN50Decd8B2K39Qw2IyXMBqX8BQiLqw45W084DDheVuUx-qoFJJ2x9emd_g6hgWvpR3W-ZBscOHWauXwYvSsvE1LwjngHJVPTmUb_P1stNp68xI9n5RL5tVjvUQ_rj9-v_pc3Xz99OXqw02lu47lyjDRj_2kFGV0Yrw0Bz6YhhsDI2d6akRLlGh4uUqxgbIOYByHaSAjbU3Hob1E7x94120o2tr4so-Ta7SLigcZlJX_Tryd5W24k7QFKnpaCN48EsTwazMpy8UmbZxT3oQtScIYEaKlwAv09d9aJ5E_RhdA_wDQxcEUzXSCEJDHTOVePmUqj5lKELJk-nTH6au2-d7UsrV1_yf4DVmfshg |
CitedBy_id | crossref_primary_10_1016_j_pbiomolbio_2016_05_007 crossref_primary_10_1111_sji_12560 crossref_primary_10_1016_j_cvex_2023_11_003 crossref_primary_10_1038_s41598_019_43902_3 crossref_primary_10_1039_D4LC00868E crossref_primary_10_1186_s13287_021_02490_8 crossref_primary_10_1016_j_pbiomolbio_2016_05_001 crossref_primary_10_3390_jcdd9080258 crossref_primary_10_1016_j_nutres_2017_04_012 crossref_primary_10_1371_journal_pone_0215604 crossref_primary_10_1016_j_cbi_2019_01_004 crossref_primary_10_1093_pnasnexus_pgac306 crossref_primary_10_1186_s12944_020_01256_0 crossref_primary_10_1016_j_vph_2021_106878 crossref_primary_10_3389_fcvm_2023_1130304 crossref_primary_10_1016_j_bbrc_2018_02_035 crossref_primary_10_1002_mnfr_202100371 crossref_primary_10_1038_srep26942 crossref_primary_10_3390_app10238681 crossref_primary_10_3390_biomedicines11020384 crossref_primary_10_1016_j_abb_2020_108460 crossref_primary_10_1186_s40064_015_1054_z crossref_primary_10_3390_app10207369 crossref_primary_10_3390_cells12202466 crossref_primary_10_1161_CIRCRESAHA_120_317705 crossref_primary_10_1016_j_ebiom_2018_09_020 crossref_primary_10_1038_s41598_020_66780_6 crossref_primary_10_1016_j_gene_2015_03_038 crossref_primary_10_1371_journal_pone_0264215 crossref_primary_10_3390_md19070374 crossref_primary_10_1080_19475411_2024_2395270 crossref_primary_10_1080_09168451_2019_1677143 crossref_primary_10_48130_animadv_0025_0003 crossref_primary_10_1371_journal_pone_0202748 crossref_primary_10_3390_molecules24112049 crossref_primary_10_7555_JBR_33_20180097 crossref_primary_10_1038_s12276_018_0094_1 crossref_primary_10_3389_fendo_2022_834207 crossref_primary_10_1007_s00395_020_00829_5 crossref_primary_10_3348_jksr_2023_0106 crossref_primary_10_3390_ijms18081706 crossref_primary_10_3390_ijms231911174 crossref_primary_10_1007_s10787_025_01694_1 crossref_primary_10_1038_s41598_018_24813_1 crossref_primary_10_1016_j_atherosclerosis_2015_12_002 crossref_primary_10_1016_j_talanta_2024_126954 crossref_primary_10_1186_s12944_019_1013_8 crossref_primary_10_3389_fimmu_2018_00429 crossref_primary_10_1293_tox_34_183S crossref_primary_10_14258_jcprm_2020047767 crossref_primary_10_1002_advs_202304294 crossref_primary_10_1172_jci_insight_165713 crossref_primary_10_5551_jat_63793 crossref_primary_10_1111_bph_13932 crossref_primary_10_1007_s10557_016_6644_7 crossref_primary_10_1016_j_ajpath_2018_08_007 crossref_primary_10_1016_j_phymed_2015_10_014 crossref_primary_10_3390_ijms23052542 crossref_primary_10_1161_ATVBAHA_120_314368 crossref_primary_10_3389_fcell_2021_643697 crossref_primary_10_1038_s41598_024_67635_0 crossref_primary_10_1002_iid3_339 crossref_primary_10_18632_aging_101541 crossref_primary_10_1097_FJC_0000000000001044 crossref_primary_10_1111_liv_15830 crossref_primary_10_3892_mmr_2018_9258 crossref_primary_10_1089_cell_2021_0090 crossref_primary_10_1160_th15_07_0614 crossref_primary_10_1002_trc2_12241 crossref_primary_10_1016_j_jep_2016_04_027 crossref_primary_10_1017_S0967199419000200 crossref_primary_10_1038_s41401_019_0315_8 crossref_primary_10_1186_s42826_022_00128_1 crossref_primary_10_1016_j_ejphar_2017_05_010 crossref_primary_10_1002_mrd_22739 crossref_primary_10_1186_s13018_019_1217_7 crossref_primary_10_5551_jat_RV17018 crossref_primary_10_3354_dao03477 crossref_primary_10_1007_s10557_021_07175_1 crossref_primary_10_1161_ATVBAHA_125_322661 crossref_primary_10_3390_hearts5040031 crossref_primary_10_1161_ATVBAHA_122_317898 crossref_primary_10_1002_cyto_a_22849 crossref_primary_10_3233_MNM_180229 crossref_primary_10_1002_biof_1700 crossref_primary_10_3390_ani9070463 crossref_primary_10_5551_jat_RV17038_1 crossref_primary_10_1016_j_ymthe_2020_11_023 crossref_primary_10_3389_fmed_2019_00039 crossref_primary_10_1016_j_lfs_2020_117349 crossref_primary_10_1155_2023_8339591 crossref_primary_10_18632_aging_102778 crossref_primary_10_3390_ani14121727 crossref_primary_10_3389_fgene_2021_614379 crossref_primary_10_1007_s12010_018_2776_5 crossref_primary_10_3390_metabo11040249 crossref_primary_10_3390_ijms24043819 crossref_primary_10_5551_jat_RV17038_2 crossref_primary_10_1016_j_ajpath_2023_06_003 crossref_primary_10_1159_000498897 crossref_primary_10_1167_tvst_12_2_26 crossref_primary_10_55230_mabjournal_v52i1_2535 crossref_primary_10_1016_j_atherosclerosis_2024_117565 crossref_primary_10_1002_advs_202203597 crossref_primary_10_1111_bph_15484 crossref_primary_10_1016_j_lfs_2023_121823 crossref_primary_10_1016_j_retram_2020_07_001 crossref_primary_10_3389_fmed_2020_566250 crossref_primary_10_1007_s12012_018_9465_z crossref_primary_10_1097_FJC_0000000000000544 crossref_primary_10_3390_app10238508 crossref_primary_10_1007_s11655_018_3014_2 crossref_primary_10_1371_journal_pone_0187564 crossref_primary_10_3389_fnimg_2022_965529 crossref_primary_10_3389_fcvm_2020_591583 crossref_primary_10_1016_j_jfda_2016_02_004 crossref_primary_10_1161_ATVBAHA_117_309114 crossref_primary_10_1111_pin_13202 crossref_primary_10_3390_ijms19102882 crossref_primary_10_1111_ejn_14265 crossref_primary_10_1590_1414_431x20209557 crossref_primary_10_3389_fmed_2020_00467 crossref_primary_10_1053_j_gastro_2016_08_051 crossref_primary_10_1161_CIRCRESAHA_120_315937 crossref_primary_10_3945_ajcn_116_146753 crossref_primary_10_3390_nu11040894 crossref_primary_10_7555_JBR_34_20190133 crossref_primary_10_1007_s00705_019_04226_9 crossref_primary_10_1016_j_athplu_2021_08_008 crossref_primary_10_1139_apnm_2017_0876 crossref_primary_10_1186_s12944_021_01605_7 crossref_primary_10_1016_j_mrgentox_2021_503324 crossref_primary_10_1177_0192623320957637 crossref_primary_10_1111_iep_12167 crossref_primary_10_31083_j_fbl2804070 crossref_primary_10_5115_acb_23_196 crossref_primary_10_1093_ajcn_nqaa322 crossref_primary_10_1016_j_jbiotec_2017_05_002 crossref_primary_10_1016_j_biomaterials_2018_09_036 crossref_primary_10_3390_ijms17020169 crossref_primary_10_3390_ijms23084172 crossref_primary_10_1111_jcmm_15087 crossref_primary_10_1002_advs_202307627 crossref_primary_10_1080_09553002_2020_1820606 crossref_primary_10_3389_fcvm_2024_1424064 crossref_primary_10_1016_j_ygeno_2021_05_031 crossref_primary_10_1111_andr_13398 crossref_primary_10_3389_fcvm_2023_1116861 crossref_primary_10_3390_ijms19113512 crossref_primary_10_3390_nu11020370 crossref_primary_10_3389_fcvm_2022_839720 crossref_primary_10_3389_fgene_2021_642444 crossref_primary_10_1186_s12944_017_0563_x crossref_primary_10_3892_mmr_2021_12511 crossref_primary_10_33647_2074_5982_15_4_12_33 crossref_primary_10_1042_CS20210862 crossref_primary_10_1139_cjpp_2023_0206 crossref_primary_10_1161_ATVBAHA_117_309139 crossref_primary_10_1177_2156587215627552 crossref_primary_10_1002_ame2_12556 crossref_primary_10_1038_s41598_017_02080_w crossref_primary_10_1038_s41598_024_56562_9 crossref_primary_10_1177_0192623317700519 crossref_primary_10_1242_dmm_052015 crossref_primary_10_1007_s12011_015_0367_7 crossref_primary_10_1093_jhered_esw010 crossref_primary_10_1038_s41598_018_19774_4 crossref_primary_10_1186_s12986_015_0024_3 crossref_primary_10_1161_ATV_0000000000000062 crossref_primary_10_1590_1678_4324_2019180403 crossref_primary_10_1093_database_bay075 crossref_primary_10_1161_ATVBAHA_114_304833 crossref_primary_10_3389_fcell_2022_1097137 crossref_primary_10_1186_s12967_018_1587_3 crossref_primary_10_1016_j_bbadis_2019_05_015 crossref_primary_10_1038_s41598_022_06762_y crossref_primary_10_1155_2017_3824276 crossref_primary_10_1016_j_ejphar_2022_174890 crossref_primary_10_3389_fcvm_2023_1134097 crossref_primary_10_1038_s41598_023_42763_1 crossref_primary_10_1007_s10439_015_1456_7 crossref_primary_10_1016_j_freeradbiomed_2015_06_019 crossref_primary_10_1096_fj_202002118RR crossref_primary_10_1177_1074248418775377 crossref_primary_10_3390_genes12060890 crossref_primary_10_1161_RES_0000000000000169 crossref_primary_10_3390_app10217416 crossref_primary_10_2174_1570161119666210820115150 crossref_primary_10_3390_ijms232112964 crossref_primary_10_4103_0366_6999_222322 crossref_primary_10_1089_jmf_2019_0017 crossref_primary_10_1007_s00259_018_4176_z crossref_primary_10_1016_j_biopha_2021_111900 crossref_primary_10_1186_s41747_025_00558_1 crossref_primary_10_3390_ijms232314762 crossref_primary_10_1016_j_dci_2018_10_003 crossref_primary_10_1016_j_jacbts_2021_06_006 crossref_primary_10_3349_ymj_2016_57_5_1095 crossref_primary_10_1177_0023677219855102 crossref_primary_10_1155_2022_9810097 crossref_primary_10_1089_jmf_2023_0153 crossref_primary_10_1538_expanim_20_0112 crossref_primary_10_1016_j_bone_2021_116076 crossref_primary_10_1038_s41598_022_12756_7 crossref_primary_10_3390_pharmaceutics13020130 crossref_primary_10_3390_cells12151936 crossref_primary_10_7759_cureus_67067 crossref_primary_10_1111_jcmm_17188 crossref_primary_10_1038_s41598_018_20885_1 crossref_primary_10_1038_s42255_024_00984_2 crossref_primary_10_1073_pnas_2205475119 crossref_primary_10_1111_vcp_12676 crossref_primary_10_3390_ani11051220 crossref_primary_10_1371_journal_pone_0201618 crossref_primary_10_1016_j_giant_2023_100206 crossref_primary_10_1111_jpn_13742 crossref_primary_10_2478_aoas_2020_0091 crossref_primary_10_3390_ani10091540 crossref_primary_10_1089_cell_2015_0044 crossref_primary_10_1177_02601060241298740 crossref_primary_10_1186_s12872_020_01703_x crossref_primary_10_1161_CIRCINTERVENTIONS_121_010764 crossref_primary_10_3390_nu12051405 crossref_primary_10_1016_j_bbadis_2015_12_006 crossref_primary_10_2491_jjsth_33_437 crossref_primary_10_1096_fba_2020_00135 crossref_primary_10_1016_j_lssr_2023_03_008 crossref_primary_10_1016_j_numecd_2021_03_023 crossref_primary_10_1093_toxsci_kfae022 crossref_primary_10_1016_j_exer_2022_109215 crossref_primary_10_1007_s12265_023_10399_1 crossref_primary_10_1016_j_bbadis_2017_12_040 crossref_primary_10_1155_2019_4521786 crossref_primary_10_1186_s12944_018_0726_4 crossref_primary_10_1007_s13273_024_00426_w crossref_primary_10_1017_erm_2016_5 crossref_primary_10_1186_s12906_020_03012_4 crossref_primary_10_1016_j_atherosclerosis_2022_03_032 crossref_primary_10_1038_srep25161 crossref_primary_10_1371_journal_pone_0180772 crossref_primary_10_1007_s11883_017_0692_8 |
Cites_doi | 10.1126/science.1990440 10.1093/jmcb/mjt047 10.1016/j.atherosclerosis.2004.10.044 10.1007/s11248-010-9467-5 10.1016/S0002-9440(10)64366-0 10.1038/labinvest.3700346 10.1016/j.atherosclerosis.2006.02.036 10.1016/S0021-9150(74)80002-X 10.1074/jbc.273.2.1247 10.1016/0021-9150(93)90080-E 10.1038/nature10146 10.1016/S0022-2275(20)38386-3 10.1006/jmcc.2002.2025 10.1161/CIRCULATIONAHA.109.872796 10.1161/01.ATV.11.3.745 10.1038/cr.2013.85 10.1016/j.atherosclerosis.2009.03.024 10.1038/315680a0 10.1161/01.CIR.100.11.1215 10.1016/S0024-3205(01)01479-5 10.1016/S0022-2275(20)37649-5 10.1111/j.1439-0531.1985.tb00423.x 10.1016/S0022-2275(20)38428-5 10.1194/jlr.R400003-JLR200 10.1172/JCI114558 10.1126/science.1178817 10.1111/j.1476-5381.1989.tb12635.x 10.1161/ATVBAHA.111.237693 10.1073/pnas.84.16.5928 10.1016/j.thromres.2013.09.007 10.1126/science.1178811 10.1124/jpet.107.135822 10.1016/S0022-2275(20)38819-2 10.1016/j.cell.2013.04.025 10.1161/01.CIR.94.4.713 10.1161/01.ATV.16.12.1424 10.1056/NEJM198308043090507 10.1161/01.ATV.0000075947.28567.50 10.1074/jbc.M105456200 10.1016/S0163-7258(03)00069-X 10.1161/01.ATV.21.1.88 10.1093/ajcn/23.8.1105 10.1073/pnas.93.21.11448 10.1038/oby.2009.176 10.1016/j.bbrc.2011.03.069 10.1006/bbrc.1999.0242 10.1073/pnas.1211446109 10.1038/ng.343 10.1073/pnas.88.12.5252 10.1016/S0344-0338(11)80575-3 10.1016/S0021-9258(18)35775-2 10.1016/j.ddmod.2009.02.001 10.1016/j.atherosclerosissup.2004.08.020 10.1681/ASN.2006010075 10.1016/S0022-2275(20)35730-8 10.1161/ATVBAHA.110.215756 10.1016/j.atherosclerosis.2013.08.030 10.1161/CIRCULATIONAHA.105.596031 10.1007/s11248-012-9599-x 10.1161/01.ATV.19.12.2952 10.1016/j.cardiores.2004.10.022 10.1038/nbt0402-366 10.1038/nbt.2527 10.1016/0021-9150(80)90234-8 10.5551/jat1994.7.26 10.1161/01.ATV.15.11.1889 10.1016/0021-9150(70)90085-7 10.1172/JCI1599 10.1084/jem.89.6.611 10.1046/j.1440-1827.1999.00923.x 10.1155/2011/406473 10.1172/JCI7956 10.1016/j.atherosclerosis.2006.08.056 10.1073/pnas.91.18.8724 10.1126/science.1231143 10.1016/S0022-2275(20)41963-7 10.1172/JCI119029 10.1016/j.jcpa.2009.08.159 10.1074/jbc.272.36.22685 10.1016/j.cell.2011.04.005 10.1161/01.ATV.9.6.824 10.1161/ATVBAHA.112.300445 10.1074/jbc.M205814200 10.1126/science.3010466 10.1073/pnas.92.18.8483 10.5551/jat.21600 10.1038/nprot.2014.009 10.1111/j.1538-7836.2010.04086.x 10.1097/MOL.0b013e3283189c18 10.1016/j.atherosclerosissup.2004.08.007 10.2741/A192 10.1371/journal.pone.0021045 10.1186/1476-511X-12-166 10.2353/ajpath.2008.070604 10.1161/CIRCHEARTFAILURE.108.802298 10.1161/ATVBAHA.109.190264 10.1016/S0022-2275(20)34757-X |
ContentType | Journal Article |
Copyright | Copyright © 2014 Elsevier Inc. All rights reserved. 2014 Elsevier Inc. All rights reserved. 2014 |
Copyright_xml | – notice: Copyright © 2014 Elsevier Inc. All rights reserved. – notice: 2014 Elsevier Inc. All rights reserved. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.pharmthera.2014.09.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1879-016X |
EndPage | 119 |
ExternalDocumentID | PMC4304984 25277507 10_1016_j_pharmthera_2014_09_009 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL068878 – fundername: NHLBI NIH HHS grantid: HL105114 – fundername: NINDS NIH HHS grantid: NS066652 – fundername: NINDS NIH HHS grantid: R01 NS066652 – fundername: NHLBI NIH HHS grantid: HL088391 – fundername: NHLBI NIH HHS grantid: R01 HL088391 – fundername: NHLBI NIH HHS grantid: R01 HL117491 – fundername: NHLBI NIH HHS grantid: R01 HL089544 – fundername: NHLBI NIH HHS grantid: HL068878 – fundername: NHLBI NIH HHS grantid: R01 HL105114 |
GroupedDBID | --- --K --M .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABMAC ABWVN ABXDB ABZDS ACDAQ ACGFO ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HZ~ IHE J1W K-O KOM L7B M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SPT SSH SSP SSZ T5K TEORI WUQ Y6R ZGI ZXP ~G- AACTN CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c556t-e698d8faa464f67c55b7be27ee0d76cf2931a927000a6b46500ddbfb1d43e5703 |
ISSN | 0163-7258 1879-016X |
IngestDate | Thu Aug 21 18:15:57 EDT 2025 Fri Jul 11 07:34:50 EDT 2025 Thu Apr 03 06:59:33 EDT 2025 Tue Jul 01 03:07:35 EDT 2025 Thu Apr 24 23:12:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Experimental animal models Hypercholesterolemia Transgenic rabbits Translational medicine Atherosclerosis |
Language | English |
License | Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c556t-e698d8faa464f67c55b7be27ee0d76cf2931a927000a6b46500ddbfb1d43e5703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.pharmthera.2014.09.009 |
PMID | 25277507 |
PQID | 1661993407 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4304984 proquest_miscellaneous_1661993407 pubmed_primary_25277507 crossref_primary_10_1016_j_pharmthera_2014_09_009 crossref_citationtrail_10_1016_j_pharmthera_2014_09_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Pharmacology & therapeutics (Oxford) |
PublicationTitleAlternate | Pharmacol Ther |
PublicationYear | 2015 |
References | Kato (10.1016/j.pharmthera.2014.09.009_bb0255) 1991; 187 Aikawa (10.1016/j.pharmthera.2014.09.009_bb0005) 1999; 100 Rosenfeld (10.1016/j.pharmthera.2014.09.009_bb0425) 1992; 140 Moscou (10.1016/j.pharmthera.2014.09.009_bb0375) 2009; 326 Rouy (10.1016/j.pharmthera.2014.09.009_bb0430) 1998; 273 Libby (10.1016/j.pharmthera.2014.09.009_bb0330) 2011; 473 Koike (10.1016/j.pharmthera.2014.09.009_bb0295) 2005; 65 Liang (10.1016/j.pharmthera.2014.09.009_bb0325) 2006; 113 Chiesa (10.1016/j.pharmthera.2014.09.009_bb0070) 1992; 267 Fan (10.1016/j.pharmthera.2014.09.009_bb0175) 2003; 99 Li (10.1016/j.pharmthera.2014.09.009_bb0320) 1996; 37 Liu (10.1016/j.pharmthera.2014.09.009_bb0335) 2007; 18 Fan (10.1016/j.pharmthera.2014.09.009_bb0160) 1994; 91 Poorman (10.1016/j.pharmthera.2014.09.009_bb0415) 1993; 34 Yla-Herttuala (10.1016/j.pharmthera.2014.09.009_bb0575) 1991; 88 Bocan (10.1016/j.pharmthera.2014.09.009_bb0025) 1993; 102 Fan (10.1016/j.pharmthera.2014.09.009_bb0140) 1995; 15 Nordestgaard (10.1016/j.pharmthera.2014.09.009_bb0395) 1988; 29 Peng (10.1016/j.pharmthera.2014.09.009_bb0405) 2012; 62 Tanaka (10.1016/j.pharmthera.2014.09.009_bb0490) 2008; 325 Shiomi (10.1016/j.pharmthera.2014.09.009_bb0450) 2003; 23 Takahashi (10.1016/j.pharmthera.2014.09.009_bb0480) 2011; 407 Niimi (10.1016/j.pharmthera.2014.09.009_bb0390) 2013; 12 Zhang (10.1016/j.pharmthera.2014.09.009_bb0585) 2010; 142 Daugherty (10.1016/j.pharmthera.2014.09.009_bb0090) 1989; 98 Watanabe (10.1016/j.pharmthera.2014.09.009_bb0540) 1980; 36 Badimon (10.1016/j.pharmthera.2014.09.009_bb0015) 1989; 60 Hoeg (10.1016/j.pharmthera.2014.09.009_bb0215) 1996; 93 Li (10.1016/j.pharmthera.2014.09.009_bb0315) 2014; 21 Roberts (10.1016/j.pharmthera.2014.09.009_bb0420) 1974; 19 King (10.1016/j.pharmthera.2014.09.009_bb0260) 2010; 18 Kita (10.1016/j.pharmthera.2014.09.009_bb0265) 1987; 84 Suzuki (10.1016/j.pharmthera.2014.09.009_bb0475) 2009; 2 Duranthon (10.1016/j.pharmthera.2014.09.009_bb0105) 2012; 21 Yang (10.1016/j.pharmthera.2014.09.009_bb0570) 2014; 6 Kobayashi (10.1016/j.pharmthera.2014.09.009_bb0280) 2011; 2011 Hirata (10.1016/j.pharmthera.2014.09.009_bb0205) 1988; 38 Bosze (10.1016/j.pharmthera.2014.09.009_bb0035) 2012; 21 Shiomi (10.1016/j.pharmthera.2014.09.009_bb0455) 2013; 231 Flisikowska (10.1016/j.pharmthera.2014.09.009_bb0180) 2011; 6 Badimon (10.1016/j.pharmthera.2014.09.009_bb0010) 1990; 85 Ichikawa (10.1016/j.pharmthera.2014.09.009_bb0235) 2002; 160 Wang (10.1016/j.pharmthera.2014.09.009_bb0515) 2013; 153 Hansson (10.1016/j.pharmthera.2014.09.009_bb0200) 1991; 11 Huang (10.1016/j.pharmthera.2014.09.009_bb0225) 1997; 272 Ignatowski (10.1016/j.pharmthera.2014.09.009_bb0240) 1908; 16 Fan (10.1016/j.pharmthera.2014.09.009_bb0155) 2001; 276 Ichikawa (10.1016/j.pharmthera.2014.09.009_bb0230) 2005; 179 Kritchevsky (10.1016/j.pharmthera.2014.09.009_bb0305) 1970; 23 Watanabe (10.1016/j.pharmthera.2014.09.009_bb0535) 1985; 53 Yamamoto (10.1016/j.pharmthera.2014.09.009_bb0550) 1986; 232 Taylor (10.1016/j.pharmthera.2014.09.009_bb0495) 1997; 2 Mahley (10.1016/j.pharmthera.2014.09.009_bb0340) 1980; 21 Moore (10.1016/j.pharmthera.2014.09.009_bb0370) 2011; 145 Chen (10.1016/j.pharmthera.2014.09.009_bb0060) 2013; 132 Goldstein (10.1016/j.pharmthera.2014.09.009_bb0190) 1983; 309 Getz (10.1016/j.pharmthera.2014.09.009_bb0185) 2012; 32 Mussolino (10.1016/j.pharmthera.2014.09.009_bb0380) 2013; 31 Fan (10.1016/j.pharmthera.2014.09.009_bb0130) 1999; 49 Brem (10.1016/j.pharmthera.2014.09.009_bb0040) 1985; 20 Koike (10.1016/j.pharmthera.2014.09.009_bb0290) 2009; 120 Li (10.1016/j.pharmthera.2014.09.009_bb0310) 1993; 143 Fan (10.1016/j.pharmthera.2014.09.009_bb0125) 1999; 255 Kitajima (10.1016/j.pharmthera.2014.09.009_bb0270) 2007; 193 Cong (10.1016/j.pharmthera.2014.09.009_bb0075) 2013; 339 Hoeg (10.1016/j.pharmthera.2014.09.009_bb0210) 1998; 98 Vesselinovitch (10.1016/j.pharmthera.2014.09.009_bb0510) 1988; 112 Shiomi (10.1016/j.pharmthera.2014.09.009_bb0440) 2008; 19 Brown (10.1016/j.pharmthera.2014.09.009_bb0045) 2004; 5 Corti (10.1016/j.pharmthera.2014.09.009_bb0080) 2007; 190 Carlson (10.1016/j.pharmthera.2014.09.009_bb0055) 2012; 109 Matsuda (10.1016/j.pharmthera.2014.09.009_bb0360) 2011; 9 Marian (10.1016/j.pharmthera.2014.09.009_bb0345) 1999; 104 Kitajima (10.1016/j.pharmthera.2014.09.009_bb0275) 2005; 85 Wang (10.1016/j.pharmthera.2014.09.009_bb0525) 2013 Duverger (10.1016/j.pharmthera.2014.09.009_bb0110) 1996; 94 Fan (10.1016/j.pharmthera.2014.09.009_bb0150) 2001; 21 Moghadasian (10.1016/j.pharmthera.2014.09.009_bb0365) 2002; 70 Mates (10.1016/j.pharmthera.2014.09.009_bb0355) 2009; 41 Fan (10.1016/j.pharmthera.2014.09.009_bb0170) 2000; 7 Masson (10.1016/j.pharmthera.2014.09.009_bb0350) 2011; 31 Pogwizd (10.1016/j.pharmthera.2014.09.009_bb0410) 2008; 5 Shen (10.1016/j.pharmthera.2014.09.009_bb0435) 1996; 98 Fan (10.1016/j.pharmthera.2014.09.009_bb0135) 1998; 101 Names (10.1016/j.pharmthera.2014.09.009_bb0385) 2004; 5 Song (10.1016/j.pharmthera.2014.09.009_bb0460) 2013; 23 Ding (10.1016/j.pharmthera.2014.09.009_bb0095) 2011; 20 Yu (10.1016/j.pharmthera.2014.09.009_bb0580) 2008; 23 Boch (10.1016/j.pharmthera.2014.09.009_bb0030) 2009; 326 Warren (10.1016/j.pharmthera.2014.09.009_bb0530) 1991; 32 Steinberg (10.1016/j.pharmthera.2014.09.009_bb0465) 2004; 45 Besterman (10.1016/j.pharmthera.2014.09.009_bb0020) 1970; 12 Wang (10.1016/j.pharmthera.2014.09.009_bb0520) 2013; 33 Tall (10.1016/j.pharmthera.2014.09.009_bb0485) 1986; 27 Endo (10.1016/j.pharmthera.2014.09.009_bb0120) 1980; 52 Territo (10.1016/j.pharmthera.2014.09.009_bb0505) 1989; 9 Shiomi (10.1016/j.pharmthera.2014.09.009_bb0445) 2009; 207 Yang (10.1016/j.pharmthera.2014.09.009_bb0565) 2013 Duverger (10.1016/j.pharmthera.2014.09.009_bb0115) 1996; 16 Ivics (10.1016/j.pharmthera.2014.09.009_bb0245) 2014; 9 James (10.1016/j.pharmthera.2014.09.009_bb0250) 2002; 34 Duff (10.1016/j.pharmthera.2014.09.009_bb0100) 1949; 89 Brunner (10.1016/j.pharmthera.2014.09.009_bb0050) 2008; 118 Yamada (10.1016/j.pharmthera.2014.09.009_bb0545) 2008; 172 Sun (10.1016/j.pharmthera.2014.09.009_bb0470) 2002; 277 Cybulsky (10.1016/j.pharmthera.2014.09.009_bb0085) 1991; 251 Koike (10.1016/j.pharmthera.2014.09.009_bb0285) 2009; 29 Overturf (10.1016/j.pharmthera.2014.09.009_bb0400) 1989; 30 Hammer (10.1016/j.pharmthera.2014.09.009_bb0195) 1985; 315 Huang (10.1016/j.pharmthera.2014.09.009_bb0220) 1999; 19 Yamanaka (10.1016/j.pharmthera.2014.09.009_bb0555) 1995; 92 Chesne (10.1016/j.pharmthera.2014.09.009_bb0065) 2002; 20 |
References_xml | – volume: 251 start-page: 788 year: 1991 ident: 10.1016/j.pharmthera.2014.09.009_bb0085 article-title: Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis publication-title: Science doi: 10.1126/science.1990440 – volume: 6 start-page: 97 year: 2014 ident: 10.1016/j.pharmthera.2014.09.009_bb0570 article-title: Effective gene targeting in rabbits using RNA-guided Cas9 nucleases publication-title: J Mol Cell Biol doi: 10.1093/jmcb/mjt047 – volume: 179 start-page: 87 year: 2005 ident: 10.1016/j.pharmthera.2014.09.009_bb0230 article-title: Macrophage-derived lipoprotein lipase increases aortic atherosclerosis in cholesterol-fed Tg rabbits publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2004.10.044 – volume: 20 start-page: 867 year: 2011 ident: 10.1016/j.pharmthera.2014.09.009_bb0095 article-title: Hypertriglyceridemia and delayed clearance of fat load in transgenic rabbits expressing human apolipoprotein CIII publication-title: Transgenic Res doi: 10.1007/s11248-010-9467-5 – volume: 160 start-page: 227 year: 2002 ident: 10.1016/j.pharmthera.2014.09.009_bb0235 article-title: Lipoprotein(a) promotes smooth muscle cell proliferation and dedifferentiation in atherosclerotic lesions of human apo(a) transgenic rabbits publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)64366-0 – volume: 85 start-page: 1517 year: 2005 ident: 10.1016/j.pharmthera.2014.09.009_bb0275 article-title: Transgenic rabbits with increased VEGF expression develop hemangiomas in the liver: a new model for Kasabach–Merritt syndrome publication-title: Lab Invest doi: 10.1038/labinvest.3700346 – volume: 53 start-page: 80 year: 1985 ident: 10.1016/j.pharmthera.2014.09.009_bb0535 article-title: Role of macrophages in atherosclerosis. Sequential observations of cholesterol-induced rabbit aortic lesion by the immunoperoxidase technique using monoclonal antimacrophage antibody publication-title: Lab Invest – volume: 190 start-page: 106 year: 2007 ident: 10.1016/j.pharmthera.2014.09.009_bb0080 article-title: Fenofibrate induces plaque regression in hypercholesterolemic atherosclerotic rabbits: in vivo demonstration by high-resolution MRI publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2006.02.036 – volume: 19 start-page: 369 year: 1974 ident: 10.1016/j.pharmthera.2014.09.009_bb0420 article-title: Plasma cholesterol concentration in normal and cholesterol-fed rabbits publication-title: Atherosclerosis doi: 10.1016/S0021-9150(74)80002-X – volume: 273 start-page: 1247 year: 1998 ident: 10.1016/j.pharmthera.2014.09.009_bb0430 article-title: Apolipoprotein(a) yeast artificial chromosome transgenic rabbits. Lipoprotein(a) assembly with human and rabbit apolipoprotein B publication-title: J Biol Chem doi: 10.1074/jbc.273.2.1247 – volume: 102 start-page: 9 year: 1993 ident: 10.1016/j.pharmthera.2014.09.009_bb0025 article-title: The relationship between the degree of dietary-induced hypercholesterolemia in the rabbit and atherosclerotic lesion formation publication-title: Atherosclerosis doi: 10.1016/0021-9150(93)90080-E – volume: 473 start-page: 317 year: 2011 ident: 10.1016/j.pharmthera.2014.09.009_bb0330 article-title: Progress and challenges in translating the biology of atherosclerosis publication-title: Nature doi: 10.1038/nature10146 – volume: 30 start-page: 263 year: 1989 ident: 10.1016/j.pharmthera.2014.09.009_bb0400 article-title: Development and partial metabolic characterization of a dietary cholesterol-resistant colony of rabbits publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)38386-3 – volume: 34 start-page: 873 year: 2002 ident: 10.1016/j.pharmthera.2014.09.009_bb0250 article-title: Transgenic rabbits expressing mutant essential light chain do not develop hypertrophic cardiomyopathy publication-title: J Mol Cell Cardiol doi: 10.1006/jmcc.2002.2025 – volume: 120 start-page: 2088 year: 2009 ident: 10.1016/j.pharmthera.2014.09.009_bb0290 article-title: Human C-reactive protein does not promote atherosclerosis in transgenic rabbits publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.872796 – volume: 11 start-page: 745 year: 1991 ident: 10.1016/j.pharmthera.2014.09.009_bb0200 article-title: Immunohistochemical detection of macrophages and T lymphocytes in atherosclerotic lesions of cholesterol-fed rabbits publication-title: Arterioscler Thromb doi: 10.1161/01.ATV.11.3.745 – volume: 23 start-page: 1059 year: 2013 ident: 10.1016/j.pharmthera.2014.09.009_bb0460 article-title: Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs publication-title: Cell Res doi: 10.1038/cr.2013.85 – volume: 207 start-page: 1 year: 2009 ident: 10.1016/j.pharmthera.2014.09.009_bb0445 article-title: The Watanabe heritable hyperlipidemic (WHHL) rabbit, its characteristics and history of development: a tribute to the late Dr. Yoshio Watanabe publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2009.03.024 – volume: 62 start-page: 472 year: 2012 ident: 10.1016/j.pharmthera.2014.09.009_bb0405 article-title: Transgenic rabbit models for studying human cardiovascular diseases publication-title: Comp Med – volume: 315 start-page: 680 year: 1985 ident: 10.1016/j.pharmthera.2014.09.009_bb0195 article-title: Production of transgenic rabbits, sheep and pigs by microinjection publication-title: Nature doi: 10.1038/315680a0 – volume: 100 start-page: 1215 year: 1999 ident: 10.1016/j.pharmthera.2014.09.009_bb0005 article-title: Dietary lipid lowering reduces tissue factor expression in rabbit atheroma publication-title: Circulation doi: 10.1161/01.CIR.100.11.1215 – volume: 70 start-page: 855 year: 2002 ident: 10.1016/j.pharmthera.2014.09.009_bb0365 article-title: Experimental atherosclerosis: a historical overview publication-title: Life Sci doi: 10.1016/S0024-3205(01)01479-5 – volume: 37 start-page: 210 year: 1996 ident: 10.1016/j.pharmthera.2014.09.009_bb0320 article-title: Method to measure apolipoprotein B-48 and B-100 secretion rates in an individual mouse: evidence for a very rapid turnover of VLDL and preferential removal of B-48- relative to B-100-containing lipoproteins publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)37649-5 – volume: 20 start-page: 251 year: 1985 ident: 10.1016/j.pharmthera.2014.09.009_bb0040 article-title: Production of transgenic mice, rabbits, and pigs by microinjection into pronuclei publication-title: Zychthygience doi: 10.1111/j.1439-0531.1985.tb00423.x – volume: 29 start-page: 1491 year: 1988 ident: 10.1016/j.pharmthera.2014.09.009_bb0395 article-title: Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)38428-5 – volume: 45 start-page: 1583 year: 2004 ident: 10.1016/j.pharmthera.2014.09.009_bb0465 article-title: Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part I publication-title: J Lipid Res doi: 10.1194/jlr.R400003-JLR200 – volume: 85 start-page: 1234 year: 1990 ident: 10.1016/j.pharmthera.2014.09.009_bb0010 article-title: Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit publication-title: J Clin Invest doi: 10.1172/JCI114558 – volume: 326 start-page: 1501 year: 2009 ident: 10.1016/j.pharmthera.2014.09.009_bb0375 article-title: A simple cipher governs DNA recognition by TAL effectors publication-title: Science doi: 10.1126/science.1178817 – volume: 98 start-page: 612 year: 1989 ident: 10.1016/j.pharmthera.2014.09.009_bb0090 article-title: Probucol attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.1989.tb12635.x – volume: 32 start-page: 1104 year: 2012 ident: 10.1016/j.pharmthera.2014.09.009_bb0185 article-title: Animal models of atherosclerosis publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.111.237693 – volume: 84 start-page: 5928 year: 1987 ident: 10.1016/j.pharmthera.2014.09.009_bb0265 article-title: Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.84.16.5928 – volume: 132 start-page: 565 year: 2013 ident: 10.1016/j.pharmthera.2014.09.009_bb0060 article-title: Probucol and cilostazol exert a combinatorial anti-atherogenic effect in cholesterol-fed rabbits publication-title: Thromb Res doi: 10.1016/j.thromres.2013.09.007 – volume: 326 start-page: 1509 year: 2009 ident: 10.1016/j.pharmthera.2014.09.009_bb0030 article-title: Breaking the code of DNA binding specificity of TAL-type III effectors publication-title: Science doi: 10.1126/science.1178811 – volume: 38 start-page: 559 year: 1988 ident: 10.1016/j.pharmthera.2014.09.009_bb0205 article-title: Regression of atherosclerosis in normotensive and hypertensive rabbits. A quantitative analysis of cholesterol-induced aortic and coronary lesions with an image-processing system publication-title: Acta Pathol Jpn – volume: 325 start-page: 655 year: 2008 ident: 10.1016/j.pharmthera.2014.09.009_bb0490 article-title: NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a high-fat diet publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.107.135822 – volume: 27 start-page: 361 year: 1986 ident: 10.1016/j.pharmthera.2014.09.009_bb0485 article-title: Plasma cholesteryl ester transfer protein publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)38819-2 – volume: 153 start-page: 910 year: 2013 ident: 10.1016/j.pharmthera.2014.09.009_bb0515 article-title: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering publication-title: Cell doi: 10.1016/j.cell.2013.04.025 – volume: 94 start-page: 713 year: 1996 ident: 10.1016/j.pharmthera.2014.09.009_bb0110 article-title: Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits publication-title: Circulation doi: 10.1161/01.CIR.94.4.713 – volume: 16 start-page: 1424 year: 1996 ident: 10.1016/j.pharmthera.2014.09.009_bb0115 article-title: Transgenic rabbits expressing human apolipoprotein A-I in the liver publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.16.12.1424 – volume: 309 start-page: 288 year: 1983 ident: 10.1016/j.pharmthera.2014.09.009_bb0190 article-title: Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia publication-title: N Engl J Med doi: 10.1056/NEJM198308043090507 – volume: 23 start-page: 1239 year: 2003 ident: 10.1016/j.pharmthera.2014.09.009_bb0450 article-title: Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbits) publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000075947.28567.50 – volume: 276 start-page: 40071 year: 2001 ident: 10.1016/j.pharmthera.2014.09.009_bb0155 article-title: Overexpression of lipoprotein lipase in transgenic rabbits inhibits diet-induced hypercholesterolemia and atherosclerosis publication-title: J Biol Chem doi: 10.1074/jbc.M105456200 – year: 2013 ident: 10.1016/j.pharmthera.2014.09.009_bb0565 article-title: Effective gene targeting in rabbits using RNA-guided Cas9 nucleases publication-title: J Vis Exp – volume: 99 start-page: 261 year: 2003 ident: 10.1016/j.pharmthera.2014.09.009_bb0175 article-title: Transgenic rabbits as therapeutic protein bioreactors and human disease models publication-title: Pharmacol Ther doi: 10.1016/S0163-7258(03)00069-X – volume: 21 start-page: 88 year: 2001 ident: 10.1016/j.pharmthera.2014.09.009_bb0150 article-title: Transgenic rabbits expressing human apolipoprotein(a) develop more extensive atherosclerotic lesions in response to a cholesterol-rich diet publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.21.1.88 – volume: 23 start-page: 1105 year: 1970 ident: 10.1016/j.pharmthera.2014.09.009_bb0305 article-title: Role of cholesterol vehicle in experimental atherosclerosis publication-title: Am J Clin Nutr doi: 10.1093/ajcn/23.8.1105 – volume: 93 start-page: 11448 year: 1996 ident: 10.1016/j.pharmthera.2014.09.009_bb0215 article-title: Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.21.11448 – volume: 18 start-page: 35 year: 2010 ident: 10.1016/j.pharmthera.2014.09.009_bb0260 article-title: A murine model of obesity with accelerated atherosclerosis publication-title: Obesity (Silver Spring) doi: 10.1038/oby.2009.176 – volume: 407 start-page: 656 year: 2011 ident: 10.1016/j.pharmthera.2014.09.009_bb0480 article-title: Species differences of macrophage very low-density-lipoprotein (VLDL) receptor protein expression publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2011.03.069 – volume: 255 start-page: 639 year: 1999 ident: 10.1016/j.pharmthera.2014.09.009_bb0125 article-title: Assembly of lipoprotein (a) in transgenic rabbits expressing human apolipoprotein (a) publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1999.0242 – volume: 109 start-page: 17382 year: 2012 ident: 10.1016/j.pharmthera.2014.09.009_bb0055 article-title: Efficient TALEN-mediated gene knockout in livestock publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1211446109 – volume: 41 start-page: 753 year: 2009 ident: 10.1016/j.pharmthera.2014.09.009_bb0355 article-title: Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates publication-title: Nat Genet doi: 10.1038/ng.343 – volume: 88 start-page: 5252 year: 1991 ident: 10.1016/j.pharmthera.2014.09.009_bb0575 article-title: Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.88.12.5252 – volume: 187 start-page: 797 year: 1991 ident: 10.1016/j.pharmthera.2014.09.009_bb0255 article-title: Experimental cerebral atherosclerosis in the rabbit. Scanning electron microscopic study of the initial lesion site publication-title: Pathol Res Pract doi: 10.1016/S0344-0338(11)80575-3 – volume: 267 start-page: 24369 year: 1992 ident: 10.1016/j.pharmthera.2014.09.009_bb0070 article-title: Reconstitution of lipoprotein(a) by infusion of human low density lipoprotein into transgenic mice expressing human apolipoprotein(a) publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)35775-2 – volume: 5 start-page: 185 year: 2008 ident: 10.1016/j.pharmthera.2014.09.009_bb0410 article-title: Rabbit models of heart disease publication-title: Drug Discovery Today, Disease Models doi: 10.1016/j.ddmod.2009.02.001 – volume: 23 start-page: 1503 year: 2008 ident: 10.1016/j.pharmthera.2014.09.009_bb0580 article-title: Temporal and quantitative analysis of expression of metalloproteinases (MMPs) and their endogenous inhibitors in atherosclerotic lesions publication-title: Histol Histopathol – volume: 5 start-page: 21 year: 2004 ident: 10.1016/j.pharmthera.2014.09.009_bb0385 article-title: Three obstacles which confronted the development of compactin publication-title: Atheroscler Suppl doi: 10.1016/j.atherosclerosissup.2004.08.020 – volume: 18 start-page: 2094 year: 2007 ident: 10.1016/j.pharmthera.2014.09.009_bb0335 article-title: Increased expression of vascular endothelial growth factor in kidney leads to progressive impairment of glomerular functions publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2006010075 – volume: 140 start-page: 291 year: 1992 ident: 10.1016/j.pharmthera.2014.09.009_bb0425 article-title: Macrophage colony-stimulating factor mRNA and protein in atherosclerotic lesions of rabbits and humans publication-title: Am J Pathol – volume: 34 start-page: 1675 year: 1993 ident: 10.1016/j.pharmthera.2014.09.009_bb0415 article-title: Bile acid excretion and cholesterol 7 alpha-hydroxylase expression in hypercholesterolemia-resistant rabbits publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)35730-8 – volume: 31 start-page: 766 year: 2011 ident: 10.1016/j.pharmthera.2014.09.009_bb0350 article-title: Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.110.215756 – volume: 231 start-page: 39 year: 2013 ident: 10.1016/j.pharmthera.2014.09.009_bb0455 article-title: Contribution of the WHHL rabbit, an animal model of familial hypercholesterolemia, to elucidation of the anti-atherosclerotic effects of statins publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2013.08.030 – volume: 113 start-page: 1993 year: 2006 ident: 10.1016/j.pharmthera.2014.09.009_bb0325 article-title: Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rabbits publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.596031 – volume: 21 start-page: 699 year: 2012 ident: 10.1016/j.pharmthera.2014.09.009_bb0105 article-title: On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools publication-title: Transgenic Res doi: 10.1007/s11248-012-9599-x – volume: 19 start-page: 2952 year: 1999 ident: 10.1016/j.pharmthera.2014.09.009_bb0220 article-title: Overexpression of apolipoprotein E3 in transgenic rabbits causes combined hyperlipidemia by stimulating hepatic VLDL production and impairing VLDL lipolysis publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.19.12.2952 – volume: 65 start-page: 524 year: 2005 ident: 10.1016/j.pharmthera.2014.09.009_bb0295 article-title: Enhanced aortic atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits expressing lipoprotein lipase publication-title: Cardiovasc Res doi: 10.1016/j.cardiores.2004.10.022 – volume: 20 start-page: 366 year: 2002 ident: 10.1016/j.pharmthera.2014.09.009_bb0065 article-title: Cloned rabbits produced by nuclear transfer from adult somatic cells publication-title: Nat Biotechnol doi: 10.1038/nbt0402-366 – volume: 31 start-page: 208 year: 2013 ident: 10.1016/j.pharmthera.2014.09.009_bb0380 article-title: RNA guides genome engineering publication-title: Nat Biotechnol doi: 10.1038/nbt.2527 – volume: 36 start-page: 261 year: 1980 ident: 10.1016/j.pharmthera.2014.09.009_bb0540 article-title: Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit) publication-title: Atherosclerosis doi: 10.1016/0021-9150(80)90234-8 – volume: 7 start-page: 26 year: 2000 ident: 10.1016/j.pharmthera.2014.09.009_bb0170 article-title: Cholesterol-fed and transgenic rabbit models for the study of atherosclerosis publication-title: J Atheroscler Thromb doi: 10.5551/jat1994.7.26 – volume: 15 start-page: 1889 year: 1995 ident: 10.1016/j.pharmthera.2014.09.009_bb0140 article-title: Overexpression of human apolipoprotein B-100 in transgenic rabbits results in increased levels of LDL and decreased levels of HDL publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.15.11.1889 – volume: 12 start-page: 75 year: 1970 ident: 10.1016/j.pharmthera.2014.09.009_bb0020 article-title: Experimental coronary atherosclerosis in rabbits publication-title: Atherosclerosis doi: 10.1016/0021-9150(70)90085-7 – volume: 101 start-page: 2151 year: 1998 ident: 10.1016/j.pharmthera.2014.09.009_bb0135 article-title: Increased expression of apolioprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma publication-title: J Clin Invest doi: 10.1172/JCI1599 – volume: 89 start-page: 611 year: 1949 ident: 10.1016/j.pharmthera.2014.09.009_bb0100 article-title: The effect of alloxan diabetes on experimental cholesterol atherosclerosis in the rabbit publication-title: J Exp Med doi: 10.1084/jem.89.6.611 – volume: 49 start-page: 583 year: 1999 ident: 10.1016/j.pharmthera.2014.09.009_bb0130 article-title: Transgenic rabbit models for biomedical research: current status, basic methods and future perspectives publication-title: Pathol Int doi: 10.1046/j.1440-1827.1999.00923.x – volume: 2011 start-page: 406473 year: 2011 ident: 10.1016/j.pharmthera.2014.09.009_bb0280 article-title: Roles of the WHHL rabbit in translational research on hypercholesterolemia and cardiovascular diseases publication-title: J Biomed Biotechnol doi: 10.1155/2011/406473 – volume: 104 start-page: 1683 year: 1999 ident: 10.1016/j.pharmthera.2014.09.009_bb0345 article-title: A transgenic rabbit model for human hypertrophic cardiomyopathy publication-title: J Clin Invest doi: 10.1172/JCI7956 – volume: 193 start-page: 269 year: 2007 ident: 10.1016/j.pharmthera.2014.09.009_bb0270 article-title: Lp(a) enhances coronary atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2006.08.056 – volume: 21 start-page: 902 year: 2012 ident: 10.1016/j.pharmthera.2014.09.009_bb0035 article-title: Creation and characterization of second generation transgenic rabbit models publication-title: Transgenic Res – volume: 91 start-page: 8724 year: 1994 ident: 10.1016/j.pharmthera.2014.09.009_bb0160 article-title: Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.91.18.8724 – volume: 118 start-page: 2246 year: 2008 ident: 10.1016/j.pharmthera.2014.09.009_bb0050 article-title: Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome publication-title: J Clin Invest – volume: 339 start-page: 819 year: 2013 ident: 10.1016/j.pharmthera.2014.09.009_bb0075 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 98 start-page: I-464 year: 1998 ident: 10.1016/j.pharmthera.2014.09.009_bb0210 article-title: Lecithin:cholesterol acyl transferase requires functional LDL receptors to prevent atherosclerosis publication-title: Circulation – volume: 32 start-page: 1333 year: 1991 ident: 10.1016/j.pharmthera.2014.09.009_bb0530 article-title: Rabbit hepatic lipase cDNA sequence: low activity is associated with low messenger RNA levels publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)41963-7 – volume: 98 start-page: 2201 year: 1996 ident: 10.1016/j.pharmthera.2014.09.009_bb0435 article-title: Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development publication-title: J Clin Invest doi: 10.1172/JCI119029 – volume: 52 start-page: 1033 year: 1980 ident: 10.1016/j.pharmthera.2014.09.009_bb0120 article-title: Regulation of cholesterol synthesis, as focused on the regulation of HMG-CoA reductase publication-title: Seikagaku – volume: 142 start-page: 122 year: 2010 ident: 10.1016/j.pharmthera.2014.09.009_bb0585 article-title: A practical method for quantifying atherosclerotic lesions in rabbits publication-title: J Comp Pathol doi: 10.1016/j.jcpa.2009.08.159 – volume: 272 start-page: 22685 year: 1997 ident: 10.1016/j.pharmthera.2014.09.009_bb0225 article-title: Apolipoprotein E2 transgenic rabbits publication-title: J Biol Chem doi: 10.1074/jbc.272.36.22685 – volume: 145 start-page: 341 year: 2011 ident: 10.1016/j.pharmthera.2014.09.009_bb0370 article-title: Macrophages in the pathogenesis of atherosclerosis publication-title: Cell doi: 10.1016/j.cell.2011.04.005 – volume: 9 start-page: 824 year: 1989 ident: 10.1016/j.pharmthera.2014.09.009_bb0505 article-title: Beta-very low density lipoprotein pretreatment of endothelial monolayers increases monocyte adhesion publication-title: Arteriosclerosis doi: 10.1161/01.ATV.9.6.824 – volume: 33 start-page: 224 year: 2013 ident: 10.1016/j.pharmthera.2014.09.009_bb0520 article-title: Human apolipoprotein AII protects against diet-induced atherosclerosis in transgenic rabbits publication-title: Arterioscler Thromb Vas Biol doi: 10.1161/ATVBAHA.112.300445 – volume: 277 start-page: 47486 year: 2002 ident: 10.1016/j.pharmthera.2014.09.009_bb0470 article-title: Lipoprotein(a) enhances advanced atherosclerosis and vascular calcification in WHHL transgenic rabbits expressing human apolipoprotein(a) publication-title: J Biol Chem doi: 10.1074/jbc.M205814200 – volume: 232 start-page: 1230 year: 1986 ident: 10.1016/j.pharmthera.2014.09.009_bb0550 article-title: Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit publication-title: Science doi: 10.1126/science.3010466 – volume: 92 start-page: 8483 year: 1995 ident: 10.1016/j.pharmthera.2014.09.009_bb0555 article-title: Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.92.18.8483 – volume: 21 start-page: 648 year: 2014 ident: 10.1016/j.pharmthera.2014.09.009_bb0315 article-title: Probucol suppresses macrophage infiltration and MMP expression in atherosclerotic plaques of WHHL rabbits publication-title: J Atheroscl Thromb doi: 10.5551/jat.21600 – volume: 16 start-page: 154 year: 1908 ident: 10.1016/j.pharmthera.2014.09.009_bb0240 article-title: Influence of animal food on the organism of rabbits publication-title: St Peterberg Izviest Imp Voyenno-Med Akad – volume: 60 start-page: 455 year: 1989 ident: 10.1016/j.pharmthera.2014.09.009_bb0015 article-title: High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits publication-title: Lab Invest – volume: 9 start-page: 794 year: 2014 ident: 10.1016/j.pharmthera.2014.09.009_bb0245 article-title: Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons publication-title: Nat Protoc doi: 10.1038/nprot.2014.009 – volume: 9 start-page: 201 year: 2011 ident: 10.1016/j.pharmthera.2014.09.009_bb0360 article-title: Human C-reactive protein enhances thrombus formation after neointimal balloon injury in transgenic rabbits publication-title: J Thromb Haemost doi: 10.1111/j.1538-7836.2010.04086.x – volume: 19 start-page: 631 year: 2008 ident: 10.1016/j.pharmthera.2014.09.009_bb0440 article-title: Unstable coronary plaques and cardiac events in myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits: questions and quandaries publication-title: Curr Opin Lipidol doi: 10.1097/MOL.0b013e3283189c18 – volume: 5 start-page: 13 year: 2004 ident: 10.1016/j.pharmthera.2014.09.009_bb0045 article-title: A tribute to Akira Endo, discoverer of a “Penicillin” for cholesterol publication-title: Atheroscler Suppl doi: 10.1016/j.atherosclerosissup.2004.08.007 – volume: 2 start-page: 298 year: 1997 ident: 10.1016/j.pharmthera.2014.09.009_bb0495 article-title: Transgenic rabbit models for the study of atherosclerosis publication-title: Front Biosci doi: 10.2741/A192 – volume: 6 start-page: e21045 year: 2011 ident: 10.1016/j.pharmthera.2014.09.009_bb0180 article-title: Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases publication-title: PLoS One doi: 10.1371/journal.pone.0021045 – volume: 12 start-page: 166 year: 2013 ident: 10.1016/j.pharmthera.2014.09.009_bb0390 article-title: Probucol inhibits the initiation of atherosclerosis in cholesterol-fed rabbits publication-title: Lipids Health Dis doi: 10.1186/1476-511X-12-166 – volume: 143 start-page: 1551 year: 1993 ident: 10.1016/j.pharmthera.2014.09.009_bb0310 article-title: Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma publication-title: Am J Pathol – volume: 172 start-page: 1419 year: 2008 ident: 10.1016/j.pharmthera.2014.09.009_bb0545 article-title: Matrix metalloproteinase 12 accelerates the initiation of atherosclerosis and stimulates the progression of fatty streaks to fibrous plaques in transgenic rabbits publication-title: Am J Pathol doi: 10.2353/ajpath.2008.070604 – volume: 112 start-page: 1011 year: 1988 ident: 10.1016/j.pharmthera.2014.09.009_bb0510 article-title: Animal models and the study of atherosclerosis publication-title: Arch Pathol Lab Med – volume: 2 start-page: 334 year: 2009 ident: 10.1016/j.pharmthera.2014.09.009_bb0475 article-title: Effects of cardiac myosin isoform variation on myofilament function and crossbridge kinetics in transgenic rabbits publication-title: Circ Heart Fail doi: 10.1161/CIRCHEARTFAILURE.108.802298 – volume: 29 start-page: 2047 year: 2009 ident: 10.1016/j.pharmthera.2014.09.009_bb0285 article-title: Expression of human apoAII in transgenic rabbits leads to dyslipidemia: a new model for combined hyperlipidemia publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.109.190264 – volume: 21 start-page: 970 year: 1980 ident: 10.1016/j.pharmthera.2014.09.009_bb0340 article-title: Cholesteryl ester synthesis in macrophages: stimulation by beta-very low density lipoproteins from cholesterol-fed animals of several species publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)34757-X – start-page: 1 year: 2013 ident: 10.1016/j.pharmthera.2014.09.009_bb0525 article-title: Expression systems and species used for transgenic animal bioreactors publication-title: Biomed Res Internat |
SSID | ssj0004402 |
Score | 2.571048 |
SecondaryResourceType | review_article |
Snippet | Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 104 |
SubjectTerms | Animals Animals, Genetically Modified Atherosclerosis - metabolism Disease Models, Animal Humans Lipid Metabolism Rabbits Translational Medical Research |
Title | Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25277507 https://www.proquest.com/docview/1661993407 https://pubmed.ncbi.nlm.nih.gov/PMC4304984 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELa26aWXqu9u01auVOUUVgYMht6qqFEUKVXUbqS9IRtMw2p3WS1waA_5Hf25HT94ZXNIc0ErwF7M9zGMh88zCH0mIvfiXHpOTiR1KA-kwxnj8FwFOfdDP-e6FsHF9_Dsip4vgsVk8negWmpqMUv_3Lmu5CGowj7AVa2S_Q9ku05hB_wGfGELCMP2Xhj_4EIUtalmU3WCwarNE23q72kXr6ygKWwLrYDTa0pULeJSBzY6-7eWah1wUa112odavcZWbbBw9BHeerOXfd5rI7wZrObS0VyzHHEQbTg18dZzIOWvVTFQANR8Way1I_vzulkWfZwfnFcuTGpguWvK9sCiMf3IYdjCDVqlcx_JDH2HeSZv-0wa6xsxJd7SpQ1bi2qrE9uXs2vs657dNyGI5Wyrxq3HqlR7JoUtGTWBu7xdaz54gcfAX2L9m7DTJ15enFD1_TGij9BjOEu73rObXjxEqVazdoOwGjGjHLz7IlTaafuPYx9ob2JzW587cHjmz9BTO1PBXw3tnqOJ3LxARxby38d4PsD6GB_hIRleop3hJjbcxEADDNeKNTdxmWPNTXyLm1-wYibeZybumYnrEo-YiVtmvkJXp9_mJ2eOre_hpEEQ1o4M4yiLcs5pSPOQwU7BhPSYlCRjYQpGxHd5rJQRhIeCwlyCZJnIhZtRX6rMca_RwabcyLcIM85SIjmluevTLIq5y7IYbE1KAi-Ns2CKWHvHk9Qmv1c1WFZJq3JcJj1siYItIXECsE2R27XcmgQw92jzqQU1AWutPsHxjSybKnHBHYYZASVsit4YkLteW3bAtY7g705QmeDHRzbFtc4Ib8n67sEtD9GT_iF9jw7qXSM_gLddi4-a-P8AadjeSg |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rabbit+models+for+the+study+of+human+atherosclerosis%3A+from+pathophysiological+mechanisms+to+translational+medicine&rft.jtitle=Pharmacology+%26+therapeutics+%28Oxford%29&rft.au=Fan%2C+Jianglin&rft.au=Kitajima%2C+Shuji&rft.au=Watanabe%2C+Teruo&rft.au=Xu%2C+Jie&rft.date=2015-02-01&rft.issn=0163-7258&rft.eissn=1879-016X&rft.spage=104&rft.epage=119&rft_id=info:doi/10.1016%2Fj.pharmthera.2014.09.009&rft_id=info%3Apmid%2F25277507&rft.externalDocID=PMC4304984 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-7258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-7258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-7258&client=summon |