Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3

[Display omitted] •G9a was frequently upregulated in human HCC and associated with HCC aggressiveness.•G9a promoted HCC growth and metastasis both in vitro and in vivo.•Upregulation of G9a in HCC was attributed to gene amplification and loss of miR-1.•G9a epigenetically silenced the expression of tu...

Full description

Saved in:
Bibliographic Details
Published inJournal of hepatology Vol. 67; no. 4; pp. 758 - 769
Main Authors Wei, Lai, Chiu, David Kung-Chun, Tsang, Felice Ho-Ching, Law, Cheuk-Ting, Cheng, Carol Lai-Hung, Au, Sandy Leung-Kuen, Lee, Joyce Man-Fong, Wong, Carmen Chak-Lui, Ng, Irene Oi-Lin, Wong, Chun-Ming
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •G9a was frequently upregulated in human HCC and associated with HCC aggressiveness.•G9a promoted HCC growth and metastasis both in vitro and in vivo.•Upregulation of G9a in HCC was attributed to gene amplification and loss of miR-1.•G9a epigenetically silenced the expression of tumor suppressor gene RARRES3 in HCC.•Targeting G9a by small molecular inhibitors suppressed HCC growth. Hepatocellular carcinoma (HCC) is a major leading cause of cancer mortality worldwide. Epigenetic deregulation is a common trait of human HCC. G9s is an important epigenetics regulator however, its role in liver carcinogenesis remains to be investigated. Gene expressions were determined by RNA-Seq and qRT-PCR. G9a knockdown and knockout cell lines were established by lentiviral-based shRNA and CRISPR/Cas9 gene editing system. Tumor-promoting functions of G9a was studied in both HCC cell lines and nude mice model. The downstream targets of G9a were identified by RNA-Seq and confirmed by ChIP assay. The therapeutic value of G9a inhibitors was evaluated both in vitro and in vivo. We identified G9a as a frequently upregulated histone methyltransferase in human HCCs. Upregulation of G9a was significantly associated with HCC progression and aggressive clinicopathological features. Functionally, we demonstrated that inactivation of G9a by RNAi knockdown, CRISPR/Cas9 knockout, and pharmacological inhibition remarkably abolished H3K9 di-methylation and suppressed HCC cell proliferation and metastasis in both in vitro and in vivo models. Mechanistically, we showed that the frequent upregulation of G9a in human HCCs was attributed to gene copy number gain at chromosome 6p21. In addition, we identified miR-1 as a negative regulator of G9a. Loss of miR-1 relieved the post-transcriptional repression on G9a and contributed to its upregulation in human HCC. Utilizing RNA sequencing, we identified the tumor suppressor RARRES3 as a critical target of G9a. Epigenetic silencing of RARRES3 contributed to the tumor-promoting function of G9a. This study shows a frequent deregulation of miR-1/G9a/RARRES3 axis in liver carcinogenesis, highlighting the pathological significance of G9a and its therapeutic potential in HCC treatment. Lay summary: In this study, we identified G9a histone methyltransferase was frequently upregulated in human HCC and contributes to epigenetic silencing of tumor suppressor gene RARRES3 in liver cancer. Targeting G9a may be a novel approach for HCC treatment.
AbstractList Hepatocellular carcinoma (HCC) is a major leading cause of cancer mortality worldwide. Epigenetic deregulation is a common trait of human HCC. G9s is an important epigenetics regulator however, its role in liver carcinogenesis remains to be investigated.BACKGROUND & AIMSHepatocellular carcinoma (HCC) is a major leading cause of cancer mortality worldwide. Epigenetic deregulation is a common trait of human HCC. G9s is an important epigenetics regulator however, its role in liver carcinogenesis remains to be investigated.Gene expressions were determined by RNA-Seq and qRT-PCR. G9a knockdown and knockout cell lines were established by lentiviral-based shRNA and CRISPR/Cas9 gene editing system. Tumor-promoting functions of G9a was studied in both HCC cell lines and nude mice model. The downstream targets of G9a were identified by RNA-Seq and confirmed by ChIP assay. The therapeutic value of G9a inhibitors was evaluated both in vitro and in vivo.METHODSGene expressions were determined by RNA-Seq and qRT-PCR. G9a knockdown and knockout cell lines were established by lentiviral-based shRNA and CRISPR/Cas9 gene editing system. Tumor-promoting functions of G9a was studied in both HCC cell lines and nude mice model. The downstream targets of G9a were identified by RNA-Seq and confirmed by ChIP assay. The therapeutic value of G9a inhibitors was evaluated both in vitro and in vivo.We identified G9a as a frequently upregulated histone methyltransferase in human HCCs. Upregulation of G9a was significantly associated with HCC progression and aggressive clinicopathological features. Functionally, we demonstrated that inactivation of G9a by RNAi knockdown, CRISPR/Cas9 knockout, and pharmacological inhibition remarkably abolished H3K9 di-methylation and suppressed HCC cell proliferation and metastasis in both in vitro and in vivo models. Mechanistically, we showed that the frequent upregulation of G9a in human HCCs was attributed to gene copy number gain at chromosome 6p21. In addition, we identified miR-1 as a negative regulator of G9a. Loss of miR-1 relieved the post-transcriptional repression on G9a and contributed to its upregulation in human HCC. Utilizing RNA sequencing, we identified the tumor suppressor RARRES3 as a critical target of G9a. Epigenetic silencing of RARRES3 contributed to the tumor-promoting function of G9a.RESULTSWe identified G9a as a frequently upregulated histone methyltransferase in human HCCs. Upregulation of G9a was significantly associated with HCC progression and aggressive clinicopathological features. Functionally, we demonstrated that inactivation of G9a by RNAi knockdown, CRISPR/Cas9 knockout, and pharmacological inhibition remarkably abolished H3K9 di-methylation and suppressed HCC cell proliferation and metastasis in both in vitro and in vivo models. Mechanistically, we showed that the frequent upregulation of G9a in human HCCs was attributed to gene copy number gain at chromosome 6p21. In addition, we identified miR-1 as a negative regulator of G9a. Loss of miR-1 relieved the post-transcriptional repression on G9a and contributed to its upregulation in human HCC. Utilizing RNA sequencing, we identified the tumor suppressor RARRES3 as a critical target of G9a. Epigenetic silencing of RARRES3 contributed to the tumor-promoting function of G9a.This study shows a frequent deregulation of miR-1/G9a/RARRES3 axis in liver carcinogenesis, highlighting the pathological significance of G9a and its therapeutic potential in HCC treatment. Lay summary: In this study, we identified G9a histone methyltransferase was frequently upregulated in human HCC and contributes to epigenetic silencing of tumor suppressor gene RARRES3 in liver cancer. Targeting G9a may be a novel approach for HCC treatment.CONCLUSIONThis study shows a frequent deregulation of miR-1/G9a/RARRES3 axis in liver carcinogenesis, highlighting the pathological significance of G9a and its therapeutic potential in HCC treatment. Lay summary: In this study, we identified G9a histone methyltransferase was frequently upregulated in human HCC and contributes to epigenetic silencing of tumor suppressor gene RARRES3 in liver cancer. Targeting G9a may be a novel approach for HCC treatment.
Graphical abstract Deregulation of G9a in human HCC. G9a was frequently up-regulated in human HCC and implicated in HCC tumorigenesis and metastasis. The frequent up-regulation of G9a in human HCC was attributed to gene copy number gain at 6p21 and loss of miR-1. The oncogenic function of G9a was at least partially attributed to the epigenetic silencing of tumor suppressor RARRES3.
Background & Aims Hepatocellular carcinoma (HCC) is a major leading cause of cancer mortality worldwide. Epigenetic deregulation is a common trait of human HCC. G9s is an important epigenetics regulator however, its role in liver carcinogenesis remains to be investigated. Methods Gene expressions were determined by RNA-Seq and qRT-PCR. G9a knockdown and knockout cell lines were established by lentiviral-based shRNA and CRISPR/Cas9 gene editing system. Tumor-promoting functions of G9a was studied in both HCC cell lines and nude mice model. The downstream targets of G9a were identified by RNA-Seq and confirmed by ChIP assay. The therapeutic value of G9a inhibitors was evaluated both in vitro and in vivo. Results We identified G9a as a frequently upregulated histone methyltransferase in human HCCs. Upregulation of G9a was significantly associated with HCC progression and aggressive clinicopathological features. Functionally, we demonstrated that inactivation of G9a by RNAi knockdown, CRISPR/Cas9 knockout, and pharmacological inhibition remarkably abolished H3K9 di-methylation and suppressed HCC cell proliferation and metastasis in both in vitro and in vivo models. Mechanistically, we showed that the frequent upregulation of G9a in human HCCs was attributed to gene copy number gain at chromosome 6p21. In addition, we identified miR-1 as a negative regulator of G9a. Loss of miR-1 relieved the post-transcriptional repression on G9a and contributed to its upregulation in human HCC. Utilizing RNA sequencing, we identified the tumor suppressor RARRES3 as a critical target of G9a. Epigenetic silencing of RARRES3 contributed to the tumor-promoting function of G9a. Conclusion This study shows a frequent deregulation of miR-1/G9a/RARRES3 axis in liver carcinogenesis, highlighting the pathological significance of G9a and its therapeutic potential in HCC treatment.
[Display omitted] •G9a was frequently upregulated in human HCC and associated with HCC aggressiveness.•G9a promoted HCC growth and metastasis both in vitro and in vivo.•Upregulation of G9a in HCC was attributed to gene amplification and loss of miR-1.•G9a epigenetically silenced the expression of tumor suppressor gene RARRES3 in HCC.•Targeting G9a by small molecular inhibitors suppressed HCC growth. Hepatocellular carcinoma (HCC) is a major leading cause of cancer mortality worldwide. Epigenetic deregulation is a common trait of human HCC. G9s is an important epigenetics regulator however, its role in liver carcinogenesis remains to be investigated. Gene expressions were determined by RNA-Seq and qRT-PCR. G9a knockdown and knockout cell lines were established by lentiviral-based shRNA and CRISPR/Cas9 gene editing system. Tumor-promoting functions of G9a was studied in both HCC cell lines and nude mice model. The downstream targets of G9a were identified by RNA-Seq and confirmed by ChIP assay. The therapeutic value of G9a inhibitors was evaluated both in vitro and in vivo. We identified G9a as a frequently upregulated histone methyltransferase in human HCCs. Upregulation of G9a was significantly associated with HCC progression and aggressive clinicopathological features. Functionally, we demonstrated that inactivation of G9a by RNAi knockdown, CRISPR/Cas9 knockout, and pharmacological inhibition remarkably abolished H3K9 di-methylation and suppressed HCC cell proliferation and metastasis in both in vitro and in vivo models. Mechanistically, we showed that the frequent upregulation of G9a in human HCCs was attributed to gene copy number gain at chromosome 6p21. In addition, we identified miR-1 as a negative regulator of G9a. Loss of miR-1 relieved the post-transcriptional repression on G9a and contributed to its upregulation in human HCC. Utilizing RNA sequencing, we identified the tumor suppressor RARRES3 as a critical target of G9a. Epigenetic silencing of RARRES3 contributed to the tumor-promoting function of G9a. This study shows a frequent deregulation of miR-1/G9a/RARRES3 axis in liver carcinogenesis, highlighting the pathological significance of G9a and its therapeutic potential in HCC treatment. Lay summary: In this study, we identified G9a histone methyltransferase was frequently upregulated in human HCC and contributes to epigenetic silencing of tumor suppressor gene RARRES3 in liver cancer. Targeting G9a may be a novel approach for HCC treatment.
Hepatocellular carcinoma (HCC) is a major leading cause of cancer mortality worldwide. Epigenetic deregulation is a common trait of human HCC. G9s is an important epigenetics regulator however, its role in liver carcinogenesis remains to be investigated. Gene expressions were determined by RNA-Seq and qRT-PCR. G9a knockdown and knockout cell lines were established by lentiviral-based shRNA and CRISPR/Cas9 gene editing system. Tumor-promoting functions of G9a was studied in both HCC cell lines and nude mice model. The downstream targets of G9a were identified by RNA-Seq and confirmed by ChIP assay. The therapeutic value of G9a inhibitors was evaluated both in vitro and in vivo. We identified G9a as a frequently upregulated histone methyltransferase in human HCCs. Upregulation of G9a was significantly associated with HCC progression and aggressive clinicopathological features. Functionally, we demonstrated that inactivation of G9a by RNAi knockdown, CRISPR/Cas9 knockout, and pharmacological inhibition remarkably abolished H3K9 di-methylation and suppressed HCC cell proliferation and metastasis in both in vitro and in vivo models. Mechanistically, we showed that the frequent upregulation of G9a in human HCCs was attributed to gene copy number gain at chromosome 6p21. In addition, we identified miR-1 as a negative regulator of G9a. Loss of miR-1 relieved the post-transcriptional repression on G9a and contributed to its upregulation in human HCC. Utilizing RNA sequencing, we identified the tumor suppressor RARRES3 as a critical target of G9a. Epigenetic silencing of RARRES3 contributed to the tumor-promoting function of G9a. This study shows a frequent deregulation of miR-1/G9a/RARRES3 axis in liver carcinogenesis, highlighting the pathological significance of G9a and its therapeutic potential in HCC treatment. Lay summary: In this study, we identified G9a histone methyltransferase was frequently upregulated in human HCC and contributes to epigenetic silencing of tumor suppressor gene RARRES3 in liver cancer. Targeting G9a may be a novel approach for HCC treatment.
Author Wei, Lai
Wong, Chun-Ming
Tsang, Felice Ho-Ching
Lee, Joyce Man-Fong
Wong, Carmen Chak-Lui
Law, Cheuk-Ting
Chiu, David Kung-Chun
Ng, Irene Oi-Lin
Cheng, Carol Lai-Hung
Au, Sandy Leung-Kuen
Author_xml – sequence: 1
  givenname: Lai
  surname: Wei
  fullname: Wei, Lai
  organization: State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
– sequence: 2
  givenname: David Kung-Chun
  surname: Chiu
  fullname: Chiu, David Kung-Chun
  organization: State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Felice Ho-Ching
  surname: Tsang
  fullname: Tsang, Felice Ho-Ching
  organization: State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Cheuk-Ting
  surname: Law
  fullname: Law, Cheuk-Ting
  organization: State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
– sequence: 5
  givenname: Carol Lai-Hung
  surname: Cheng
  fullname: Cheng, Carol Lai-Hung
  organization: State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
– sequence: 6
  givenname: Sandy Leung-Kuen
  surname: Au
  fullname: Au, Sandy Leung-Kuen
  organization: State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
– sequence: 7
  givenname: Joyce Man-Fong
  surname: Lee
  fullname: Lee, Joyce Man-Fong
  organization: State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
– sequence: 8
  givenname: Carmen Chak-Lui
  surname: Wong
  fullname: Wong, Carmen Chak-Lui
  organization: State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
– sequence: 9
  givenname: Irene Oi-Lin
  surname: Ng
  fullname: Ng, Irene Oi-Lin
  email: iolng@hku.hk
  organization: State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
– sequence: 10
  givenname: Chun-Ming
  surname: Wong
  fullname: Wong, Chun-Ming
  email: jackwong@pathology.hku.hk
  organization: State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28532996$$D View this record in MEDLINE/PubMed
BookMark eNqFkkFvEzEQhS1URNPAH-CALHHhkjD2rjdehCpVVWmRKiGlcLa8zmzrsGsvtjci_x6vUnqIRDnNHL43Hr83Z-TEeYeEvGWwZMCqj9vl9gGHJQe2WoJYAhMvyIxVAAuoSnZCZhmSC8lX8pScxbgFgALq8hU55VIUvK6rGfl9Y2PKY2mP6WHfpaBdbDHoiPS61nQIvvcJI-3sDgM12plcNrjDzg89ukSbPcXB3qPDZA2NtkNnrLunvqVp7H2gcRyGgDHmdqLo-mK9vrorXpOXre4ivnmsc_Ljy9X3y5vF7bfrr5cXtwsjRJUWKNqmYYhSSpBFITgIQF1iWTKoZSGattow0YI2dY2yhFVRVRVyY5huciOLOflwmJu_8mvEmFRvo8Gu0w79GBWrs32iECXL6PsjdOvH4PJ2ioPkXJYsrzAn7x6pselxo4Zgex326q-nGeAHwAQfY8D2CWGgpuDUVk3BqSk4BULl4LJIHomMTTpZ73Iktnte-vkgxWzjzmJQ0dicAm5sQJPUxtvn5edHctNZZ43ufuIe45MFTEWuQN1NRzXdFFsVOQzG84BP_x7wv9f_ANYH3Cw
CitedBy_id crossref_primary_10_3390_ijms19123978
crossref_primary_10_34172_bi_2021_23
crossref_primary_10_1038_s41392_020_00252_1
crossref_primary_10_1158_2159_8290_CD_19_0532
crossref_primary_10_1080_14728222_2023_2259096
crossref_primary_10_1158_1535_7163_MCT_20_0474
crossref_primary_10_1016_j_ejcb_2023_151299
crossref_primary_10_1038_s41392_020_0147_5
crossref_primary_10_3389_fimmu_2022_914612
crossref_primary_10_1016_j_jhepr_2020_100167
crossref_primary_10_4254_wjh_v13_i9_979
crossref_primary_10_3389_fgene_2022_835265
crossref_primary_10_3390_cancers16122175
crossref_primary_10_1016_j_ejphar_2020_173827
crossref_primary_10_32604_biocell_2023_025250
crossref_primary_10_1002_mco2_292
crossref_primary_10_2147_JHC_S456683
crossref_primary_10_1016_j_scitotenv_2019_05_144
crossref_primary_10_3390_ijms22063137
crossref_primary_10_3390_life11101082
crossref_primary_10_3724_abbs_2022069
crossref_primary_10_1186_s13148_022_01393_6
crossref_primary_10_1016_j_compbiomed_2022_105896
crossref_primary_10_3390_ijms25010334
crossref_primary_10_1016_j_semcancer_2021_07_017
crossref_primary_10_1186_s13046_024_03036_5
crossref_primary_10_1002_1878_0261_13417
crossref_primary_10_1016_j_cmet_2020_12_010
crossref_primary_10_1002_cac2_12366
crossref_primary_10_1016_j_ejmech_2019_06_072
crossref_primary_10_1038_s41388_022_02279_w
crossref_primary_10_3389_fcell_2022_806989
crossref_primary_10_1016_j_humpath_2017_11_003
crossref_primary_10_34133_2022_9814652
crossref_primary_10_1007_s12033_024_01130_9
crossref_primary_10_1186_s13046_022_02297_2
crossref_primary_10_3390_ijms21238894
crossref_primary_10_1038_s42003_021_02405_6
crossref_primary_10_1038_s41419_020_03381_1
crossref_primary_10_1016_j_jhep_2019_03_007
crossref_primary_10_1016_j_apsb_2023_12_002
crossref_primary_10_1177_2516865719839011
crossref_primary_10_3390_jcm9020360
crossref_primary_10_3390_genes12050622
crossref_primary_10_1002_adbi_202300083
crossref_primary_10_3389_fimmu_2022_1043667
crossref_primary_10_3390_livers3010008
crossref_primary_10_3390_cancers15051371
crossref_primary_10_1248_bpb_b21_00241
crossref_primary_10_1186_s43556_022_00095_y
crossref_primary_10_3390_cancers13205250
crossref_primary_10_3390_cancers15102823
crossref_primary_10_1002_mco2_261
crossref_primary_10_1016_j_gene_2022_146595
crossref_primary_10_3390_pharmaceutics14071380
crossref_primary_10_1016_j_cca_2020_05_016
crossref_primary_10_1016_j_drudis_2017_07_008
crossref_primary_10_1186_s12943_020_01172_y
crossref_primary_10_5483_BMBRep_2020_53_11_055
crossref_primary_10_3390_cancers13102376
crossref_primary_10_1111_febs_16334
crossref_primary_10_1186_s11658_022_00336_6
crossref_primary_10_3390_cells12192367
crossref_primary_10_1111_cge_13589
crossref_primary_10_1042_CS20190666
crossref_primary_10_1002_hep_30414
crossref_primary_10_1016_j_bbcan_2020_188498
crossref_primary_10_1038_s41419_021_03853_y
crossref_primary_10_1016_j_ejmech_2021_113588
crossref_primary_10_3390_ijms23073911
crossref_primary_10_3390_jcm10081715
crossref_primary_10_3390_cimb46110711
crossref_primary_10_1186_s13578_021_00663_9
crossref_primary_10_1002_hep_29683
crossref_primary_10_1158_0008_5472_CAN_18_2676
crossref_primary_10_1016_j_nantod_2022_101734
crossref_primary_10_1002_2211_5463_12724
crossref_primary_10_1142_S0218127423500062
crossref_primary_10_1158_1541_7786_MCR_20_0557
crossref_primary_10_1016_j_cyto_2022_155967
crossref_primary_10_3390_ijms24032805
crossref_primary_10_4254_wjh_v16_i5_703
crossref_primary_10_3390_cancers14122855
crossref_primary_10_3389_fonc_2021_685065
crossref_primary_10_1016_j_jncc_2022_09_002
crossref_primary_10_1080_00498254_2018_1490044
crossref_primary_10_1016_j_heliyon_2022_e10416
crossref_primary_10_1097_MD_0000000000024449
crossref_primary_10_3389_fphar_2022_900825
crossref_primary_10_1155_2021_6650781
crossref_primary_10_1111_jvh_14044
crossref_primary_10_1002_hep_31141
crossref_primary_10_1038_s41392_024_02075_w
crossref_primary_10_1038_s41416_025_02969_8
crossref_primary_10_1074_jbc_RA117_000623
crossref_primary_10_1002_jbt_22674
crossref_primary_10_1021_acsami_9b16323
crossref_primary_10_1002_advs_202102051
crossref_primary_10_1002_jcla_24090
crossref_primary_10_1089_jir_2022_0183
crossref_primary_10_3389_fonc_2024_1246308
crossref_primary_10_3390_biom14080986
crossref_primary_10_1038_s41388_021_01799_1
crossref_primary_10_1186_s12943_018_0847_4
crossref_primary_10_1111_cas_14173
crossref_primary_10_1186_s40164_020_00164_4
crossref_primary_10_3389_fgene_2022_897123
crossref_primary_10_3390_ijms22126264
crossref_primary_10_1002_hep_30168
Cites_doi 10.1002/path.2491
10.1038/onc.2008.377
10.1002/hep.28304
10.1016/S0165-4608(03)00103-1
10.1002/gcc.20136
10.1038/ng.297
10.2353/ajpath.2009.080874
10.15252/emmm.201303675
10.1128/MCB.00813-13
10.1002/hep.25679
10.1038/ncb1353
10.1136/gutjnl-2013-306627
10.1016/S0959-8049(98)00430-4
10.1016/j.molcel.2010.06.008
10.1038/nrg2005
10.1111/j.1478-3231.2007.01637.x
10.1056/NEJMoa0708857
10.1053/gast.2000.9373
10.1038/sj.onc.1206774
10.1038/sj.bjc.6602448
10.1002/ijc.29210
10.1016/j.cmet.2013.11.004
10.1126/science.1063127
10.1073/pnas.95.25.14811
10.1371/journal.pone.0016702
10.1002/pros.21038
10.1172/JCI57349
10.1186/1476-4598-13-172
10.1038/cdd.2015.90
10.1101/gad.989402
10.1016/j.cellsig.2006.11.005
10.1097/CAD.0b013e32835ffdbb
10.1182/blood.V98.9.2837
10.1016/j.bbrc.2015.01.068
10.1038/nrc2809
10.1371/journal.pone.0023230
10.1158/0008-5472.CAN-10-0833
10.1186/1476-4598-13-189
10.1038/nrd3674
10.1038/nchembio.599
10.1016/j.molcel.2007.01.017
10.1016/j.febslet.2012.03.020
10.1038/sj.onc.1206235
10.1002/hep.26083
10.1074/jbc.M307215200
ContentType Journal Article
Copyright 2017 European Association for the Study of the Liver
Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Copyright Elsevier Science Ltd. Oct 2017
Copyright_xml – notice: 2017 European Association for the Study of the Liver
– notice: Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier Science Ltd. Oct 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
7X8
DOI 10.1016/j.jhep.2017.05.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

AIDS and Cancer Research Abstracts

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1600-0641
EndPage 769
ExternalDocumentID 28532996
10_1016_j_jhep_2017_05_015
S0168827817320512
1_s2_0_S0168827817320512
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
KOM
LZ1
M27
M41
MJL
MO0
N9A
O-L
O9-
OAUVE
OC.
ON0
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TEORI
UV1
WUQ
X7M
YOC
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
7X8
ID FETCH-LOGICAL-c556t-e5fbb1ee888083352050ea4e44109835bf6d15f0ac99e84073666e2cc1ab66e83
IEDL.DBID .~1
ISSN 0168-8278
1600-0641
IngestDate Fri Jul 11 06:06:09 EDT 2025
Fri Jul 25 06:04:20 EDT 2025
Wed Feb 19 02:35:50 EST 2025
Thu Apr 24 23:00:08 EDT 2025
Tue Jul 01 02:33:53 EDT 2025
Fri Feb 23 02:32:17 EST 2024
Sun Feb 23 10:19:18 EST 2025
Tue Aug 26 16:56:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Epigenetics
Gene amplification
Histone modifications
miR-1
RARRES3
G9a
Language English
License Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-e5fbb1ee888083352050ea4e44109835bf6d15f0ac99e84073666e2cc1ab66e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28532996
PQID 2082284183
PQPubID 2047556
PageCount 12
ParticipantIDs proquest_miscellaneous_1901753541
proquest_journals_2082284183
pubmed_primary_28532996
crossref_primary_10_1016_j_jhep_2017_05_015
crossref_citationtrail_10_1016_j_jhep_2017_05_015
elsevier_sciencedirect_doi_10_1016_j_jhep_2017_05_015
elsevier_clinicalkeyesjournals_1_s2_0_S0168827817320512
elsevier_clinicalkey_doi_10_1016_j_jhep_2017_05_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Journal of hepatology
PublicationTitleAlternate J Hepatol
PublicationYear 2017
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Wong, Wong, Ng, Au, Ko, Ng (b0190) 2011; 6
Pang, Ng, Fan, Kwong (b0170) 2003; 146
Sonoki, Harder, Horsman, Karran, Taniguchi, Willis (b0180) 2001; 98
Ren, Qiu, Cui, Fu (b0145) 2015; 459
Chochi, Kawauchi, Nakao, Furuya, Hashimoto, Oga (b0175) 2009; 217
Bruix, Gores, Mazzaferro (b0010) 2014; 63
Moinzadeh, Breuhahn, Stutzer, Schirmacher (b0165) 2005; 92
Seligson, Horvath, McBrian, Mah, Yu, Tze (b0075) 2009; 174
Sturniolo, Dashti, Deucher, Rorke, Broome, Chandraratna (b0230) 2003; 278
Chen, Yeh, Chen, Wu, Hsu, Tsai (b0155) 2000; 119
Ferlay, Soerjomataram, Dikshit, Eser, Mathers, Rebelo (b0005) 2015; 136
Lin, Sheu, Huang, Lee, Chen, Wang (b0160) 1999; 35
Gorringe, Boussioutas, Bowtell (b0185) 2005; 42
Wong, Wei, Law, Ho, Tsang, Au (b0055) 2016; 63
Lee, Kim, Kim, Lee (b0195) 2009; 28
Feldman, Gerson, Fang, Li, Zhang, Shinkai (b0060) 2006; 8
Wang, Dubois (b0215) 2010; 10
Wen, Wu, Shinkai, Irizarry, Feinberg (b0065) 2009; 41
Higuchi, Chandraratna, Hong, Lotan (b0110) 2003; 22
Wong, Ng (b0025) 2008; 28
Hua, Wang, Chen, Wei, Chen, Ko (b0135) 2014; 13
Arrowsmith, Bountra, Fish, Lee, Schapira (b0030) 2012; 11
Tsai, Shyu, Jiang (b0105) 2007; 19
Lu, Tian, Salwen, Chlenski, Godley, Raj (b0140) 2013; 24
Vedadi, Barsyte-Lovejoy, Liu, Rival-Gervier, Allali-Hassani, Labrie (b0090) 2011; 7
Hsu, Jiang, Chang, Eckert, Scharadin, Chang (b0225) 2015; 22
Momparler (b0020) 2003; 22
Llovet, Ricci, Mazzaferro, Hilgard, Gane, Blanc (b0015) 2008; 359
Fan, Tsang, Tam, Au, Wong, Wei (b0050) 2013; 57
Ellinger, Kahl, von der Gathen, Rogenhofer, Heukamp, Gutgemann (b0080) 2010; 70
Tachibana, Sugimoto, Nozaki, Ueda, Ohta, Ohki (b0070) 2002; 16
Kubicek, O'Sullivan, August, Hickey, Zhang, Teodoro (b0095) 2007; 25
Scharadin, Jiang, Jans, Rorke, Eckert (b0115) 2011; 6
Esteller (b0035) 2007; 8
DiSepio, Ghosn, Eckert, Deucher, Robinson, Duvic (b0100) 1998; 95
Dong, Wu, Yao, Wang, Yu, Rychahou (b0130) 2012; 122
Au, Wong, Lee, Fan, Tsang, Ng (b0045) 2012; 56
Artal-Martinez de Narvajas, Gomez, Zhang, Mann, Taoda, Gorman (b0205) 2013; 33
Lee, Kim, Kim, Kim, Choi, Lee (b0200) 2010; 39
Hsu, Chu, Jiang, Hung, Ni, Lin (b0220) 2012; 586
Chen, Hua, Kao, Chi, Wei, Johansson (b0125) 2010; 70
Ding, Li, Wang, Zhao, Choi, Yang (b0210) 2013; 18
Jenuwein, Allis (b0040) 2001; 293
Morales, Arenas, Urosevic, Guiu, Fernandez, Planet (b0120) 2014; 6
Li, Hua, Lin, Su, Ko, Hsiao (b0150) 2014; 13
Tsai (10.1016/j.jhep.2017.05.015_b0105) 2007; 19
Momparler (10.1016/j.jhep.2017.05.015_b0020) 2003; 22
Feldman (10.1016/j.jhep.2017.05.015_b0060) 2006; 8
Chochi (10.1016/j.jhep.2017.05.015_b0175) 2009; 217
Arrowsmith (10.1016/j.jhep.2017.05.015_b0030) 2012; 11
Lee (10.1016/j.jhep.2017.05.015_b0195) 2009; 28
Llovet (10.1016/j.jhep.2017.05.015_b0015) 2008; 359
Ellinger (10.1016/j.jhep.2017.05.015_b0080) 2010; 70
Scharadin (10.1016/j.jhep.2017.05.015_b0115) 2011; 6
Wong (10.1016/j.jhep.2017.05.015_b0190) 2011; 6
Higuchi (10.1016/j.jhep.2017.05.015_b0110) 2003; 22
Tachibana (10.1016/j.jhep.2017.05.015_b0070) 2002; 16
Wong (10.1016/j.jhep.2017.05.015_b0025) 2008; 28
Hua (10.1016/j.jhep.2017.05.015_b0135) 2014; 13
Au (10.1016/j.jhep.2017.05.015_b0045) 2012; 56
Lin (10.1016/j.jhep.2017.05.015_b0160) 1999; 35
Chen (10.1016/j.jhep.2017.05.015_b0155) 2000; 119
Hsu (10.1016/j.jhep.2017.05.015_b0225) 2015; 22
Vedadi (10.1016/j.jhep.2017.05.015_b0090) 2011; 7
Morales (10.1016/j.jhep.2017.05.015_b0120) 2014; 6
Sonoki (10.1016/j.jhep.2017.05.015_b0180) 2001; 98
Fan (10.1016/j.jhep.2017.05.015_b0050) 2013; 57
Sturniolo (10.1016/j.jhep.2017.05.015_b0230) 2003; 278
Gorringe (10.1016/j.jhep.2017.05.015_b0185) 2005; 42
Seligson (10.1016/j.jhep.2017.05.015_b0075) 2009; 174
Li (10.1016/j.jhep.2017.05.015_b0150) 2014; 13
Lu (10.1016/j.jhep.2017.05.015_b0140) 2013; 24
Esteller (10.1016/j.jhep.2017.05.015_b0035) 2007; 8
Ferlay (10.1016/j.jhep.2017.05.015_b0005) 2015; 136
Wen (10.1016/j.jhep.2017.05.015_b0065) 2009; 41
Chen (10.1016/j.jhep.2017.05.015_b0125) 2010; 70
Wang (10.1016/j.jhep.2017.05.015_b0215) 2010; 10
Bruix (10.1016/j.jhep.2017.05.015_b0010) 2014; 63
Jenuwein (10.1016/j.jhep.2017.05.015_b0040) 2001; 293
Ding (10.1016/j.jhep.2017.05.015_b0210) 2013; 18
Kubicek (10.1016/j.jhep.2017.05.015_b0095) 2007; 25
Pang (10.1016/j.jhep.2017.05.015_b0170) 2003; 146
Moinzadeh (10.1016/j.jhep.2017.05.015_b0165) 2005; 92
Dong (10.1016/j.jhep.2017.05.015_b0130) 2012; 122
Lee (10.1016/j.jhep.2017.05.015_b0200) 2010; 39
Hsu (10.1016/j.jhep.2017.05.015_b0220) 2012; 586
Ren (10.1016/j.jhep.2017.05.015_b0145) 2015; 459
Wong (10.1016/j.jhep.2017.05.015_b0055) 2016; 63
DiSepio (10.1016/j.jhep.2017.05.015_b0100) 1998; 95
Artal-Martinez de Narvajas (10.1016/j.jhep.2017.05.015_b0205) 2013; 33
References_xml – volume: 70
  start-page: 61
  year: 2010
  end-page: 69
  ident: b0080
  article-title: Global levels of histone modifications predict prostate cancer recurrence
  publication-title: Prostate
– volume: 6
  start-page: e16702
  year: 2011
  ident: b0190
  article-title: Transcriptional repressive H3K9 and H3K27 methylations contribute to DNMT1-mediated DNA methylation recovery
  publication-title: PLoS One
– volume: 8
  start-page: 188
  year: 2006
  end-page: 194
  ident: b0060
  article-title: G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis
  publication-title: Nat Cell Biol
– volume: 22
  start-page: 4627
  year: 2003
  end-page: 4635
  ident: b0110
  article-title: Induction of TIG3, a putative class II tumor suppressor gene, by retinoic acid in head and neck and lung carcinoma cells and its association with suppression of the transformed phenotype
  publication-title: Oncogene
– volume: 146
  start-page: 8
  year: 2003
  end-page: 15
  ident: b0170
  article-title: Clinicopathologic significance of genetic alterations in hepatocellular carcinoma
  publication-title: Cancer Genet Cytogenet
– volume: 63
  start-page: 474
  year: 2016
  end-page: 487
  ident: b0055
  article-title: Up-regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis
  publication-title: Hepatology
– volume: 41
  start-page: 246
  year: 2009
  end-page: 250
  ident: b0065
  article-title: Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells
  publication-title: Nat Genet
– volume: 63
  start-page: 844
  year: 2014
  end-page: 855
  ident: b0010
  article-title: Hepatocellular carcinoma: clinical frontiers and perspectives
  publication-title: Gut
– volume: 28
  start-page: 160
  year: 2008
  end-page: 174
  ident: b0025
  article-title: Molecular pathogenesis of hepatocellular carcinoma
  publication-title: Liver Int
– volume: 56
  start-page: 622
  year: 2012
  end-page: 631
  ident: b0045
  article-title: Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis
  publication-title: Hepatology
– volume: 70
  start-page: 7830
  year: 2010
  end-page: 7840
  ident: b0125
  article-title: H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM
  publication-title: Cancer Res
– volume: 22
  start-page: 6479
  year: 2003
  end-page: 6483
  ident: b0020
  article-title: Cancer epigenetics
  publication-title: Oncogene
– volume: 98
  start-page: 2837
  year: 2001
  end-page: 2844
  ident: b0180
  article-title: Cyclin D3 is a target gene of t(6;14)(p21.1;q32.3) of mature B-cell malignancies
  publication-title: Blood
– volume: 10
  start-page: 181
  year: 2010
  end-page: 193
  ident: b0215
  article-title: Eicosanoids and cancer
  publication-title: Nat Rev Cancer
– volume: 19
  start-page: 989
  year: 2007
  end-page: 999
  ident: b0105
  article-title: RIG1 suppresses Ras activation and induces cellular apoptosis at the Golgi apparatus
  publication-title: Cell Signal
– volume: 119
  start-page: 431
  year: 2000
  end-page: 440
  ident: b0155
  article-title: Chromosomal changes and clonality relationship between primary and recurrent hepatocellular carcinoma
  publication-title: Gastroenterology
– volume: 18
  start-page: 896
  year: 2013
  end-page: 907
  ident: b0210
  article-title: The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation
  publication-title: Cell Metab
– volume: 136
  start-page: E359
  year: 2015
  end-page: E386
  ident: b0005
  article-title: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012
  publication-title: Int J Cancer
– volume: 24
  start-page: 484
  year: 2013
  end-page: 493
  ident: b0140
  article-title: Histone-lysine methyltransferase EHMT2 is involved in proliferation, apoptosis, cell invasion, and DNA methylation of human neuroblastoma cells
  publication-title: Anticancer Drugs
– volume: 16
  start-page: 1779
  year: 2002
  end-page: 1791
  ident: b0070
  article-title: G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis
  publication-title: Genes Dev
– volume: 39
  start-page: 71
  year: 2010
  end-page: 85
  ident: b0200
  article-title: Negative regulation of hypoxic responses via induced Reptin methylation
  publication-title: Mol Cell
– volume: 22
  start-page: 1561
  year: 2015
  ident: b0225
  article-title: Involvement of RARRES3 in the regulation of Wnt proteins acylation and signaling activities in human breast cancer cells
  publication-title: Cell Death Differ
– volume: 278
  start-page: 48066
  year: 2003
  end-page: 48073
  ident: b0230
  article-title: A novel tumor suppressor protein promotes keratinocyte terminal differentiation via activation of type I transglutaminase
  publication-title: J Biol Chem
– volume: 33
  start-page: 3983
  year: 2013
  end-page: 3993
  ident: b0205
  article-title: Epigenetic regulation of autophagy by the methyltransferase G9a
  publication-title: Mol Cell Biol
– volume: 8
  start-page: 286
  year: 2007
  end-page: 298
  ident: b0035
  article-title: Cancer epigenomics: DNA methylomes and histone-modification maps
  publication-title: Nat Rev Genet
– volume: 293
  start-page: 1074
  year: 2001
  end-page: 1080
  ident: b0040
  article-title: Translating the histone code
  publication-title: Science
– volume: 586
  start-page: 1287
  year: 2012
  end-page: 1293
  ident: b0220
  article-title: Expression of the class II tumor suppressor gene RIG1 is directly regulated by p53 tumor suppressor in cancer cell lines
  publication-title: FEBS Lett
– volume: 57
  start-page: 637
  year: 2013
  end-page: 647
  ident: b0050
  article-title: Histone lysine methyltransferase, suppressor of variegation 3–9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA-125b
  publication-title: Hepatology
– volume: 174
  start-page: 1619
  year: 2009
  end-page: 1628
  ident: b0075
  article-title: Global levels of histone modifications predict prognosis in different cancers
  publication-title: Am J Pathol
– volume: 35
  start-page: 652
  year: 1999
  end-page: 658
  ident: b0160
  article-title: Chromosomal abnormality in hepatocellular carcinoma by comparative genomic hybridisation in Taiwan
  publication-title: Eur J Cancer
– volume: 42
  start-page: 247
  year: 2005
  end-page: 259
  ident: b0185
  article-title: Melbourne Gastric Cancer Group PMMAF. Novel regions of chromosomal amplification at 6p21, 5p13, and 12q14 in gastric cancer identified by array comparative genomic hybridization
  publication-title: Genes Chromosom Cancer
– volume: 13
  start-page: 189
  year: 2014
  ident: b0135
  article-title: The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes peritoneal metastasis
  publication-title: Mol Cancer
– volume: 28
  start-page: 184
  year: 2009
  end-page: 194
  ident: b0195
  article-title: Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells
  publication-title: Oncogene
– volume: 6
  start-page: e23230
  year: 2011
  ident: b0115
  article-title: TIG3 tumor suppressor-dependent organelle redistribution and apoptosis in skin cancer cells
  publication-title: PLoS One
– volume: 459
  start-page: 10
  year: 2015
  end-page: 17
  ident: b0145
  article-title: Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma
  publication-title: Biochem Biophys Res Commun
– volume: 13
  start-page: 172
  year: 2014
  ident: b0150
  article-title: Inhibition of G9a induces DUSP4-dependent autophagic cell death in head and neck squamous cell carcinoma
  publication-title: Mol Cancer
– volume: 359
  start-page: 378
  year: 2008
  end-page: 390
  ident: b0015
  article-title: Sorafenib in advanced hepatocellular carcinoma
  publication-title: N Engl J Med
– volume: 11
  start-page: 384
  year: 2012
  end-page: 400
  ident: b0030
  article-title: Epigenetic protein families: a new frontier for drug discovery
  publication-title: Nat Rev Drug Discovery
– volume: 7
  start-page: 566
  year: 2011
  end-page: 574
  ident: b0090
  article-title: A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells
  publication-title: Nat Chem Biol
– volume: 217
  start-page: 677
  year: 2009
  end-page: 684
  ident: b0175
  article-title: A copy number gain of the 6p arm is linked with advanced hepatocellular carcinoma: an array-based comparative genomic hybridization study
  publication-title: J Pathol
– volume: 95
  start-page: 14811
  year: 1998
  end-page: 14815
  ident: b0100
  article-title: Identification and characterization of a retinoid-induced class II tumor suppressor/growth regulatory gene
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 865
  year: 2014
  end-page: 881
  ident: b0120
  article-title: RARRES3 suppresses breast cancer lung metastasis by regulating adhesion and differentiation
  publication-title: EMBO Mol Med
– volume: 25
  start-page: 473
  year: 2007
  end-page: 481
  ident: b0095
  article-title: Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase
  publication-title: Mol Cell
– volume: 122
  start-page: 1469
  year: 2012
  end-page: 1486
  ident: b0130
  article-title: G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer
  publication-title: J Clin Invest
– volume: 92
  start-page: 935
  year: 2005
  end-page: 941
  ident: b0165
  article-title: Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade–results of an explorative CGH meta-analysis
  publication-title: Br J Cancer
– volume: 217
  start-page: 677
  year: 2009
  ident: 10.1016/j.jhep.2017.05.015_b0175
  article-title: A copy number gain of the 6p arm is linked with advanced hepatocellular carcinoma: an array-based comparative genomic hybridization study
  publication-title: J Pathol
  doi: 10.1002/path.2491
– volume: 28
  start-page: 184
  year: 2009
  ident: 10.1016/j.jhep.2017.05.015_b0195
  article-title: Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells
  publication-title: Oncogene
  doi: 10.1038/onc.2008.377
– volume: 63
  start-page: 474
  year: 2016
  ident: 10.1016/j.jhep.2017.05.015_b0055
  article-title: Up-regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis
  publication-title: Hepatology
  doi: 10.1002/hep.28304
– volume: 146
  start-page: 8
  year: 2003
  ident: 10.1016/j.jhep.2017.05.015_b0170
  article-title: Clinicopathologic significance of genetic alterations in hepatocellular carcinoma
  publication-title: Cancer Genet Cytogenet
  doi: 10.1016/S0165-4608(03)00103-1
– volume: 42
  start-page: 247
  year: 2005
  ident: 10.1016/j.jhep.2017.05.015_b0185
  article-title: Melbourne Gastric Cancer Group PMMAF. Novel regions of chromosomal amplification at 6p21, 5p13, and 12q14 in gastric cancer identified by array comparative genomic hybridization
  publication-title: Genes Chromosom Cancer
  doi: 10.1002/gcc.20136
– volume: 41
  start-page: 246
  year: 2009
  ident: 10.1016/j.jhep.2017.05.015_b0065
  article-title: Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells
  publication-title: Nat Genet
  doi: 10.1038/ng.297
– volume: 174
  start-page: 1619
  year: 2009
  ident: 10.1016/j.jhep.2017.05.015_b0075
  article-title: Global levels of histone modifications predict prognosis in different cancers
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2009.080874
– volume: 6
  start-page: 865
  year: 2014
  ident: 10.1016/j.jhep.2017.05.015_b0120
  article-title: RARRES3 suppresses breast cancer lung metastasis by regulating adhesion and differentiation
  publication-title: EMBO Mol Med
  doi: 10.15252/emmm.201303675
– volume: 33
  start-page: 3983
  year: 2013
  ident: 10.1016/j.jhep.2017.05.015_b0205
  article-title: Epigenetic regulation of autophagy by the methyltransferase G9a
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00813-13
– volume: 56
  start-page: 622
  year: 2012
  ident: 10.1016/j.jhep.2017.05.015_b0045
  article-title: Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis
  publication-title: Hepatology
  doi: 10.1002/hep.25679
– volume: 8
  start-page: 188
  year: 2006
  ident: 10.1016/j.jhep.2017.05.015_b0060
  article-title: G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1353
– volume: 63
  start-page: 844
  year: 2014
  ident: 10.1016/j.jhep.2017.05.015_b0010
  article-title: Hepatocellular carcinoma: clinical frontiers and perspectives
  publication-title: Gut
  doi: 10.1136/gutjnl-2013-306627
– volume: 35
  start-page: 652
  year: 1999
  ident: 10.1016/j.jhep.2017.05.015_b0160
  article-title: Chromosomal abnormality in hepatocellular carcinoma by comparative genomic hybridisation in Taiwan
  publication-title: Eur J Cancer
  doi: 10.1016/S0959-8049(98)00430-4
– volume: 39
  start-page: 71
  year: 2010
  ident: 10.1016/j.jhep.2017.05.015_b0200
  article-title: Negative regulation of hypoxic responses via induced Reptin methylation
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.06.008
– volume: 8
  start-page: 286
  year: 2007
  ident: 10.1016/j.jhep.2017.05.015_b0035
  article-title: Cancer epigenomics: DNA methylomes and histone-modification maps
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2005
– volume: 28
  start-page: 160
  year: 2008
  ident: 10.1016/j.jhep.2017.05.015_b0025
  article-title: Molecular pathogenesis of hepatocellular carcinoma
  publication-title: Liver Int
  doi: 10.1111/j.1478-3231.2007.01637.x
– volume: 359
  start-page: 378
  year: 2008
  ident: 10.1016/j.jhep.2017.05.015_b0015
  article-title: Sorafenib in advanced hepatocellular carcinoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0708857
– volume: 119
  start-page: 431
  year: 2000
  ident: 10.1016/j.jhep.2017.05.015_b0155
  article-title: Chromosomal changes and clonality relationship between primary and recurrent hepatocellular carcinoma
  publication-title: Gastroenterology
  doi: 10.1053/gast.2000.9373
– volume: 22
  start-page: 6479
  year: 2003
  ident: 10.1016/j.jhep.2017.05.015_b0020
  article-title: Cancer epigenetics
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206774
– volume: 92
  start-page: 935
  year: 2005
  ident: 10.1016/j.jhep.2017.05.015_b0165
  article-title: Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade–results of an explorative CGH meta-analysis
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6602448
– volume: 136
  start-page: E359
  year: 2015
  ident: 10.1016/j.jhep.2017.05.015_b0005
  article-title: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29210
– volume: 18
  start-page: 896
  year: 2013
  ident: 10.1016/j.jhep.2017.05.015_b0210
  article-title: The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.11.004
– volume: 293
  start-page: 1074
  year: 2001
  ident: 10.1016/j.jhep.2017.05.015_b0040
  article-title: Translating the histone code
  publication-title: Science
  doi: 10.1126/science.1063127
– volume: 95
  start-page: 14811
  year: 1998
  ident: 10.1016/j.jhep.2017.05.015_b0100
  article-title: Identification and characterization of a retinoid-induced class II tumor suppressor/growth regulatory gene
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.25.14811
– volume: 6
  start-page: e16702
  year: 2011
  ident: 10.1016/j.jhep.2017.05.015_b0190
  article-title: Transcriptional repressive H3K9 and H3K27 methylations contribute to DNMT1-mediated DNA methylation recovery
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016702
– volume: 70
  start-page: 61
  year: 2010
  ident: 10.1016/j.jhep.2017.05.015_b0080
  article-title: Global levels of histone modifications predict prostate cancer recurrence
  publication-title: Prostate
  doi: 10.1002/pros.21038
– volume: 122
  start-page: 1469
  year: 2012
  ident: 10.1016/j.jhep.2017.05.015_b0130
  article-title: G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer
  publication-title: J Clin Invest
  doi: 10.1172/JCI57349
– volume: 13
  start-page: 172
  year: 2014
  ident: 10.1016/j.jhep.2017.05.015_b0150
  article-title: Inhibition of G9a induces DUSP4-dependent autophagic cell death in head and neck squamous cell carcinoma
  publication-title: Mol Cancer
  doi: 10.1186/1476-4598-13-172
– volume: 22
  start-page: 1561
  year: 2015
  ident: 10.1016/j.jhep.2017.05.015_b0225
  article-title: Involvement of RARRES3 in the regulation of Wnt proteins acylation and signaling activities in human breast cancer cells
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2015.90
– volume: 16
  start-page: 1779
  year: 2002
  ident: 10.1016/j.jhep.2017.05.015_b0070
  article-title: G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis
  publication-title: Genes Dev
  doi: 10.1101/gad.989402
– volume: 19
  start-page: 989
  year: 2007
  ident: 10.1016/j.jhep.2017.05.015_b0105
  article-title: RIG1 suppresses Ras activation and induces cellular apoptosis at the Golgi apparatus
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2006.11.005
– volume: 24
  start-page: 484
  year: 2013
  ident: 10.1016/j.jhep.2017.05.015_b0140
  article-title: Histone-lysine methyltransferase EHMT2 is involved in proliferation, apoptosis, cell invasion, and DNA methylation of human neuroblastoma cells
  publication-title: Anticancer Drugs
  doi: 10.1097/CAD.0b013e32835ffdbb
– volume: 98
  start-page: 2837
  year: 2001
  ident: 10.1016/j.jhep.2017.05.015_b0180
  article-title: Cyclin D3 is a target gene of t(6;14)(p21.1;q32.3) of mature B-cell malignancies
  publication-title: Blood
  doi: 10.1182/blood.V98.9.2837
– volume: 459
  start-page: 10
  year: 2015
  ident: 10.1016/j.jhep.2017.05.015_b0145
  article-title: Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2015.01.068
– volume: 10
  start-page: 181
  year: 2010
  ident: 10.1016/j.jhep.2017.05.015_b0215
  article-title: Eicosanoids and cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2809
– volume: 6
  start-page: e23230
  year: 2011
  ident: 10.1016/j.jhep.2017.05.015_b0115
  article-title: TIG3 tumor suppressor-dependent organelle redistribution and apoptosis in skin cancer cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0023230
– volume: 70
  start-page: 7830
  year: 2010
  ident: 10.1016/j.jhep.2017.05.015_b0125
  article-title: H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-10-0833
– volume: 13
  start-page: 189
  year: 2014
  ident: 10.1016/j.jhep.2017.05.015_b0135
  article-title: The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes peritoneal metastasis
  publication-title: Mol Cancer
  doi: 10.1186/1476-4598-13-189
– volume: 11
  start-page: 384
  year: 2012
  ident: 10.1016/j.jhep.2017.05.015_b0030
  article-title: Epigenetic protein families: a new frontier for drug discovery
  publication-title: Nat Rev Drug Discovery
  doi: 10.1038/nrd3674
– volume: 7
  start-page: 566
  year: 2011
  ident: 10.1016/j.jhep.2017.05.015_b0090
  article-title: A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.599
– volume: 25
  start-page: 473
  year: 2007
  ident: 10.1016/j.jhep.2017.05.015_b0095
  article-title: Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.01.017
– volume: 586
  start-page: 1287
  year: 2012
  ident: 10.1016/j.jhep.2017.05.015_b0220
  article-title: Expression of the class II tumor suppressor gene RIG1 is directly regulated by p53 tumor suppressor in cancer cell lines
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2012.03.020
– volume: 22
  start-page: 4627
  year: 2003
  ident: 10.1016/j.jhep.2017.05.015_b0110
  article-title: Induction of TIG3, a putative class II tumor suppressor gene, by retinoic acid in head and neck and lung carcinoma cells and its association with suppression of the transformed phenotype
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206235
– volume: 57
  start-page: 637
  year: 2013
  ident: 10.1016/j.jhep.2017.05.015_b0050
  article-title: Histone lysine methyltransferase, suppressor of variegation 3–9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA-125b
  publication-title: Hepatology
  doi: 10.1002/hep.26083
– volume: 278
  start-page: 48066
  year: 2003
  ident: 10.1016/j.jhep.2017.05.015_b0230
  article-title: A novel tumor suppressor protein promotes keratinocyte terminal differentiation via activation of type I transglutaminase
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M307215200
SSID ssj0003094
Score 2.564706
Snippet [Display omitted] •G9a was frequently upregulated in human HCC and associated with HCC aggressiveness.•G9a promoted HCC growth and metastasis both in vitro and...
Graphical abstract Deregulation of G9a in human HCC. G9a was frequently up-regulated in human HCC and implicated in HCC tumorigenesis and metastasis. The...
Hepatocellular carcinoma (HCC) is a major leading cause of cancer mortality worldwide. Epigenetic deregulation is a common trait of human HCC. G9s is an...
Background & Aims Hepatocellular carcinoma (HCC) is a major leading cause of cancer mortality worldwide. Epigenetic deregulation is a common trait of human...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 758
SubjectTerms 3' Untranslated Regions
Animal models
Animals
Carcinogenesis
Carcinogens
Carcinoma, Hepatocellular - enzymology
Carcinoma, Hepatocellular - etiology
Carcinoma, Hepatocellular - genetics
Cell Line, Tumor
Cell proliferation
Chromosome 6
Copy number
CRISPR
Enzymes
Epigenesis, Genetic
Epigenetics
G9a
Gastroenterology and Hepatology
Gene amplification
Gene Dosage
Gene expression
Gene Knockdown Techniques
Gene Knockout Techniques
Gene Silencing
Genes, Tumor Suppressor
Hepatocellular carcinoma
Histocompatibility Antigens - genetics
Histocompatibility Antigens - metabolism
Histone methyltransferase
Histone modifications
Histone-Lysine N-Methyltransferase - genetics
Histone-Lysine N-Methyltransferase - metabolism
Humans
Liver cancer
Liver Neoplasms - enzymology
Liver Neoplasms - etiology
Liver Neoplasms - genetics
Liver Neoplasms, Experimental - enzymology
Liver Neoplasms, Experimental - etiology
Liver Neoplasms, Experimental - genetics
Metastases
Mice
Mice, Nude
MicroRNAs - genetics
MicroRNAs - metabolism
miR-1
Post-transcription
RARRES3
Receptors, Retinoic Acid - antagonists & inhibitors
Receptors, Retinoic Acid - genetics
Ribonucleic acid
RNA
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA, Neoplasm - genetics
RNA, Neoplasm - metabolism
RNA-mediated interference
Tumor suppressor genes
Up-Regulation
Title Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0168827817320512
https://www.clinicalkey.es/playcontent/1-s2.0-S0168827817320512
https://dx.doi.org/10.1016/j.jhep.2017.05.015
https://www.ncbi.nlm.nih.gov/pubmed/28532996
https://www.proquest.com/docview/2082284183
https://www.proquest.com/docview/1901753541
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhdJLSd_OCxV6K-5aliXZx2VJun0klG0DuQnJK9MN212z9kJy6W_vjCw7lDYp9OSXBsua0cwn_M2IkDeJkTnYhoqNTKs4K1MbQ5QzMTOcVxAP5dxvBnN2LqcX2cdLcblDJn0uDNIqg-_vfLr31uHOKIzmqF4sRl8BrAA8VDlTPAXTQj-cZQqt_N3PW5oHT4pQ3zuPsXVInOk4XlffHdasZKF6p7grON0FPn0QOt0jjwN6pOOug0_Ijls9JQ_Pwv_xZ-TaV_1YOYobQ98sW49K3QYiFX1fGFp77p1r6BLZGLREjW_o_JY3RO0NdTUW6MTcRtosMCUJghtdV7Td_lhvaLOtPXUWTrEVnY1noEP-nFycnnybTOOwt0JcCiHb2InKWuYcLIATn3eViMSZzAE6SgpAZbaScyaqxJRF4WARqDisc1xalsxYOMn5C7K7gu95RWgKWjZMKllZnilVGgugR81zkM0LVbmIsH5QdRkKj-P-F0vdM8yuNCpCoyJ0IjQoIiJvB5m6K7txb2ve60r3CaXgAjVEhXul1N-kXBNmcaOZblKd6D8sLSJikPzNWP_5xsPekPTwkhRr7ucZuNaIvB4ewyTHPzdm5dZb6AigNlhXioxF5GVngMOwpAC4AFPI_f_s1AF5hFcdQfGQ7LabrTsCoNXaYz-TjsmD8WT2-QseP3yanv8CtOQn1w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgEXxDeBFowEJxTWdmI7OfRQUcqWdnsordSbcbKO2GrZjTZZwV74U_zBjhMnFYIWCam3KMkkzsx45ll5MwZ4TY1M0DdUaCQvwjjnWYhZzoTMRFGB-VCOm81gRodyeBJ_OhWna_Crq4VxtEof-9uY3kRrf2bgtTkoJ5PBZwQrCA9VwlTE0bW4Z1bu29V3XLdVW3s7aOQ3nO9-OH4_DP3WAmEuhKxDK4osY9bi-o82ZUdUUGtii-CApghKskKOmSioydPU4hpIRQjzLc9zZjI8SCJ87g24GWO4cNsmvPt5wSuJaOobiiehG56v1GlJZWdfrWuSyXy7UHFZNrwM7TZZb_ce3PVwlWy3GrkPa3b2AG6N_A_5h_CjaTMys8TtRL2a1g0MtgtMjeRjakjZkP1sRaaO_kFy52ILMr4gKpFsRWzpOoK6YkpSTVwNFGZTMi9Ivfw2X5BqWTZcXTx0d5Gj7SN0mugRnFyLxh_D-gy_5ykQjm5lmFSyyKJYqdxkiLLUOEHZJFWFDYB1StW573TuNtyY6o7SdqadIbQzhKZCoyECeNvLlG2fjyvvjjpb6a6CFWOuxjR0pZT6m5StfNioNNMV11T_4doBiF7yt9nxzzdudI6k-5dw1-Q_iTGWB_Cqv4xRxf0qMjM7X-JAECbiQlbELIAnrQP2auGI8BDEyGf_OaiXcHt4PDrQB3uH-8_hjrvSsiM3YL1eLO0morw6e9HMKgJfrnsanwPJpmEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histone+methyltransferase+G9a+promotes+liver+cancer+development+by+epigenetic+silencing+of+tumor+suppressor+gene+RARRES3&rft.jtitle=Journal+of+hepatology&rft.au=Wei%2C+Lai&rft.au=Chiu%2C+David+Kung-Chun&rft.au=Tsang%2C+Felice+Ho-Ching&rft.au=Law%2C+Cheuk-Ting&rft.date=2017-10-01&rft.pub=Elsevier+B.V&rft.issn=0168-8278&rft.volume=67&rft.issue=4&rft.spage=758&rft.epage=769&rft_id=info:doi/10.1016%2Fj.jhep.2017.05.015&rft.externalDocID=S0168827817320512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-8278&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-8278&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-8278&client=summon