High-efficiency solar thermoelectric conversion enabled by movable charging of molten salts

Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy into thermal energy and then into electricity, has been developed and implemented in many important fields. The operation of solar–thermal–elec...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; pp. 20500 - 8
Main Authors Chang, Chao, Wang, Zongyu, Fu, Benwei, Ji, Yulong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.11.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy into thermal energy and then into electricity, has been developed and implemented in many important fields. The operation of solar–thermal–electric conversion systems, however, is strongly affected by the intermittency of solar radiation, which requires installation of thermal storage subsystems. In this work, we demonstrated a new solar–thermal–electric conversion system that consists of a thermoelectric converter and a rapidly charging thermal storage subsystem. A magnetic-responsive solar–thermal mesh was used as the movable charging source to convert incident concentrated sunlight into high-temperature heat, which can induce solid-to-liquid phase transition of molten salts. Driven by the external magnetic field, the solar–thermal mesh can move together with the receding solid–liquid interface thus rapidly storing the harvested solar–thermal energy within the molten salts. By connecting with a thermoelectric generator, the harvested solar–thermal energy can be further converted into electricity with a solar–thermal–electric energy conversion efficiency up to 2.56%, and the converted electrical energy can simultaneously light up more than 40 orange-colored LEDs. In addition to stable operation under sunlight, the charged thermal storage subsystem can release the stored heat and thus enables the solar–thermal–electric system to continuously generate electricity after removal of solar illumination.
AbstractList Abstract Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy into thermal energy and then into electricity, has been developed and implemented in many important fields. The operation of solar–thermal–electric conversion systems, however, is strongly affected by the intermittency of solar radiation, which requires installation of thermal storage subsystems. In this work, we demonstrated a new solar–thermal–electric conversion system that consists of a thermoelectric converter and a rapidly charging thermal storage subsystem. A magnetic-responsive solar–thermal mesh was used as the movable charging source to convert incident concentrated sunlight into high-temperature heat, which can induce solid-to-liquid phase transition of molten salts. Driven by the external magnetic field, the solar–thermal mesh can move together with the receding solid–liquid interface thus rapidly storing the harvested solar–thermal energy within the molten salts. By connecting with a thermoelectric generator, the harvested solar–thermal energy can be further converted into electricity with a solar–thermal–electric energy conversion efficiency up to 2.56%, and the converted electrical energy can simultaneously light up more than 40 orange-colored LEDs. In addition to stable operation under sunlight, the charged thermal storage subsystem can release the stored heat and thus enables the solar–thermal–electric system to continuously generate electricity after removal of solar illumination.
Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy into thermal energy and then into electricity, has been developed and implemented in many important fields. The operation of solar–thermal–electric conversion systems, however, is strongly affected by the intermittency of solar radiation, which requires installation of thermal storage subsystems. In this work, we demonstrated a new solar–thermal–electric conversion system that consists of a thermoelectric converter and a rapidly charging thermal storage subsystem. A magnetic-responsive solar–thermal mesh was used as the movable charging source to convert incident concentrated sunlight into high-temperature heat, which can induce solid-to-liquid phase transition of molten salts. Driven by the external magnetic field, the solar–thermal mesh can move together with the receding solid–liquid interface thus rapidly storing the harvested solar–thermal energy within the molten salts. By connecting with a thermoelectric generator, the harvested solar–thermal energy can be further converted into electricity with a solar–thermal–electric energy conversion efficiency up to 2.56%, and the converted electrical energy can simultaneously light up more than 40 orange-colored LEDs. In addition to stable operation under sunlight, the charged thermal storage subsystem can release the stored heat and thus enables the solar–thermal–electric system to continuously generate electricity after removal of solar illumination.
Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy into thermal energy and then into electricity, has been developed and implemented in many important fields. The operation of solar-thermal-electric conversion systems, however, is strongly affected by the intermittency of solar radiation, which requires installation of thermal storage subsystems. In this work, we demonstrated a new solar-thermal-electric conversion system that consists of a thermoelectric converter and a rapidly charging thermal storage subsystem. A magnetic-responsive solar-thermal mesh was used as the movable charging source to convert incident concentrated sunlight into high-temperature heat, which can induce solid-to-liquid phase transition of molten salts. Driven by the external magnetic field, the solar-thermal mesh can move together with the receding solid-liquid interface thus rapidly storing the harvested solar-thermal energy within the molten salts. By connecting with a thermoelectric generator, the harvested solar-thermal energy can be further converted into electricity with a solar-thermal-electric energy conversion efficiency up to 2.56%, and the converted electrical energy can simultaneously light up more than 40 orange-colored LEDs. In addition to stable operation under sunlight, the charged thermal storage subsystem can release the stored heat and thus enables the solar-thermal-electric system to continuously generate electricity after removal of solar illumination.Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy into thermal energy and then into electricity, has been developed and implemented in many important fields. The operation of solar-thermal-electric conversion systems, however, is strongly affected by the intermittency of solar radiation, which requires installation of thermal storage subsystems. In this work, we demonstrated a new solar-thermal-electric conversion system that consists of a thermoelectric converter and a rapidly charging thermal storage subsystem. A magnetic-responsive solar-thermal mesh was used as the movable charging source to convert incident concentrated sunlight into high-temperature heat, which can induce solid-to-liquid phase transition of molten salts. Driven by the external magnetic field, the solar-thermal mesh can move together with the receding solid-liquid interface thus rapidly storing the harvested solar-thermal energy within the molten salts. By connecting with a thermoelectric generator, the harvested solar-thermal energy can be further converted into electricity with a solar-thermal-electric energy conversion efficiency up to 2.56%, and the converted electrical energy can simultaneously light up more than 40 orange-colored LEDs. In addition to stable operation under sunlight, the charged thermal storage subsystem can release the stored heat and thus enables the solar-thermal-electric system to continuously generate electricity after removal of solar illumination.
ArticleNumber 20500
Author Ji, Yulong
Fu, Benwei
Wang, Zongyu
Chang, Chao
Author_xml – sequence: 1
  givenname: Chao
  surname: Chang
  fullname: Chang, Chao
  email: chang3223426@126.com
  organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University
– sequence: 2
  givenname: Zongyu
  surname: Wang
  fullname: Wang, Zongyu
  organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University
– sequence: 3
  givenname: Benwei
  surname: Fu
  fullname: Fu, Benwei
  organization: State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University
– sequence: 4
  givenname: Yulong
  surname: Ji
  fullname: Ji, Yulong
  organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University
BookMark eNp9Ustu1TAQtVARLaU_wCoSGzYBx4843iChCmilSmxgxcLyY5LrK8cudu6V8ve4TRG0i3rj8ficMx7PeY1OYoqA0NsOf-gwHT4W1nE5tJjgVgjGSLu-QGcEM94SSsjJf_Epuihlj-viRLJOvkKnlBLKSS_O0K8rP-1aGEdvPUS7NiUFnZtlB3lOEMAu2dvGpniEXHyKDURtArjGrM2cjndxY3c6Tz5OTRprLiwQm6LDUt6gl6MOBS4e9nP08-uXH5dX7c33b9eXn29ay3m_tI6CqR1RQ4XhkmOwmlrCJGedc4OzjPFRgqDMCFtPzmohiRkZlmCYdpKeo-tN1yW9V7fZzzqvKmmv7hMpT0rnxdsAyjrorRhHjalkA-kHsKbWI1y4kTlNqtanTev2YGZwFuKSdXgk-vgm-p2a0lGJfhDDgKvA-weBnH4foCxq9sVCCDpCOhRFWF9nQMhAK_TdE-g-HXKsX1VRok4OU8IqathQNqdSMozK-kUvdRa1vg-qw-rOEGozhKqGUPeGUGulkifUv308S6IbqVRwnCD_e9UzrD9cdsxS
CitedBy_id crossref_primary_10_1007_s42114_024_00880_z
crossref_primary_10_1021_acs_energyfuels_0c04275
crossref_primary_10_4236_cm_2022_132003
crossref_primary_10_1016_j_rser_2023_113723
crossref_primary_10_1016_j_solener_2024_112499
crossref_primary_10_1002_advs_202207415
crossref_primary_10_1016_j_enconman_2024_118901
crossref_primary_10_1016_j_apenergy_2024_124127
crossref_primary_10_1016_j_solmat_2021_111432
crossref_primary_10_1038_s41570_022_00448_9
crossref_primary_10_3390_en14185646
crossref_primary_10_1039_D2TC03315A
crossref_primary_10_1002_aenm_202300937
crossref_primary_10_1016_j_cej_2024_155317
crossref_primary_10_1016_j_nanoen_2021_106692
crossref_primary_10_1016_j_apenergy_2022_119297
crossref_primary_10_1016_j_energy_2022_125604
crossref_primary_10_1016_j_esr_2022_100939
crossref_primary_10_1039_D4CS00361F
crossref_primary_10_2139_ssrn_4074475
Cites_doi 10.1039/C7TA03262E
10.1007/s11664-010-1190-8
10.1016/j.enconman.2019.05.081
10.1016/j.est.2019.101118
10.1016/j.solener.2018.05.007
10.1063/1.5096295
10.1063/1.5039306
10.1016/j.solmat.2017.05.059
10.1016/j.apenergy.2011.06.006
10.1016/j.solmat.2016.06.003
10.1126/science.1137014
10.1039/c2ee22248e
10.1016/j.rser.2015.09.026
10.1016/j.desal.2020.114423
10.1016/j.solener.2017.03.013
10.1038/s41560-018-0260-7
10.1016/j.est.2018.11.008
10.1016/j.rser.2017.08.030
10.1016/j.renene.2015.03.026
10.1039/C6NR03921A
10.1063/1.2918987
10.1016/j.apenergy.2012.11.051
10.1016/j.rser.2016.06.035
10.1016/j.renene.2003.10.005
10.1016/j.apenergy.2015.10.075
10.1038/nmat3013
10.1016/j.renene.2019.03.088
10.1016/j.cap.2016.08.010
10.1126/science.1158899
10.1021/acsami.9b04535
10.1016/j.applthermaleng.2016.01.071
10.1063/1.2718755
10.1063/1.5004069
10.1038/nenergy.2016.153
10.1016/j.solener.2020.05.106
10.1016/j.rser.2015.12.234
10.1016/j.rser.2017.03.014
10.1039/C9EE00542K
10.1063/1.2947591
10.1016/j.enconman.2014.04.041
10.1016/j.apenergy.2019.01.075
10.1021/acsomega.8b03573
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-020-77442-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 8
ExternalDocumentID oai_doaj_org_article_cde6c7ffa03948268ecbeca257df4da2
PMC7687880
10_1038_s41598_020_77442_y
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c556t-d3eb0383b37b5950eca3c249541dd8dc445f9e734b7cdc4dca792bf409eb4ad93
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:29:51 EDT 2025
Thu Aug 21 14:10:13 EDT 2025
Fri Jul 11 02:43:39 EDT 2025
Sat Aug 23 12:47:41 EDT 2025
Tue Jul 01 02:46:56 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Fri Feb 21 02:38:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-d3eb0383b37b5950eca3c249541dd8dc445f9e734b7cdc4dca792bf409eb4ad93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-020-77442-y
PMID 33235267
PQID 2473220324
PQPubID 2041939
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_cde6c7ffa03948268ecbeca257df4da2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7687880
proquest_miscellaneous_2464192283
proquest_journals_2473220324
crossref_citationtrail_10_1038_s41598_020_77442_y
crossref_primary_10_1038_s41598_020_77442_y
springer_journals_10_1038_s41598_020_77442_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201124
PublicationDateYYYYMMDD 2020-11-24
PublicationDate_xml – month: 11
  year: 2020
  text: 20201124
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kumar, Hasanuzzaman, Rahim (CR27) 2019; 195
Naik, Baredar, Kumar (CR25) 2017; 76
Yang, Yu, Guo, Jin, He (CR33) 2019; 239
Islam, Morimoto (CR26) 2018; 82
Maneewan, Khedari, Zeghmati, Hirunlabh, Eakburanawat (CR21) 2004; 29
Tyner, Sutherland, Gould (CR43) 1995
Tao (CR11) 2018; 3
Yaman, Arslan (CR4) 2018; 10
Chang (CR8) 2019; 11
Huang, Lin, Lva, Fang (CR32) 2017; 170
Lewis (CR2) 2007; 315
Wang (CR9) 2017; 5
Crabtree, Lewis (CR1) 2007; 60
Kraemer (CR18) 2016; 1
Tao (CR41) 2019; 12
Kraemer (CR22) 2008; 92
Kalidasan (CR29) 2020; 27
Ferouali (CR5) 2018; 10
Kossyvakis, Vossou, Provatidis, Hristoforou (CR14) 2015; 81
Ma, Lin, Sohel (CR37) 2016; 58
Zhang, Li, Tang, Wang (CR38) 2016; 8
Nia, Nejad, Goudarzi, Valizadeh, Samadian (CR24) 2014; 84
Chang (CR7) 2019; 4
Leong, Rahman, Gurunathan (CR35) 2019; 21
Qiu, Ouyang, Feng, Zhang (CR39) 2019; 140
Lin (CR6) 2019; 9
Tian, Zhao (CR3) 2013; 104
Zhang, Meng, Zhu, Wang, Peng (CR34) 2017; 185
Amatya, Ram (CR12) 2010; 39
Bell (CR15) 2008; 321
Javadi, Metselaar, Ganesan (CR31) 2020; 206
Kant, Shukla, Sharma, Biwole (CR36) 2017; 146
Xu (CR40) 2016; 155
Xiao, Yang, Li, Zhai, Zhang (CR13) 2012; 93
Liu (CR42) 2016; 53
Hudak, Amatucci (CR17) 2008; 103
Jung, Jung, Choi, Lee, Ko (CR23) 2016; 16
Xu (CR10) 2020; 484
Latibari, Sadrameli (CR30) 2018; 170
Kapsalis, Karamanis (CR28) 2016; 99
Baranowski, Snyder, Toberer (CR20) 2012; 5
Ovik (CR16) 2016; 64
Kraemer (CR19) 2011; 10
T Xu (77442_CR40) 2016; 155
Y Tian (77442_CR3) 2013; 104
C Chang (77442_CR8) 2019; 11
HE Ferouali (77442_CR5) 2018; 10
D Kraemer (77442_CR19) 2011; 10
GW Crabtree (77442_CR1) 2007; 60
KK Jung (77442_CR23) 2016; 16
P Zhang (77442_CR34) 2017; 185
MP Islam (77442_CR26) 2018; 82
Y Lin (77442_CR6) 2019; 9
P Tao (77442_CR11) 2018; 3
L Qiu (77442_CR39) 2019; 140
KY Leong (77442_CR35) 2019; 21
LL Baranowski (77442_CR20) 2012; 5
K Kant (77442_CR36) 2017; 146
J Xu (77442_CR10) 2020; 484
MH Nia (77442_CR24) 2014; 84
V Kapsalis (77442_CR28) 2016; 99
LE Bell (77442_CR15) 2008; 321
C Chang (77442_CR7) 2019; 4
D Kraemer (77442_CR18) 2016; 1
R Ovik (77442_CR16) 2016; 64
K Yaman (77442_CR4) 2018; 10
CE Tyner (77442_CR43) 1995
J Xiao (77442_CR13) 2012; 93
S Maneewan (77442_CR21) 2004; 29
R Amatya (77442_CR12) 2010; 39
H Naik (77442_CR25) 2017; 76
X Yang (77442_CR33) 2019; 239
M Liu (77442_CR42) 2016; 53
D Kraemer (77442_CR22) 2008; 92
Z Wang (77442_CR9) 2017; 5
X Huang (77442_CR32) 2017; 170
ST Latibari (77442_CR30) 2018; 170
B Kalidasan (77442_CR29) 2020; 27
L Zhang (77442_CR38) 2016; 8
DN Kossyvakis (77442_CR14) 2015; 81
FS Javadi (77442_CR31) 2020; 206
Z Ma (77442_CR37) 2016; 58
P Tao (77442_CR41) 2019; 12
NS Lewis (77442_CR2) 2007; 315
L Kumar (77442_CR27) 2019; 195
NS Hudak (77442_CR17) 2008; 103
References_xml – volume: 5
  start-page: 16359
  year: 2017
  end-page: 16368
  ident: CR9
  article-title: Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03262E
– volume: 39
  start-page: 1735
  year: 2010
  end-page: 1740
  ident: CR12
  article-title: Solar thermoelectric generator for micropower applications
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-010-1190-8
– volume: 195
  start-page: 885
  year: 2019
  end-page: 908
  ident: CR27
  article-title: Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: a review
  publication-title: Energ. Convers. Manag.
  doi: 10.1016/j.enconman.2019.05.081
– volume: 27
  start-page: 101118
  year: 2020
  ident: CR29
  article-title: Phase change materials integrated solar thermal energy systems: global trends and current practices in experimental approaches
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.101118
– volume: 170
  start-page: 1130
  year: 2018
  end-page: 1161
  ident: CR30
  article-title: Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: an extensive review
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.05.007
– volume: 9
  start-page: 055110
  year: 2019
  ident: CR6
  article-title: Low-cost carbonized kelp for highly efficient solar steam generation
  publication-title: AIP Adv.
  doi: 10.1063/1.5096295
– volume: 10
  start-page: 043709
  year: 2018
  ident: CR5
  article-title: Thermal efficiency and exergy enhancement of solar air heaters, comparative study and experimental investigation
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.5039306
– volume: 170
  start-page: 68
  year: 2017
  end-page: 76
  ident: CR32
  article-title: Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage
  publication-title: Sol. Energy Mater. Sol. C.
  doi: 10.1016/j.solmat.2017.05.059
– volume: 93
  start-page: 33
  year: 2012
  end-page: 38
  ident: CR13
  article-title: Thermal design and management for performance optimization of solar thermoelectric generator
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.06.006
– volume: 155
  start-page: 141
  year: 2016
  end-page: 146
  ident: CR40
  article-title: Preparation and thermal energy storage properties of d-mannitol/expanded graphite composite phase change material
  publication-title: Sol. Energy Mater. Sol. C
  doi: 10.1016/j.solmat.2016.06.003
– volume: 315
  start-page: 798
  year: 2007
  end-page: 801
  ident: CR2
  article-title: Toward cost-effective solar energy use
  publication-title: Science
  doi: 10.1126/science.1137014
– volume: 5
  start-page: 9055
  year: 2012
  end-page: 9067
  ident: CR20
  article-title: Concentrated solar thermoelectric generators
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22248e
– volume: 53
  start-page: 1411
  year: 2016
  end-page: 1432
  ident: CR42
  article-title: Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.09.026
– volume: 484
  start-page: 114423
  year: 2020
  ident: CR10
  article-title: Solar-driven interfacial desalination for simultaneous freshwater and salt generation
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114423
– volume: 146
  start-page: 453
  year: 2017
  end-page: 463
  ident: CR36
  article-title: Heat transfer study of phase change materials with graphene nano particle for thermal energy storage
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.03.013
– volume: 3
  start-page: 1031
  year: 2018
  end-page: 1041
  ident: CR11
  article-title: Solar-driven interfacial evaporation
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0260-7
– volume: 21
  start-page: 18
  year: 2019
  end-page: 31
  ident: CR35
  article-title: Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.11.008
– volume: 82
  start-page: 2066
  year: 2018
  end-page: 2093
  ident: CR26
  article-title: Advances in low to medium temperature non-concentrating solar thermal technology
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.08.030
– volume: 81
  start-page: 150
  year: 2015
  end-page: 161
  ident: CR14
  article-title: Computational analysis and performance optimization of a solar thermoelectric generator
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.03.026
– volume: 8
  start-page: 14600
  year: 2016
  end-page: 14607
  ident: CR38
  article-title: Solar–thermal conversion and thermal energy storage of graphene foam-based composites
  publication-title: Nanoscale
  doi: 10.1039/C6NR03921A
– volume: 103
  start-page: 5
  year: 2008
  ident: CR17
  article-title: Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2918987
– volume: 104
  start-page: 538
  year: 2013
  end-page: 553
  ident: CR3
  article-title: A review of solar collectors and thermal energy storage in solar thermal applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.11.051
– volume: 64
  start-page: 635
  year: 2016
  end-page: 659
  ident: CR16
  article-title: A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.06.035
– volume: 29
  start-page: 743
  year: 2004
  end-page: 752
  ident: CR21
  article-title: Investigation on generated power of thermoelectric roof solar collector
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2003.10.005
– volume: 185
  start-page: 1971
  year: 2017
  end-page: 1983
  ident: CR34
  article-title: Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.10.075
– volume: 10
  start-page: 532
  year: 2011
  end-page: 538
  ident: CR19
  article-title: High-performance flat-panel solar thermoelectric generators with high thermal concentration
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3013
– volume: 140
  start-page: 513
  year: 2019
  end-page: 538
  ident: CR39
  article-title: Review on micro/nano phase change materials for solar thermal applications
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.03.088
– volume: 16
  start-page: 1442
  year: 2016
  end-page: 1448
  ident: CR23
  article-title: Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2016.08.010
– volume: 321
  start-page: 1457
  year: 2008
  end-page: 1461
  ident: CR15
  article-title: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems
  publication-title: Science
  doi: 10.1126/science.1158899
– volume: 11
  start-page: 18466
  year: 2019
  end-page: 18474
  ident: CR8
  article-title: High-efficiency superheated steam generation for portable sterilization under ambient pressure and low solar flux
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04535
– volume: 99
  start-page: 1212
  year: 2016
  end-page: 1224
  ident: CR28
  article-title: Solar thermal energy storage and heat pumps with phase change materials
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.01.071
– volume: 60
  start-page: 37
  year: 2007
  end-page: 42
  ident: CR1
  article-title: Solar energy conversion
  publication-title: Phys. Today
  doi: 10.1063/1.2718755
– volume: 10
  start-page: 023703
  year: 2018
  ident: CR4
  article-title: Modeling, simulation, and optimization of a solar water heating system in different climate regions
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.5004069
– volume: 1
  start-page: 1
  year: 2016
  end-page: 8
  ident: CR18
  article-title: Concentrating solar thermoelectric generators with a peak efficiency of 7.4%
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.153
– volume: 206
  start-page: 330
  year: 2020
  end-page: 352
  ident: CR31
  article-title: Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.05.106
– volume: 58
  start-page: 1256
  year: 2016
  end-page: 1268
  ident: CR37
  article-title: Nano-enhanced phase change materials for improved building performance
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.234
– volume: 76
  start-page: 369
  year: 2017
  end-page: 378
  ident: CR25
  article-title: Medium temperature application of concentrated solar thermal technology: Indian perspective
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.03.014
– volume: 12
  start-page: 1613
  year: 2019
  end-page: 1621
  ident: CR41
  article-title: Magnetically-accelerated large-capacity solar-thermal energy storage within high-temperature phase-change materials
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00542K
– volume: 92
  start-page: 243503
  year: 2008
  ident: CR22
  article-title: Photovoltaic-thermoelectric hybrid systems: a general optimization methodology
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2947591
– volume: 84
  start-page: 305
  year: 2014
  end-page: 310
  ident: CR24
  article-title: Cogeneration solar system using thermoelectric module and fresnel lens
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.04.041
– year: 1995
  ident: CR43
  publication-title: Solar Two: A Molten Salt Power Tower Demonstration
– volume: 239
  start-page: 142
  year: 2019
  end-page: 156
  ident: CR33
  article-title: Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.075
– volume: 4
  start-page: 3546
  year: 2019
  end-page: 3555
  ident: CR7
  article-title: Three-dimensional porous solar-driven interfacial evaporator for high-efficiency steam generation under low solar flux
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b03573
– volume: 4
  start-page: 3546
  year: 2019
  ident: 77442_CR7
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b03573
– volume: 39
  start-page: 1735
  year: 2010
  ident: 77442_CR12
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-010-1190-8
– volume: 82
  start-page: 2066
  year: 2018
  ident: 77442_CR26
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.08.030
– volume: 29
  start-page: 743
  year: 2004
  ident: 77442_CR21
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2003.10.005
– volume: 58
  start-page: 1256
  year: 2016
  ident: 77442_CR37
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.234
– volume: 185
  start-page: 1971
  year: 2017
  ident: 77442_CR34
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.10.075
– volume: 195
  start-page: 885
  year: 2019
  ident: 77442_CR27
  publication-title: Energ. Convers. Manag.
  doi: 10.1016/j.enconman.2019.05.081
– volume: 104
  start-page: 538
  year: 2013
  ident: 77442_CR3
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.11.051
– volume: 10
  start-page: 023703
  year: 2018
  ident: 77442_CR4
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.5004069
– volume: 170
  start-page: 68
  year: 2017
  ident: 77442_CR32
  publication-title: Sol. Energy Mater. Sol. C.
  doi: 10.1016/j.solmat.2017.05.059
– volume: 5
  start-page: 16359
  year: 2017
  ident: 77442_CR9
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03262E
– volume: 239
  start-page: 142
  year: 2019
  ident: 77442_CR33
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.075
– volume-title: Solar Two: A Molten Salt Power Tower Demonstration
  year: 1995
  ident: 77442_CR43
– volume: 321
  start-page: 1457
  year: 2008
  ident: 77442_CR15
  publication-title: Science
  doi: 10.1126/science.1158899
– volume: 10
  start-page: 532
  year: 2011
  ident: 77442_CR19
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3013
– volume: 93
  start-page: 33
  year: 2012
  ident: 77442_CR13
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.06.006
– volume: 146
  start-page: 453
  year: 2017
  ident: 77442_CR36
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.03.013
– volume: 484
  start-page: 114423
  year: 2020
  ident: 77442_CR10
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114423
– volume: 3
  start-page: 1031
  year: 2018
  ident: 77442_CR11
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0260-7
– volume: 64
  start-page: 635
  year: 2016
  ident: 77442_CR16
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.06.035
– volume: 16
  start-page: 1442
  year: 2016
  ident: 77442_CR23
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2016.08.010
– volume: 21
  start-page: 18
  year: 2019
  ident: 77442_CR35
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.11.008
– volume: 53
  start-page: 1411
  year: 2016
  ident: 77442_CR42
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.09.026
– volume: 8
  start-page: 14600
  year: 2016
  ident: 77442_CR38
  publication-title: Nanoscale
  doi: 10.1039/C6NR03921A
– volume: 84
  start-page: 305
  year: 2014
  ident: 77442_CR24
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.04.041
– volume: 27
  start-page: 101118
  year: 2020
  ident: 77442_CR29
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.101118
– volume: 9
  start-page: 055110
  year: 2019
  ident: 77442_CR6
  publication-title: AIP Adv.
  doi: 10.1063/1.5096295
– volume: 76
  start-page: 369
  year: 2017
  ident: 77442_CR25
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.03.014
– volume: 1
  start-page: 1
  year: 2016
  ident: 77442_CR18
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.153
– volume: 140
  start-page: 513
  year: 2019
  ident: 77442_CR39
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.03.088
– volume: 170
  start-page: 1130
  year: 2018
  ident: 77442_CR30
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.05.007
– volume: 11
  start-page: 18466
  year: 2019
  ident: 77442_CR8
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04535
– volume: 99
  start-page: 1212
  year: 2016
  ident: 77442_CR28
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.01.071
– volume: 12
  start-page: 1613
  year: 2019
  ident: 77442_CR41
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00542K
– volume: 315
  start-page: 798
  year: 2007
  ident: 77442_CR2
  publication-title: Science
  doi: 10.1126/science.1137014
– volume: 81
  start-page: 150
  year: 2015
  ident: 77442_CR14
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.03.026
– volume: 10
  start-page: 043709
  year: 2018
  ident: 77442_CR5
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.5039306
– volume: 103
  start-page: 5
  year: 2008
  ident: 77442_CR17
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2918987
– volume: 92
  start-page: 243503
  year: 2008
  ident: 77442_CR22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2947591
– volume: 206
  start-page: 330
  year: 2020
  ident: 77442_CR31
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.05.106
– volume: 60
  start-page: 37
  year: 2007
  ident: 77442_CR1
  publication-title: Phys. Today
  doi: 10.1063/1.2718755
– volume: 5
  start-page: 9055
  year: 2012
  ident: 77442_CR20
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22248e
– volume: 155
  start-page: 141
  year: 2016
  ident: 77442_CR40
  publication-title: Sol. Energy Mater. Sol. C
  doi: 10.1016/j.solmat.2016.06.003
SSID ssj0000529419
Score 2.409801
Snippet Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy...
Abstract Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20500
SubjectTerms 639/4077/4072
639/4077/4072/4062
639/4077/909/4101
639/4077/909/4101/4103
Electricity
Energy
Energy conversion
Harvesting
High temperature
Humanities and Social Sciences
Magnetic fields
multidisciplinary
Phase transitions
Renewable resources
Salts
Science
Science (multidisciplinary)
Solar energy
Solar radiation
Sunlight
Thermal energy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyItYqrtUTwpqG7m9nd5FiLpQj1ZKHgIeQTC6-74r4K7793Jrvv2S2oF2_7kSXJZJL5zSbzG8beNjal1rdKOKVLAa6zQrWVE2QcbRs0WE0Bzhef2_NL-HTVXN1J9UVnwiZ64Elwxz7E1ncp2VJqQCysosdqLWpaSBBsXn3R5t1xpiZW71pDpecomVKq4xEtFUWTobeEiAdqsVlYokzYv0CZ989I3tsozfbn7Al7PANHfjI1eJ89iP1T9nBKJbk5YF_pwIaImRCCoin5SD4rJ3h3M0y5bq49z2fM8w8yHnPQVOBuw2-Gn3TNM2sSVs6HhM9WiKb5aFfr8Rm7PPv45fRczIkThG-adi2CjA77LJ3sXKObEuUlPSWZhioEFTxAk3TsJA6Nx7vgbadrl9DViw5s0PI52-uHPr5gXHoHZYDaofjAR68qr6VLuE4op6CyBau2QjR-ZhWn5BYrk3e3pTKT4A0K3mTBm03B3u2--T5xavy19Acam11J4sPOD1BLzKwl5l9aUrDD7ciaeZKOpoYOl7MSIWXB3uxe4_SiPRPbx-GWyrS0T44grGDdQiMWDVq-6a-_ZaJudOU6XB8L9n6rO78r_3OHX_6PDr9ij2rS9aoSNRyyvfWP2_ga4dPaHeWZ8gubYBtr
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9UwNOhE8EWcH1j3QQTfNKxt0iZ5Gk4cQ9AnBxd8CPmqDu7abb0T7r_3nDT3jg7cW5ukNDk5OZ855xDyobFd1_pWMad0yYSTlqm2cgyZo22DFlZjgPP3H-3Zufi2aBbZ4Dbma5UbmpgIdRg82siPaiEB90rg_8dX1wyrRqF3NZfQeEyeYOoyxGq5kFsbC3qxRKVzrEzJ1dEI_ApjykBnArlH1Gw940cpbf9M1rx_U_KeuzRxodMX5HkWH-nnab93yaPYvyRPp4KS61fkF17bYDGlhcCYSjqi5kpRyLscpoo3F56mm-bJTEZjCp0K1K3p5fAXn2nKnQQ_p0MHbUuQqelol6vxNTk__frzyxnL5ROYb5p2xQKPDtbMHZeu0U0ZveUeS02LKgQVvBBNp6PksEEe3oK3UteuA4UvOmGD5m_ITj_08S2h3DtRBlE7AJ_w0avKa-46oBbKKVHZglQbIBqfc4tjiYulST5urswEeAOANwnwZl2Qj9tvrqbMGg-OPsG92Y7ErNipYbj5bfIhMz7E1suusyXXAvQmFT2gqAWqFDoRbF2Q_c3OmnxUR3OHWAV5v-2GQ4aeE9vH4RbHtOgtB1GsIHKGEbMJzXv6iz8pXTcodBKoZEE-bXDn7uf_X_C7h-e6R57ViMVVxWqxT3ZWN7fxAMSjlTtMZ-AfNn8Q0w
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WXQQv4idWV4ngTYNtk7bJ8SkuywO96MKCh5Cv6sLbVrZvhfffO5O2T7qo4K1tEppOJpOZzsxvAF5Vtm1rXyvulM65dI3lqi4cp8PR1kFLqynB-eOn-vRMrs-r8wMo51yYFLSfIC2TmJ6jw94OeNBQMhgaO6iwyJLvbsERQbUjbx-tVuvP6_2fFfJdyUJPGTK5UH8YvDiFElj_QsO8GR95w0mazp6Te3B3UhrZapzmfTiI3QO4PZaR3D2ErxSswWMCg6BMSjaQvcpItbvsxzo3F56l-PL0c4zFlDAVmNuxy_4nXbOEmIQvZ32LzzaoSbPBbrbDIzg7-fDl_SmfiiZwX1X1lgcRHX6zcKJxla7y6K3wVGBaFiGo4KWsWh0bgcvi8S542-jStWjmRSdt0OIxHHZ9F58AE97JPMjSIfmkj14VXgvXooxQTsnCZlDMRDR-QhSnwhYbkzzbQpmR8AYJbxLhzS6D1_sxP0Y8jX_2fkdrs-9JWNjpQX_1zUy8YXyItW_a1uZCS7SWVPTImBZlUWhlsGUGx_PKmmmDDqaUDYqyHNXJDF7um3Frkb_EdrG_pj41-chRAcugWXDEYkLLlu7iewLpRjOuQdmYwZuZd36__O8f_PT_uj-DOyVxdVHwUh7D4fbqOj5HJWnrXky74hdyChCk
  priority: 102
  providerName: Springer Nature
Title High-efficiency solar thermoelectric conversion enabled by movable charging of molten salts
URI https://link.springer.com/article/10.1038/s41598-020-77442-y
https://www.proquest.com/docview/2473220324
https://www.proquest.com/docview/2464192283
https://pubmed.ncbi.nlm.nih.gov/PMC7687880
https://doaj.org/article/cde6c7ffa03948268ecbeca257df4da2
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY5_Maxc02NumzR-yZT2MkYaWEmgZ2wKBPRh9uSuk9hqnY_7vd5LtDJdusCfHshJFp5Pud5bufgCvU1mWmc5yqnIRUqa4pHkWKeqMo8yMYFK4AOez8-x0webLdLkDA91RL8DmTtfO8Ukt1qt3v67bjzjhP3Qh4_n7Bo2QCxRDRwjBDItpuwv7aJm4YzQ46-F-l-s7Fsxzfbgk7BTBRNzH0dz9MyNb5VP6j3Do7VOUt7ZSvYU6eQgPemhJpp0uPIIdWz2Gex3ZZPsEvrkjHdT6lBEu3pI0ruvEAcCrumPDudTEn0L3r9CI9WFVhqiWXNU_3Wfi8yph46QusWyFeJs0crVpnsLi5Pjr7JT21ApUp2m2oSaxCvucqISrVKSh1TLRjoaaRcbkRjOWlsLyBAdP453RkotYlegMWsWkEckz2Kvqyj4HkmjFQsNiheJj2uo80iJRJa4kucpZJAOIBiEWus877ugvVoXf_07yohN8gYIvvOCLNoA32-_86LJu_LP2kRubbU2XMdsX1OuLop-AhTY207wsZZgIhj5VbjWqr8QVy5TMyDiAw2Fki0ELi5hx1JEQQWcAr7aPcQK6XRVZ2frG1cncTjrCtAD4SCNGf2j8pLr87lN5o7PHcQUN4O2gO38a_3uHX_yXeA7gfuyUOopozA5hb7O-sS8RSW3UBHb5kk9gfzqdf5nj9ej4_NNnLJ1ls4l_OzHxE-g3i-cgKA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtUwcFS1QnBBZROBAkaCE1jN4mwHhNiqV7qcWulJHIy3QKXXpDSvoPwU38iMk7wqleitt8R2ZGc8q8czA_AqVVWVmazguihDLnSueJFFmpNwVJkthSopwPngMJsdi6_zdL4Gf8dYGLpWOfJEz6htY-iMfDsWOeJeiPL__dkvTlWjyLs6ltDo0WLPdX_QZGvf7X7G_X0dxztfjj7N-FBVgJs0zZbcJk6HaJfpJNdpmYbOqMRQBWYRWVtYI0RalS5PcN0G36xReRnrCu0gp4WylHwJWf4GCt6QjL18nq_OdMhrJqJyiM3BSbZblI8Uw4Y2GupZIubdRP75MgET3fbqzcwr7lkv9XY24e6grrIPPX7dgzVX34dbfQHL7gF8o2si3Pk0FBTDyVqylBkpladNX2HnxDB_s90fyzHnQ7Us0x07bX7TM_O5mnBy1lTYtkAdnrVqsWwfwvGNAPYRrNdN7R4DS4wWoRWxRvAJ40wRmTLRFXKnQhciUgFEIxClGXKZU0mNhfQ-9aSQPeAlAl56wMsugDerb876TB7Xjv5Ie7MaSVm4fUNz_kMORC2NdZnJq0qFSSnQTiucQZJQyAVtJayKA9gad1YOrKGVl4gcwMtVNxI1eWpU7ZoLGpORdx5VvwDyCUZMFjTtqU9--vTgaEDmyJUDeDvizuXk___hJ9ev9QXcnh0d7Mv93cO9p3AnJoyOIh6LLVhfnl-4Z6iaLfVzTw8Mvt80Af4DSvpPBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZatVA9FBuUXwRV4xWHUGfdLhZJtuDiLW9tFYvRSwUfBhnixbapDa3Sn7Nr_OcSXLLLdi3vmWZMJMzZ52zAbxMVVVlJiu4LsqQC50rXmSR5iQcVWZLoUpKcP48z3YOxMfD9HAN_o65MBRWOfJEz6htY-iMfBqLHHEvRPk_rYawiP2t2bvTX5w6SJGndWyn0aPInuv-oPnWvt3dwr1-Fcez7a8fdvjQYYCbNM0W3CZOh2ij6STXaZmGzqjEUDdmEVlbWCNEWpUuT_AfDN5Zo_Iy1hXaRE4LZakQE7L_9Zysogmsb27P978sT3jIhyaicsjUwWmmLUpLymhDiw21LhHzbkUa-qYBK5ru5TjNS85aLwNnd-D2oLyy9z223YU1V9-DG307y-4-fKOgEe58UQrK6GQt2c2MVMyTpu-3c2SYj3P3h3TM-cQty3THTprfdM185SacnDUVPsMNqFmrjhftAzi4FtA-hEnd1O4RsMRoEVoRawSfMM4UkSkTXSGvKnQhIhVANAJRmqGyOTXYOJbew54Usge8RMBLD3jZBfB6-c1pX9fjytGbtDfLkVST2z9ozn7IgcSlsS4zeVWpMCkFWm2FM0ggCnmirYRVcQAb487KgVG08gKtA3ixfI0kTn4bVbvmnMZk5KtHRTCAfAUjVha0-qY--umLhaM5mSOPDuDNiDsXk___hx9fvdbncBOJT37ane89gVsxIXQU8VhswGRxdu6eop620M8GgmDw_bpp8B9kNlSf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficiency+solar+thermoelectric+conversion+enabled+by+movable+charging+of+molten+salts&rft.jtitle=Scientific+reports&rft.au=Chang%2C+Chao&rft.au=Wang%2C+Zongyu&rft.au=Fu%2C+Benwei&rft.au=Ji%2C+Yulong&rft.date=2020-11-24&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-77442-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_020_77442_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon