High-efficiency solar thermoelectric conversion enabled by movable charging of molten salts
Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy into thermal energy and then into electricity, has been developed and implemented in many important fields. The operation of solar–thermal–elec...
Saved in:
Published in | Scientific reports Vol. 10; no. 1; pp. 20500 - 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.11.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy into thermal energy and then into electricity, has been developed and implemented in many important fields. The operation of solar–thermal–electric conversion systems, however, is strongly affected by the intermittency of solar radiation, which requires installation of thermal storage subsystems. In this work, we demonstrated a new solar–thermal–electric conversion system that consists of a thermoelectric converter and a rapidly charging thermal storage subsystem. A magnetic-responsive solar–thermal mesh was used as the movable charging source to convert incident concentrated sunlight into high-temperature heat, which can induce solid-to-liquid phase transition of molten salts. Driven by the external magnetic field, the solar–thermal mesh can move together with the receding solid–liquid interface thus rapidly storing the harvested solar–thermal energy within the molten salts. By connecting with a thermoelectric generator, the harvested solar–thermal energy can be further converted into electricity with a solar–thermal–electric energy conversion efficiency up to 2.56%, and the converted electrical energy can simultaneously light up more than 40 orange-colored LEDs. In addition to stable operation under sunlight, the charged thermal storage subsystem can release the stored heat and thus enables the solar–thermal–electric system to continuously generate electricity after removal of solar illumination. |
---|---|
AbstractList | Abstract Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy into thermal energy and then into electricity, has been developed and implemented in many important fields. The operation of solar–thermal–electric conversion systems, however, is strongly affected by the intermittency of solar radiation, which requires installation of thermal storage subsystems. In this work, we demonstrated a new solar–thermal–electric conversion system that consists of a thermoelectric converter and a rapidly charging thermal storage subsystem. A magnetic-responsive solar–thermal mesh was used as the movable charging source to convert incident concentrated sunlight into high-temperature heat, which can induce solid-to-liquid phase transition of molten salts. Driven by the external magnetic field, the solar–thermal mesh can move together with the receding solid–liquid interface thus rapidly storing the harvested solar–thermal energy within the molten salts. By connecting with a thermoelectric generator, the harvested solar–thermal energy can be further converted into electricity with a solar–thermal–electric energy conversion efficiency up to 2.56%, and the converted electrical energy can simultaneously light up more than 40 orange-colored LEDs. In addition to stable operation under sunlight, the charged thermal storage subsystem can release the stored heat and thus enables the solar–thermal–electric system to continuously generate electricity after removal of solar illumination. Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy into thermal energy and then into electricity, has been developed and implemented in many important fields. The operation of solar–thermal–electric conversion systems, however, is strongly affected by the intermittency of solar radiation, which requires installation of thermal storage subsystems. In this work, we demonstrated a new solar–thermal–electric conversion system that consists of a thermoelectric converter and a rapidly charging thermal storage subsystem. A magnetic-responsive solar–thermal mesh was used as the movable charging source to convert incident concentrated sunlight into high-temperature heat, which can induce solid-to-liquid phase transition of molten salts. Driven by the external magnetic field, the solar–thermal mesh can move together with the receding solid–liquid interface thus rapidly storing the harvested solar–thermal energy within the molten salts. By connecting with a thermoelectric generator, the harvested solar–thermal energy can be further converted into electricity with a solar–thermal–electric energy conversion efficiency up to 2.56%, and the converted electrical energy can simultaneously light up more than 40 orange-colored LEDs. In addition to stable operation under sunlight, the charged thermal storage subsystem can release the stored heat and thus enables the solar–thermal–electric system to continuously generate electricity after removal of solar illumination. Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy into thermal energy and then into electricity, has been developed and implemented in many important fields. The operation of solar-thermal-electric conversion systems, however, is strongly affected by the intermittency of solar radiation, which requires installation of thermal storage subsystems. In this work, we demonstrated a new solar-thermal-electric conversion system that consists of a thermoelectric converter and a rapidly charging thermal storage subsystem. A magnetic-responsive solar-thermal mesh was used as the movable charging source to convert incident concentrated sunlight into high-temperature heat, which can induce solid-to-liquid phase transition of molten salts. Driven by the external magnetic field, the solar-thermal mesh can move together with the receding solid-liquid interface thus rapidly storing the harvested solar-thermal energy within the molten salts. By connecting with a thermoelectric generator, the harvested solar-thermal energy can be further converted into electricity with a solar-thermal-electric energy conversion efficiency up to 2.56%, and the converted electrical energy can simultaneously light up more than 40 orange-colored LEDs. In addition to stable operation under sunlight, the charged thermal storage subsystem can release the stored heat and thus enables the solar-thermal-electric system to continuously generate electricity after removal of solar illumination.Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy into thermal energy and then into electricity, has been developed and implemented in many important fields. The operation of solar-thermal-electric conversion systems, however, is strongly affected by the intermittency of solar radiation, which requires installation of thermal storage subsystems. In this work, we demonstrated a new solar-thermal-electric conversion system that consists of a thermoelectric converter and a rapidly charging thermal storage subsystem. A magnetic-responsive solar-thermal mesh was used as the movable charging source to convert incident concentrated sunlight into high-temperature heat, which can induce solid-to-liquid phase transition of molten salts. Driven by the external magnetic field, the solar-thermal mesh can move together with the receding solid-liquid interface thus rapidly storing the harvested solar-thermal energy within the molten salts. By connecting with a thermoelectric generator, the harvested solar-thermal energy can be further converted into electricity with a solar-thermal-electric energy conversion efficiency up to 2.56%, and the converted electrical energy can simultaneously light up more than 40 orange-colored LEDs. In addition to stable operation under sunlight, the charged thermal storage subsystem can release the stored heat and thus enables the solar-thermal-electric system to continuously generate electricity after removal of solar illumination. |
ArticleNumber | 20500 |
Author | Ji, Yulong Fu, Benwei Wang, Zongyu Chang, Chao |
Author_xml | – sequence: 1 givenname: Chao surname: Chang fullname: Chang, Chao email: chang3223426@126.com organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University – sequence: 2 givenname: Zongyu surname: Wang fullname: Wang, Zongyu organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University – sequence: 3 givenname: Benwei surname: Fu fullname: Fu, Benwei organization: State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University – sequence: 4 givenname: Yulong surname: Ji fullname: Ji, Yulong organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University |
BookMark | eNp9Ustu1TAQtVARLaU_wCoSGzYBx4843iChCmilSmxgxcLyY5LrK8cudu6V8ve4TRG0i3rj8ficMx7PeY1OYoqA0NsOf-gwHT4W1nE5tJjgVgjGSLu-QGcEM94SSsjJf_Epuihlj-viRLJOvkKnlBLKSS_O0K8rP-1aGEdvPUS7NiUFnZtlB3lOEMAu2dvGpniEXHyKDURtArjGrM2cjndxY3c6Tz5OTRprLiwQm6LDUt6gl6MOBS4e9nP08-uXH5dX7c33b9eXn29ay3m_tI6CqR1RQ4XhkmOwmlrCJGedc4OzjPFRgqDMCFtPzmohiRkZlmCYdpKeo-tN1yW9V7fZzzqvKmmv7hMpT0rnxdsAyjrorRhHjalkA-kHsKbWI1y4kTlNqtanTev2YGZwFuKSdXgk-vgm-p2a0lGJfhDDgKvA-weBnH4foCxq9sVCCDpCOhRFWF9nQMhAK_TdE-g-HXKsX1VRok4OU8IqathQNqdSMozK-kUvdRa1vg-qw-rOEGozhKqGUPeGUGulkifUv308S6IbqVRwnCD_e9UzrD9cdsxS |
CitedBy_id | crossref_primary_10_1007_s42114_024_00880_z crossref_primary_10_1021_acs_energyfuels_0c04275 crossref_primary_10_4236_cm_2022_132003 crossref_primary_10_1016_j_rser_2023_113723 crossref_primary_10_1016_j_solener_2024_112499 crossref_primary_10_1002_advs_202207415 crossref_primary_10_1016_j_enconman_2024_118901 crossref_primary_10_1016_j_apenergy_2024_124127 crossref_primary_10_1016_j_solmat_2021_111432 crossref_primary_10_1038_s41570_022_00448_9 crossref_primary_10_3390_en14185646 crossref_primary_10_1039_D2TC03315A crossref_primary_10_1002_aenm_202300937 crossref_primary_10_1016_j_cej_2024_155317 crossref_primary_10_1016_j_nanoen_2021_106692 crossref_primary_10_1016_j_apenergy_2022_119297 crossref_primary_10_1016_j_energy_2022_125604 crossref_primary_10_1016_j_esr_2022_100939 crossref_primary_10_1039_D4CS00361F crossref_primary_10_2139_ssrn_4074475 |
Cites_doi | 10.1039/C7TA03262E 10.1007/s11664-010-1190-8 10.1016/j.enconman.2019.05.081 10.1016/j.est.2019.101118 10.1016/j.solener.2018.05.007 10.1063/1.5096295 10.1063/1.5039306 10.1016/j.solmat.2017.05.059 10.1016/j.apenergy.2011.06.006 10.1016/j.solmat.2016.06.003 10.1126/science.1137014 10.1039/c2ee22248e 10.1016/j.rser.2015.09.026 10.1016/j.desal.2020.114423 10.1016/j.solener.2017.03.013 10.1038/s41560-018-0260-7 10.1016/j.est.2018.11.008 10.1016/j.rser.2017.08.030 10.1016/j.renene.2015.03.026 10.1039/C6NR03921A 10.1063/1.2918987 10.1016/j.apenergy.2012.11.051 10.1016/j.rser.2016.06.035 10.1016/j.renene.2003.10.005 10.1016/j.apenergy.2015.10.075 10.1038/nmat3013 10.1016/j.renene.2019.03.088 10.1016/j.cap.2016.08.010 10.1126/science.1158899 10.1021/acsami.9b04535 10.1016/j.applthermaleng.2016.01.071 10.1063/1.2718755 10.1063/1.5004069 10.1038/nenergy.2016.153 10.1016/j.solener.2020.05.106 10.1016/j.rser.2015.12.234 10.1016/j.rser.2017.03.014 10.1039/C9EE00542K 10.1063/1.2947591 10.1016/j.enconman.2014.04.041 10.1016/j.apenergy.2019.01.075 10.1021/acsomega.8b03573 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-020-77442-y |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_cde6c7ffa03948268ecbeca257df4da2 PMC7687880 10_1038_s41598_020_77442_y |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c556t-d3eb0383b37b5950eca3c249541dd8dc445f9e734b7cdc4dca792bf409eb4ad93 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:29:51 EDT 2025 Thu Aug 21 14:10:13 EDT 2025 Fri Jul 11 02:43:39 EDT 2025 Sat Aug 23 12:47:41 EDT 2025 Tue Jul 01 02:46:56 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Fri Feb 21 02:38:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-d3eb0383b37b5950eca3c249541dd8dc445f9e734b7cdc4dca792bf409eb4ad93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-020-77442-y |
PMID | 33235267 |
PQID | 2473220324 |
PQPubID | 2041939 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cde6c7ffa03948268ecbeca257df4da2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7687880 proquest_miscellaneous_2464192283 proquest_journals_2473220324 crossref_citationtrail_10_1038_s41598_020_77442_y crossref_primary_10_1038_s41598_020_77442_y springer_journals_10_1038_s41598_020_77442_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201124 |
PublicationDateYYYYMMDD | 2020-11-24 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201124 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Kumar, Hasanuzzaman, Rahim (CR27) 2019; 195 Naik, Baredar, Kumar (CR25) 2017; 76 Yang, Yu, Guo, Jin, He (CR33) 2019; 239 Islam, Morimoto (CR26) 2018; 82 Maneewan, Khedari, Zeghmati, Hirunlabh, Eakburanawat (CR21) 2004; 29 Tyner, Sutherland, Gould (CR43) 1995 Tao (CR11) 2018; 3 Yaman, Arslan (CR4) 2018; 10 Chang (CR8) 2019; 11 Huang, Lin, Lva, Fang (CR32) 2017; 170 Lewis (CR2) 2007; 315 Wang (CR9) 2017; 5 Crabtree, Lewis (CR1) 2007; 60 Kraemer (CR18) 2016; 1 Tao (CR41) 2019; 12 Kraemer (CR22) 2008; 92 Kalidasan (CR29) 2020; 27 Ferouali (CR5) 2018; 10 Kossyvakis, Vossou, Provatidis, Hristoforou (CR14) 2015; 81 Ma, Lin, Sohel (CR37) 2016; 58 Zhang, Li, Tang, Wang (CR38) 2016; 8 Nia, Nejad, Goudarzi, Valizadeh, Samadian (CR24) 2014; 84 Chang (CR7) 2019; 4 Leong, Rahman, Gurunathan (CR35) 2019; 21 Qiu, Ouyang, Feng, Zhang (CR39) 2019; 140 Lin (CR6) 2019; 9 Tian, Zhao (CR3) 2013; 104 Zhang, Meng, Zhu, Wang, Peng (CR34) 2017; 185 Amatya, Ram (CR12) 2010; 39 Bell (CR15) 2008; 321 Javadi, Metselaar, Ganesan (CR31) 2020; 206 Kant, Shukla, Sharma, Biwole (CR36) 2017; 146 Xu (CR40) 2016; 155 Xiao, Yang, Li, Zhai, Zhang (CR13) 2012; 93 Liu (CR42) 2016; 53 Hudak, Amatucci (CR17) 2008; 103 Jung, Jung, Choi, Lee, Ko (CR23) 2016; 16 Xu (CR10) 2020; 484 Latibari, Sadrameli (CR30) 2018; 170 Kapsalis, Karamanis (CR28) 2016; 99 Baranowski, Snyder, Toberer (CR20) 2012; 5 Ovik (CR16) 2016; 64 Kraemer (CR19) 2011; 10 T Xu (77442_CR40) 2016; 155 Y Tian (77442_CR3) 2013; 104 C Chang (77442_CR8) 2019; 11 HE Ferouali (77442_CR5) 2018; 10 D Kraemer (77442_CR19) 2011; 10 GW Crabtree (77442_CR1) 2007; 60 KK Jung (77442_CR23) 2016; 16 P Zhang (77442_CR34) 2017; 185 MP Islam (77442_CR26) 2018; 82 Y Lin (77442_CR6) 2019; 9 P Tao (77442_CR11) 2018; 3 L Qiu (77442_CR39) 2019; 140 KY Leong (77442_CR35) 2019; 21 LL Baranowski (77442_CR20) 2012; 5 K Kant (77442_CR36) 2017; 146 J Xu (77442_CR10) 2020; 484 MH Nia (77442_CR24) 2014; 84 V Kapsalis (77442_CR28) 2016; 99 LE Bell (77442_CR15) 2008; 321 C Chang (77442_CR7) 2019; 4 D Kraemer (77442_CR18) 2016; 1 R Ovik (77442_CR16) 2016; 64 K Yaman (77442_CR4) 2018; 10 CE Tyner (77442_CR43) 1995 J Xiao (77442_CR13) 2012; 93 S Maneewan (77442_CR21) 2004; 29 R Amatya (77442_CR12) 2010; 39 H Naik (77442_CR25) 2017; 76 X Yang (77442_CR33) 2019; 239 M Liu (77442_CR42) 2016; 53 D Kraemer (77442_CR22) 2008; 92 Z Wang (77442_CR9) 2017; 5 X Huang (77442_CR32) 2017; 170 ST Latibari (77442_CR30) 2018; 170 B Kalidasan (77442_CR29) 2020; 27 L Zhang (77442_CR38) 2016; 8 DN Kossyvakis (77442_CR14) 2015; 81 FS Javadi (77442_CR31) 2020; 206 Z Ma (77442_CR37) 2016; 58 P Tao (77442_CR41) 2019; 12 NS Lewis (77442_CR2) 2007; 315 L Kumar (77442_CR27) 2019; 195 NS Hudak (77442_CR17) 2008; 103 |
References_xml | – volume: 5 start-page: 16359 year: 2017 end-page: 16368 ident: CR9 article-title: Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03262E – volume: 39 start-page: 1735 year: 2010 end-page: 1740 ident: CR12 article-title: Solar thermoelectric generator for micropower applications publication-title: J. Electron. Mater. doi: 10.1007/s11664-010-1190-8 – volume: 195 start-page: 885 year: 2019 end-page: 908 ident: CR27 article-title: Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: a review publication-title: Energ. Convers. Manag. doi: 10.1016/j.enconman.2019.05.081 – volume: 27 start-page: 101118 year: 2020 ident: CR29 article-title: Phase change materials integrated solar thermal energy systems: global trends and current practices in experimental approaches publication-title: J. Energy Storage doi: 10.1016/j.est.2019.101118 – volume: 170 start-page: 1130 year: 2018 end-page: 1161 ident: CR30 article-title: Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: an extensive review publication-title: Sol. Energy doi: 10.1016/j.solener.2018.05.007 – volume: 9 start-page: 055110 year: 2019 ident: CR6 article-title: Low-cost carbonized kelp for highly efficient solar steam generation publication-title: AIP Adv. doi: 10.1063/1.5096295 – volume: 10 start-page: 043709 year: 2018 ident: CR5 article-title: Thermal efficiency and exergy enhancement of solar air heaters, comparative study and experimental investigation publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.5039306 – volume: 170 start-page: 68 year: 2017 end-page: 76 ident: CR32 article-title: Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage publication-title: Sol. Energy Mater. Sol. C. doi: 10.1016/j.solmat.2017.05.059 – volume: 93 start-page: 33 year: 2012 end-page: 38 ident: CR13 article-title: Thermal design and management for performance optimization of solar thermoelectric generator publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.06.006 – volume: 155 start-page: 141 year: 2016 end-page: 146 ident: CR40 article-title: Preparation and thermal energy storage properties of d-mannitol/expanded graphite composite phase change material publication-title: Sol. Energy Mater. Sol. C doi: 10.1016/j.solmat.2016.06.003 – volume: 315 start-page: 798 year: 2007 end-page: 801 ident: CR2 article-title: Toward cost-effective solar energy use publication-title: Science doi: 10.1126/science.1137014 – volume: 5 start-page: 9055 year: 2012 end-page: 9067 ident: CR20 article-title: Concentrated solar thermoelectric generators publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22248e – volume: 53 start-page: 1411 year: 2016 end-page: 1432 ident: CR42 article-title: Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.09.026 – volume: 484 start-page: 114423 year: 2020 ident: CR10 article-title: Solar-driven interfacial desalination for simultaneous freshwater and salt generation publication-title: Desalination doi: 10.1016/j.desal.2020.114423 – volume: 146 start-page: 453 year: 2017 end-page: 463 ident: CR36 article-title: Heat transfer study of phase change materials with graphene nano particle for thermal energy storage publication-title: Sol. Energy doi: 10.1016/j.solener.2017.03.013 – volume: 3 start-page: 1031 year: 2018 end-page: 1041 ident: CR11 article-title: Solar-driven interfacial evaporation publication-title: Nat. Energy doi: 10.1038/s41560-018-0260-7 – volume: 21 start-page: 18 year: 2019 end-page: 31 ident: CR35 article-title: Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges publication-title: J. Energy Storage doi: 10.1016/j.est.2018.11.008 – volume: 82 start-page: 2066 year: 2018 end-page: 2093 ident: CR26 article-title: Advances in low to medium temperature non-concentrating solar thermal technology publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.08.030 – volume: 81 start-page: 150 year: 2015 end-page: 161 ident: CR14 article-title: Computational analysis and performance optimization of a solar thermoelectric generator publication-title: Renew. Energy doi: 10.1016/j.renene.2015.03.026 – volume: 8 start-page: 14600 year: 2016 end-page: 14607 ident: CR38 article-title: Solar–thermal conversion and thermal energy storage of graphene foam-based composites publication-title: Nanoscale doi: 10.1039/C6NR03921A – volume: 103 start-page: 5 year: 2008 ident: CR17 article-title: Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion publication-title: J. Appl. Phys. doi: 10.1063/1.2918987 – volume: 104 start-page: 538 year: 2013 end-page: 553 ident: CR3 article-title: A review of solar collectors and thermal energy storage in solar thermal applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.11.051 – volume: 64 start-page: 635 year: 2016 end-page: 659 ident: CR16 article-title: A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.06.035 – volume: 29 start-page: 743 year: 2004 end-page: 752 ident: CR21 article-title: Investigation on generated power of thermoelectric roof solar collector publication-title: Renew. Energy doi: 10.1016/j.renene.2003.10.005 – volume: 185 start-page: 1971 year: 2017 end-page: 1983 ident: CR34 article-title: Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.10.075 – volume: 10 start-page: 532 year: 2011 end-page: 538 ident: CR19 article-title: High-performance flat-panel solar thermoelectric generators with high thermal concentration publication-title: Nat. Mater. doi: 10.1038/nmat3013 – volume: 140 start-page: 513 year: 2019 end-page: 538 ident: CR39 article-title: Review on micro/nano phase change materials for solar thermal applications publication-title: Renew. Energy doi: 10.1016/j.renene.2019.03.088 – volume: 16 start-page: 1442 year: 2016 end-page: 1448 ident: CR23 article-title: Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2016.08.010 – volume: 321 start-page: 1457 year: 2008 end-page: 1461 ident: CR15 article-title: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems publication-title: Science doi: 10.1126/science.1158899 – volume: 11 start-page: 18466 year: 2019 end-page: 18474 ident: CR8 article-title: High-efficiency superheated steam generation for portable sterilization under ambient pressure and low solar flux publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04535 – volume: 99 start-page: 1212 year: 2016 end-page: 1224 ident: CR28 article-title: Solar thermal energy storage and heat pumps with phase change materials publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.01.071 – volume: 60 start-page: 37 year: 2007 end-page: 42 ident: CR1 article-title: Solar energy conversion publication-title: Phys. Today doi: 10.1063/1.2718755 – volume: 10 start-page: 023703 year: 2018 ident: CR4 article-title: Modeling, simulation, and optimization of a solar water heating system in different climate regions publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.5004069 – volume: 1 start-page: 1 year: 2016 end-page: 8 ident: CR18 article-title: Concentrating solar thermoelectric generators with a peak efficiency of 7.4% publication-title: Nat. Energy doi: 10.1038/nenergy.2016.153 – volume: 206 start-page: 330 year: 2020 end-page: 352 ident: CR31 article-title: Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review publication-title: Sol. Energy doi: 10.1016/j.solener.2020.05.106 – volume: 58 start-page: 1256 year: 2016 end-page: 1268 ident: CR37 article-title: Nano-enhanced phase change materials for improved building performance publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.234 – volume: 76 start-page: 369 year: 2017 end-page: 378 ident: CR25 article-title: Medium temperature application of concentrated solar thermal technology: Indian perspective publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.03.014 – volume: 12 start-page: 1613 year: 2019 end-page: 1621 ident: CR41 article-title: Magnetically-accelerated large-capacity solar-thermal energy storage within high-temperature phase-change materials publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00542K – volume: 92 start-page: 243503 year: 2008 ident: CR22 article-title: Photovoltaic-thermoelectric hybrid systems: a general optimization methodology publication-title: Appl. Phys. Lett. doi: 10.1063/1.2947591 – volume: 84 start-page: 305 year: 2014 end-page: 310 ident: CR24 article-title: Cogeneration solar system using thermoelectric module and fresnel lens publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.04.041 – year: 1995 ident: CR43 publication-title: Solar Two: A Molten Salt Power Tower Demonstration – volume: 239 start-page: 142 year: 2019 end-page: 156 ident: CR33 article-title: Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.075 – volume: 4 start-page: 3546 year: 2019 end-page: 3555 ident: CR7 article-title: Three-dimensional porous solar-driven interfacial evaporator for high-efficiency steam generation under low solar flux publication-title: ACS Omega doi: 10.1021/acsomega.8b03573 – volume: 4 start-page: 3546 year: 2019 ident: 77442_CR7 publication-title: ACS Omega doi: 10.1021/acsomega.8b03573 – volume: 39 start-page: 1735 year: 2010 ident: 77442_CR12 publication-title: J. Electron. Mater. doi: 10.1007/s11664-010-1190-8 – volume: 82 start-page: 2066 year: 2018 ident: 77442_CR26 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.08.030 – volume: 29 start-page: 743 year: 2004 ident: 77442_CR21 publication-title: Renew. Energy doi: 10.1016/j.renene.2003.10.005 – volume: 58 start-page: 1256 year: 2016 ident: 77442_CR37 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.234 – volume: 185 start-page: 1971 year: 2017 ident: 77442_CR34 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.10.075 – volume: 195 start-page: 885 year: 2019 ident: 77442_CR27 publication-title: Energ. Convers. Manag. doi: 10.1016/j.enconman.2019.05.081 – volume: 104 start-page: 538 year: 2013 ident: 77442_CR3 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.11.051 – volume: 10 start-page: 023703 year: 2018 ident: 77442_CR4 publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.5004069 – volume: 170 start-page: 68 year: 2017 ident: 77442_CR32 publication-title: Sol. Energy Mater. Sol. C. doi: 10.1016/j.solmat.2017.05.059 – volume: 5 start-page: 16359 year: 2017 ident: 77442_CR9 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03262E – volume: 239 start-page: 142 year: 2019 ident: 77442_CR33 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.075 – volume-title: Solar Two: A Molten Salt Power Tower Demonstration year: 1995 ident: 77442_CR43 – volume: 321 start-page: 1457 year: 2008 ident: 77442_CR15 publication-title: Science doi: 10.1126/science.1158899 – volume: 10 start-page: 532 year: 2011 ident: 77442_CR19 publication-title: Nat. Mater. doi: 10.1038/nmat3013 – volume: 93 start-page: 33 year: 2012 ident: 77442_CR13 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.06.006 – volume: 146 start-page: 453 year: 2017 ident: 77442_CR36 publication-title: Sol. Energy doi: 10.1016/j.solener.2017.03.013 – volume: 484 start-page: 114423 year: 2020 ident: 77442_CR10 publication-title: Desalination doi: 10.1016/j.desal.2020.114423 – volume: 3 start-page: 1031 year: 2018 ident: 77442_CR11 publication-title: Nat. Energy doi: 10.1038/s41560-018-0260-7 – volume: 64 start-page: 635 year: 2016 ident: 77442_CR16 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.06.035 – volume: 16 start-page: 1442 year: 2016 ident: 77442_CR23 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2016.08.010 – volume: 21 start-page: 18 year: 2019 ident: 77442_CR35 publication-title: J. Energy Storage doi: 10.1016/j.est.2018.11.008 – volume: 53 start-page: 1411 year: 2016 ident: 77442_CR42 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.09.026 – volume: 8 start-page: 14600 year: 2016 ident: 77442_CR38 publication-title: Nanoscale doi: 10.1039/C6NR03921A – volume: 84 start-page: 305 year: 2014 ident: 77442_CR24 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.04.041 – volume: 27 start-page: 101118 year: 2020 ident: 77442_CR29 publication-title: J. Energy Storage doi: 10.1016/j.est.2019.101118 – volume: 9 start-page: 055110 year: 2019 ident: 77442_CR6 publication-title: AIP Adv. doi: 10.1063/1.5096295 – volume: 76 start-page: 369 year: 2017 ident: 77442_CR25 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.03.014 – volume: 1 start-page: 1 year: 2016 ident: 77442_CR18 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.153 – volume: 140 start-page: 513 year: 2019 ident: 77442_CR39 publication-title: Renew. Energy doi: 10.1016/j.renene.2019.03.088 – volume: 170 start-page: 1130 year: 2018 ident: 77442_CR30 publication-title: Sol. Energy doi: 10.1016/j.solener.2018.05.007 – volume: 11 start-page: 18466 year: 2019 ident: 77442_CR8 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04535 – volume: 99 start-page: 1212 year: 2016 ident: 77442_CR28 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.01.071 – volume: 12 start-page: 1613 year: 2019 ident: 77442_CR41 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00542K – volume: 315 start-page: 798 year: 2007 ident: 77442_CR2 publication-title: Science doi: 10.1126/science.1137014 – volume: 81 start-page: 150 year: 2015 ident: 77442_CR14 publication-title: Renew. Energy doi: 10.1016/j.renene.2015.03.026 – volume: 10 start-page: 043709 year: 2018 ident: 77442_CR5 publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.5039306 – volume: 103 start-page: 5 year: 2008 ident: 77442_CR17 publication-title: J. Appl. Phys. doi: 10.1063/1.2918987 – volume: 92 start-page: 243503 year: 2008 ident: 77442_CR22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2947591 – volume: 206 start-page: 330 year: 2020 ident: 77442_CR31 publication-title: Sol. Energy doi: 10.1016/j.solener.2020.05.106 – volume: 60 start-page: 37 year: 2007 ident: 77442_CR1 publication-title: Phys. Today doi: 10.1063/1.2718755 – volume: 5 start-page: 9055 year: 2012 ident: 77442_CR20 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22248e – volume: 155 start-page: 141 year: 2016 ident: 77442_CR40 publication-title: Sol. Energy Mater. Sol. C doi: 10.1016/j.solmat.2016.06.003 |
SSID | ssj0000529419 |
Score | 2.409801 |
Snippet | Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar energy... Abstract Solar energy as an abundant renewable resource has been investigated for many years. Solar thermoelectric conversion technology, which converts solar... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 20500 |
SubjectTerms | 639/4077/4072 639/4077/4072/4062 639/4077/909/4101 639/4077/909/4101/4103 Electricity Energy Energy conversion Harvesting High temperature Humanities and Social Sciences Magnetic fields multidisciplinary Phase transitions Renewable resources Salts Science Science (multidisciplinary) Solar energy Solar radiation Sunlight Thermal energy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyItYqrtUTwpqG7m9nd5FiLpQj1ZKHgIeQTC6-74r4K7793Jrvv2S2oF2_7kSXJZJL5zSbzG8beNjal1rdKOKVLAa6zQrWVE2QcbRs0WE0Bzhef2_NL-HTVXN1J9UVnwiZ64Elwxz7E1ncp2VJqQCysosdqLWpaSBBsXn3R5t1xpiZW71pDpecomVKq4xEtFUWTobeEiAdqsVlYokzYv0CZ989I3tsozfbn7Al7PANHfjI1eJ89iP1T9nBKJbk5YF_pwIaImRCCoin5SD4rJ3h3M0y5bq49z2fM8w8yHnPQVOBuw2-Gn3TNM2sSVs6HhM9WiKb5aFfr8Rm7PPv45fRczIkThG-adi2CjA77LJ3sXKObEuUlPSWZhioEFTxAk3TsJA6Nx7vgbadrl9DViw5s0PI52-uHPr5gXHoHZYDaofjAR68qr6VLuE4op6CyBau2QjR-ZhWn5BYrk3e3pTKT4A0K3mTBm03B3u2--T5xavy19Acam11J4sPOD1BLzKwl5l9aUrDD7ciaeZKOpoYOl7MSIWXB3uxe4_SiPRPbx-GWyrS0T44grGDdQiMWDVq-6a-_ZaJudOU6XB8L9n6rO78r_3OHX_6PDr9ij2rS9aoSNRyyvfWP2_ga4dPaHeWZ8gubYBtr priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9UwNOhE8EWcH1j3QQTfNKxt0iZ5Gk4cQ9AnBxd8CPmqDu7abb0T7r_3nDT3jg7cW5ukNDk5OZ855xDyobFd1_pWMad0yYSTlqm2cgyZo22DFlZjgPP3H-3Zufi2aBbZ4Dbma5UbmpgIdRg82siPaiEB90rg_8dX1wyrRqF3NZfQeEyeYOoyxGq5kFsbC3qxRKVzrEzJ1dEI_ApjykBnArlH1Gw940cpbf9M1rx_U_KeuzRxodMX5HkWH-nnab93yaPYvyRPp4KS61fkF17bYDGlhcCYSjqi5kpRyLscpoo3F56mm-bJTEZjCp0K1K3p5fAXn2nKnQQ_p0MHbUuQqelol6vxNTk__frzyxnL5ROYb5p2xQKPDtbMHZeu0U0ZveUeS02LKgQVvBBNp6PksEEe3oK3UteuA4UvOmGD5m_ITj_08S2h3DtRBlE7AJ_w0avKa-46oBbKKVHZglQbIBqfc4tjiYulST5urswEeAOANwnwZl2Qj9tvrqbMGg-OPsG92Y7ErNipYbj5bfIhMz7E1suusyXXAvQmFT2gqAWqFDoRbF2Q_c3OmnxUR3OHWAV5v-2GQ4aeE9vH4RbHtOgtB1GsIHKGEbMJzXv6iz8pXTcodBKoZEE-bXDn7uf_X_C7h-e6R57ViMVVxWqxT3ZWN7fxAMSjlTtMZ-AfNn8Q0w priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WXQQv4idWV4ngTYNtk7bJ8SkuywO96MKCh5Cv6sLbVrZvhfffO5O2T7qo4K1tEppOJpOZzsxvAF5Vtm1rXyvulM65dI3lqi4cp8PR1kFLqynB-eOn-vRMrs-r8wMo51yYFLSfIC2TmJ6jw94OeNBQMhgaO6iwyJLvbsERQbUjbx-tVuvP6_2fFfJdyUJPGTK5UH8YvDiFElj_QsO8GR95w0mazp6Te3B3UhrZapzmfTiI3QO4PZaR3D2ErxSswWMCg6BMSjaQvcpItbvsxzo3F56l-PL0c4zFlDAVmNuxy_4nXbOEmIQvZ32LzzaoSbPBbrbDIzg7-fDl_SmfiiZwX1X1lgcRHX6zcKJxla7y6K3wVGBaFiGo4KWsWh0bgcvi8S542-jStWjmRSdt0OIxHHZ9F58AE97JPMjSIfmkj14VXgvXooxQTsnCZlDMRDR-QhSnwhYbkzzbQpmR8AYJbxLhzS6D1_sxP0Y8jX_2fkdrs-9JWNjpQX_1zUy8YXyItW_a1uZCS7SWVPTImBZlUWhlsGUGx_PKmmmDDqaUDYqyHNXJDF7um3Frkb_EdrG_pj41-chRAcugWXDEYkLLlu7iewLpRjOuQdmYwZuZd36__O8f_PT_uj-DOyVxdVHwUh7D4fbqOj5HJWnrXky74hdyChCk priority: 102 providerName: Springer Nature |
Title | High-efficiency solar thermoelectric conversion enabled by movable charging of molten salts |
URI | https://link.springer.com/article/10.1038/s41598-020-77442-y https://www.proquest.com/docview/2473220324 https://www.proquest.com/docview/2464192283 https://pubmed.ncbi.nlm.nih.gov/PMC7687880 https://doaj.org/article/cde6c7ffa03948268ecbeca257df4da2 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY5_Maxc02NumzR-yZT2MkYaWEmgZ2wKBPRh9uSuk9hqnY_7vd5LtDJdusCfHshJFp5Pud5bufgCvU1mWmc5yqnIRUqa4pHkWKeqMo8yMYFK4AOez8-x0webLdLkDA91RL8DmTtfO8Ukt1qt3v67bjzjhP3Qh4_n7Bo2QCxRDRwjBDItpuwv7aJm4YzQ46-F-l-s7Fsxzfbgk7BTBRNzH0dz9MyNb5VP6j3Do7VOUt7ZSvYU6eQgPemhJpp0uPIIdWz2Gex3ZZPsEvrkjHdT6lBEu3pI0ruvEAcCrumPDudTEn0L3r9CI9WFVhqiWXNU_3Wfi8yph46QusWyFeJs0crVpnsLi5Pjr7JT21ApUp2m2oSaxCvucqISrVKSh1TLRjoaaRcbkRjOWlsLyBAdP453RkotYlegMWsWkEckz2Kvqyj4HkmjFQsNiheJj2uo80iJRJa4kucpZJAOIBiEWus877ugvVoXf_07yohN8gYIvvOCLNoA32-_86LJu_LP2kRubbU2XMdsX1OuLop-AhTY207wsZZgIhj5VbjWqr8QVy5TMyDiAw2Fki0ELi5hx1JEQQWcAr7aPcQK6XRVZ2frG1cncTjrCtAD4SCNGf2j8pLr87lN5o7PHcQUN4O2gO38a_3uHX_yXeA7gfuyUOopozA5hb7O-sS8RSW3UBHb5kk9gfzqdf5nj9ej4_NNnLJ1ls4l_OzHxE-g3i-cgKA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtUwcFS1QnBBZROBAkaCE1jN4mwHhNiqV7qcWulJHIy3QKXXpDSvoPwU38iMk7wqleitt8R2ZGc8q8czA_AqVVWVmazguihDLnSueJFFmpNwVJkthSopwPngMJsdi6_zdL4Gf8dYGLpWOfJEz6htY-iMfDsWOeJeiPL__dkvTlWjyLs6ltDo0WLPdX_QZGvf7X7G_X0dxztfjj7N-FBVgJs0zZbcJk6HaJfpJNdpmYbOqMRQBWYRWVtYI0RalS5PcN0G36xReRnrCu0gp4WylHwJWf4GCt6QjL18nq_OdMhrJqJyiM3BSbZblI8Uw4Y2GupZIubdRP75MgET3fbqzcwr7lkv9XY24e6grrIPPX7dgzVX34dbfQHL7gF8o2si3Pk0FBTDyVqylBkpladNX2HnxDB_s90fyzHnQ7Us0x07bX7TM_O5mnBy1lTYtkAdnrVqsWwfwvGNAPYRrNdN7R4DS4wWoRWxRvAJ40wRmTLRFXKnQhciUgFEIxClGXKZU0mNhfQ-9aSQPeAlAl56wMsugDerb876TB7Xjv5Ie7MaSVm4fUNz_kMORC2NdZnJq0qFSSnQTiucQZJQyAVtJayKA9gad1YOrKGVl4gcwMtVNxI1eWpU7ZoLGpORdx5VvwDyCUZMFjTtqU9--vTgaEDmyJUDeDvizuXk___hJ9ev9QXcnh0d7Mv93cO9p3AnJoyOIh6LLVhfnl-4Z6iaLfVzTw8Mvt80Af4DSvpPBA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZatVA9FBuUXwRV4xWHUGfdLhZJtuDiLW9tFYvRSwUfBhnixbapDa3Sn7Nr_OcSXLLLdi3vmWZMJMzZ52zAbxMVVVlJiu4LsqQC50rXmSR5iQcVWZLoUpKcP48z3YOxMfD9HAN_o65MBRWOfJEz6htY-iMfBqLHHEvRPk_rYawiP2t2bvTX5w6SJGndWyn0aPInuv-oPnWvt3dwr1-Fcez7a8fdvjQYYCbNM0W3CZOh2ij6STXaZmGzqjEUDdmEVlbWCNEWpUuT_AfDN5Zo_Iy1hXaRE4LZakQE7L_9Zysogmsb27P978sT3jIhyaicsjUwWmmLUpLymhDiw21LhHzbkUa-qYBK5ru5TjNS85aLwNnd-D2oLyy9z223YU1V9-DG307y-4-fKOgEe58UQrK6GQt2c2MVMyTpu-3c2SYj3P3h3TM-cQty3THTprfdM185SacnDUVPsMNqFmrjhftAzi4FtA-hEnd1O4RsMRoEVoRawSfMM4UkSkTXSGvKnQhIhVANAJRmqGyOTXYOJbew54Usge8RMBLD3jZBfB6-c1pX9fjytGbtDfLkVST2z9ozn7IgcSlsS4zeVWpMCkFWm2FM0ggCnmirYRVcQAb487KgVG08gKtA3ixfI0kTn4bVbvmnMZk5KtHRTCAfAUjVha0-qY--umLhaM5mSOPDuDNiDsXk___hx9fvdbncBOJT37ane89gVsxIXQU8VhswGRxdu6eop620M8GgmDw_bpp8B9kNlSf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficiency+solar+thermoelectric+conversion+enabled+by+movable+charging+of+molten+salts&rft.jtitle=Scientific+reports&rft.au=Chang%2C+Chao&rft.au=Wang%2C+Zongyu&rft.au=Fu%2C+Benwei&rft.au=Ji%2C+Yulong&rft.date=2020-11-24&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-77442-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_020_77442_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |